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Summary

One of the main challenges in Multi-disciplinary Design Optimisation (MDO) is the inter-
operability of heterogeneous simulation tools. Some researches have reported that, due to
these interoperability issues, only around 20% of the product development time is spent
on analyses and creative design tasks. Clearly, there is a lot to gain, when it comes to
improving this figure.
Key to the success of MDO are Knowledge Based Engineering (KBE) and Simulation
Workflow Management (SWFM) technologies. However, developing KBE and SWFM
applications requires a substantial amount of (programming) knowledge and expertise.
Due to these constraints, the technologies are less accessible to non-programmers. Addi-
tionally, there is an increased risk that applications may become black boxes when it is
not clear what knowledge went into the application. This complicates sharing and reusing
knowledge in future projects.
A methodology is needed to avoid these complications. Of all methodologies, MOKA is
the most well-known methodology for developing KBE applications. It focuses on cap-
turing and structuring knowledge to increase transparency. However, MOKA is rather
product-oriented than process-oriented, and thus lacks the methods and tools for devel-
oping simulation workflows.

Based on these findings, there are two goals in this research:

1. Develop a new methodology for SWFM.
2. Reduce the amount of required expertise for modelling simulation workflows.

A new methodology is developed starting from the foundations laid by MOKA. It presents
new step-by-step instructions to guide engineers in the modelling process. Further-
more, the methodology introduces new forms, the Business Process Model and Notation
(BPMN), and an N2 notation to capture and structure process knowledge. This knowl-
edge is then formalised (i.e. translated to a format which is closer to computer language)
before Model Driven Software Engineering (MDSE) techniques are used to automatically
generate the workflow.
For this purpose, a new integration framework has been developed, based on the Inte-
grated Design and Engineering Architecture (IDEA) which evolved from the Design and
Engineering Engine (DEE). The new framework couples a Knowledge Base (KB), product
(KBE) and process (SWFM) tools (see Figure 1).

Reducing the required expertise is achieved by introducing High-Level Activities (HLA).
HLAs are activities that consist of five primitives: input, preprocessor, analysis, postproces-

v



vi Summary

Figure 1: Diagram of the IDEA framework showing which components are new (in red) and
where KBE (in green) and SWFM (in blue) technologies are applied.

sor, and output. Capturing lower-level knowledge in these HLAs allows for inexperienced
engineers to model workflows at a higher abstraction level. Meanwhile, a new parametric
high-level workflow has been designed, that enables engineers to optimise KBE product
models without actually modelling a workflow. Both the HLAs and the parametric work-
flow are used in several use cases involving a packaging design optimisation and an MDO
workflow for thermoplastic injection moulding.

In the end, this work has delivered tools, methods, and a framework that:

• increases transparency of SWFM applications
• saves development time
• reduces required expertise to model simulation workflows



Preface

This thesis work forms another milestone in the mission of the Flight Performance and
Propulsion (FPP) department to increase the productivity of modern-day engineers in
complex product design. It provides a new methodology and supporting tools to develop
simulation workflows, starting from a very high level down to the implementation. The
iProd project objectives proved to be in line with the specific objectives of this thesis,
therefore part of this work has been performed in the scope of this project (see Figure 2).
To this end, this thesis has contributed to iProd in the form of the development of several
engineering workflow ontologies and the implementation of an example MDO problem.
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Chapter 1

Introduction

1.1 Future of Aerospace Engineering

The aerospace industry is on the verge of entering a new era. In the next decades, people
can expect to see novel aeroplanes built with the latest technologies in the most original
configurations (see Figure 1.1). This new generation of aircraft delivers an ever more
comfortable and convenient experience, attracting even more travellers than today. It is
expected that the number of flights within Europe will grow from 9.4 million in 2011
to 25 million in 2050 (Kallas et al., 2011). It will be a real challenge for the aerospace
engineering industry to live up to these expectations.

Figure 1.1: Future aircraft concepts presented by NASA and Airbus (sources: NASA, 2012;
Airbus, n.d.).

The main concern from a technological viewpoint is to maintain safety and sustainability
when air traffic grows. Safety is guaranteed by developing new intelligent Air Traffic
Management (ATM) systems, while innovative materials and engine technologies provide
sustainability. Especially sustainability has become a main priority for the aerospace

1
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community. Europe’s vision is to reduce the perceived noise by 65%, CO2 emissions by
75%, and NOx emissions by 90% by the year 2050 (relative to the amounts measured
in 2000). Reducing emissions by these amounts drives the aerospace industry to further
innovate technologies. However, focusing solely on new product technologies will not be
sufficient. Changing market conditions forces aerospace companies to redefine their design
process as well. Or as La Rocca (2011) concluded: “In order to make a step change in
aviation, a paradigm shift in the design methodology will be required.”

1.2 Challenges in Aircraft Design

One of the most urgent challenges for the European aerospace industry is the heavy
competition from upcoming countries, such as Brazil, China, India, and Russia. These
countries, with the exception of Russia, have already settled among the top five com-
petitors (see Figure 1.2). Russia lost its dominance after the cold war, but the tide is
changing as it is the fastest growing country on the index, moving from the 20th to 14th

place (Roth et al., 2010). Moreover, it aims to become the worlds third-largest aircraft
manufacturer by 2015 (Platzer, 2009). More competition allows customers to select prod-
ucts that perform best in terms of quality, performance, cost, and time to market. Even
though there are many other factors that determine a countries’ competitiveness, it is
clear that the new generation of manufacturing powers outclass the established countries,
including West-European countries.

Rank Country Index score
10=High 1=Low

1 China 10.00

2 India 8.15

3 Republic of Korea 6.79

4 United States of America 5.84

5 Brazil 5.41

Rank Country Index score
10=High 1=Low

1 China 10.00

2 India 9.01

3 Republic of Korea 6.53

4 Brazil 6.32

5 Untied States of America 5.38

Source:  Deloitte and US Council on Competitiveness - 2010 Global Manufacturing Competitiveness Index; ©Deloitte Touche Tohmatsu, 2010.

Figure 1.2: Tables showing the competitiveness index for the top 5 countries in 2010 (left
table) and the expected top 5 in 2015 (right table) (source: Roth et al., 2010).

The same report by Deloitte (Roth et al., 2010) has identified talent-driven innovation
as the most important competitive driver. All manufacturers around the globe agree
that attracting talented and skilled people is a key requirement for innovation and for
increasing production efficiency. Unfortunately, manufacturers in developed countries are
struggling to find new talents that are able to replace their retiring workforce. Many of
these countries suffer from an overall decline in birth rate. And even though more people
go through tertiary education nowadays, the net result is a shortage of qualified engineers.
Gertler attributes this problem to a reduced interest in aerospace (PE Magazine, 2008).
After the cold war the number of research programmes declined, which had a negative
effect on promoting the aerospace industry. The loss of excitement in engineering has
pushed young talents to other industries.
Moreover, the young engineers who have been attracted, are exposed to less development
programmes (see Figure 1.3). As a result, these engineers have less experience, but are
still expected to design increasingly complex products. Altogether, future engineers need
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to be much more productive due to these complications (van Tooren, 2003).
Another direct consequence is that companies have to find ways to retain knowledge when
their experts retire. But without solutions in knowledge management, retiring experts
will not be able to transfer their expertise effectively to the new generation. This may
lead to a loss of knowledge, which will have a large impact on future product development.
Work needs to be redone, while the competition continues to innovate.

Experience: 5 programs

Experience : 3 programs

Experience : 2.5 programs

Experience : Less than 2 programs
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Figure 1.3: Future engineers have less experience (source: van Tooren, 2003).

Besides organisational challenges, companies are facing technological challenges as well.
Many are related to the increasing usage of information technologies. Nowadays design
engineers have access to a growing amount of simulation tools, also known as Computer
Aided Engineering (CAE) tools. Consequently, designers are exposed to more informa-
tion, which improves the decisions made during the design process. However, the increased
usage of simulation leads to certain complications as well.
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Figure 1.4: Graph showing expected problems in simulation software usage (source: Walsh,
2011)

The first complication relates to simulation expertise, the skill of defining an engineering
problem into a simulation problem, which is rapidly becoming an obstacle. Walsh (2011)
has found evidence in much research that the amount of required simulation expertise
will increase drastically while the availability of expertise will remain nearly constant
(see Figure 1.4). The only way to confront these problems is by reducing the amount
of required expertise, and thus making software “smarter” and not only “easier to use”.
The latter has already been tried for over twenty years and has not succeeded. Therefore,
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the former option of making software “smarter” has to be the choice of future solutions.
Another growing issue is the interoperability of heterogeneous tools (i.e. tools that have
not been designed to cooperate nicely). As a result, design engineers spend the majority
of their time managing dataflow between software tools, including manually translating
data to tool-specific formats. Interoperability studies in the U.S. show that it costs the
automotive supply chain sector $1 billion per year (Brunnermeier & Martin, 1999) and
the capital facilities industry $15.8 billion per year (Gallaher et al., 2004). Figures from
the aerospace industry have not been reported, but NACFAM (2001) expects similar
amounts.

Without new solutions, design engineers continue to waste time on non-value adding ac-
tivities. Bazilevs et al. (2009) refers to the results of a study where only 23% of the
overall simulation time is spent on analysis. Similar figures are found by Stokes (2001),
who discovered that merely 20% of the design process is dedicated to creative processes.
These numbers will further decline if companies decide to apply Multi-disciplinary Design
Optimisation (MDO) without rethinking their design process. MDO is a methodology
for the design of complex systems where strong interaction between disciplines motivates
designers to control variables from several disciplines. It involves heavy simulation usage
in various disciplines. Hence, one of the main challenges of building an MDO framework is
the coupling of heterogeneous simulation tools. Yet, companies should consider investing
in developing a framework. Boeing demonstrated with their design project of a hyper-
sonic vehicle that MDO can be a solution to the inefficient traditional design methods
(Bowcutt et al., 2008). Flager & Haymaker (2007) surveyed Boeing’s design team that
worked with both traditional design processes and the newly designed MDO framework,
and discovered that a drastic reduction of time spent on managing information is achiev-
able (see Figure 1.5). The saved effort gave the designers more freedom to explore the
design space and evaluate the results. The success of this project provides the neces-
sary incentive for the aerospace industry to adopt MDO. The next section explains two
essential technologies for MDO frameworks.

8%

8%

32%

10%

50%

26% 48%

18%

Traditional Design Method MDO

SpecificationExecution ManagementEvaluation

Figure 1.5: Comparison of time spent on design activities (source: Flager & Haymaker,
2007)

1.3 Current and Future Trend

MDO is growing in popularity as companies aim to increase their competitiveness and
productivity. But to be successful, MDO depends heavily on automation technologies.
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An automated MDO framework enables companies to design products with higher quality
standards and performance, while reducing lead time and the required number of engi-
neers. Two essential technologies supporting MDO are Knowledge Based Engineering
(KBE) and Simulation Workflow Management (SWFM).

For complex products, MDO relies on parametric, generative modelling techniques to
manipulate the geometry and to (re)configure the product (van Dijk et al., 2012; La
Rocca, 2012). Computer Aided Design (CAD) allows for parameterisation of the product
geometry, but is limited to a single topology only. KBE on the other hand, is capable of
capturing engineering knowledge that is necessary for automatically generating various
configurations (see Figure 1.6). Moreover, this knowledge extends to disciplines besides
geometry (such as cost and manufacturing) which is used to produce different ‘views’ of a
product model. This supports automation of multi-disciplinary analysis and optimisation.

Figure 1.6: Example of different aircraft movable configurations, all generated from the
same product model with KBE technologies (La Rocca, 2012).

MDO requires another technology for coupling simulation tools and to automate the ex-
ecution of these tools. SWFM is a discipline that covers simulation workflows, where
heterogeneous simulation tools are brought together in a workflow. Well-equipped (Simu-
lation) Workflow Management Systems (WFMS) provide a rich Graphical User Interface
(GUI) for modelling and executing simulation workflows. In the engineering domain these
systems are also capable of performing optimisation, hence are often referred to as Process
Integration and Design Optimisation (PIDO) solutions. PIDO software excel in integrat-
ing tools into a workflow and then automate design optimisation. It functions as a central
platform that controls the flow of processes and the dataflow between tools. This reduces
the number of interfaces between tools, which increases exponentially once more tools
become available (see Figure 1.7). Therefore, PIDO solutions can greatly simplify MDO.

tool
interface

n

Direct linking Central platform

PIDO

n
2

(n - 1)
number of
interfaces

(n = number of tools)

Figure 1.7: The number of interfaces increases exponentially if tools are linked directly.
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1.4 Scope of this research

The development of MDO frameworks involves many methodologies and technologies.
Altogether, it is a very wide domain that is impossible to research during a Master’s
thesis. Therefore, it is important to narrow down the scope and set realistic goals.

The focus in this research is on SWFM. The keyword in SWFM is Workflow Manage-
ment (WFM). WFM is the discipline that defines, creates, and manages the execution of
workflows. In WFM the process structure and interactions with participants and other
processes is more important than describing the technical details related to implementa-
tion. In other words, the knowledge behind a workflow is more valued than the actual
implementation details. By capturing this knowledge explicitly, organisations obtain more
insight into their processes. This knowledge can then be shared and reused in other work-
flows.

Human Workflow Management (HWFM) is the other domain in WFM, where workflows
consist of human activities. Normally, all processes are defined in a top-down manner
starting with human activities. Therefore, HWFM should not be neglected. But because
MDO is a simulation intensive process, it has been decided to focus on SWFM.
Now that the scope has been narrowed down to SWFM, the next section discusses the
shortcomings of current solutions.

1.5 Shortcomings of Current SWFM Solutions

Current SWFM solutions excel in integrating and automating processes, which contributes
to increasing competitiveness and productivity. However, this section explains that these
solutions need improvements to overcome the remaining challenges. The following short-
comings have been identified:

• Modelling workflows requires expertise that does not belong to the design engineer’s
skill set. SWFM software do not possess intelligence and are therefore only “easier
to use”.
• Workflows tend to behave as black boxes, because SWFM systems do not capture

the rationale of a workflow.
• Knowledge management features are limited in current solutions. Without these

features, it is more difficult to retain knowledge when experts are leaving the com-
pany.
• Workflows are not modelled in a standardised, neutral process language, which

promotes sharing and reuse of process knowledge.

