
MalPaCa Feature Combination: Which packet header features and combination
thereof are the most generalizable, private and easy to extract to cluster malicious

behavior?

Jonathan Garack , Sicco Verwer , Azqa Nadeem
TU Delft

MalPaCa is an unsupervised clustering tool, which the
main purpose is to cluster unidirectional network connections
based on network behavior. The clustering is only based on
non-intrusive (private) packet features such as transport and
network header fields, and thus it has a strong potential use-
case. This paper focuses on feature extraction and finding the
best combinations that provide best clustering results. The
features should be generalizable to a wide range of malware
families and follow an easy extraction process. To expand the
research one additional packet-based feature is found, TCP
flags, as well different variants of previously extracted fea-
tures were employed, which improves the efficacy of the tool.
Finally, a grid search is performed to determine the best com-
bination of the features.

1 Introduction
In the field of malware detection, machine-learning-based ap-
proaches have been used for many years. Given the increas-
ing dependence of data processes on network devices and the
evermore emerging Internet of Things (IoT) devices, the pro-
tection of these systems against malware becomes of crucial
importance. Networks that are affected by malware can often
result in third party information-sharing or harm devices and
consequently result in financial or other damages.
There are two approaches to detect malicious behavior in a
network, one respecting the device’s privacy more than the
other. Deep Packet Inspection algorithms (DPI), which is
considered the privacy-intrusive method and has a significant
drawback as it has a limited domain of uses. In contrast, the
other group is more privacy-friendly, which in turn makes the
feature extraction more complex, as the available data is con-
strained.
MalPaCa was created to tackle this problem. This algo-
rithm clusters unidirectional connections into groups that
present similar network behavior. It does so, solely based
on the available information in the Network or Transport
protocols[10]. A significant advantage of MalPaCa is that
it uses sequential features, instead of statistical ones for the
input. This way the algorithm can discover malware behavior
based on the temporal nature of a network connection. Al-
though it is a novel approach to extracting data from network
traffic, some similar use cases can be found in the literature.
For example, Lin et. al [8] use the sequential features for se-
curing cyber-physical systems. Conti et. al [2] were able to

distinguish different actions performed by the mobile app just
on the basis of encrypted network traffic capture.
The current implementation of the algorithm uses four fea-
tures as its input (destination port, source port, time intervals,
and packet size). The existing approach to Malware detec-
tion is based on statistical characteristics, therefore a critical
and not yet well-explored area of research relates to sequen-
tial feature extraction from a network capture. In particular,
this relates to the MalPaCa algorithm. Not all of the features
which can be iterated upon were investigated. Research is
required to determine the most general and easiest to extract
features, that yield the lowest clustering error.
This paper will try to provide an answer to the central ques-
tion, which reads as follows: ”Which packet header features
and a combination thereof are the most generalizable, private,
and easy to extract to cluster malicious behavior?”. Firstly
in section 2, a short description of the MalPaca algorithm is
be provided. Later the methodology that guides the research
will be presented in section 3. The method is split into 3 sub-
sections, data pre-processing, feature extraction, and feature
combination. Section 4 will focus on the description of the
malware that was captured in the dataset, and present the fea-
tures taken into consideration. Part 5 will elaborate on the
results of the grid search and substantiate the choice of the
added feature. Last but not least, a discussion of the results
will be provided and concluded with a brief summary of the
findings and recommendations for future research.

2 Background

Malpaca[10]. is an unsupervised machine learning-based in-
strument that is able to cluster a network traffic capture into
groups of similarly behaving connections. It focuses on uni-
directional connections defined by source and destination IP
addresses. The features are sequential whereby the metrics
used to define the distance between two sequences are dy-
namic time warping and ngrams. The first measure is used
when the sequence contains quantitative data, whereas the
latter when qualitative data is employed. A python imple-
mentation of this algorithm already exists and it uses the des-
tination port, source port, time intervals, and the packet size
as its features. To cluster, the data HDBSCAN is used.

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

3 Methodology
3.1 Data preparation
The dataset used in this paper is IoT-23 [4]. It contains 23 ma-
licious network captures, each one being a unique scenario,
which comprise 20 malware and 3 benign network captures.
The botnets captured in the traffic are Mirai, Okiru, Torii,
Hakai, Gagfyt, IRC bots. Each botnet is described in detail
in section 4.1. Additionally, each connection in the scenario
was split into flows and labeled using the Zeek network ana-
lyzer. It is important to mention that MalPaca does not con-
sider flows, only uni-directional connections. So each con-
nection is assigned to a label based on the IP addresses and
port numbers, therefore it might be possible that a connection
has more than one label assigned to it.
To manage the size of the network captures, filtering is ap-
plied to the dataset. Let ci be an arbitrary unidirectional con-
nection consisting of packets pij . Each uni-directional con-
nection in the traffic capture is kept if the amount of pij ∈ ci
is greater than 20. This is the current standard threshold
(T = 20) to qualify as a datapoint for MalPaca clustering.
The connections such that ci > T , are trimmed and only the
first T packets are kept. This approach significantly shortens
the size of the data,, which allows to process each scenario.
To capture the different behaviors of botnets that occurred
later in the connection or to create more instances of the con-
sidered malware behavior, an additional step is taken. For
each connection ci with more than T packets, ranging be-
tween [pikT , pi(k+1)T], where k is an arbitrary positive num-
ber, new connections are established. For example, if a con-
nection has 40 packets, 2 connections are created out of it. In
appendix A table 7 a detailed overview of the used connec-
tions is presented.
From each scenario no more than 200 malicious connections
with the same label are extracted (horizontal port scans are
from different scenarios). This allows to retain a realistic
proportion between malicious and benign connections. The
distribution of different labels can be seen in table 1 below.
The final sample of the dataset consists of 2059 connections,
of which 1047 are malicious and 1012 benign.

