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Preserving Causality in Time Domain Integral
Equation-Based Methods

Abstract — The critical relevance of ensuring the excitation’s
causality in electromagnetic (EM) simulations is exploited by
the computation of strictly causal time domain interaction
integrals as they occur in the partial element equivalent circuit
(PEEC) method. Under the hypothesis of thin, almost zero
thickness objects, the presented formulas represent analytical
impulse responses and, as such, are used within convolutions
in the framework of the time domain PEEC solver. The
proposed approach is compared with other standard approaches
and clearly behaves better than frequency-domain methods in
accurately catching the propagation delay and, thus, preserving
the causality. Further, improved stability is observed compared
to marching-on-in-time methods.

Keywords — Causality, time domain integral equation
methods, partial element equivalent circuit (PEEC) method.

I. INTRODUCTION

Time domain integral equation (TDIE) methods are an
attractive alternative to the finite difference/element methods
for analyzing transient electromagnetic (EM) phenomena
[1], [2], [3], [4]. TDIE methods are typically solved by
marching-on-in-time (MOT) schemes. It is well known that
MOT schemes suffer from late-time instabilities [3], [5]Over
the years, many papers have investigated diverse smooth
time basis functions to interpolate the value of the retarded
electromagnetic quantities between the past solution samples.
In this regard, it is clear that the treatment of propagation
delay is important both for the accuracy of the result and for
ensuring the stability of the MOT scheme. Another physical
feature, strictly related to the propagation delay which should
be preserved in the modeling process, is causality.

Among the integral-equation based techniques, the PEEC
method has gained popularity thanks to its ability to represent
electromagnetic (EM) phenomena in terms of equivalent
circuits [6]. It is based on the volume equivalence principle
and, differently from the method of moments (MoM) [7],
it keeps currents and charges separate. The electric field
integral equation (EFIE) and the continuity equation are
solved upon a pertinent expansion of the unknowns and
applying the Galerkin’s projection method. If propagation
delays are neglected, standard RLC circuits are obtained

which are modeled in the time domain by a system of
ordinary differential equations (ODEs) by enforcing Kirchhoff
principles. If the propagation delays are taken into account,
they can be approximated by using the center to center distance
between the spatial support of basis functions. In this case, a set
of delayed differential equations of the neutral type (NDDEs)
are obtained [8] which are solved by means of MOT schemes.
This approach has been used for a long time and it is however
affected by instability problems. More recently, the numerical
inversion of Laplace transform (NILT) has been proposed
as a valid alternative to the MOT approach [9]. NILT-based
solution of PEEC models exhibits improved stability and better
accuracy although at the cost of a greater computational load.

Recently, a novel analytical approach for computing
retarded coefficients of potential of a PEEC model based on the
Cagniard-de Hoop (CdH) technique [10] has been presented
for identical coplanar rectangular patches [11]. The aim of
this work is to extend the analytical solution to the case of
non-identical coplanar rectangular patches and demonstrate
that it can be derived analytically in the time domain (TD)
in terms of elementary functions only. Then, since the same
analytical formulas can be adopted also for the interaction
integrals describing the magnetic field impulse response, some
preliminary results obtained by using the analytical impulse
responses along with convolution schemes are presented and
compared with other, well-established techniques.

II. CAUSALITY OF LTI DISTRIBUTED SYSTEMS

Causality is the physical property of a system expressing
that a response cannot precede the cause that produces it. It
should be strictly preserved by numerical time domain models.

Let us consider a time-invariant electromagnetic system1

with input and output denoted, respectively, by the n-element
vectors x(t) and w(t). Let us denote with h(t) the system
impulse response matrix with each element hij(t) being the
response at port i when an ideal impulse (Dirac’s delta) is

1The time-invariance property identifies those systems that do not change
their behavior with time. If w(t) is the output excited by input x(t), then
w(t− τ) is the output for the delayed input x(t− τ).
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applied at port j, with all other inputs set to zero. The definition
of causality for distributed systems that are affected by the
finite value of speed of the electromagnetic field requires the
following condition to be satisfied:

hij(t) = 0, t < τij , τij > 0, ∀i, j. (1)

where τij represent the time delay between the input j and the
output i.