These shortcomings are explained in more detail below.

SWFM systems are designed for modelling and executing workflows, and do not include
tools or methods that facilitate designing a workflow. The system relies on the user’s
knowledge for designing well-defined and efficient processes. In current practices, it is
common that design engineers collaborate with IT engineers for this task. This is an
inefficient process where individuals rely on each other’s expertise. A better solution is to
simplify usage intelligently. An intelligent system reuses process knowledge to support on
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the technical details of workflow creation and configuration. Then the design engineer can
focus on workflow design, while the IT engineer remains responsible for the operational
aspects.
Furthermore, without any guidelines SWFM practitioners will most likely derive ad hoc
solutions that will be inconsistent and incompatible with other solutions. Knowledge will
thus be unexchangeable and reuse of tools will be limited, with the result that work is
being redone and application development will take much longer.

Workflows are perceived as black boxes when the rationale behind the workflow is unclear.
This occurs when decisions that are made during the design of the workflow have not been
captured. Often, this knowledge is difficult to retrieve, or in the worst case, lost. The
consequence is that no one understands what the workflow does or how it works.
Besides understanding the workflow, there are four other reasons why capturing knowledge
is valuable for SFWM systems.

1. For reuse of knowledge in other projects.
2. For reuse of knowledge to implement intelligent features.
3. To redefine SWFM systems as platforms for sharing knowledge, similar to how the

internet has become a global medium for sharing knowledge.
4. To provide a reference or handbook to newcomers.

Unfortunately, current solutions focus rather on execution aspects of SWFM than on
knowledge management. However, this is unjustified, because knowledge may be the
most valuable asset of a company.

Lastly, PIDO software vendors do not stimulate the use of a standardised and neutral
process language because vendors want their customers to be dependent on their products.
This behaviour is known as vendor lock-in and it prevents users from using another
product because of high switching costs. If a standardised language existed, companies
could easily transfer old workflows to the new PIDO solution, thus avoiding any loss of
knowledge. And as long as there is wide support, it will be easy to find qualified experts
or to train new people.

To improve on these shortcomings, a methodology is needed that facilitates capturing,
sharing, and reusing knowledge. Of all methodologies, MOKA is the most promising.
MOKA is the Methodology and tools Oriented to Knowledge-based engineering Ap-
plications (Stokes, 2001). It focuses on capturing and structuring relevant engineering
knowledge. Even though MOKA is rather product-oriented than process-oriented (see
Chapter 3), and thus lacks the methods and tools for developing simulation workflows, it
provides a good starting point for the development of a new methodology. This is one of
the research goals that are presented in the next section.

1.6 Research Goals

The aerospace industry in Europe needs to invest in new solutions in order to regain and
maintain a position at the top of this competitive industry. One of these solution is a new
methodology for SWFM. This methodology contains methods and tools for modelling the
workflow at a higher abstraction level than current SWFM systems. The following set of
research goals defines the path to this solution.
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� Investigate how current Workflow Management Systems can be complemented with
knowledge management technologies and find solutions for reducing the complexity
of Workflow Management.

� Extend the MOKA methodology with an ontology for storing process knowledge (on
an informal and formal level) in a platform-independent and transparent model, as
to maximise the potential for sharing and reusing this knowledge.

� Build and demonstrate an advanced Workflow Management System in a number of
use cases varying in scope and complexity, that captures and reuses process knowl-
edge for automatic generation of simulation workflows.

� Integrate the Workflow Management System into an engineering design framework
that supports Knowledge Based Engineering applications and Multi-disciplinary De-
sign Optimisation.

1.7 Contributions of this Research

This research presents new step-by-step instructions for modelling simulation workflows
in a top-down approach, starting with defining the design problem. For understanding
the rationale of the workflow, it is important to know what the overall objective is (which
is defined in the problem statement) and what decisions have been made in the modelling
process. These decisions are captured while going through these steps. As a result, a
logical link is maintained from the problem statement to the final simulation workflow.

A second contribution is new Problem-, Discipline-, and Tool-forms to complement MOKA’s
ICARE-forms. The original set of forms are insufficient to capture specific knowledge in
the simulation workflow and design problem domains.

Another contribution is a coupling between a Knowledge Base (KB) and a PIDO system.
The coupling uses Model Driven Software Engineering (MDSE) techniques to automat-
ically generate simulation workflows. This saves development time and simultaneously
shifts the focus from modelling on a PIDO platform to modelling knowledge, thereby
lowering the threshold for non-experts.

Accessibility is further enhanced by the final contribution, which is the High-Level Activity
(HLA). HLAs are activities that consist of five primitives: input, preprocessing, analysis,
postprocessing, and output. With this definition, a new framework has been created that
forms the basis for every activity. It captures process knowledge to enable parametric
process modelling, so that engineers can easily build workflows with reusable building
blocks. The idea is similar to KBE’s capability to perform parametric product modelling.

1.8 Outline of the Report

This research involves an array of technologies. For a better understanding of the results,
readers are advised to read Chapter 2, which explains the methodologies and technologies
that are applied in this research. Topics include Knowledge-Based Engineering (KBE),
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Workflow Management (WFM), various knowledge technologies (e.g. semantic web tech-
nologies and rule-based reasoning), and two engineering frameworks (the DEE and IDEA).
Then, Chapter 3 begins with a short introduction into MOKA, followed by an analysis
to point out the strengths and weaknesses of MOKA. This is the starting point for the
new methodology, named MOKA 2, which has been tailored to support both KBE and
WFM. Chapter 4 describes this improved methodology that has been developed during
this research.
The thesis proceeds with the technical implementation of the methodology in an integra-
tion framework in Chapter 5. It shows the system’s architecture and explains the various
ways of implementing the framework.
Chapters 6–8 describe the several use cases that demonstrate the capabilities of the new
methodology and framework through some examples. The objective is to clarify the steps
that the end user has to take when applying the new methodology, and to show the end
results that are achieved. This is done for two levels of difficulty, starting with a relatively
simple product packaging optimisation and ending with a thermoplastic injection mould
design.
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Chapter 2

Enabling Methodologies and
Technologies

Chapter 1 explained that an automation framework for solving MDO problems is needed
to overcome a variety of challenges. This framework should use KBE and SWFM tech-
nologies to automate design optimisation and provide tools for capturing engineering
knowledge. The Design and Engineering Engine (DEE) is an engineering design frame-
work that uses KBE technologies to automate design optimisation. However, it lacks the
tools for knowledge management. Therefore, a new framework is developed as a successor,
which is called the Integrated Design and Engineering Architecture (IDEA).

This chapter describes the technologies that are applied in the IDEA. But because knowl-
edge is a recurring term in this research, Section 2.1 explains first what knowledge exactly
is. Then, Section 2.2 describes KBE, one of the main technologies in the framework, be-
fore the DEE is discussed in Section 2.3. The latter section ends with the shortcomings of
the DEE. The sections that follow describe what new technologies are needed to improve
on these shortcomings. This begins with a set of technologies for storing knowledge in a
Knowledge Base (KB) (Section 2.4). It explains technologies such as RDF, triple stores,
querying (SPARQL), ontology modelling (OWL), and reasoning. This is followed by Sec-
tion 2.5, which explains how Workflow Management and web services can be solutions for
managing processes in distributed environments. Finally, Section 2.6 ends the chapter by
describing the IDEA itself.

2.1 Knowledge in Context

Knowledge management literature seems to be undecided about the definitions of data,
information, and knowledge. For a better understanding of this research it is important
to clarify their meaning in this context. Rowley (2007) analysed the different formal
definitions for each concept, and found some coherence. Summarised, it can be stated
that:

11
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• Data is usually defined by its lack of meaning or value. It is unorganised and
unprocessed, and stands at the bottom of the hierarchy.
• Information is organised and structured data. It is data that has been processed

for a purpose, which makes it meaningful, valuable, useful and relevant.
• Discussions around knowledge have not led to a clear definition of the concept.

However, most definitions are variations that include one or more of these terms:
information, understanding, skills, experience, capability and expertise. In that re-
gard, a suitable definition is: “Knowledge is data and/or information that have been
organized and processed to convey understanding, experience, accumulated learning,
and expertise as they apply to a current problem or activity.” (Turban et al., 2005).
• Wisdom in the knowledge management context is the most ambiguous concept. In

fact, while not always justified, it is often omitted in literature. Perhaps because
it is more involved with human intuition than with systems. In general, wisdom
is described as applying obtained knowledge from one domain to a new situation,
occasionally infused with ethical judgement.

Milton (2007) categorises knowledge further into two different views: it can be procedural
or conceptual, and either explicit or tacit. But Milton emphasises that in reality there are
no clear boundaries between two extremes. The transition is continuous.
Shortly stated, procedural knowledge answers to “I know how to . . . ”, and is there-
fore related to tasks. Conceptual knowledge completes sentences starting with “I
know that . . . ”, and relates to concepts, their properties and their relationships. On the
other side, explicit knowledge describes knowledge that can be easily explained and
documented, and is transferable without much effort, such as facts. Tacit knowledge is
associated with knowledge gained through experience and skills. It is hard to explain with
just words and is therefore most difficult to capture. A great example of tacit knowledge
is the ability to ride a bicycle.
KBE is a discipline where knowledge is captured and reused in engineering applications.
The technology is described in the next section.

2.2 Knowledge Based Engineering

Knowledge Based Engineering (KBE) is a technology that uses intelligent software sys-
tems for the design of engineering products with minimal effort from the design engineer.
These systems are capable of capturing and reusing product and process knowledge in a
specific domain, hence reduce development time and cost by automating repetitive and
non-creative design tasks.
There are numerous definitions for KBE, which demonstrates that the technology is still
evolving. Perhaps the most notable statement is made by Ammar-Khodja et al. (2008):
“In reality, there is no unambiguous definition of KBE. However, most of them are simi-
lar.” Ammar-Khodja et al. found in most definitions that KBE systems are used for solv-
ing design problems and are capable of storing design knowledge for automating (parts
of) the design process. But as KBE advanced, the technology moved its focus away from
geometry manipulation. More recent definitions take a wider approach and define KBE by
its ability to use design knowledge to automate repetitive tasks. So instead of describing
what it is, it may be more appropriate to define KBE by what it is supposed to do.
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Verhagen et al. (2011) have expressed this as follows:

“The objective of KBE is to reduce time and cost of product development,
which is primarily achieved through automation of repetitive design tasks while
capturing, retaining and re-using design knowledge.”

The Roots of KBE
KBE merged from CAD technologies (Computer Aided Design), AI techniques (Artificial
Intelligence), and object oriented programming. Its roots go back to the 1970s when
Knowledge Based Systems (KBS) entered the market. KBSs are computer systems that
store knowledge in a specific domain, and solve problems through reasoning over this
knowledge. Many successful KBS have been developed in a variety of fields, such as
healthcare and chemistry, but it never became a real success in engineering applications.
Mainly because KBSs miss two crucial qualities for engineering: the ability to manipulate
geometry and process engineering data (La Rocca, 2012). Since most of the engineering
design work involves both these activities, KBSs were deemed unsuitable for the job. Only
years later, when ICAD was first introduced, KBE made its first appearance.
Now, nearly thirty years later, it can be concluded that KBE has not made the same
impact on the engineering design community as CAD has. The next section discusses the
experiences with KBE thus far.

2.2.1 An Evaluation of KBE Technologies

Since its introduction, mostly the aerospace and automotive industry have benefited from
KBE technologies (van der Laan, 2008; Corallo et al., 2009; Chapman & Pinfold, 2001).
More than two decades of KBE development has passed, and users gained experience
with the technology. Verhagen et al. (2011) reviewed fifty of the most influencing research
papers on KBE and found that using KBE systems has these advantages:

• Development costs are reduced by automating design processes.
• Automation of repetitive and non-creative tasks has freed up time for more creative

processes (see Figure 2.1).
• Knowledge has become more accessible via a shared knowledge base.
• The knowledge management phase is a great opportunity to review available knowl-

edge within the organisation.

Generally, KBE is conceived as a promising technology with potential to replace tra-
ditional CAD systems. It is far more capable than CAD mainly because knowledge is
inherently tied to the product model in KBE. This proved to be valuable for performing
MDO in an automated design framework. A key requirement for applying MDO suc-
cessfully, is a parametric geometry generation system (Bowcutt, 2003). Bowcutt analyses
essential characteristics of a parametric geometry generation system and explains why
CAD is not ideal for MDO. Some key points:

• A CAD model does not contain knowledge that is necessary for creating different
‘views’ of the model for each analysis discipline.
• Integrating sub-system components involves rules and relationships between differ-

ent components. Some CAD systems provide this functionality, but most do not.
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Figure 2.1: Time allocation in CAD- and KBE-oriented design processes (source: Skarka,
2007)

• In some cases the physics determine how curves and shapes should be constructed.
However, CAD is incapable of storing this knowledge in the model.

Taken into account that automation is a must, it was concluded that CAD is not suit-
able for MDO. Boeing then created the General Geometry Generator (GGG), which is a
general purpose geometry generation tool. It is very similar to the Multi-Model Gener-
ator (MMG) of the Design and Engineering Engine (DEE) that uses KBE technologies
to realise a parametric geometry generation system (see Section 2.3). KBE is capable
of storing knowledge and performing computations that are necessary in an automated
MDO framework.

Despite the advantages, KBE never launched itself to a commercial success. There are
several serious shortcomings that complicate the implementation of KBE systems. Ver-
hagen et al. summarised these shortcomings and proposed future challenges for KBE
research (see Table 2.1). The interested reader is encouraged to read the review, where
these shortcomings and future challenges are thoroughly discussed.

Table 2.1: An evaluation of current KBE researches (source: Verhagen et al., 2011).