Malware Label Number Of Connections1

Benign 1012
Attack 39

HeartBeat-FileDownload: 4
Okiru 35

C&C-FileDownload 2
C&C 26

HorizontalPortScan 816
DDoS 70
Torii 40

FileDownload 2
C&C-HeartBeat 15

Table 1: Label distribution in dataset

1the number is the sum of the unidirectional connections, (re-
quests + responses)

3.2 Feature Selection
A critical part of this research paper is the appropriate se-
lection of features. The chosen attributes cannot be privacy
intrusive, which limits the domain to only the transport and
network protocol headers. To create the best set of variables
to cluster the malware in the IoT-23 dataset several steps are
taken.
Firstly each scenario from the dataset is studied with the help
of the previous analysis available on the main website of the
dataset. Next, each malware is described on the basis of its
actions and divided into sets of common behaviors. To gather
the relevant information several articles and blogs were ex-
amined, and in addition, the network traffic was analyzed in
WireShark.
As already mentioned in the background section, the MalPaca
algorithm in its default version uses 4 basic attributes: packet
size, time interval, and source and destination port numbers.

3.3 Feature Combination
The final step of the research concerns the choice of the best
combination of the studied variables. The attributes are com-
bined using a weighted average of the distance between them.
To find the weights that yield the best results, a grid search is
performed. First, the Pearson and Spearman correlations are
calculated for each pair of features. This shortens the do-
main of candidate variables. Under certain assumptions, de-
scribed later in this paper, some features are seen having equal
weights. After determining the final set of features, K fold
cross-validation is applied to the data to get the most reliable
results. To assess the results of the grid search, an average
of four metrics is used (the formulas for those metrics can be
found in appendix D):

• Cluster purity (CP): measures the extent to which a
cluster contains a malicious class. 100% means it is
either a fully benign or malicious cluster and 0 means
that the amount of malicious and benign data points are
equal.

• Clustered data points (CDP): measures the percentage
of clustered connections. The smaller the noise cluster,
the larger the score.

• Malicious purity (MP): measures the percentage of the
most appearing malicious label in a cluster over the
whole cluster size. It is only applied to clusters con-
taining malicious labels.

4 Feature Extraction
To extract the best set of features a good understanding of the
malware in the dataset needed to be achieved. This section
will first describe the botnets from which traffic was captured
in the IoT-23 scenarios and then focus on the determining the
most common behaviors within.

4.1 Botnets in the dataset
In this section, a description of each botnet will be given. The
description is based on the malware behavior catalogs, re-
search articles, and cyber-security blogs, extended by a Wire-
shark inspection of the traffic.

4.1.1 Mirai
Mirai is a malware with the goal to infect a large amount of
IoT devices. After creating a botnet, a bot-master can later
perform large-scale DDoS attacks (the scale of the attacks
is so heavy that it is measured in Tbit/s). It has a common
pattern of behavior that can be described in a few steps[6].
To infect a vulnerable machine it performs a horizontal port
scan to find vulnerable open ports. When it finds an open
port it uses a set of hard-coded usernames and passwords to
try and brute-force the IoT device to gain access to it. When
a weakly secured device is discovered and infected, it starts
reporting to the C&C server using various other ports. The
C&C server communicates with the bot (infected device) to
find new vulnerable machines to infect. An interesting fea-
ture of this malware is that it wipes out all of the existing
malware from the infected device. The device also down-
loads a variety of executable files from the C&C and runs
them on the machine. Upon gathering a significant amount
of bots, the C&C server is able to give a command, which
forces the botnet to perform one of many types of DDoS
floods (HTTP, TCP, or others) under the specified address.
The labels given by the Zeek analyzer to scenarios infected by
this malware are C&C, DDoS, PartOfAHorizontalPortScan,
C&C-FileDownload, FileDownload, C&C-HeartBeat.

4.1.2 Okiru
This malware was developed on the basis of Mirai. The be-
havior is similar to the above-described mechanism, but in-
stead of focusing on basic CPU architectures, this botnet is
able to target ARP processors, which makes this variant more
dangerous (as almost 1.5 billion products per year are created
with this CPU architecture [5]). The labels given by the Zeek
analyzer for scenarios where the devices are infected by this
malware are C&C-HeartBeat, Okiru, Okiru-Attack.

4.1.3 Torii
This Botnet differs from the previous two as it uses more ad-
vanced techniques to hide its existence. An interesting thing
to notice in this botnet is that it does not perform a DDoS at-
tack. Instead, it extracts sensitive information and performs
different commands on the infected device. In summary, it
takes virtually full control over the device. To hide its com-
munication with the C&C server it uses the TCP port 443
(HTTPS) [7]. As this malware does not perform any type of
attack, the only malware given by the Zeek analyzer is C&C-
Torii (communication with the C&C server).

4.1.4 Hakai
Hakai is another botnet based on Mirai[1]. The IoT-23 dataset
only captures its communication with the C&C server. This
malware exploits ThinkPHP vulnerability, so its main focus
is web servers built using this open-source framework.

4.1.5 Other botnets
Some botnes from the data set are omitted and are not de-
scribed in this section. This was done because i) the net-
work capture consists only of few long connections (and thus
would not be captured by the MalPaCa tool) and ii) it was al-
most identical to other types of botnets in terms of behavior.

4.2 Most important behavior in the botnets
Based on the aforementioned malware description, the most
interesting behavior is extracted and described in this section.
The description in table 2 lays out the features best describ-
ing the given behavior. Additionally in appendix C heat maps
(Figure 12-21) supporting the feature selection for each be-
havior are presented. The graphs backing up TCP flags are
found in further section 5.2.1.

4.2.1 Horizontal port scan
This label is a type from the port scans family. Two main port
scans can be recognized, vertical and horizontal. The first
one focuses on a single device and scans for an open port.
The latter one tries to exploit a particular service on many
different devices, it is the most commonly used type of port
scan [11]. This information-gaining technique is relatively
old, and a lot of variations exist. The main protocol used for
port scans is TCP. Most of the known port scan attacks use
different kinds of combinations of the TCP flags. A single
horizontal port scan attack is usually performed by a single
machine. The latency, as well as the execution of the code,
is therefore similar, which emphasizes the usefulness of the
Time interval feature. Furthermore, it is noticed that in the
connections between the adversary and the attacked device,
the payload of the respective packets in each connection fol-
lows the same pattern (packets size). Finally, both destination
source ports have a huge classifying potential for this behav-
ior as horizontal port scans check the same port over different
devices.