III. INTERACTION INTEGRALS IN THE PEEC METHOD

The Partial Elements Equivalent Circuit (PEEC) method
is an integral equation-based technique able to provide a
circuit representation of the EM problem. Since it is based
on the volume equivalence principle, electric current densities
flowing in conducting volumes, polarization currents flowing
in dielectric volumes and charges located on the surface
of conductors are assumed to radiate in the background
medium (i.e. the free space). Hence, the free space Green’s
function is adopted. Upon a pertinent discretization of the
geometry of interest in elementary volumes and patches, two
types of interactions have to be considered: a) magnetic
field interactions between elementary volumes where electric
currents flow; b) electric field interactions between elementary
surfaces where electric charges are assumed to be located.
The magnetic field interactions are described by the partial
inductances [6]. If we consider two elementary volumes
Vm,Vn, the mutual partial inductance in the Laplace domain
is defined as:

Lpmn (s) =
µ0

4π

∫
r∈Vm

∫
r′∈Vn

fm(r)·fn(r′)g(r−r′, s)dV dV ′

(2)
where r and r′ are the observation and source points located
in volumes Vm and Vn, respectively, fm and fn are the vector
basis functions and

g(r − r′, s) =
exp[−s|r − r′|/c0]

4π|r − r′|
(3)

is the Green’s function pertaining to a homogeneous, isotropic
and loss-free medium described by its (scalar and real-valued)
electric permittivity ε0 and magnetic permeability µ0 with the
corresponding EM wave speed c0 = (ε0µ0)−1/2 > 0 in the
background medium.

The electric field interactions are described by the
coefficients of potential [6]. If we consider two surface patches,
the mutual coefficient of potential in the Laplace domain reads:

Pmn (s) =
1

4πε0

1

AmAn

∫
r∈Am

∫
r′∈An

g(r − r′, s)dSdS ′

(4)
where Am and An are the surfaces of patches m and n
and constant basis functions have been assumed. Typically,
integrals (2), (4) are computed in the frequency-domain (s =
jω) through a numerical Gaussian adaptive scheme, where the
integration order is automatically set depending on the distance
between the spatial supports of the two basis functions m and
n, higher when the volumes are close, and lower when they are
far away. The inverse fast Fourier transform (IFFT) algorithm

can be used to restore the transient partial inductance, but
a very large amount of samples is typically required for an
adequate result free of aberrations. This is not compatible
with the computation of a large number of partial elements. In
the case of coplanar identical rectangular patches, analytical
expressions for the time domain counterparts of (2) and (4),
Lpm,n

(t), Pm,n(t) , exist [11]. In the next section, this result
is extended to coplanar, but not identical, rectangular patches.

IV. TIME DOMAIN ANALYTICAL SOLUTION

We assume to start from a hexahedral mesh of the system
under analysis. In the following, we restrict our analysis to
thin objects so that the same type of integral hold for both
the interaction integrals (2) and (4), leading to Lpm,n

(t) and
Pm,n(t), apart from a scaling factor. Hence, we shall limit
ourselves in this work to the interaction of two parallel
rectangular surface elements of different sizes lying on the
same plane (see Fig. 1) which are the spatial support of charges
and currents.

Fig. 1. Two rectangular parallel patches.

To localize the position in the problem configuration, we
employ coordinates {x, y, z} with respect to an orthogonal
Cartesian reference frame with the origin O and the standard
basis {ix, iy, iz}. Consequently, the position vector is r =
xix + yiy + ziz . The time coordinate is denoted by t.