Current shortcoming Future challenge

1 Case-based, ad-hoc development of KBE
applications

Improve methodological support for KBE

2 A tendency toward development of ‘black-
box’ applications

Moving beyond black-box KBE applications

3 A lack of knowledge re-use Effectively sourcing and re-using knowledge

4 A failure to include a quantitative assess-
ment of KBE costs and benefits

KBE success metrics

5 A lack of a (quantitative) framework to
identify and justify KBE development

Assessment framework for KBE opportuni-
ties
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2.3 Design and Engineering Engine

The Design and Engineering Engine (DEE) is one of the few methodologies for KBE
development (see shortcoming 1 in Table 2.1). It is an aircraft design framework, devel-
oped by La Rocca (2011), consisting of four key components: the Initiator, Multi-Model
Generator (MMG), Analysis tools, and Converger and Evaluator (see Figure 2.2).

Figure 2.2: The Design and Engineering Engine (DEE) (source: La Rocca, 2011). The High
Level Primitives (HLP) and Capability Modules (CM) are highlighted in the
diagram.

The goal of the Initiator is to find a feasible solution within the design space. In more
complicated problems the Initiator can perform a simplified optimisation to find an initial
solution before it is provided to the MMG. The MMG is the core of the DEE, formalised
into a KBE application. It is a parametric modelling engine that can quickly output
any configuration using High Level Primitives (HLP). Unlike CAD-primitives (points,
lines, surfaces, etc.), HLPs contain knowledge. For example, one of the HLPs is a wing-
part. Instead of drawing the wing geometry using lines and surfaces, the design engineer
provides values for parameters such as the sweep, chord length, twist, and airfoil data. The
MMG automatically generates the geometry based on the input. Using this approach,
the design engineer can rapidly create an aircraft’s main wing, winglets, vertical and
horizontal tail surfaces based on a single wing-part HLP (see Figure 2.3).
Besides the wing-part there are three other HLPs in the aircraft domain: a fuselage-part,
engine and connection-element. La Rocca (2011) has shown that a wide range of aircraft
configurations can be generated with a combination of only these four HLPs.

The HLPs do not only contain geometric knowledge, but also knowledge from other
disciplines, such as simulations, manufacturing or cost. Therefore, it is relatively easy
to create different “views” of the product model. This is another strength of the MMG,
which uses Capability Modules (CM) to automatically generate this view. This can be
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Figure 2.3: The HLPs are adaptable for modelling different aircraft configurations (source:
La Rocca, 2011)

a mesh for FEA or CFD, or product information for cost analysis. Because these views
are derived from the same product model, the engineer does not have to spend time on
creating alternate models and can instead focus on further improving the “master” model.
The modules automatically generate files that serve as the input to the Analysis tools.
Finally, the Converger and Evaluator analyses the results and determines whether the
optimal and feasible solution is found, or that the optimisation continues with the next
iteration.

The use of KBE technologies in a design framework is truly a step forward in automated
design optimisation. The capability modules greatly reduce time spent on repetitive and
mundane work that is normally done by the engineer. Despite these efforts, the DEE
has not solved all problems. There are, for instance, no tools or methods for capturing
and storing knowledge in a KB. Thus, the knowledge is hidden in the code, making it
more difficult to share and reuse, and also more problematic for non-programmers to
understand. Furthermore, the DEE leans towards KBE rather than WFM with its focus
on product knowledge in the MMG and CMs. It does not include a methodology or
framework for using process knowledge.
For these reasons, a new framework has been developed that improves on the DEE.
This framework, the IDEA, requires new technologies that are discussed in the following
sections, starting with technologies for a KB.

2.4 Knowledge Technologies

Next generation design systems should store engineering knowledge explicitly in a KB.
The Extensible Markup Language (XML) is a popular format for data storage and data
transfer, designed to be human-readable and machine-readable. It is a standardised syntax
that uses (customisable) tags for describing data. XML files can be accompanied by
XML Schema files that express a set of rules for validating the XML document, thus
guaranteeing that the XML document can be parsed correctly by machines. Even though
this may sound like a perfect solution for storing knowledge, it is in fact not an ideal



2.4 Knowledge Technologies 17

technology.

XML is indeed a standardised syntax that can be read by both humans and machines.
However, only humans are able to understand what is written in the XML document.
Consider the phrase “The author of the page is Ora”. In XML this can be written as
(source: Berners-Lee, 1998):

<author>

<uri>page</uri>

<name>Ora</name>

</author>

Or as:

<document href="page">

<author>Ora</author>

</document>

Or maybe as:

<document>

<details>

<uri>href="page"</uri>

<author>

<name>Ora</name>

</author>

</details>

</document>

And even within a single tag:

<document href="http://www.w3.org/test/page" author="Ora" />

These examples are all valid XML documents. Even though it is clear to humans that
Ora is the author of the page in all four examples, a computer does not understand this
so easily. Computers are able to parse the XML statements, but the various document
structures and different tags are confusing for a computer. In other words, the computer
is able to read XML, but not able to understand it. Automation of design optimisation,
where various heterogeneous tools are involved, is much easier when computers are able
to understand what is stored. Therefore, this research proposes a new set of knowledge
technologies for storing engineering knowledge.

2.4.1 Storing Knowledge

The most popular database to date is the relational database. But there is another
database technology that is preferred for storing knowledge: the triple store. The following
sections explains why triple stores are used in this research, beginning with explaining
how the meaning of data can be stored.

Resource Description Framework

One of the biggest advancements in web technologies is the development of the semantic
web. The main driver for this development is that data should be stored with their
semantics. Whereas syntax is related to how to describe data, semantics is about
the meaning of data. For example, in Figure 2.4 the sentence “I love the web” has been
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written in two different ways. Although clear to humans, a computer does not understand
that these two sentences are related.
When computers know the meaning of the data, information can be found, shared and
linked more easily. On top of that, machines will be able to communicate with other
machines. Therefore, semantics is considered as “the next big thing” in web technology
development.

I love the web
Figure 2.4: The sentence “I love the web” is written in two different ways. The syntax is

different, but the semantics are the same.

The internet known today is a collection of data, presented in a human-readable form.
A computer knows how to display this data as web pages, but does not understand its
contents. The semantic web changes the internet environment from a web of documents
to a web of entities. Entities are no longer plain text, but are unique objects or concepts
that are related to other entities.
For example, while searching for Paris on the semantic web, the computer understands
it is a city. It may then provide suggestions that are useful to the user, such as available
hotels, options for travel, events in the city, etc. This would be a great enhancement
of current knowledge management technologies. Hane (2010) has already written how
searching with semantic technologies has improved results in online healthcare databases.
And most certainly, engineering design can benefit from this technology as well.

The semantic web is built on a standardised data structure, called the Resource Descrip-
tion Framework (RDF) (W3C, 2004c). In RDF, entities and their relations are described
in the triple format. Triples are simple expressions formed by a subject, predicate and
object. For instance

subject predicate object
I love the web

Triples are easily extendible with new triples that form a relationship with other triples
(e.g. “I am a person” or “the web is huge”). Eventually, all these interconnected ‘sen-
tences’ will form a web of entities.

Triple Stores

Databases dedicated to storing triples are simply called triple stores. Triple stores are
graph databases, where data is stored as “things (or nodes) and relationships between
things.” (Eifrem, 2012). Hence triple stores have no hierarchy (like XML) or tables with
columns and rows (like relational databases). It is said to be unstructured, which is in
fact an intuitive way of representing real-world objects.
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Triple stores are recommended to follow the standardised RDF data structure. That aside,
since RDF is only a framework, triple stores can be stored in a variety of formats, such as
XML, Notation 3 (N3), Turtle, or N-Triples. Switching between database management
systems is therefore relatively straightforward, as long as both systems support RDF.
Some examples of available systems today are Franz Inc. Allegrograph, Apache Jena,
OpenLink Virtuoso, Ontotext BigOWLIM, and Garlik 4store.

Relational Databases

By far the most popular and most widely used type of database to date is the Relational
Database (RDB). RDBs consist of well-structured tables that each represent real-world
objects or events, such as a customer, an inventory item, client’s orders, or telephone
calls. And similar to how real-world entities have relationships, tables can be linked to
each other using unique keys or id’s.
Nearly all RDBs use SQL (which stands for Structured Query Language) for managing
data. SQL-databases have become the norm mostly because of standardisation of SQL
by both ANSI and ISO in the 1980s. This allows companies to easily train new people or
find qualified experts. At the same time, companies can easily switch between database
companies without losing their valuable data. This drives competition between database
companies in terms of features and performance. Well-known RDB systems are IBM’s
DB2, Microsoft’s SQL Server, MySQL, and Oracle databases.

The relational model, introduced by Codd (1970) in the 1970s, is facing heavy compe-
tition from modern database models. These models are ironically termed NoSQL (“Not
only SQL”) solutions and can be placed into four categories: key-value databases, doc-
ument databases, wide-column databases, and graph databases (Bendiken, 2010). Of all
the NoSQL solutions only RDF-based graph databases (or triple stores) are standard-
ised, which proved to be essential for a high adoption rate when SQL was introduced.
Therefore, only triple stores are considered as a contender in the comparison with RDBs.

Comparison Between Relational Databases and Triple Stores

In terms of flexibility, RDBs are no match for triple stores. The structured character of
RDBs requires a schema that needs to be defined before the database can be populated
with data. A schema defines all the structural elements of an RDB, such as the tables,
fields, and relationships (see Figure 2.5 (a)). Think of it as how the layout of spreadsheets
in Excel need to be predefined before it can be filled.
Triple stores are graph databases and consist only of nodes and relationships between
nodes (see Figure 2.5 (b)). Because triple stores are unstructured, there is no schema
that defines how data should be stored in the database. Unlike RDBs, where it is clearly
defined in advance what data each table can store, nodes are added to a triple store
without any particular order or layout. This may seem unnatural at first, but it has its
advantages when changes are made to the database.

Once the schema of an RDB has been defined, making changes to it is rather problematic.
For instance, Figure 2.6 shows that Quirijn now owns a cat and a new car. In the triple
store this data is simply added by creating new nodes and adding the relationships to
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Figure 2.5: Data and relations represented in (a) a Relational Database and (b) an RDF
graph (source: Landman, 2011).

the original graph. However, in the RDB this change is not so straightforward. First,
the original schema did not take into account that ‘persons’ can own ‘pets’. Therefore,
the schema needs to be modified by adding a new Pet table, defining what that table
contains, and then the data can be added to the table. Another change is made in the
Owns table. Previously, this table has been designed to contain data for a bike. Now that
a car has been added, the table needs to be extended with a column that contains the
information about fuel. This example demonstrates that RDBs require significantly more
effort in managing the database structure than triple stores.
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Figure 2.6: Extended data and relations represented in (a) a Relational Database and (b) a
RDF graph (source: Landman, 2011).

Another advantage of using triple stores is the ability to perform complex queries (i.e. re-
trieving data from the database). Aasman (2012) used this example to demonstrate the
capabilities of triple stores: “Find all meetings that happened in November within 5 miles
of Berkeley that was attended by the most important person in Jans friends and friends
of friends.” In RDBs it is much more difficult to execute similar queries over several
degrees of separation, where connections between two things can only be found through
multiple relations. This is because triple stores are capable of doing inferencing and rule
processing, thus finding new connections that are not explicitly stated in the database.
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The following sections on querying and reasoning go into more detail on these topics.

In practice however, RDBs still have an advantage over triple stores. RDBs have been
on the market much longer, hence are more mature and offer more features. In terms
of performance and robustness, RDBs are still ahead, but triple stores are catching up
quickly. In 2011, Franz Inc. achieved to load a triple store with over one trillion triples
using Allegrograph (Franz Inc., 2011). This was a major achievement and it is a great
step towards making triple stores suitable for enterprise applications.

Querying

Querying in computing means retrieving data from a database, spreadsheet, document,
or any other digital source containing data. In the context of this research, querying
means retrieving data from a triple store. Instead of using keywords for search, like in
Google’s search engine, databases provide a specific query language that allows users to
retrieve data more effectively. For RDF data there is a query language called SPARQL,
which stands for SPARQL Protocol and RDF Query Language. It complements the set
of semantic web technologies and is therefore standardised by the W3C as well (W3C,
2008). SPARQL is for triple stores what SQL is for RDBs. In fact, even the syntax shows
similarities (see Listings 2.1 & 2.2, source: Prud’hommeaux (n.d.)).

Listing 2.1: SQL example answering the question “What is the address of every person living
in Massachusetts (MA)?”

SELECT Person . fname , Address . c i t y
FROM Person , Address
WHERE Person . addr=Address . ID
AND Address . s t a t e=”MA”

Listing 2.2: SPARQL example answering the question “What is the address of every person
living in Massachusetts (MA)?”

SELECT ? fname ? c i t y
WHERE {

?who <Person#fname> ?fname ;
<Person#addr> ? addr .

? adr <Address#c i t y> ? c i t y ;
<Address#s t a t e> ”MA”

}

The SQL query in Listing 2.1 retrieves the first name (fname) from the Person table and
city from the Address table. The keywords can be explained as follows:

SELECT: specifies which column of which table.
FROM: indicates in which tables to search.
WHERE: is a condition that ‘joins’ the two tables through ‘keys’.
AND: is another condition that the state is Massachusetts.

Figure 2.7 shows how the two tables are ‘joined’ together by their ‘keys’. The Person
table has a foreign key (addr) that matches the primary key of the Address table (ID).

SPARQL uses similar keywords as SQL, but here the functionality is slightly different.
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Figure 2.7: Relational database tables that are ‘joined’ together through ‘keys’.

SELECT: specifies which variables are returned.
WHERE: specifies a graph pattern and may contain variables (terms starting with ‘?’) for the
subject, predicate, or object.

SPARQL tries to match the graph pattern specified in the WHERE statement with the
graph in the triple store. The variables (starting with ‘?’) can be any entity that matches
the pattern. Once a pattern is found that fully matches the query, the entities that map
onto ?fname and ?city are returned.

Since SQL has been designed for traversing tables and SPARQL for graphs, there are
key differences between the two. With SPARQL it is much easier to retrieve linked data.
There is no need to understand the underlying structure of the tables in order to write the
query. In SQL it is necessary to specify from which table what information is retrieved,
thus making it more difficult to achieve the same result.
SPARQL has an impressive feature that allows users to query from different sources, so-
called SPARQL endpoints. Currently, the user can use the SERVICE keyword to redirect
parts of the SPARQL query to the SPARQL endpoints that contain the data. This is
in fact similar to traversing the structured data of RDBs, where the query is directed at
different tables to retrieve the desired data. However, with SPARQL the user can write
the query without knowing the foreign database’s schema in advance. Future solutions
may include intelligence (e.g. semantic metadata for each SPARQL endpoint) that en-
able systems to find the correct sources automatically without specifying the SERVICE
keyword. These solutions have not been fully developed yet. Therefore, the SERVICE
keyword has been included to improve query performance at the cost of ease of use.
Additional features as FILTER, ORDER, and OPTIONAL replicate functionality avail-
able in SQL.