4.2.2 DDoS
This is one of the most known attacks that is performed to
prevent legitimate use of service [9]. In the IoT-23 dataset,the
main purpose of Okiru or Mirai is to perform this type
of attack. There many different types of DDoS attacks.
The attacks can be performed on different layers from the
TCP/IP model. The ones captured in the IoT-23 dataset were
UDP/TCP floods. The TCP attacks can be also divided into
more groups based on the flags set in a TCP packet. In most
cases when a DDoS flood is performed the packets sent to the
attacked device are the same. Therefore the packets size, Des-
tination source port and TCP flags are useful for categorizing
and labelling of the behaviour.

4.2.3 File download
Usually, when a device is already infected by malware, files
are downloaded, to be later executed. For example, Mirai-like
botnets download executable files to wipe out coexisting mal-
ware on the infected device in order to be in full control. In
the .labeled file created by the Zeek analyzer, there are 3 dif-
ferent types of labels for filedownload (C&C-FileDownload,
FileDownload, C&C-HeartBeat-FileDownload). Although it
is a common and important part of the attack, it was difficult
to distinguish the most impactful features as in the IoT-23
data set there are too few connections labeled as filedown-
load.

4.2.4 C&C communication
This type of behavior varies depending on the malware. For
example, the Torii botnet tries to cover this behavior by mim-

icking the HTTPS communication standard. The C&C com-
munication has also a lot of different types, in the case of the
Torii botnet, it’s used for information gathering, however this
communication is mainly kept to give further commands to
the botnet. This behavior is best described by four features
Time intervals, packet size and TCP flags.

Malicious behavior Feature
1. Horizontal port scan Time Interval

TCP Flags
Packet Size

Dest. & Source port
2. DDoS Packet Size

Dest. & Source port
TCP flags

3. File download —
—

4. C&C Time Interval
TCP Flags
Packet Size

Table 2: Features best describing chosen malicious behaviors

4.3 Features extracted
After the data inspection elaborated on in the previous two
sections, 5 features are extracted for further examination. In
this section, each attribute is described and the different vari-
ants thereof that were considered are discussed. The first four
features are taken from the default version of MalPaCa[10]
and were analyzed to understand their impact on the clus-
tering. The last is an additional feature that was discovered
based on the WireShark inspection and the behavior of the
botnets.

4.3.1 Time Interval
The time periodicity in botnets communication is a well-
known and studied phenomenon [3] [12]. The assumption
is made that bots use a constant (or random, but within some
boundaries) time interval when communicating with the C&C
server. The downside of this feature when used to describe
single packets, is the error in measurement that can occur due
to high latency or low bandwidth. This feature is considered
in two different variants:

• First Time Difference (1TD) - the formula for this fea-
ture is:

g(i) =

{
pat2[i]− pat[i+ 1], if i+ 1 < 20.

0, otherwise.
(1)

• Second Time Difference(2TD) - This feature was con-
sidered as it includes additional information. If the peri-
odicity of a communication was linear, the value is equal
to 0. The formula to calculate this attribute is:

sg(i) =

{
g(i)− g(i+ 1), if i+ 1 < 20.

0, otherwise.
(2)

2packet arrival time

Additionally, both variances are analyzed to determine if the
normalization impacts the clustering result. To normalize the
time interval sequences a min-max normalization was applied
to each single sequence.

4.3.2 Bytes Size
The bytes size feature, measured as the IP header total length
field, is also added to the domain of consideration. After an
inspection in WireShark, some attacks like DDoS UDP floods
have a constant byte size, but some attacks like Syn/Ack hor-
izontal port scans have periodic byte size.

4.3.3 Destination & Source Port
The destination and source port both are of similar impor-
tance when considering unidirectional connections. This fea-
ture is certainly important when detecting horizontal port
scans, or DDoS attacks. However, botnets like Torii often use
known services like HTTP (port 443) to disguise their com-
munication with the C&C server, so the effect of this feature
on the clustering should be carefully evaluated.

4.3.4 TCP Flags
The final feature that shows significant results and was in-
cluded in this study is the TCP flags feature. This feature
was chosen based on the literature review [11]. The flag is
presented as a decimal number, based on the binary represen-
tation of the flag order. To minimize the number of categories
it was decided to only consider the most significant flags. To
choose the flags a literature review was made. Furthermore,
based on the results obtained from calculating the distribution
of the flags (results can be seen in appendix E table 8) used
in each malware, a decision was made to only use the first 6
flags which are: FIN, SYN, RES, PUSH, ACK, URG. These
are also the main flags used to attack the machines during var-
ious port scans or floods. One of the main flood attacks that
can be detected using this feature are TCP ACK flood (flood
with TCP packets that have the ACK flags set), TCP Xmas
(flood with TCP packets that have the FIN, URG, PUSH flag
set), and others (TCP NULL flood, TCP FIN flood, TCP URG
Flood, etc.) As it can be observed, most of the TCP protocol
attacks can be defined by the combination of flags. With this
additional information, one can distinguish between different
malicious anomalies.
As UDP packets do not include flag header fields, this pa-
per assigns a unique value of -1, which allows to distinguish
them more efficiently. The calculated correlation (Spearman
and Pearson) between TCP flags and the type of protocol (6-
TCP, 17-UDP) is above 0.8, which allows us to conclude not
to consider the type of protocol as a candidate feature.

5 Results

This section focuses on the discussion of the experiment and
results thereof. In the first part, a detailed description of the
experimental setup is given, followed by the results obtained
by performing the grid search. The latter part of this section
provides an in depth description of the newly added feature.