For parallel patches with different size, the surface
retarded interaction integral in (4) can be expressed in the
Laplace-domain through a double 2-D integral:

Imn(s) =

∫
r∈Am

dS

∫
r′∈An

g(r − r′, s)dS′ (5)

where, if (xi, yi) are the coordinates of the basis-function
support center, Am = {−∆m

x /2 < x − xm <
∆m
x /2,−∆m

y /2 < y − ym < ∆m
y /2, z = 0} and An =

{−∆n
x/2 < x− xn < ∆n

x/2,−∆n
y/2 < y − yn < ∆n

y/2, z =
0}, with ∆m,n

x > 0 and ∆m,n
y > 0 represent the widths of the

patches m and n along the x and y axes of the cartesian system
of coordinates. Furthermore, s is the real-valued and positive
Laplace-transform parameter [12], Sm,n = ∆m,n

x ∆m,n
y are the

surface areas of domains Am,n, respectively.
Pursuing the approach introduced in Ref. [11], the TD

counterpart of Eq. (5) can be derived. In this way, an extension
of [11, Eq. (7)] pertaining to the actual problem definition (see
Fig. 1) can be expressed as:
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Imn(t) =[
I(xm − xn + ∆mn+

x , ym − yn + ∆mn+
y , t)

− I(xm − xn + ∆mn+
x , ym − yn + ∆mn−

y , t)

− I(xm − xn + ∆mn+
x , ym − yn −∆mn−

y , t)

+ I(xm − xn + ∆mn+
x , ym − yn −∆mn+

y , t)

− I(xm − xn + ∆mn−
x , ym − yn + ∆mn+

y , t)

− I(xm − xn −∆mn−
x , ym − yn + ∆mn+

y , t)

+ I(xm − xn + ∆mn−
x , ym − yn + ∆mn−

y , t)

+ I(xm − xn + ∆mn−
x , ym − yn −∆mn−

y , t)

+ I(xm − xn −∆mn−
x , ym − yn + ∆mn−

y , t)

+ I(xm − xn −∆mn−
x , ym − yn −∆mn−

y , t)

− I(xm − xn + ∆mn−
x , ym − yn −∆mn+

y , t)

− I(xm − xn −∆mn−
x , ym − yn −∆mn+

y , t)

+ I(xm − xn −∆mn+
x , ym − yn + ∆mn+

y , t)

− I(xm − xn −∆mn+
x , ym − yn + ∆mn−

y , t)

− I(xm − xn −∆mn+
x , ym − yn −∆mn−

y , t)

+ I(xm − xn −∆mn+
x , ym − yn −∆mn+

y , t)
]

(6)

where:

∆mn±
x,y = (∆m

x,y ±∆n
x,y)/2 (7)

and I(x, y, t) is defined by [11, Eq. (21)]. Then, the TD
coefficient of potential is obtained from (6) as

Pmn(t) = (ε0SmSn)−1Imn(t) (8)

Similarly, the TD mutual partial inductance for two thin
volumes can be deduced from (6) as follows:

Lpmn(t) =
µ0TmTn

4πScmScn
Imn(t) =

µ0

4πWmWn
Imn(t) (9)

where Scm = WmTm,Scn = WnTn, are the cross sections
of the two volumes and an orthogonal mesh resulting in
parallelepipeds is assumed. Wm,n coincides with ∆m,n

y or
∆m,n
x depending whether the current is directed along the x-

or the y-axis.
Figure 2 shows the normalized mutual potential coefficients,
computed using (6) and (8), between two square patches of
width W1 = W2 = 1 mm placed at different minimum
distance Rm ranging from 0 up 4.2 mm. It is evident that
the propagation delay effect is perfectly reproduced by the
computed impulse responses, hence the causality is strictly
guaranteed as the response is zero for t < tmin = Rmin/c0,
where Rmin is the minimum distance between patches m
and n. Furthermore, the two patches interact up to tmax =
Rmax/c0 where Rmax is the maximum distance between
patches m and n, hence the interaction integral Imn(t) is
strictly time-limited. The transient partial inductances and
coefficients of potential are then implemented into a time
domain solver and convolved with time derivative of currents
and charges. The convolution integrals are computed through
the segment fast convolution scheme [13].