2.4.2 Ontology Modelling

Now that the semantic web has adopted ontology modelling, it is reaching a much larger
audience. The term ontology was first used in philosophy, where an ontology “is the philo-
sophical study of the nature of being, existence, or reality, as well as the basic categories of
being and their relations.” (Wikipedia, 2012b). In computing, ontologies first appeared
in the AI domain, albeit with a slightly altered definition. In short, “An ontology is an
explicit specification of a conceptualization.” (Gruber, 1993). But over the years, ontolo-
gies have become a medium for sharing domain knowledge among experts. And thus, the
definition changed accordingly: “An ontology is a formal explicit description of concepts
in a domain of discourse (classes), properties of each concept describing various features
and attributes of the concept (slots), and restrictions on slots.” (Noy & McGuinness,
2001).
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An ontology defines a common vocabulary for expressing, sharing, and reusing knowl-
edge in a certain domain. It describes for a domain the terms, concepts, and their rela-
tionships, and provides formal definitions that constrain the interpretation of these terms.
Having explicit formal definitions removes any ambiguities of terms and allows new users
to the domain to understand their meaning. The simplest way to illustrate the impor-
tance of ontologies is to compare it with the English language. Because English has been
accepted as the world language, many people from different countries have learned En-
glish as their second language. Now people can easily communicate with each other and
share information and knowledge using this common language. This is similar for sharing
knowledge within a domain and also for the communication between computers.
Consider two websites that provide information in the same domain, for example wines. If
these websites share the same underlying ontology, it will be simple for a user or software
agent to extract the needed information. Whether it is a webshop selling wines or an en-
cyclopedic website describing wine history, both will have Cabernet Sauvignon classified
as a red wine. Furthermore, the ontology may include certain properties of wines, such
as body, flavour, or even its origin, which are all retrievable from either website using the
common vocabulary.
Ontologies can also be shared among different domains. For example, the origin of the
wines may be connected to another ontology specialised in geographic locations. If this
is a standardised ontology, used widely on the internet, it may even describe geographic
locations for totally unrelated subjects, such as travel websites. It is much more efficient
to have one geographic data ontology and reuse it for all websites, than to have each
website develop their own geographic ontology.

The W3C has standardised RDF Schema and the Web Ontology Language (OWL) as
general-purpose languages for modelling ontologies (W3C, 2004b,a). The ontologies de-
veloped in this research use both RDFS and OWL to model the domain. Some purposes
the languages can be used for are:

• categorisation using classes and subclasses.
• defining property and cardinality restrictions, e.g. cars have four wheels.
• annotation of concepts.
• explicitly express equivalence, e.g. class ‘Cars’ is equivalent to ‘Automobiles’ class

(useful for integrating ontologies that share a domain but use different terms).

Another standardised general-purpose modelling language that has similar features is the
Unified Modeling Language (UML). Designed for modelling object-oriented programming
code, UML also has classes, relationships between classes (called associations), and mul-
tiplicity (similar to cardinality restrictions). However, there is one significant difference
between UML and OWL. UML is designed for programming, whereas OWL is designed
for modelling the ‘world’ (or at least a particular domain). Their intention is different,
and therefore their functionality. UML defines classes and creates objects based on those
classes. For example, Supercar can be a class of cars with a top speed higher than 250
km/h. Then, an instance of the class can be created, car A, with a top speed of 300 km/h.
In OWL, classes are not templates for creating objects, but rather categories that classify
objects. It is possible to create objects first that are not based on a class. Thus, in OWL
car A can be created first with a top speed of 300 km/h. Afterwards, a new category is
introduced, which is the class Supercar, that specifies that cars belonging to that class
have a top speed higher than 250 km/h. Then, through reasoning it can be determined
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that car A belongs to the class Supercar.
To conclude, the advantage of using semantic web technologies is the ability to reason
over knowledge to infer new facts. For this purpose, a language is needed that is based on
formal logics. OWL is based on logics, whereas UML is not. Therefore, OWL is a more
suitable language for modelling ontologies.

2.4.3 Reasoning

KBS use reasoning techniques from AI for inferring new facts that are not explicitly
mentioned in data. Formally, reasoning can best be described as: “Reasoning allows one
to infer implicitly represented knowledge from the knowledge that is explicitly contained
in the knowledge base.” (Baader et al., 2003). Two types of reasoning have been applied
in this research: Description Logic (DL) reasoning and Rule-based reasoning.

Description Logic Reasoning

Knowledge Representation (KR) is an area that researches how knowledge should be
represented as to facilitate reasoning on it. Description Logic (DL) is a family of KR
languages, that is a subset of first-order logic. DLs represent the knowledge in a particular
domain by modelling the concepts and their relationships. DL was first used in AI for
formal reasoning over knowledge stored in a knowledge base. Now, it gained popularity
because DLs are part of the semantic web.

DLs follow an Open-World Assumption (OWA) rather than a Closed-World Assumption
(CWA), meaning that any statement that is not known is unknown instead of false. For
example, if the knowledge base has a fact stating that hasChild(PETER; HARRY), then
in a CWA this is understood as Peter having only one child, Harry. On the other hand,
in an OWA the facts say that Harry is a child of Peter. The difference is that in the
OWA it is not conclusive whether Harry is the only child of Peter or that Harry has
siblings. Consequently, it is not possible to state in an OWA that all children of Peter
are men, whereas in a CWA that is true. The only way to do this in an OWA is to say
explicitly that Peter has only one child, (≤ 1 hasChild)(PETER). Because an OWA may
have many interpretations, answering a query is more complex, and may require further
analysis of the answers (Baader et al., 2003).

Normally, Description Logic reasoning is used for decision problems, which are related to
one of these questions (Wikipedia, 2012a):

• Instance checking: is a particular instance a member of a certain class?
• Relation checking: does the relation exist between two instances?
• Subsumption: does a concept belong to the subset of another concept?
• Concept consistency: is there no contradiction between any of the definitions?

The example in Listing 2.3 demonstrates how DL can be used to detect inconsistencies
(source: Bechhofer, 2003).
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Listing 2.3: Mad cows are inconsistent; A DL example.

Class (a:cow p a r t i a l a:vegetarian)
Class (a:vegetarian complete i n t e r s e c t i o n O f (

r e s t r i c t i o n (a:eats al lValuesFrom (complementOf( r e s t r i c t i o n ( a : p a r t o f
someValuesFrom (a:animal ) ) ) ) )

r e s t r i c t i o n (a:eats al lValuesFrom (complementOf(a:animal ) ) ) a : animal ) )
Class (a:mad cow complete

i n t e r s e c t i o n O f (a:cow r e s t r i c t i o n (a:eats
someValuesFrom ( i n t e r s e c t i o n O f ( r e s t r i c t i o n

( a : p a r t o f someValuesFrom (a:sheep ) ) a:brain ) ) ) ) )
Class (a:sheep p a r t i a l a:animal

r e s t r i c t i o n ( a : ea t s al lValuesFrom ( a : g ra s s ) ) )

Simply explained, these facts state that:

• Cows are naturally vegetarians
• Vegetarians do not eat animals or parts of animals
• A mad cow is one that has been eating sheeps brains
• Sheep are animals

DL is able to derive that a mad cow has been eating part of an animal, which is inconsistent
with the definition of a vegetarian (Bechhofer, 2003).

OWL, one of the ontology languages for the semantic web, has three variants with an
increasing level of expressivity: OWL-Lite, OWL-DL, and OWL-Full. OWL-Full is the
most expressive variant and is in fact not based on DL. It is undecidable, but it has been
added to maintain some compatibility with RDFS. Both OWL-Lite and OWL-DL are
based on DLs, for which sound and complete reasoning is possible.

OWL has additional features to make properties more expressive with the following char-
acteristics: functional, inverse functional, transitive, symmetric, asymmetric, reflexive,
and irreflexive.

A functional property relates at most one individual to another individual. In Figure 2.8
this means that Peggy and Margaret must be the same individual. Otherwise the state-
ment would be inconsistent.

Margaret

Peggy

Jean

hasBirthMother

hasBirthMother

Implies Peggy and Margaret
are the same individual

Figure 2.8: An example of a functional property (source: Horridge, 2011)

A transitive property can relate individual A to C via property P, if A is related to B and B
is related to C through the same property P. Then through reasoning, it can be concluded
that William is the ancestor of Matthew without explicitly stating that relationship (see
Figure 2.9).

Finally, a symmetric property simply mirrors the property. So, if Matthew has Gemma
as a sibling, then Gemma has Matthew as a sibling too (see Figure 2.10).
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Figure 2.9: An example of a transitive property (source: Horridge, 2011)

hasSibling

Matthew GemmahasSibling

Figure 2.10: An example of a symmetric property (source: Horridge, 2011)

This is a short introduction into property characteristics. The interested reader is recom-
mended to take a look at the Protege manual (Horridge, 2011), where examples are given
for the remaining characteristics.

Rule-based Reasoning

DL reasoning has only a limited range of purposes. For instance, it is not possible to
automate workflow modelling tasks, such as instantiating lower-level activities (see Sec-
tion 5.3). Therefore, rule-based reasoning has been applied in addition to DL reasoning.

Rule-based expert systems use reasoning to infer new facts or perform an action based
on a set of rules. Rules are written in the if-then form, where the if-part (antecedent)
contains a set of events or facts and the then-part (consequent) actions or facts. When
the antecedent is satisfied (i.e. all the if-statements are fulfilled), the consequent will be
executed. The main component of an expert system is a Reasoning Engine (RE), which
uses the rules to reason over a set of facts and deliver a conclusion. Rule-based REs apply
either forward reasoning or backward reasoning.
Forward reasoning engines start with a fact and try to match this fact with the if-part
of a rule. If a rule matches, the RE executes the statement in the then-part (the rule has
fired). This process repeats until none of the rules matches and a conclusion has been
derived. Forward REs are therefore great for executing actions based on facts.
Backward reasoning engines start with a goal, which may answer a query, and will
instead try to match it with the then-part of a rule. The RE works its way backward to
discover which facts or events need to be satisfied for the goal to be true. Hence, backward
REs do not infer new facts or trigger actions, but try to prove a fact (the goal) based on
what is known.
The conclusion is that the two methods of reasoning exist for different purposes. In this
research, a forward RE has been implemented because the RE is used for deriving facts
rather than answering queries.

Although the basics of a rule are simple, there are many classifications of rules. In terms
of KBE rules, La Rocca (2011) has identified five types:
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1. Logic rules
2. Math rules
3. Geometry handling rules: (a) Parametric rules and (b) Geometric entities
4. Configuration selection rules
5. Communication rules

Examples of these rules are given in Table 2.2 (middle column).

Reijnders (2012), who researched how engineering rules can be captured and stored in the
KB, discovered that these rules are not really different types of rules on a formal level.
Therefore, Reijnders rewrote the rules in a general form (see Table 2.2, last column).

Table 2.2: KBE rule types identified by La Rocca (2011) and formalised by Reijnders (2012).

Rule type Example General form

1. Logic If width ≤ 1 then length = 1 else
length = 2

If width ≤ 1 Then length = 1 If
not(width ≤ 1) Then length = 2

2. Math For aeroplanes the lift equals
1
2
ρV 2SCL

If object.type = aero-
plane Then object.lift =
1
2
air.ρobject.V 2object.Sobject.CL

3a. Parametric A.length = B.length+ C.length If true Then A.length = B.length +
C.length

3b. Geometric
Entity

Define a container as a box with
length = 10, width = 20, and
height = 30

If true Then
container.type = box
container.length = 10
container.width = 20
container.height = 30

4. Configuration
Selection

If the wing is longer than 10m,
use 5 ribs

If wing.length > 10m Then wing.rib-
sequence.size = 5

5. Communication If the loads are not present in
memory, calculate and load them

If not(load.status=loaded) Then exe-
cute(retrieve(loads))

For this research, rules are used for automatic workflow generation. The rules capture
workflow modelling knowledge, so that the RE can automate tasks that are normally
performed by a human user. The entire list of rules that have been applied is included in
Appendix D.
On a formal level, two types of rules have been identified for workflow modelling (see
Table 2.3). The first rule type determines the sequence by matching inputs to outputs of
activities. The second type is math rules, for modelling the objective function, formulas,
and constraints.

Table 2.3: Process rule types for workflow modelling.

Rule type Example General form

1. Process
sequence

If Activity2 requires output from Activ-
ity1 as input, then Activity1 is followed
by Activity2

If Activity1.output = Activity2.input
Then Activity1 Activity2

2. Math Constraint: volume < 2 If true Then V < 2

Rule language
Even though rules are all written in the same form, capturing rules is not as straight-
forward as it seems. Rules are formal statements expressed in a logic. The logic gives a
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meaning to the rule. Multiple logics exist, each being a compromise between expressivity
and decidability (ability to prove a statement). Very expressive logics may have difficulties
with proving statements and may not come to an answer. Therefore, the difficulty is to
select a logic that is as expressive as possible, yet still decidable, and is able to capture
the rules in the domain of interest. Reijnders (2012) has performed an extensive research
on engineering rules and concluded that the Rule Interchange Format (RIF) is the most
suitable rule language for the IDEA.

2.5 Managing Processes in Distributed Environments

The design of complex engineering systems is increasingly becoming a collaborative task
between geographically distributed design teams. The consequence is that design knowl-
edge and simulation tools are spread out over different locations. Managing the exchange
of knowledge and simulation results is a real challenge, even with today’s computational
systems. Two technologies that support the distributed design environment are Workflow
Management and web services.

2.5.1 Workflow Management

Workflow Management (WFM) has been introduced briefly in Chapter 1, which did not
cover the entire topic. This section explains WFM in more detail, with a particular focus
on human workflows and simulation workflows.