5.1 Grid Search
5.1.1 Experimental setup
To find the best combination of the Features a Grid search
is performed. The experiment runs on a machine with Intel
Core i5 9th gen, 8 cores and 16GB RAM. The parameters
chosen for the MalPaCa tool in this experiment are: order of
the ngrams (equal to 3), length of packet sequence (equal to
20 which was the default value used in [10]), minimum clus-
ter size (equal to 10) and minimum sample size (equal to 8).
The data set used in the experiment is described in section
3.1.
The grid search is performed for 7 hyper parameters pre-
sented in table 3. It is important to mention that the source
port and destination port weights were always equal, as the
functionality of those features is equally important depend-
ing on whether its an in or out connection.

variable name name in experiment range
Source port s value 0-3

Destination port d value 0-3
Flags set f value 0-3

Bytes size b value 0-3
Time interval t value 0-3

Second time difference two td True/False
normalized normalized True/False

Table 3: Range of weights tested for each feature/variance.

To get reliable results and prevent the overfitting of the
model a K fold cross validation is applied (with k parame-
ter equal to 3). As a result six data sets were created from
the original one. All potential combinations from the grid
search are validated against each of the aforementioned sets.
The score of each combination is the average of the metrics
obtained in one of the six datasets.

5.1.2 Experiment outcome
This subsection provides an analysis of the results obtained
in the experiment. In table 4 the summary statistics for each
metric is presented. The abbreviations used in the table are
described in section 3.3.

Average MP CP CDP3

mean 0.822938 0.900236 0.819618 0.748961
Std 0.040764 0.017095 0.032015 0.107022
min 0.701532 0.848483 0.683801 0.527718
max 0.871636 0.934950 0.880020 0.895501

Table 4: Basic statistics of the grid search.

Firstly the individual influence of the variables on the
different metrics is presented. For each feature the most
significant findings are shown in the graphs. The graphs are
created using matplotlib library. To create the visualization,
the scores are grouped by the weight used in the combination
(each line in the figures presents a single weight). The top

3Respectively Malware Purity, Cluster Purity, Clustered Data
Points

100 results of each aggregation are selected and are presented
in figures 1-6. It is important to mention that the standard
deviation of the metrics does not show any significance in the
analysis, therefore the mean was chosen as the most accurate
general description for each weight.

Destination & Source ports
The weight of the port number sequences has most signifi-
cant impact on the clustered data points and malware purity
metrics. As we can observed in figure 1, the weight of this
features has a positive relationship with the Malware purity
metric. The impact of this feature’s weight on the MP metric
shows an interesting behavior. While the score does not show
any significant differences between nonzero weights (1, 2, 3),
for which the mean and std are virtually equal, the difference
from zero weights has a significant effect on MP. When the
zero weight is applied to this feature the average of MP is
approximately 0.03 lower than the mean for non zero weights.

Figure 1: Top 100 MP metric results sorted in an ascending order
and grouped by port sequence weight

Figure 2: Top 100 CDP metric results sorted in an ascending order
and grouped by port sequence weight

The Clustered Data Points results are presented in figure 2.

It can be noticed that the port sequence weight is positively
correlated with the Clustered data points score. With each
increase of weight the score increases significantly therefore
the Port Sequence has a material influence on CDP metric.
The mean difference between 0 and 3 weight value is equal
to 0.23 which is one of the strongest results found.
The Cluster Purity score is not found to be significantly
influenced by the weight of port sequences. The outcome is
illustrated in graph 23 of appendix G.

Time intervals
The results from the time interval feature can be found in
graph 3. The chart is generated based on the default MalPaCa
definition without using any of the aforementioned variants
(which are presented later in this section). As a result only
255 combinations are taken into account. Thus the x-axis of
the analyzed graphs ranges between 0 and 63/64.
The time gap has a noteworthy impact on the cluster purity
(CP) metric. The highest scores for this metric around found
for zero weights. The score difference between zero and
non-zero weights for CP equals to 0.04 on average.

Figure 3: Top 100 CP metric results sorted in an ascending order
and grouped by Time Interval weights

Time interval weights are not found to be of significant
influence on the CDP and MP metrics and are therefore not
presented in this section. The respective graphs are listed in
appendix G.

Bytes size
The bytes size feature has a weak impact on the metrics.
Based on the averages none of the metrics shows any
significance, whereby most of the weights had equal impact.
Nevertheless, it is noticed that when the weight is equalized
to zero, the average result decreases.

TCP Flags
The TCP Flags weights show promising results across all
metrics. Figures 4 and 5 present the CP and CDP metrics
results plotted agains the weight of TCP flags. In graph 4, it
can be observed that that combinations having a zero weight
perform worse than the nonzero ones. The average difference

between the means is equal 0.03.

Figure 4: Top 100 CP metric results sorted in an ascending order
and grouped by TCP flags weights

In figure 5 we can note that the mid-weights (1,2) show
better results than using the boundary weights (0,3). This
indicates that this feature is of great importance, however as
explained later in this paper it performs better if one of the
other 4 variables has a higher weight.

Figure 5: Top 100 CDP metric results sorted in an ascending order
and grouped by TCP flags weights

Time intervals variants
As there are 4 other possible variants of the time gap feature,
an analysis is performed to investigate which one yields the
highest result (combinations with t-value = 0 are rejected).
The graph presented below is created by grouping normal-
ized and two td variants. Figure 6 shows that the when two td
variants are employed (0,1 and 1,1) the MP results are im-
pacted negatively. However, when the normalization is ap-
plied the average of the metrics is 0.03 higher. As the variants
had the strongest impact on MP, the CP and CDP metrics are
presented in appendix G.

Figure 6: Top 100 MP metric results sorted in an ascending order
and grouped by 2TD and normalization variants. The first value of
the tuple corresponds to the normalized variant and the second to
2TD. 1 means that the variant is employed

5.1.3 Grid’s search best combinations
To determine the best combination of features the arithmetic
average of each metric for each combination is used. The top
5 combinations are presented in table 5, which lists each out-
come per metric as well as the aforementioned mean. Notice-
ably, for each mix of features, the average outcome is com-
parable. However, some patterns within the presented com-
binations can be seen. First of all, only min-max normalized
time intervals are mentioned, implying that the 2TD variant
is less significant. Secondly, source and destination imports
are of great importance as the weights are set to 3 in each of
the 5 cases. Last but not least, for each case TCP flags range
between 1 and 2, proving that it adds value to the clustering.