0 0.02 0.04 0.06 0.08
-0.2

0

0.2

0.4

0.6

0.8

1

R
m,1

R
m,2

R
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Fig. 2. P (t) evaluated at minimum distances: Rm,1 = 0 mm (touching
patches), Rm,2 = 3 mm, Rm,3 = 4.2 mm.

V. NUMERICAL RESULTS

The previous theoretical concepts are now exemplified
via a simple, yet illustrative configuration consisting of two
nearby-located, linear dipoles, one in the transmitting mode
and one in the receiving mode. We assume the dipoles to
be very thin, in order to use the analytical formulas for
the interaction integrals of both partial inductances (2) and
coefficients of potential (4). Referring to Fig. 3, the geometric
details are summarized in Table 1.

Table 1. Dipoles geometric details.

arm length ` = 5 cm
arm width w = 1 mm

distance between dipoles d = 20 cm
gap length g = 5 mm
thickness t ≈ 0 mm

Two dual meshes are adopted to model the flow of currents and
the distribution of charges [6]. Generally, also in this simple
configuration, the mesh that gives rise to potential coefficients
require the coexistence of different sizes patches; hence the
expression (5) is strictly necessary to describe the electric
coupling between patches of different sizes.
The transmitting dipole is center-fed by a real voltage source
having an internal impedance of 73 Ω and the receiving dipole
is center-closed over a 73 Ω load. The transient voltage source
is chosen so to have finite time temporal support [14]. It is
described by

vs(ν, t) = V0N(ν)2ν

(
1− t

tr

)(
t

tr

)ν−1(
2− t

tr

)ν−1
(10)

with N = ν−12−ν(ν − 1)1−ν(2ν − 1)ν−1/2. An example
with amplitude V0 = 0.59 V, ν = 4, rise time tr =
3.7 ns is illustrated in Fig. 4a. The analytical impulse
responses for the magnetic and electric field interactions
as given in (8) and (9) obtained by the Cagniard-deHoop
technique are used in a time domain convolution-based
solver, leading to the time domain behaviour of currents,
charges and potentials of the dipoles. As stated before, the
segment fast convolution has been adopted [13] to perform
the convolution integrals. The convolution-based results
(CdH-SFC) are compared with those obtained through several
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Fig. 3. Dipole antennas.

techniques: a frequency-domain solver involving the fast
Fourier transform (FFT) of the time domain partial elements
coefficients (CdH-IFFT), a frequency-domain solver involving
the partial elements computed through the center to center
approximation (CC-IFFT) and a marching-on-in-time solver
that adopts triangular temporal basis functions (TBF-MOT)
for the partial elements. For the frequency-domain solvers, the
time domain response is restored by the inverse fast fourier
transform scheme (IFFT). The voltage v2(t) across the load
of the receiving dipole is shown in Fig. (4a). A satisfactory
agreement is observed in general among all the methods, but
it is evident from Fig. (4b) that causality is better reproduced
by the time domain convolution-based solver compared to the
frequency-domain solvers which suffer from the truncation of
the spectrum. Based on our experience, MOT techniques are
frequently very sensitive to the choice of time step and the
method of integration. Consequently, the corresponding MOT
computational schemes may become unstable. The proposed
approach is found to be always stable in our tests. This
confirms that accuracy, causality and stability are strictly
related.

VI. CONCLUSION

In this work, the causality of interaction integrals
occurring in time domain integral equation based methods
has been considered. In particular, strictly causal time domain
interaction integrals between coplanar patches as they occur
in the partial element equivalent circuit (PEEC) method are
proposed under the hypothesis of thin objects. The comparison
with more standard techniques on a antenna test case shows
that the proposed approach outperforms frequency-domain
methods in reproducing causality. Preliminary results also
exhibit improved stability properties which will be investigated
in the future.
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