Human Workflows

One of the shortcomings of current SWFM systems is the lack of a standardised, neutral
process language, which promotes sharing and reuse of process knowledge. This should
be a simple language that is easy to use by anyone without IT and/or workflow expertise.
This language is found in the discipline Human Workflow Management (HWFM).

In human workflows, human participants perform activities either manually or with sup-
port from information systems. Examples of activities are sending emails, generate or send
documents, providing input to systems, etc. The workflow basically forms a blueprint,
assisting people in the work that needs to be done (see Figure 2.11). This guarantees that
processes are executed efficiently and that results are consistent.

Figure 2.11: A simple example of a human workflow in the BPMN notation. The example
shows an ordering process (source: Weske, 2012).
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A closely related topic is Business Process Management (BPM), which is not to be con-
fused with WFM or human workflows. The focus is indeed also on human activities, but
according to van der Aalst et al. (2003): “BPM extends the traditional WFM approach
by support for the diagnosis phase and allowing for new ways to support operational pro-
cesses.” (see Figure 2.12).

WFM

BPM

Process 
design

Process 
enactment

Diagnosis

System 
configuration

Figure 2.12: BPM extends WFM with the diagnosis phase (source: van der Aalst et al.,
2003).

BPM emerged when business users started to experience difficulties in aligning IT systems
with the business needs. The solution was rather simple: abstract the business process
from the IT layer into a separate, higher level layer. The result is that organisational pro-
cesses are no longer coupled to IT processes, thus allowing business managers to design
processes, analyse process, and improve process efficiency without the need to communi-
cate with IT first. This separates responsibilities in a functional way. A similar approach
is necessary in engineering, whether it involves human or simulation workflows, where the
responsibility of designing workflows is separated from the implementation of workflows.

BPM is more popular than WFM, and hence better supported. This has resulted in
several efforts in standardising notations for modelling business processes and a set of best
practices. One of these standards is the Business Process Model and Notation (BPMN),
which is a graphical representation for business processes. BPMN gained its popularity
because it is a standardised graphical notation, adopted by the Object Management Group
(OMG), and it is easy to understand also for non-IT experts. Since version 2.0, BPMN
also includes execution semantics and a standardised XML-based syntax. BPMN has
become the preferred process language after a trade-off between various notations and
languages (see AppendixA and Table 2.4).

Table 2.4: Trade-off of the various workflow modelling languages.

Criteria Weight UML BPMN EPC BPEL YAWL
Graphical notation 1 ++ ++ ++ - ++
Designed for execution 1 - + - - ++ ++
Standardised 1 ++ ++ - ++ -
Widely adopted 1 ++ ++ + ++ -
Easy to use 1 + + + - 0
Score max: 10 6 8 1 4 2
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Simulation Workflows

It is well understood that replacing expensive physical tests with simulations cuts cost of
product development. This has led to a massive increase of simulation usage and hence
the selection of simulation tools, ranging from full-featured commercial software to in-
house developed applications and spreadsheets. As pointed out earlier, the transition to a
simulation heavy design process is not effortless. Problems have been identified regarding
the shortage of simulation expertise in the near future. Other studies have reported about
the high cost associated with the interoperability between heterogeneous tools. And lastly,
multiple sources have found that roughly only 20% of the design process is actually spent
on creative design tasks (Bazilevs et al., 2009; Stokes, 2001).

Manually executing and chaining simulation tools is a very time consuming and error-
sensitive task. The design engineer has to set up simulation, manage data (including
translation), and prepare tool-specific views of the product model. This requires excep-
tional IT skills, which is often not part of the designer’s skill set. In these cases the design
engineer would greatly benefit from using workflow software.

Workflow software are designed for integrating and automating execution of heteroge-
neous simulation tools. In the engineering design domain these systems are often referred
to as Process Integration and Design Optimization (PIDO) solutions. These software
contain all the tools that design engineers need for analysing data and performing op-
timisation. For example, tools for interfacing with CAE tools, post-processing tools for
statistical analysis and data visualisation, and a wide selection of optimisation algorithms
are standard features of most PIDO solutions. The rich graphical environment keeps the
learning curve low, making it accessible to non-programmers.

Some examples of well-known PIDO solutions are Dassault Systèmes Simulia iSight,
Esteco modeFRONTIER, Noesis Optimus, Phoenix Integration ModelCenter, and PI-
DOTECH PIAnO (see Figure 2.13, in clockwise direction). There are slight variations
among these systems, but the core functionality is the same for all.

Figure 2.13: Screenshots of various PIDO solutions (source: Dassault Systèmes, n.d.; PI-
DOTECH, n.d.; Noesis, n.d.; Esteco, n.d.; Phoenix Integration, n.d.; Bowcutt
et al., 2008).
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2.5.2 Web Services

According to the W3C “A Web service is a software application identified by a URI,
whose interfaces and bindings are capable of being defined, described, and discovered as
XML artifacts. A Web service supports direct interactions with other software agents
using XML based messages exchanged via internet-based protocols.” (W3C, 2002). The
less technical explanation is that web services are software applications, which no longer
need to be installed on the user’s computer, but can instead be accessed over the internet.
Or, when drawing the comparison with electricity supply: “It might help to think of Web
services in terms of your electricity supply. You don’t generate your own electricity, you
just plug in there. The electricity is delivered in agreed standard units and you have a
meter telling you how much is being consumed.” (ComputerWeekly.com, 2002).

As organisations grow, and offices are spread all around the world, software applications
are developed at different locations. Instead of copying the applications to every other
office, an application may be deployed as a web service. This means that the application
will be accessible over the internet from any location in the world. Additionally, by using
the standard interfaces of the internet (e.g. HTTP) the web service becomes platform-
independent, meaning that applications can be used on any operating system and any
device that has access to the internet. This is a great solution for solving interoperability
problems that are often encountered in WFM.

There are two main technologies that play an important role in the implementation of
web services: Service Oriented Architecture (SOA) and Software as a Service (SaaS).

Service Oriented Architecture

First of all, SOA is sometimes being confused with SaaS. Most likely because both tech-
nologies are often related to web services, but there is a fundamental difference (Laplante
et al., 2008). SaaS is a software-delivery model, whereas SOA is a software-construction
model. SOA is a conceptual architectural framework that describes how a service should
be provided and how a service can be accessed through standard interfaces and commu-
nication protocols.
In a SOA, there is a service provider that offers a service for others to use (see Figure 2.14).
The provider has the task to detail its interface, thus describing the operations of the
service and its input and output messages for each operation. Furthermore, a binding
description describes how to send messages to where the service is located. The language
often used for describing services is the Web Service Definition Language (WSDL). This
WSDL description is then published to a service directory, such as the Universal Descrip-
tion Discovery and Integration (UDDI), so that service requesters can look for available
services at a central location. This directory often includes additional information about
the service provider and the service so that requesters can discover services more easily
using search criteria. Once the requester has found a suitable service, it can analyse its
WSDL description, and communicate with the service provider directly using the Simple
Object Access Protocol (SOAP). SOAP has been standardised by the W3C (2007) as the
protocol for exchanging information with web services.

A recent trend is to use Representational State Transfer (REST) instead of SOAP, and the
accompanying Web Application Description Language (WADL) in place of WSDL. There
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Figure 2.14: The SOA architecture.

are countless discussions on which one is better for web services (Spies, 2008; Francia,
2010; Singh, 2009). Summarising, the main advantages of using REST are:

• Lightweight: with REST messages are shorter and require less bandwidth usage.

• Easy to understand: REST uses standard HTTP and is much simpler than SOAP.

• Easy to build: no tools are required for development.

And the main advantages of using SOAP are:

• More mature: SOAP enjoys a better support from other standards (WS-*) and
development tools.

• Rigid: SOAP offers built-in error handling.

In the end, the decision for either one really depends on the application. In general, REST
is favoured by the majority of web service providers, including some of the largest services
available today (DuVander, 2011). Throughout this research REST is used because of its
simplicity. However, if for instance additional security features are desired, then SOAP
is the only option.

Software as a Service

SaaS is thus a software-delivery model, where the software and data are hosted at a
central location (often referred to as the cloud) and users access it via the internet
or intranet. With this model, software no longer needs to be installed on the user’s
computer and instead users can interact with the software through a thin client, usually
a web browser. It is comparable with utility services, where software is delivered as a
utility and is charged based on the amount of usage. Next to SaaS, there are many other
types of services, which are collectively placed under the term cloud computing.

Salesforce.com was one of the first companies that became successful by offering SaaS for
Customer Relationship Management (CRM). While CRM is still the most used type of
service, SaaS solutions now exist for human resource management, email, and even for
supply chain and inventory control (Weier & Smith, 2007). There are several reasons for
using SaaS products. Ease of deployment and management is one of the main advantages.
Companies using SaaS are no longer troubled with deploying, maintaining, and updating
their software systems. Secondly, SaaS products are often considered to be more flexible
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and better support changing business needs. And lastly, companies switch to SaaS so-
lutions because of lower costs. Savings on investments in hardware and on IT personnel
can be substantial.

Although SaaS brings many benefits to businesses, there are also companies who have their
doubts about SaaS. The main concern of businesses is the security, as business information
is generally sensitive. Meanwhile, most businesses have shown their concern regarding
reliability and uptime of hosted software, since it is no longer in their control. However,
if staying in control is the only problem, then companies might consider Platform as a
Service (PaaS) or Infrastructure as a Service (IaaS) as a solution. Both offer more control
but still offer some of the benefits of SaaS. Other criticism are related to functionality
and interoperability with legacy systems or with other software. But in the end, for most
companies these concerns do not outweigh the implementation and cost benefits.

2.6 Integrated Design and Engineering Architecture

The Integrated Design and Engineering Architecture (IDEA) is a new engineering frame-
work that evolved from the DEE. Compared to the DEE, the IDEA has changed the way
how knowledge is stored. Because of transparency issues, knowledge is no longer hidden
in the application code, but is instead stored explicitly in a KB (see Figure 2.15). The KB
is a critical component of the IDEA, as it is a single source for all product and process
knowledge, including engineering rules. For the reasons mentioned in Section 2.4, the
IDEA uses semantic web technologies for the KB. Then, KBE and WFM applications are
built automatically from this knowledge according to the Model Driven Software Engi-
neering (MDSE) methodology.
In MDSE, software applications are developed from abstract models that can be trans-
lated into code. This has several benefits. First, the application code is stored in a neutral
format, thus allowing applications to be generated on different platforms from the same
models. The second reason is that MDSE simplifies the development of new applications
because knowledge can be reused more easily. Furthermore, this approach improves col-
laboration between developers through sharing models and best practices. And lastly, the
higher abstraction level makes knowledge more accessible to non-programmers.

Another addition to the IDEA is a Reasoning Engine (RE), that can infer implicit knowl-
edge from the explicit knowledge that is stored in the KB. A rule-based RE was the most
logical option, since engineering rules are stored in the KB in a formal rule language (RIF).
Other technologies that were used in the DEE remain existent in the IDEA. For example,
both KBE and WFM still have a large role in the IDEA (see Figure 2.15). However,
WFM is worked out in much more detail than in the original DEE. The original DEE
suggested the use of web services, but did not give much implementation details. The
IDEA on the other hand relies heavily on web services and maintains a Service Oriented
Architecture (SOA) wherever possible. Moreover, the DEE did not provide guidelines on
how to implement the design framework in a WFMS, whereas the IDEA presents a clear
solution using PIDO software.
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Figure 2.15: Diagram of the IDEA framework showing which components are new (in red)
and where KBE (in green) and WFM (in blue) technologies are applied (mod-
ified from source: van Dijk et al., 2012)



Chapter 3

MOKA: The Old Methodology

MOKA’s attempt to standardise KBE development has not been unnoticed in the KBE
community. Today, more than a decade after its introduction, it is clear how the method-
ology has performed.
MOKA introduced good methods for developing knowledge systems, but there is room
for improvement, especially in the domain of WFM. Therefore, the goal here is to find
out how MOKA can be improved.

The chapter begins with a short introduction into the original MOKA methodology (Sec-
tion 3.1), followed by an analysis of the methodology’s strengths and weaknesses (Sec-
tions 3.2 and 3.3). At the end of this chapter, it is clear what can be reused and what is
missing in MOKA. This determines the future direction for a new methodology.

3.1 A Methodology for KBE Development

The development of MOKA started in 1998 as a European initiative with partners from
the aerospace, automotive, IT and academic sectors (Stokes, 2001). The aim was to
promote the use of KBE in Europe, since Europe was falling behind the competition from
America and East Asia. It took thirty months to formalise the MOKA methodology.

The low adoption rate of KBE in Europe was most likely due to the lack of well-defined
standardised methods. Thus, MOKA decided to work on a new methodology for devel-
oping knowledge systems in engineering design. The main objectives were to (Oldham et
al., 1998):

• Reduce the lead times and costs of developing KBE applications by 20-25%
• Provide a consistent way of developing and maintaining KBE applications.
• Develop a methodology which will form the basis of an international standard.

Each of these objectives are described in more detail below.

The bottleneck for KBE application development is the elicitation and formalisation of
knowledge. MOKA’s objective was to reduce development time and cost by reducing the

35



36 MOKA: The Old Methodology

required skill level for capturing and formalising knowledge.
The outcome of the project is a formalised methodology for analysing and modelling prod-
uct and process knowledge in a more consistent form. This allows for KBE applications
to be developed and maintained more efficiently, because knowledge is represented more
clearly.
Finally, MOKA aimed to become an industry standard. It was expected that a method-
ology, that is generic and independent of any KBE platform, would lead to wide adoption
by the industry.

5. Package 3. Capture

4. Formalize

1. Identify

Knowledge Management

Knowledge Engineering

KBE

2. Justify6. Activate

Figure 3.1: MOKA’s KBE lifecycle overlaid with the boundaries of knowledge management,
knowledge engineering, and KBE.