AVG MP CP CDP comb.4
0.876597 0.906461 0.822591 0.900740 2,1,1,3,3,T,F
0.876530 0.912451 0.830648 0.886491 1,1,1,3,3,T,F
0.876157 0.914618 0.826876 0.886976 2,0,1,3,3,T,F
0.874460 0.906756 0.819535 0.897088 2,1,2,3,3,T,F
0.873935 0.905694 0.818418 0.897694 2,2,1,3,3,T,F

Table 5: Top 5 results based on the arithmetic average of MP, CP
and CDP.

It is not reasonable to choose the most effective combina-
tion based solely on the average of the metrics. However, by
analyzing the top results for each metric certain observations
can are made.
First, Cluster Purity (CP) is the highest when the weights cor-
responding to packet size and TCP flags are high, but the port
sequences and first-time interval is low.
Secondly, the highest malware purity (MP) is obtained by
setting the b value and t value to 0 and assigning an equal
weight for the remaining 3 attributes. Looking at the top
10 scores for this metric, each combination follows the same
scheme as explained before.

4Characters in the combination correspond to (in the same or-
der): t value, b value, f value, s value, d value, normalized, two td

Lastly, the highest Clustered Data Points were obtained by
combining higher values of port sequences and lower b value,
t value, and f value.

5.2 Evaluation of new feature - TCP Flags

To isolate the impact of this feature on the clustering a special
combination (s value= 1, d value=1, t value=1, b value=1,
two td=False, normalized=False) is created. The HDBSCAN
cluster and sample size parameters are both set to 7. After
the clustering, the result and effectiveness of adding this fea-
ture is investigated by comparing the chosen behavior of the
connections within the same cluster. Two additional clusters
that captured interesting behavior and are not included in this
section are provided in appendix C (Figures 10 and 11).

• SYN port scan One of the scenarios has captured the
most common type of port scan, SYN, also known as a
half-open port scan. This family of port scans can per-
form a large number of scans on different devices within
a short time frame, by first sending a packet with SYN
flag set, and when getting the response it replies with
an RST packet. This behavior is observed in figure 7,
whereby the black color represents the SYN flag set and
the white color (corresponding to 4) implies that the RST
flag is set.

Figure 7: Heatmap of TCP flags value for a cluster that captured
SYN port scan

• DDos There are three different DDoS attacks discovered
in the dataset. The detected floods were: UDP flood,
URG-ACK-PSH Flood, and the most basic SYN flood.
A common pattern noticed in all of the DDoS floods cap-
tured by the dataset is that each packet in their connec-
tion is similar. Figure 8 represents two different DDoS
attacks. The first heatmap virtually only consists of -
1 which is the default value of the TCP flag feature, if
the packet is part of a UDP attack. The second heatmap
represents a DDoS attack that uses the combination of
four flags (SYN, PUSH, ACK, URG). The authors of
the analysis of the employed data set suspect the attack
is an XMas flood, however, this is not consistent with
the existing DDoS literature.

Figure 8: The first heat map presents TCP Flags in a cluster that
captured a UDP flood. The second heat map presents TCP flags in a
cluster that caught PUSH-ACK-URG-DDoS flood

• C&C-Torii As described in the beginning, this botnet
attempts to hide itself by mimicking HTTPS connec-
tions. Adding the TCP flag feature to the attribute mix
resolves this problem. The use of flags when commu-
nicating with a C&C server shows a pattern across dif-
ferent connections. It is noteworthy to mention that the
communication from C&C-server to the infected device
is clustered into a pure cluster, but the outgoing connec-
tions are classified in the same cluster as some HTTPS
responses in the dataset. Nevertheless, the purity of the
responding cluster is still high.

Figure 9: Heatmap of TCP flags in a cluster that captured C&C-Torii
communication.

6 Responsible Research
Malicious network activity comprises a significant ethical
problem in the XXI century. Such adverse activity can of-
ten result in the leakage of private data, misuse of public
or private resources and interaction with IoT devices which
may result in both physical and non-physical harm. This re-
search, particularly when combined with the MalPaCa tool,
should counteract the aforementioned malicious network ac-
tivity and thus the negative externality which could arise from
it. As a result this research does carry positive ethical aspects.
The most significant ethical risk could be the application of
privacy intrusive features which could be misused. However,
the research specifically refrains from using such features and
with that it mitigates any ethical risks of misusing private in-
formation.
The study is easily reproducible as the code will be shared
publicly in its entirety on github. Furthermore, the dataset

comprises open source raw data and thus can be accessed by
anyone interested in reproducing the results. The same holds
true for any of the libraries used which are all widely available
to the public. To make such replication of results as easy as
possible, each step has been clearly and precisely described
within the scope of the document.

7 Discussion
To compare the results to known MalPaCa results two types
of clustering are performed. The hyper parameters that
were chosen for the tool are HDBSCAN (size=11, sam-
ple=7), seq length=20. The weight-parameters for the default
MalPaCa algorithm were t value=1, b value=1, f value=1,
s value=1, d value=1, none of the available variants was
used. The second combination of features was chosen based
on the grid search and its weights are t value=2, b value=1,
f value=2, s value=3, d value=3 (the time interval feature
was normalized). The most outstanding findings were cho-
sen and are presented in this section. The whole table is pre-
sented in Appendix F (table 9 and 10). Below (table 6) the
summarized metrics are presented for both clusterings:

AVG MP CP CDP CS nC
Def. malpaca 0.88 0.92 0.82 0.90 50.40 37
Best comb. 0.90 0.94 0.87 0.91 47.71 39

Table 6: Metric scores for default and new feature combinations

Based on the aforementioned metrics we can notice that
the new combination performs better in the aforementioned
setup. Both combinations perform well in the noise metric
(CDP), however, a difference in purity metrics is noticed.
The reason the purity metric is significantly lower is the use
of port sequence features. For example cluster 12 of the de-
fault combination clustering has purity close to 50%. This can
be explained by the fact that one group attempts to scan port
23, whereas the other tries to perform a brute force attack.
With the use of the new combination, this cluster gets split
up into several sub-clusters as the TCP flags further define
the behavior. A similar situation can be observed in cluster 2
of the old combination. As mentioned before, the C&C-Torii
is blended with 37 benign connections, which is a significant
downside of the current implementation. In this cluster, the
communication is handled using the 443 port, which is as-
signed to HTTPS communication. However, the use of flags
allows recognizing the malicious connections into a separate
cluster. The main contributor to this finding is the fact that
the flags used by C&C-Torii show a unique pattern shown in
figure 9.
Another improvement that is visible after adding the TCP
flags feature to the tool is the ability to recognize a larger va-
riety of DDoS attacks, which in the default combination was
predominantly qualified into the Noise cluster (-1).
Concluding, the use of TCP flags provides additional infor-
mation for clustering and does make the MalPaCa tool less
prone to manipulations relating to the mimicking of network
communication service. Additionally, the heat maps gener-
ated for TCP flag feature add a lot of value to the explainabil-

ity of the cluters, especially in case of well-studied behaviors
like DDoS or port scans.

8 Conclusions
The main focus of this research is to explore the feature space
to extract the most relevant ones, and later to find the best
combination of those features to use in the MalPaCa tool. The
tool is currently pre-implemented and by is default clustering
based on 4 features.
After data inspection, an additional feature and two differ-
ent variances of a preexisting features are found. Adding the
novel TCP flags feature positively impacts the clustering met-
rics, specifically the purity of the clusters. The two variations
that are considered are time interval feature normalization
and the second time interval. Only the first shows a signif-
icant impact on the clustering performed by MalPaCa.
To find the best combination of features, a grid search was
performed. No single combination of features is leading,
however, a pattern in the best-performing metrics is found.
First of all, the use of Source and destination ports has an
important role in the overall clustering. The weights of the
source and destination port sequences in the top 10 cluster-
ing were equal to 3. Another observation shows that adding
the TCP flags feature improves the clustering and its weight
ranges between 1 and 2. The first weight produced less
noise, however, the second weight adds to the recognition be-
tween benign and malicious connections, which try to mimic
the common type of harmless connections (HTTPS, telnet).
Lastly, both time intervals and packet sizes were considered
meaningful and their values vary between 1 and 2.
The above summarized findings provide address the central
question of this paper. The research has produced a gener-
alizable, easy to extract and privacy-friendly set of features.
The generalizability is accomplished by validating the vari-
ables over a large variety of different botnets. The variables
can be extracted form the packet headers in a simple and effi-
cient way, as evidenced by the MalPaCa execution time. All
extracted features are not privacy intrusive, because the focus
was put only into the network and transport protocols header
features (excl. IP addresses).

9 Future Work
The current experiment was performed on an IoT network.
Therefore the malware in this dataset comprised mainly IoT
botnets. It will be important that future research will focus
on different network captures and other types of malicious
behaviors. Specifically, it would be worthwile studying the
set of flags used by the TCP flags feature, which would de-
termine the external validity of the conclusions in this paper.
More focus should also be put on the normalization of the
features, as it already showed some promising results when
applied to time interval. Last but not least, other kind of dis-
tance metrics should be considered with the goal to extract
even more features. .

References
[1] By: Augusto Remillano II January 25, Authors, Au-

gusto Remillano II Threats Analyst, Augusto Remillano

II, Threats Analyst, and Contact Us. Thinkphp vulnera-
bility abused by botnets, Jan 2019.

[2] Mauro Conti, Luigi V Mancini, Riccardo Spolaor, and
Nino Vincenzo Verde. Can’t you hear me knocking:
Identification of user actions on android apps via traffic
analysis. In Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy, pages 297–
304, 2015.

[3] Sebastian Garcia. Modelling the network behaviour of
malware to block malicious patterns. the stratosphere
project: a behavioural ips. Virus Bulletin, pages 1–8,
2015.

[4] Sebastian Garcia, Agustin Parmisano, and Maria Jose
Erquiaga. Stratosphere laboratory. a labeled dataset with
malicious and benign iot network traffic.

[5] Rommel Joven and David Maciejak. Iot botnet: More
targets in okiru’s cross-hairs, Jan 2018.

[6] Constantinos Kolias, Georgios Kambourakis, Angelos
Stavrou, and Jeffrey Voas. Ddos in the iot: Mirai and
other botnets. Computer, 50(7):80–84, 2017.

[7] Jakub Kroustek, Vladislav Iliushin, Anna Shirokova,
and Jan Neduchal. Torii botnet - not another mirai vari-
ant, Sep 2018.

[8] Qin Lin, Sridhar Adepu, Sicco Verwer, and Aditya
Mathur. Tabor: A graphical model-based approach for
anomaly detection in industrial control systems.(2018).
2018.

[9] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos
attack and ddos defense mechanisms. ACM SIGCOMM
Computer Communication Review, 34(2):39–53, 2004.

[10] Azqa Nadeem, Christian Hammerschmidt, Carlos H
Gañán, and Sicco Verwer. Beyond labeling: Using clus-
tering to build network behavioral profiles of malware
families. In Malware Analysis Using Artificial Intel-
ligence and Deep Learning, pages 381–409. Springer,
2021.

[11] Stuart Staniford, James A Hoagland, and Joseph M
McAlerney. Practical automated detection of stealthy
portscans. Journal of Computer Security, 10(1-2):105–
136, 2002.

[12] Florian Tegeler, Xiaoming Fu, Giovanni Vigna, and
Christopher Kruegel. Botfinder: Finding bots in net-
work traffic without deep packet inspection. In Proceed-
ings of the 8th international conference on Emerging
networking experiments and technologies, pages 349–
360, 2012.