Although MOKA covers the entire knowledge management lifecycle, termed KBE lifecy-
cle, the focus is on the knowledge engineering subset (see Figure 3.1). The main portion of
the development costs occurs during the phase where knowledge needs to be captured and
structured before it can be applied in an application. Therefore, MOKA has attempted
to standardise methods by introducing a stepwise approach to KBE application devel-
opment, consisting of an Informal Model and a Formal Model. The process starts
with capturing the raw knowledge from the domain experts (step 3 ). This knowledge is
filtered, structured and organised in knowledge models as a first step towards KBE ap-
plications. For this purpose MOKA designed the so-called ICARE-forms, which enable
knowledge engineers to structure knowledge in five categories: Illustration, Constraint,
Activity, Rule, and Entity. The set of ICARE-forms describe product and process knowl-
edge at an informal level that is understandable by both the knowledge engineer and
the domain expert. This is an important aspect, because the expert has to validate the
knowledge before it can be processed in the next step.
This next step formalises the knowledge (step 4 ), meaning that the knowledge is trans-
lated into a format that is closely related to computer language. It is the second and
last step from raw knowledge to KBE application. The readability of the Formal Model
is compromised for experienced engineers (with IT knowledge) and computers. The idea
behind this is to decrease the gap between engineering knowledge and computer code,
so that code generators can translate the knowledge into a KBE application, while the
engineer remains in control of the knowledge.
To maintain transparency, it is important that the knowledge inside the KBE application
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can be linked through the knowledge models (informal and formal) all the way to the raw
knowledge.

The MOKA methodology is a guideline for developing and maintaining KBE applications,
and includes useful tips gained from industrial experience. A decade after the introduction
of MOKA it is clear what the impact has been on the KBE community. Below follows an
evaluation of its strengths and weaknesses.

3.2 MOKA’s Strengths

MOKA has become the most well-known and most used methodology because it addresses
many issues encountered in KBE development. Even though many alternative methodolo-
gies have been proposed, such as KOMPRESSA (Lovett et al., 2000), KNOMAD (Curran
et al., 2010), and a knowledge acquisition methodology by Milton (2007), MOKA pre-
vailed because it sincerely aimed to become the industry standard. In the end, MOKA
achieved its status due to the following strengths.

S-1. Methodological approach: Until now, the majority of KBE applications have
been developed in a case-based manner (Chapman & Pinfold, 2001; Yang et al., 2012;
Bermell-Garcia & Fan, 2002). This complicates the reuse and sharing of applications and
the captured knowledge in future projects, which ironically is supposed to be a unique
selling point of KBE. This result is not unexpected though, because most KBE platforms
focus only on implementation. But as Figure 3.1 illustrated, implementation is only part
of the KBE lifecycle. Developing and maintaining KBE applications is a complicated
process that starts well before building the application. Therefore, MOKA made an
attempt to standardise KBE application development by introducing a methodological
approach that covers the entire KBE lifecycle.

S-2. Transparency: Domain experts who provide their knowledge to the knowledge
systems are normally also the end users. However, in current practices, where KBE ap-
plications are developed ad hoc, end users perceive these systems as black boxes because
the knowledge is hidden in incomprehensible code. This complicates validation of the
software and ultimately wide acceptance. Therefore, MOKA emphasises to store knowl-
edge explicitly in a Knowledge Base (KB).
But simply storing the raw knowledge (i.e. the expert’s knowledge) in a KB is insufficient
though, because the transition from raw knowledge to the final KBE application is huge.
This formalisation step transforms the raw knowledge to such an extent that it becomes
unrecognisable to the expert once it is applied in the application. It is then not so obvious
how the raw knowledge is linked to the knowledge in the application. Hence, the problem
still exists, where it is impossible to validate the software because it is too difficult to
retrace where the knowledge came from. To solve this, MOKA introduced the Informal
and Formal Model as intermediate steps, where the link between each step is maintained
all the way from the raw knowledge to the final KBE application.

S-3. Integrated product and process knowledge: Generally, KBE applications have
a strong focus on product knowledge, while (mostly) ignoring process knowledge. But
in reality, these two are interconnected. If this is not taken into account during the
development of a design framework, then the result will be a disconnected solution which
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is far from optimal. MOKA recognised the importance and developed the methodology
as a complete solution where product and process knowledge are integrated. However,
as the next section on weaknesses explains, MOKA could improve on modelling process
knowledge.

S-4. Tools and methods: A new methodology is able to accelerate adoption if it pro-
vides tools and methods for its users. MOKA focused mainly on the methods and does
not provide the tools to apply these methods.
For the Capture phase, MOKA explains how the knowledge engineer can prepare for
capturing knowledge. It gives a brief introduction into the various methods that are ef-
fective for capturing knowledge from different sources, such as (paper) documents, human
experts, and computer files. MOKA only provides the basics though, but does provide
references to better sources dedicated to knowledge elicitation.
The ICARE-forms are MOKA’s solution to structuring the knowledge. The set of forms
enable the knowledge engineer to organise engineering knowledge effectively. Additional
diagrams help creating and maintaining the meaningful relationships between the ICARE-
forms.
Finally, MOKA assists in the formalisation process by providing formal knowledge mod-
els and extensive guidelines for the process. Various generic templates are included for
recording the breakdown of the product into different views: behaviour, function, repre-
sentation, structure, and technology views. This is an important step as it will facilitate
KBE application development. For this purpose, MOKA also developed the MOKA Mod-
elling Language (MML), an extension of UML for modelling formal product and process
knowledge (Brimble & Sellini, 2000). Templates for breaking down the process are missing
though, as becomes clear in Section 3.3.

S-5. MDSE approach: The knowledge models and (digital) KB together are perfect
ingredients for Model Driven Software Engineering (MDSE). MOKA promotes the use
of code generators in the Packaging phase, where formal knowledge is translated into an
application. This reduces application development time and simultaneously the number
of human errors. As a result, programmers spend less time on coding tasks and can focus
on modelling instead.

S-6. Neutrality and standards: One of the main technological strengths of MOKA is
its appeal for a neutral knowledge representation. Neutrality is a condition for platform-
independence, which guarantees preservation of knowledge when an organisation decides
to switch to another KBE platform. For MOKA, neutrality is a necessity as MOKA aspires
to become an industry standard. For the same reasons, MOKA supports technology
standards as much as possible. For example, the industry standards STEP (Standard
for the Exchange of Product model data) and XML (Extensible Markup Language) are
recommended for storing geometric data and formal knowledge models respectively.

3.3 MOKA’s Weaknesses

Although MOKA is a great methodology for KBE development, there are areas that can
be improved. Multiple sources reviewed MOKA and concluded that MOKA is not flawless
(Curran et al., 2010; Verhagen et al., 2011; van Dijk, 2013; Skarka, 2007) Combining their
findings with the author’s own analysis of MOKA have led to these weaknesses.
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W-1. Bias towards product rather than process knowledge: The most prominent
shortcoming in relation to this research is that MOKA is more product-oriented than
process-oriented. MOKA attributes this to the great diversity in design processes. Design
processes are complex for many reasons and may differ per industry, company, and may
also depend on how KBE is implemented. Therefore, MOKA labelled the design process
model as “the biggest challenge”, as no simple, straightforward model would fit. This is
mainly a limitation of MOKA’s determination to remain neutral. It may indeed be too
challenging to define a generic process model that would fit all processes. However, it is
viable to define more domain-specific process models as an extension of the methodology.
Moreover, whereas the methodology discusses the transition from product knowledge to
KBE applications, it fails to present succeeding steps for the process model. It remains
unclear how process knowledge can be implemented in WFM solutions and support KBE
applications.
Solution: MOKA’s process model becomes more effective when the scope is narrowed
down to a certain domain, e.g. simulation workflows and design optimisation in this case.
This clarifies ambiguities about what type of processes are treated, and thus the purpose
of capturing and formalising process knowledge.

W-2. Shortage of use cases: MOKA fails to provide use cases that demonstrate how
the methodology is used to eventually build KBE or SWFM applications. Full case studies
that demonstrate how the methodology supports KBE development would certainly make
MOKA more accessible to newcomers. Currently, MOKA shows segments of various
engineering projects that explain the various models and forms. However, these projects
are not related in any sense and without a coherent example it is not clear how a user
would go through the entire process. The methodology misses step-by-step instructions
supplied with examples in the formalisation and implementation phases.
Solution: Showing how it is used in practice contributes to the success of a methodology,
especially in a field as complex as knowledge management. The industry is only interested
in the benefits of applying the methodology. If this does not become clear immediately,
companies will hesitate to apply the methodology throughout their organisation.

W-3. Lack of process templates: MOKA lacks domain-specific models or templates
for building knowledge systems immediately without prior research into developing these
models. Currently, it takes too much effort for commercially-minded companies to invest
in implementing MOKA, especially for processes. MOKA remains at a higher level, de-
scribing the general engineering design process, and does not even specify the types of
processes it supports, whether these are in manufacturing, testing, or simulations.
Solution: MOKA would benefit from having domain-specific templates, similar to how
CommonKADS provides templates for various tasks, such as classification, diagnosis, de-
sign, and planning (Schreiber et al., 2000). These templates can be derived by applying
the methodology to various case studies in different industries for a wide variety of ap-
plications. Of course, this will be a lengthy process that requires a considerable amount
of resources. Nevertheless, this thesis contributes by developing knowledge models for
simulation workflows and MDO.

W-4. Limited availability of software tools: MOKA suggests standardised tech-
nologies for storing knowledge and data transfer, but does not advise on suitable software
tools. Currently, hardly any tools are available for modelling MOKA’s Informal and For-
mal Models. PCPACK seems to be an exception, with its many knowledge acquisition
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and modelling tools as well as support for various methodologies including MOKA (Epis-
temics, 2008). As mentioned before, the industry prefers ready solutions over technologies
that require a fair amount of research and development.
Solution: Offering software tools and technologies will accelerate the adoption of the
methodology. Otherwise, users have to individually develop their own tools, thus return-
ing to the problem of creating ad hoc solutions.

W-5. Focus on “Capture” and “Formalize” phases: The KBE lifecycle starts with
identifying opportunities and justifying whether KBE applications will improve design
efficiency. MOKA acknowledges that these steps are important, but the documentation on
these steps is rather thin. MOKA focuses more on “Capture” and “Formalize” phases and
admits that it relies on other knowledge management methodologies for the assessment
steps.
Solution: A business is only interested in whether the development of a KBE application
is worth investing in. But MOKA is rather limited in this respect. As Verhagen et
al. (2011) have pointed out, having a quantitative assessment framework additional to
qualitative criteria will improve reliability of the analysis.

3.4 Future Direction

The new methodology should continue to build on MOKA’s strengths, while improving
on its weaknesses. Shortly summarised, this methodology should:

1. Narrow down the domain for processes, e.g. simulation workflows and design opti-
misation in this thesis.

2. Demonstrate how to use the methodology in a variety of use cases.
3. Provide domain-specific templates for describing various types of processes.
4. Provide software tools for capturing, structuring, and storing knowledge.
5. Have a quantitative assessment framework for identifying opportunities.

These opportunities to improve the methodology are addressed in the next chapter.



Chapter 4

MOKA 2: The New Methodology

MOKA has been a great initiative in standardising KBE development. The amount of
research papers referring to MOKA show that it has been successful. However, as more
experience was gained with the methodology, several weaknesses started to surface (see
Chapter 3). The main problem, in regard to this research, is that MOKA does not cover
design problems, MDO, and simulation workflows. These are important topics in the
future of engineering design. And as a significant amount of knowledge is involved, it
is becoming increasingly important to understand how knowledge can be applied in the
setup of design problems and simulation workflows.
One of the objectives of this research is to develop new methods for capturing and structur-
ing SWFM and MDO knowledge in relation to a KBE application. The new methodology
has simply been named MOKA 2, as it maintains familiarity with the original MOKA
methodology.

This chapter begins with stating the objectives in Section 4.1, followed by a step-by-
step guide describing the modelling process. This process consists of four steps in the
Informal Model (Section 4.2.1) and one in the Formal Model (Section 4.2.2). The chapter
presents new knowledge forms that extend the ICARE-forms, two notations to visualise
relationship between the forms (N2 and BPMN), and a formal process ontology.

4.1 Objectives

The intention is to improve methodological support for SWFM, starting from the founda-
tions laid by MOKA. The objectives stated below are formulated according to MOKA’s
weaknesses. Meanwhile, these objectives for MOKA 2 align with the thesis’ main goals
stated in Section 1.6.

O-1. Extend MOKA’s process models with domain-specific elements for WFM
and MDO.
While leaving MOKA’s structure intact (i.e. the Informal and Formal Model), the goal is
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to provide a detailed procedure for capturing and storing process knowledge and demon-
strate how this knowledge can be reused in SWFM applications.

O-2. Develop process models at a higher level of abstraction to reduce the
complexity of WFM. One of the thesis’ research goals is to investigate new WFM
solutions that will reduce the complexity of WFM. This can be achieved by developing a
solution that allows WFM users to define processes at a higher level of abstraction than
current WFM solutions.

O-3. Provide detailed use cases that demonstrate how the methodology is
applied in the development of WFM applications.
To improve understanding of the various tools, methods, and technologies, it is essential
to include examples and case studies that demonstrate how the methodology is applied.
This will lower the learning curve and hence acceptance of the methodology. In order
to fulfil this objective, an advanced WFMS will be built for testing and validating the
methodology.

O-4. Demonstrate how existing software tools can be used in the methodol-
ogy and develop new software tools wherever necessary.
Filling in the “technological blanks” is essential for gaining acceptance in the industry.
Therefore, MOKA 2 should provide details about the KB implementation, provide sug-
gestions for KBE and WFM platforms, and deliver translators and code generators that
can automate the transition from formal model to knowledge application. The answers
that fill in the blanks are provided in the system that is built during this research.

The remaining weakness, the lack of a quantitative assessment framework, has not been
addressed. Based on the available resources it has been decided not to include it within
the scope of this research. Also because it is considered a business-related topic, as it
involves a thorough analysis of the organisation.

Requirements
MOKA’s strengths are highly valued in MOKA 2 as well. Therefore, it is important to
maintain MOKA’s principles and guidelines in MOKA 2. These principles are:

• Neutrality and the preference for standardised technologies
• Transparency of knowledge systems
• Central role for the KB, which enables MDSE
• Link between product and process knowledge

4.2 A Methodology for the Development of Next Genera-
tion MDO Frameworks

To ensure that processes are designed efficiently, it is important to take a top-down ap-
proach in WFM. Thus, the methodology starts at the top-level, where design problems are
formulated, and continues to describe lower levels until, eventually, a simulation workflow
has been modelled that can solve the problem. This process has a total of five steps (see
Figure 4.1).