A Dataset in detail

IoT-23 code mal. name pseudo-conn. 5 no. conn.
34-1 Mirai 2 10M:36B
43-1 Mirai 1 5M:8B
44-1 Mirai - -
49-1 Mirai - -
52-1 Mirai - -
20-1 Torii 10 20M:132B
21-1 Torii 10 20M:105B
42-1 Trojan 10 50M:118B
60-1 Gagfyt 1 3M:4B
17-1 Kenjiro 1 634M:56B
36-1 Okiru 2 5M:44B
33-1 Kenjiro 1 6M:51B
8-1 Hakai 10 20M:103B
35-1 Mirai 2 17M:135B
48-1 Mirai 2 55M:24B
39-1 IRCBot - -
7-1 Linux, Mirai 4 15M:42B
9-1 Linux, Hajime - -
3-1 Muhstik - -
1-1 Hide and Seek 1 162M:9B

Table 7: The usage of the scenarios from IoT-23. (In the fourth col-
umn the YM:XB, should be understood as X benign and Y malicious
connections extracted)

B Clusters obtained by TCP Flags feature
Custom port scan Some more interesting TCP port scans
were also detected and can be seen in figure 10. This attack
uses a combination of ACK, SYN, PSH, FIN flags. The dis-
tribution thereof has not been determined, and it might be a
custom set attack.

Figure 10: Heatmap of the TCP flags value in a cluster that caught
Custom port scan

Okiru-Attack This is a DDoS flood performed using IoT
device already infected by the Okiru botnet. It was calssified
to the same cluster with some DDoS connections, although
when only analyzing the flags it uses we can notice on Figure
11 a pattern in the flags set.

5Subconnections created out a single long (¿Threshold) connec-
tions.

Figure 11: Heatmap of the TCP flags value in a cluster that caught
Okiru attack

C Features best describing behaviour
C.1 Horizontal Port Scan

Figure 12: Heatmap showing the periodicity of the time interval fea-
ture in horizontal port scan cluster

Figure 13: Heatmap showing the periodicity of the packet size fea-
ture in horizontal port scan cluster

Figure 14: Heatmap showing the continual use of the same destina-
tion port in a horizontal port scan cluster

C.2 DDoS

Figure 15: Heatmap showing the fixed packet size in DDoS cluster

Figure 16: Heatmap showing the fixed packet size in a different
DDoS cluster

Figure 17: Heatmap showing the fixed destination port used in a
DDoS cluster

Figure 18: Heatmap showing the fixed destination port used in a
different DDoS cluster

C.3 C&C

Figure 19: Heatmap showing the fixed packet size used in a C&C
cluster

Figure 20: Heatmap showing the fixed destination port used in a
C&C cluster

Figure 21: Heatmap shows the periodicity of the time interval fea-
ture in a C&C cluster

D Formulas of metrics
Cluster purity (CP):

CP =

∑
4× (clustering purity i− 0.5)2

#clusters in clustering

Clustered data points (CDP):

CDP = 1− #connections in noise cluster

#all connections

Malicious purity (MP):

MP =

∑
#connections of the cluste owner

#connections in cluster

E Distribution of flags over each malware

Flag Count Flag Count

D
D

oS

RES
NON

CONG
ECN
URG
ACK
PUSH
RST
SYN
FIN

0
0
0
0
0
0

242
242
242
42

534
0

O
ki

ru

RES
NON

CONG
ECN
URG
ACK
PUSH
RST
SYN
FIN

0
0
0
0
0
0
0
0
0

110
172
0

Pa
rt

O
fA

H
or

iz
on

ta
lP

or
tS

ca
n RES

NON
CONG
ECN
URG
ACK
PUSH
RST
SYN
FIN

0
0
0
0
0
0
0

261
116
3499
2281
11

C
&

C
-H

ea
rt

B
ea

t

RES
NON

CONG
ECN
URG
ACK
PUSH
RST
SYN
FIN

0
0
0
0
0
0
0

27
6

15
50
2

A
tta

ck

RES
NON

CONG
ECN
URG
ACK
PUSH
RST
SYN
FIN

0
0
0
0
0
0
0

324
135
39
36
0

C
&

C
-T

or
ii

RES
NON

CONG
ECN
URG
ACK
PUSH
RST
SYN
FIN

0
0
0
0
0
0
0

775
40
0

27
0

C
&

C

RES
NON

CONG
ECN
URG
ACK
PUSH
RST
SYN
FIN

0
0
0
0
0
0
0

33
2
0

430
0

Fi
le

D
ow

nl
oa

d

RES
NON

CONG
ECN
URG
ACK
PUSH
RST
SYN
FIN

0
0
0
0
0
0
0

36
20
0
0
0

Table 8: TCP Flag count for all recognized malicious behaviors in
the dataset

F Clustering results used for comparison

cluster no. Malicious behavior captured
0 ’None’: 0, ’C&C’: 20
1 ’None’: 37, ’C&C-Torii-resp’: 20
2 ’None’: 23
3 ’None’: 0, ’PartOfAHorizontalPortScan’: 12
4 ’None’: 0, ’DDoS’: 12

5 ’None’: 28, ’Attack-resp’: 14,
’PartOfAHorizontalPortScan-resp’: 55

6 ’None’: 2, ’Attack-resp’: 1,
’PartOfAHorizontalPortScan-resp’: 29

7 ’None’: 22, ’FileDownload’: 1, ’DDoS’: 2

8 ’None’: 13, ’DDoS-resp’: 2,
’PartOfAHorizontalPortScan-resp’: 1

9 ’None’: 12, ’C&C-resp’: 3, ’C&C-HeartBeat-
FileDownload-resp’: 2

10 ’None’: 0, ’Okiru’: 27, ’DDoS’: 8

11 ’None’: 19, ’Okiru’: 2, ’PartOfAHorizontal-
PortScan’: 58

12 ’None’: 48, ’Attack’: 23, ’PartOfAHorizon-
talPortScan’: 62

13 ’None’: 3, ’C&C-Torii’: 17
14 ’None’: 27
15 ’None’: 20, ’FileDownload-resp’: 1
16 ’None’: 22
17 ’None’: 30
18 ’None’: 48
19 ’None’: 60
20 ’None’: 78

21 ’None’: 3, ’Attack’: 1, ’PartOfAHorizontal-
PortScan’: 27

22 ’None’: 0, ’PartOfAHorizontalPortScan’: 24
23 ’None’: 14
24 ’None’: 20
25 ’None’: 88
26 ’None’: 53
27 ’None’: 60
28 ’None’: 76
29 ’None’: 38

30 ’None’: 5, ’PartOfAHorizontalPortScan’:
525, ’Okiru’: 2, ’DDoS’: 2

31 ’None’: 12
32 ’None’: 12
33 ’None’: 0, ’PartOfAHorizontalPortScan’: 12
34 ’None’: 0, ’DDoS’: 12
35 ’None’: 0, ’DDoS’: 12

-1 (noise)

’None’: 133, ’C&C’: 3, ’DDoS’: 20, ’C&C-
Torii’: 3, ’C&C-HeartBeat-FileDownload’: 2,
’C&C-HeartBeat’: 9, ’C&C-HeartBeat-resp’:
6, ’PartOfAHorizontalPortScan’: 9, ’Okiru’: 4

Table 9: Clusters obtained by classifying based on the default com-
bination of features

cluster no. Malicious behavior captured
0 ’None’: 0, ’PartOfAHorizontalPortScan’: 12
1 ’None’: 0, ’DDoS’: 12

2
’None’: 26, ’C&C-resp’: 3, ’DDoS-resp’:
2, ’C&C-HeartBeat-FileDownload-resp’: 2,
’PartOfAHorizontalPortScan-resp’: 1

3 ’None’: 1, ’PartOfAHorizontalPortScan-
resp’: 26

4 ’None’: 48, ’Attack’: 23, ’PartOfAHorizon-
talPortScan’: 62

5 ’None’: 28, ’Attack-resp’: 14,
’PartOfAHorizontalPortScan-resp’: 55

6 ’None’: 0, ’C&C’: 20, ’C&C-HeartBeat’: 1
7 ’None’: 22, ’FileDownload’: 1, ’DDoS’: 2
8 ’None’: 0, ’Okiru’: 27, ’DDoS’: 10
9 ’None’: 23

10 ’None’: 19, ’Okiru’: 2, ’PartOfAHorizontal-
PortScan’: 58

11 ’None’: 0, ’DDoS’: 11
12 ’None’: 28
13 ’None’: 19, ’FileDownload-resp’: 1
14 ’None’: 1, ’C&C-Torii-resp’: 20
15 ’None’: 13
16 ’None’: 1, ’C&C-Torii’: 18
17 ’None’: 16
18 ’None’: 0, ’PartOfAHorizontalPortScan’: 20
19 ’None’: 22
20 ’None’: 30
21 ’None’: 48
22 ’None’: 60
23 ’None’: 78
24 ’None’: 14
25 ’None’: 20
26 ’None’: 88
27 ’None’: 53
28 ’None’: 60
29 ’None’: 76
30 ’None’: 38
31 ’None’: 13

32 ’None’: 3, ’Attack’: 1, ’PartOfAHorizontal-
PortScan’: 26

33 ’None’: 2, ’PartOfAHorizontalPortScan’:
524, ’Okiru’: 2, ’DDoS’: 2

34 ’None’: 0, ’DDoS’: 12
35 ’None’: 0, ’DDoS’: 12
36 ’None’: 12
37 ’None’: 0, ’PartOfAHorizontalPortScan’: 12

-1 (noise)

’None’: 144, ’C&C’: 3, ’DDoS’: 7,
’C&C-Torii’: 2, ’C&C-HeartBeat-
FileDownload’: 2, ’C&C-HeartBeat’: 8,
’C&C-HeartBeat-resp’: 6, ’PartOfAHorizon-
talPortScan’: 15, ’Attack-resp’: 1, ’Okiru’: 4,
’PartOfAHorizontalPortScan-resp’: 5

Table 10: Clusters obtained by classifying based on the newly se-
lected combination of features (+TCP flags)

G Supplementary graphs from grid search
results

Figure 22: Top 100 Malware Purity(MP) metric results sorted in an
ascending order and grouped by TCP flags weights

Figure 23: Top 100 Cluster Purity(CP) metric results sorted in an as-
cending order and grouped by source & dest. ports sequence weights

Figure 24: Top 100 Malware Purity(MP) metric results sorted in
an ascending order and grouped by Time Intervals (no variations)
weights

Figure 25: Top 100 Clustered Data Points (CDP) metric results
sorted in an ascending order and grouped by Time Intervals (no vari-
ations) weights

Figure 26: Top 100 Malware Purity(MP) metric results sorted in an
ascending order and grouped by Packets sizes weights

Figure 27: Top 100 Cluster Purity(CP) metric results sorted in an
ascending order and grouped by Packets sizes weights

Figure 28: Top 100 Clustered Data Points (CDP) metric results
sorted in an ascending order and grouped by Packets sizes weights

	Introduction
	Background
	Methodology
	Data preparation
	Feature Selection
	Feature Combination

	Feature Extraction
	Botnets in the dataset
	Mirai
	Okiru
	Torii
	Hakai
	Other botnets

	Most important behavior in the botnets
	Horizontal port scan
	DDoS
	File download
	C&C communication

	Features extracted
	Time Interval
	Bytes Size
	Destination & Source Port
	TCP Flags

	Results
	Grid Search
	Experimental setup
	Experiment outcome
	Grid's search best combinations

	Evaluation of new feature - TCP Flags

	Responsible Research
	Discussion
	Conclusions
	Future Work
	Dataset in detail
	Clusters obtained by TCP Flags feature
	Features best describing behaviour
	Horizontal Port Scan
	DDoS
	C&C

	Formulas of metrics
	Distribution of flags over each malware
	Clustering results used for comparison
	Supplementary graphs from grid search results