Actors
To understand this procedure clearly, it is helpful to first describe the actors in this process
(see Figure 4.2).
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Figure 4.2: UML use case diagram showing the actors and their roles in the development
of next generation design systems.

Besides knowing about products, the design engineer understands the problem to be
solved. The design engineer determines what analyses are needed to solve the problem,
but relies on domain experts to deliver the results. The expert knows how to perform
disciplinary analyses and possesses the knowledge that goes into simulation tools. These
can be in-house developed or commercially available software tools. In-house developed
tools are built by the IT engineer, who can be a programmer or an engineer with
IT knowledge. Furthermore, IT engineers know how to build KBE applications and
model executable workflows. Their expertise is also useful for formalising knowledge.
The knowledge engineer has a supporting role in this development process, to ensure
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that knowledge is captured and structured properly. Ideally, support from this actor
would not be necessary. However, knowledge management is a complex discipline that
requires the expertise of a knowledge engineer.

4.2.1 Informal Model

The informal level is about modelling, and not about programming or execution. This
section describes steps 1 to 4 of the modelling process, who are involved, what their role
is, and how the methodology supports their work.

In this process, knowledge is captured in Problem-, Discipline-, Activity-, and Tool-forms.
The relationships between the forms are visualised with N2 and BPMN diagrams (see
Figure 4.3). These are introduced in step 2 and 3 respectively. Furthermore, the figure
shows that there is in fact a hierarchical relationship that connects all forms. It shows the
(modelling) path from the problem to the simulation tools that will solve the problem.
This path is as follows:

1. The main problem stands at the top.
2. This problem is decomposed into subproblems (optional).
3. Each (sub)problem is linked to disciplines.
4. Disciplines are mapped onto activities.
5. Activities are executed by tools.

When the bottom is reached, the path returns to the top to go through the hierarchy
again in an iterative process. The process begins with defining the problem statement,
which is explained in the next section.

Problem

Subproblem

Discipline

Activity

Tool

2N  diagram

relations
defined in

iterative process

relations
defined in

BPMN 
diagram

Figure 4.3: Hierarchy of the P-, D-, A-, and T-forms. The figure also shows which relation-
ships are visualised with the N2 and BPMN diagrams.

Step 1: Define problem statement
Every project begins with defining the design problem.

• What kind of product is designed?
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• What is the objective?
• Under what conditions?

The design engineer answers these questions. For example, an answer could be:

“Design a mould for the manufacturing of laptop bezels with minimum cost
and environmental impact. The produced parts have to fulfil quality re-
quirements on maximum warpage. Moreover, the injection moulding ma-
chine has a maximum limit on its clamp force.”

This example is taken from the use case in Chapter 8. The answer to the three ques-
tions contains all the relevant information to set up a problem. When abstracting the
highlighted words, it becomes clear that:

• the product is a mould (E-form).
• it is an optimisation problem (P-form).
• the objective is to minimise cost and environmental impact (R-form).
• this involves a cost analysis (D-form).
• an environmental analysis is needed (D-form).
• there are constraints to this problem on maximum warpage and maximum clamp

force (C-form).
• it involves a flow analysis to determine these quantities (D-form).

At the end of each line is a reference to MOKA’s ICARE-forms, which are used for
capturing the knowledge of each of these statements. However, a limitation of the ICARE-
forms is that it does not model problems or disciplinary analyses. Therefore, new forms are
introduced to fill this gap, named Problem (P-form) and Discipline (D-form) (explained
in step 4). Note that optimisation is a specialisation of problem, and that there are other
methods available for solving problems, such as “feasilisation” which aims to find only a
feasible solution rather than the optimum. A discipline is defined as any operation that
transforms an input to an output. Hence it is not bound to either product or process.
Although the forms have been created here, filling in the details is done in step 4, after
elaborating on the problem and workflow. This begins with structuring the problem and
disciplines in step 2.

Step 2: Structure the problem and disciplines
The objective in this step is to structure the information from step 1 and draw relation-
ships between the various elements of the problem. The design engineer has to do this to
determine the strategy for solving the problem. This is done by defining:

• the hierarchy of problems (for multi-level problems).
• responses (results) of each problem.
• involved disciplines in each problem.
• dependencies between disciplines.

Visualising the problem is a strong solution to get a complete overview. Several notations
are available for describing MDO problems (Alexandrov & Lewis, 2004; de Wit & van
Keulen, 2010), however Lambe & Martins (2011) managed to design a notation that
represents the entire problem in a single diagram (see Figure 4.4).

This notation is used to visualise relationships between P- and D-forms. It is based on
standard N2 diagrams, where the Problem and Disciplines are placed on the diagonal.
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Figure 4.4: A notation for visualising MDO problems based on N2 diagrams (modified from
source: Lambe & Martins, 2011).

Inputs to a component are placed in the same column and outputs in the same row.
External inputs and outputs are modelled on the edge of the N2 diagram. The notation
is fairly sophisticated and contains lots of details. Shortly stated:

• Numbers depict the flow through the diagram going from low to high. It can show
parallel flow and even looping behaviour (indicated by the arrow below problem).
• x is a vector of design variables
• yt is a vector of coupling variable targets (inputs to a disciplinary analysis)
• y is a vector of coupling variable responses (outputs from a disciplinary analysis)
• f is the objective function
• c is a vector of constraints
• Starred variables are optimised

Readers who are interested in a detailed explanation of the notation are advised to read
the paper by Lambe & Martins (2011). After defining the relationships between P- and
D-forms in this N2 notation, the methodology proceeds to step 3.

Step 3: Model the activities
Disciplines transform inputs to outputs. The only missing information is how the input
is transformed into the output. The IT engineer has the knowledge about simulation
tools, and is capable of modelling a sequence of activities that delivers the output. This
sequence is derived as follows.

The problem statement only provides information about the responses of a problem. In
other words, the outputs of disciplines are known, but not the inputs. This creates a
situation where backwards reasoning is needed to model the sequence of activities and to
determine the inputs of the discipline.
For instance, for a cost analysis, it is known that the output is total cost (see Figure 4.5).
The IT engineer then selects the activity that calculates the total cost. This activity
requires its own inputs that may be provided by other activities. By repeating these steps,
the IT engineer may deduce a sequence of activities until at some point the activities
require input from outside this discipline. This is when the IT engineer has finished
modelling activities for cost analysis.

The sequence of activities is visualised with BPMN, which in fact captures the relation-
ships between A-forms. Figure 4.6 shows a mockup of a web interface for modelling
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Figure 4.5: Example of a sequence of activities that performs a disciplinary analysis. Activ-
ities are modelled in BPMN.

Figure 4.6: User interface mockup of the diagram editor. Activity-forms listed in the left
pane are dragged onto the workspace to create a workflow.

workflow diagrams. The A-forms listed on the left are dragged onto the workspace to
create this sequence of activities. More mockups are included in Appendix C.
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Iterating over steps 2 and 3
In practice, the N2 diagram can only be completed after iterating several times over steps
2 and 3. For instance, the newly acquired input from cost analysis needs to be updated
in the N2 diagram (step 2). Then, there are two scenarios:

1. This input is provided by the user as external input.
2. The input is an output of another discipline.

When it is an external input, the design engineer only has to place the input at the edge
of the diagram. In the second scenario, the new input changes the definition of the other
discipline. Or when this discipline did not exist, it introduces a new discipline to the
diagram. In either case, the process returns to step 3, where the IT engineer has to model
new activities for changed disciplines and new disciplines. This continues until the N2

diagram is completed. How this works is demonstrated in the two use cases in Chapters 7
and 8.

Constructing the workflow
When activities are modelled for every discipline, there will be multiple sequences that
are still unconnected. The links between sequences are determined by the dependencies
between disciplines, laid out in the N2 diagram. With this information, the sequences can
be combined into the final simulation workflow (see Figure 4.7). And with this result, the
loop over steps 2 and 3 ends.
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Figure 4.7: Sequences performing various disciplinary analyses can be linked into a full-size
workflow based on the dependencies between disciplines.
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Step 4: Fill in ICARE PDT-forms
In this final step in the Informal Model, the knowledge engineer records detailed knowledge
in a set of ICARE-forms. Previously, new P- and D-forms have been introduced to
complement ICARE. Additionally, the A-form has been modified to model simulation
activities. Then, there is one more form needed to capture the knowledge of simulation
tools: the T-form. With this final form, the set of forms is complete. In MOKA 2, these
forms are named ICARE PDT-forms.

Figure 4.8 shows the content of the P-form. It captures problem-specific knowledge, such
as the algorithm for solving the problem, the objective function, constraints, and design
variables. The field for the objective function and constraints may contain a mathematical
equation or references to R- and C-forms respectively, if a more elaborate description is
desired. References to other ICARE PDT-forms are to:

• P-forms for (sub)problems
• D-forms for disciplines
• E-forms for entities (the product to be optimised)
• A-forms for activities (the workflow that solves the problem)

Templates for the new D-, T-, and A-forms can be found in Appendix C, as well as an
interface mockup for filling in these forms. The new forms are also linked to the original
ICARE-forms according to the diagram shown in Figure 4.9.

Figure 4.8: The new Problem form (P-form) captures problem-specific knowledge.
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Filling in the forms concludes modelling at the informal level. The next step is to map
this informal knowledge onto the formal process ontology.

4.2.2 Formal Model

The Formal Model is often overlooked by companies as it is not always clear what the ben-
efits are of formalising knowledge. As a result, applications are often developed directly
from the Informal Model. This is undesired though, because without the intermediate
Formal Model it is more likely that the link between knowledge in the Informal Model and
the final application will be lost. Figure 4.10 shows the Formal Model as an intermediate
layer between the Informal Model and simulation workflow.

In the previous steps, (informal) knowledge is captured in a variety of diagrams and
forms. In the Formal Model, this knowledge is translated to a computer-understandable
form before a simulation workflow is generated. There are two domains in the Formal
(process) Model: problem and workflow. Knowledge for modelling the problem is provided
through a P-form (algorithm, design variables, constraints, etc). The BPMN diagram,
A-, and T-forms provide the required knowledge for modelling the workflow (activities,
flow, inputs and outputs, etc.). The next section explains how this is modelled in a new
process ontology.

Step 5: Formalise process knowledge
In this final step, the knowledge engineer maps the knowledge from the Informal Model
onto the formal process ontology. The IT engineer, who possesses formal knowledge
about activities and tools, may provide support in this process. The end result is a
formal representation of the simulation workflow in the KB that will be used to generate
the workflow. Before the ontology is shown, this section begins by explaining how process
knowledge can be captured.
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Figure 4.10: The top-down modelling process and the respective tools and methods for each
layer.

Defining Processes at a Higher Abstraction Level

One of the research goals is to reduce the complexity of WFM so that it becomes more
accessible to design engineers. One way to achieve this is to facilitate linking of CAx
tools (Computer Aided Technologies). Although PIDO tools have been designed for this
purpose, it requires a significant amount of IT knowledge to accomplish this. To make
it more accessible for non-experts, a new solution is developed for modelling simulation
workflows at a higher abstraction level.

The key to this solution is the High-Level Activity (HLA), which consists of five
elementary steps:

1. Input: the input to the activity.
2. Preprocessing: this (optional) transformation step modifies the input into a for-

mat that the CAx tool requires. Preprocessing may be executed by the PIDO tool
or by an external tool.

3. Analysis: this is the main transformation step. It transforms input into an output
through an analysis.

4. Postprocessing: the output of a CAx tool is either stored in a file or returned as
a message (e.g. an HTTP response). If the file can be processed immediately by
other tools, then no postprocessing step is necessary. Otherwise, the file needs to be
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Figure 4.11: A new framework is designed for modelling activities at a higher abstraction
level.
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parsed to extract the values. Messages may need postprocessing as well, depending
on how the PIDO tool handles incoming messages.

5. Output: the output of the activity.

With this definition, a new framework has been created that forms the basis for every
activity. Figure 4.11 shows how different (high-level) activities are modelled based on this
framework.

HLAs add value by capturing lower level knowledge that is not of interest to the user to
have control over. By taking the underlying knowledge out of the user’s sight (not hidden
though), the user can focus on modelling what is important. For example, the HLA
“Create simulation model” is defined as an activity that always requires a vector of input
parameters, a “Write inputfile” and a “Send HTTP request” activity, and produces files.
When the user decides to use the HLA “Create simulation model”, the system returns
what the required inputs and what the available outputs are. There is no need for the
user to model the remaining two activities, because that knowledge is captured in the
HLA. The user only needs to decide on what input to provide and what output is desired.

It is arguable that a user is not even interested in modelling the individual HLAs (1-3) if
this simulation always involves these three activities (see Figure 4.11). In that case, the
same basic framework can be used to model activities at an even higher abstraction level,
where HLAs are reused as transformation steps of this higher level HLA. This new level
of activities has been given the name High-level Engineering Service (HES).

Note that pre- and postprocessors have a different definition on different levels. For
HLAs, a preprocessor is defined as a transformation step that can only write parameters
and values to an inputfile. Similarly, a postprocessor can only parse files to extract values.
For HESs on the other hand, a preprocessor can be a HLA that preprocesses data for
a simulation tool, such as creating a mesh. Postprocessors may be another HLA that
checks for problems occurred during the simulation before results are returned. Being
clear on this distinction facilitates the mapping of higher level activities to the eventual
simulation workflow.

Modelling Execution Details of Activities

To enable automatic workflow generation, it is necessary to capture execution details in
the ontology as well. An activity requires details regarding:

• the type of inputs and outputs on a formal level.
• the tool that will execute the activity.
• the communication with the tool.
• the protocol that is used.

An inspiration for modelling these details is IDEF0 (see Figure 4.12). IDEF0 is an industry
standard for functional modelling that has defined activities by its basic components.

Inputs and outputs are common to every activity and require little explanation. IDEF0
adds mechanism to model who or what system performs the activity. Controls act as
constraints to an activity or define how the activity is executed, such as a schedule or
blueprint. Although IDEF0 itself does not model the flow through activities, it provides
a useful definition that separates the functions of a single activity.
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Activity

Control

Person or system that
performs the activity

Inputs are transformed
into outputs

Results of the activity

Controls constrain
the activity

Mechanism

OutputInput

Figure 4.12: IDEF0 describes activities by its basic components.

This definition can be applied to HLAs as well, to model the communication with the tools.
For that purpose, the original IDEF0 model has been adapted to take web requests and
operating system commands instead (see Figure 4.13). Input and output have been further
specified into two kinds: parameters and files. Then, depending on the combination of
input type and control type, a suitable protocol is selected to trigger the activity (right
side of Figure 4.13).

Web
request

OS
Command

Software tool

Activity
File File File

Web
request

ProtocolCommunication

OS
Command

ParameterParameter
PostprocessingPreprocessing 2

1

3

2

1

3

Parameter HTTP

SFTP

Command Line 
Interface (CLI)

File operations

x x

Figure 4.13: Adaptation of IDEF0 to model High-Level Activities (HLA).

From a workflow perspective, there are three ways to provide input:

1. A parameter is supplied directly to the simulation tool.
2. A parameter is written to a file by a preprocessor, and the file is supplied to the

simulation tool.
3. A file is supplied directly to the simulation tool.

The reversed can be stated for the output.

Defining Inputs and Outputs

Modelling simulation workflows requires a more refined definition of inputs and outputs
as well. Figure 4.14 shows in four diagrams how inputs and outputs are modelled.

1. Modelling relationships with the KBE Product Model
Some activities interact with the KBE product model to update or retrieve product at-
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tributes. These activities need to know exactly how to address it in the tool. This
knowledge is captured in the product ontology, therefore these activities need a link to
the product model and a binding between process parameters and product attributes.

2. Attributes of inputs
Inputs can be categorised according to the table in Figure 4.14 (2). This determines how
the input is processed in the workflow.
There are six possible combinations. First, an input can either be variable or fixed.
When an input is variable, the value changes per iteration and the parameter is modelled
as a variable in the workflow using a symbol. Fixed inputs are provided once at the start
of the execution, and remain fixed throughout the run. Second, an input can be required
or optional. The user must provide a value for required inputs, whereas optional inputs
have default values. If it is a process default, the value is defined in the process domain.
If it is a tool default, the value is stored in the tool. For the latter, the default value
will not be processed in the workflow and is only included for annotation purposes.

3. Dependencies between inputs and outputs
Outputs have a dependency on inputs, meaning that an activity requires certain input
to deliver a specific output. This property avoids unnecessary work. For example, if an
activity has a hundred inputs, and output y depends only on one input, then based on
the dependency, the user knows exactly which input to provide (instead of providing all
hundred). Moreover, modelling dependencies is a way to determine the order of activities,
especially when the same activity occurs more than once in a workflow. This is explained
through an example in Chapter 8.

Activityinput

input

binding

depends on

depends on

binding

this is a fixed and optional 
input with a process default

hasParameterID hasParameterID

output

output

data flow

( 1 ) ( 2 )

( 3 ) ( 4 )

Activity

o

o
Activity o

i

i

Activityi
i

i

i

S
W

UPI

Product model

inputfixed

required

variable

process
default

tool
default

optional

Figure 4.14: Inputs and outputs are modelled according to these four diagrams.
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4. Unique Parameter Identifier
In an ontology, every entity is unique and identified by its URI. This introduces a problem
in the reuse of HLAs, which may already have inputs and outputs defined in the context
of the activity. It may occur that two different URIs are used for the same engineering pa-
rameter. For example, activity A has an output with URI http://www.lr.tudelft.nl/
activityA#Nr ribs and activity B requires an input with URI http://www.lr.tudelft
.nl/activityB#NumberOfRibs. Modelling the data flow from activity A to B requires
an additional relationship due to the mismatch of URIs. A simple solution is to link
parameters to a Unique Parameter Identifier (UPI), that only exists in the domain of a
workflow (or perhaps a project). Then, parameters with the same UPI are by definition
the same.

Automatically Generated File Transfer Activities

Some CAx tools produce files that are provided as input to other CAx tools. In those
cases, files may need to be transferred between locations. These are, in fact, simple
rules that can be captured and reused to let the computer reason when file transfers are
necessary. With this solution, there is no need for the human user to model file transfers
explicitly.

Server1

CAx
B

CAx
A

to output
folder

from input
folder

Server 2

PIDO

CAx
B

CAx
A

SFTP
(get)

SFTP
(put)

project 
folderServer 1 Server 33

to output
folder

from input
folder

Server

move/copyto output
folder

from input
folder

2

CAx
B

PIDO

CAx
A

Figure 4.15: There are three methods for file transfers, depending on the location of the
input and output folders of CAx tools.

To achieve this, every CAx tool must have a predefined input folder and output folder.
Then, three rules can be defined for file transfers, based on the location of the input and
output folders (see Figure 4.15):

1. IF it is the same folder, THEN nothing needs to be done.
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2. IF these are different folders, but on the same server as the PIDO tool, THEN
move or copy files to the input folder.

3. IF the folders are on different servers than the PIDO tool, THEN use SFTP (which
stands for SSH File Transfer Protocol) to transfer files between servers.

The PIDO tool gives the command to transfer a file. Therefore, in the second case, it can
only move or copy a file if the folders are on the same server as the PIDO tool. In the
third case, where SFTP is used to transfer files, the PIDO tool always needs to transfer
files to a local folder first before sending it to the input folder of CAx B. It is not possible
to issue SFTP commands that transfers files between two remote servers (there is only
get and put).

Modelling Activities in the ontology

Finally, activities can be modelled in the ontology according to the definitions given above.
Figure 4.16 shows the main classes of the ontology.

Since workflows are modelled with BPMN, it would be reasonable to map workflows on
a BPMN ontology. Because then, no translation will be necessary between notations
with the risk of losing knowledge in the process. Fortunately, the standard has been
made available as an OWL ontology by Natschläger (n.d.). This facilitates importing the
BPMN ontology into the process ontology.

The subset of BPMN that is used to describe simulation workflows is shown in Figure 4.17.
It is extended with human task from the HWFM domain (Human WFM). Although the
focus in this research is on the SWFM domain (Simulation WFM), it shows that the
ontology can be extended for modelling human workflows as well. The SWFM domain
extends the BPMN ontology with workflow and computer task.

Figure 4.18 shows that the HLA is implemented in the process ontology as a BPMN
subprocess. A subprocess can have flow elements that describe a lower level workflow. In
this case, the lower level workflow is a set of computer tasks that map on the preprocessor,
analysis, and postprocessor steps of the HLA. Eventually, these tasks are translated to
PIDO activities.
The figure also shows the inputFolder and outputFolder attributes that will be used for
file transfer reasoning. This will be demonstrated in the use case in Chapter 8.

The modified IDEF0 model (see Figure 4.13) has been mapped onto the ontology as
shown by Figure 4.19. It is inspired by OWL-S, an ontology for describing the interaction
with semantic web services (OWL-S Coalition, n.d.). In this relatively straightforward
ontology, activities (Process in OWL-S) have inputs and outputs, and are performed by
participants. These classes have been further specified to describe concepts in the WFM
domain. Participants can be a human or computer, where a computer can be a desktop
computer or server. When a task is performed by a desktop computer, it will have an
attribute for osCommand. In the other case, when a server performs the task, the attribute
will be webRequest. Inputs and outputs are modelled according to the definition given
in Figure 4.14. All these additions are necessary for generating simulation workflows.
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Figure 4.16: Overview of the main classes in the process ontology.
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Figure 4.17: A subset of BPMN is included in the process ontology.

BPMN::SubProcess

-parameterValue
-required : bool
-variable : bool
-processDefault
-toolDefault

OWLS::Input
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OWLS::Output
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hasInput
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hasOutput

SWFM::Analysis
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SWFM::HLA

SWFM::PostprocessorSWFM::Preprocessor
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SWFM::ComputerTaskSWFM::ComputerTask

1..*

Figure 4.18: Implementation of the HLA in the process ontology.

Describing problems in the Process Ontology

The classes in Figure 4.20 are derived from common concepts in the problem domain.
This domain, called Problem Domain-Specific Language (PDSL), describes the general
problem class, design variables and constraints. It is extended with the Optimization
Model ontology (OPMD) created by the Center for eDesign (n.d.). The OPMD ontology
consists of an extensive hierarchy of optimisation algorithms and various optimisation
settings, including the objective function.
The remaining classes in the figure, RULE::Rule and pf:standard-object (i.e. the prod-
uct), come from ontologies developed by collaborators in this research. The product
ontology is covered in detail by van Dijk (2013), whereas the rule ontology is explained
by Reijnders (2012). The pf:standard-object is the product model to be optimised or
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Figure 4.19: Execution details in the process ontology.

updated. Here, RULE::Rule contains the mathematical expression of the objective func-
tion and constraints, written in MathML. How this is modelled is explained in Chapter 7
through an example. Both ontologies are included in Appendix C.

-targetPlatform

SWFM::Workflow

PDSL::DesignVariable

0..1

solvedBy

0..* solves

1..*

hasDesVar
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RULE::Rule
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PDSL::Problem
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-objective_function
-single_or_multiple_objective
-target_value
-uncertainty

OPMD::Optimization_Model

1

optimizes

-equation

PDSL::Constraint

pf::ownedData
typeAttribute

domain

Figure 4.20: Problems in the process ontology are described according to this class diagram.

This chapter described the methodology for modelling process knowledge on an infor-
mal and formal level. The next chapter discusses the technical implementation of the
methodology in an integration framework. Eventually, the methodology and the integra-
tion framework will be demonstrated in several use cases.



Chapter 5

Integration Framework for KBE and
WFM

Many students and researchers at the faculty of Aerospace Engineering have built product
models using KBE, ranging from morphing leading edges and flaps to entire wings and
fuselages. In most cases, these applications have been built to perform (multi-disciplinary)
design optimisation. However, there is currently no software framework that couples a
KBE tool with analysis tools and can automate design optimisation. There have only
been ad hoc solutions for design optimisation. It is a waste of time and effort if everyone
creates its own solution. Moreover, it is very likely that these ad hoc solutions are not
reusable in other projects. Therefore, the goal is to provide a design framework so that
these (future) engineers do not have to spend time on developing a coupling between
product and process tools, but can instead focus on optimising their design.

The chapter begins with an introduction to the integration framework and the software
technologies that have been used in Section 5.1. Then, Section 5.1.2 explains that there
are two ways to implement the framework: a KBE–PIDO coupling (Section 5.2) and
a KB–PIDO coupling (Section 5.3). KBE application developers benefit from the first
solution, as it provides new problem and workflow Domain-Specific Languages (DSL)
(Section 5.2.2) for performing design optimisation from within the KBE environment.
The second coupling is for engineers without much programming experience, and focuses
on modelling. For each coupling, the section describes the software architecture and
characteristics of the coupling, and explains how workflows are automatically generated.

5.1 The Integration Framework

There are many ways to implement a software framework for design optimisation. Tra-
ditionally, the design process is dominated by decoupled systems that have not been
optimised for interoperability. The first is the CAD-oriented framework, illustrated on
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the far left of Figure 5.1, which does not perform well on available optimisers, multi-
disciplinary analysis, and parametrisation. Flager & Haymaker (2007) have discovered
that it takes roughly one month to generate and analyse one design option in the CAD-
oriented design process. Design optimisation would be impossible, as it would take years
before an optimum is reached. The second solution is PIDO-oriented. PIDO software
are designed for integrating CAE tools and performing optimisation. However, these lack
essential geometric functionality. An obvious solution is to combine CAD and PIDO,
as demonstrated by the third configuration. PIDO software often provide interfaces to
CAD tools so that the geometry can be altered during the optimisation process. Both
platforms complement each other and most weaknesses are covered. However, optimising
more complex products requires parametrisation that goes beyond geometric operations.
CAD is limited to geometry-oriented modifications, whereas KBE offers more sophisti-
cated methods, such as topology changes. Moreover, creating parametric models with
KBE technologies allows engineers to automatically generate different views of the prod-
uct model for multi-disciplinary analyses.

Figure 5.1: Characteristics of various frameworks for MDO (source: van Dijk, 2012).

The IDEA is built on the KBE–PIDO configuration, but extends it with a Knowledge
Base (KB) for storing knowledge explicitly and independent of the platform. Moreover,
modelling knowledge in a KB shifts the focus away from programming. The end result is
the integration framework as shown in Figure 5.2.

The highly automated framework integrates the KB with product tools (KBE) and process
tools (PIDO). It is the realisation of MOKA 2 in an actual design system, where advanced
computing technologies reduce the amount of manual tasks, and hence development time
and human errors. The framework uses code generation to automatically build KBE and
PIDO applications. Round-tripping the results keeps the KB updated with the latest
optimisation results and product configurations. Additionally, it is possible to round-trip
application code. This is useful for quickly adding knowledge to the KB from previous
projects (legacy applications). Meanwhile, it allows experienced users to continue working
in the KBE or PIDO platforms, since their work can be committed to the KB. Finally,
product and process tools are closely coupled in the integration framework. Yet, flexibility
is maintained as the tools are deployed as web services and are accessible over HTTP.
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Figure 5.2: A simplified representation of the integration framework. Examples of available
software tools are shown next to each component.

5.1.1 Software Technologies of the Framework

Figure 5.2 presents a list of software technologies for each component. The integration
framework itself is independent of software technologies, and each of the technologies in
the list could be replaced by its alternatives. This section discusses briefly the software
technologies used in this research: AllegroGraph, GenDL, and Optimus.

AllegroGraph is a commercial triple store designed according to the RDF standard
(Franz Inc., 2012). It is developed by Franz Inc. , who also offers Allegro Common Lisp
(Allegro CL), and has proven to have great performance (Franz Inc., 2011). AllegroGraph
follows the W3C standards by offering SPARQL for querying, as well as Prolog and its own
query API. Furthermore, it contains a built-in reasoner that applies RDFS++ reasoning,
which supports all of RDFS and parts of OWL. AllegroGraph itself runs on a server and
allows users to access the triple store through clients, which are offered in a range of
programming languages, such as CL, Java, Python, Ruby, Perl, and C#. AllegroGraph
is the triple store used in this research, also because GenDL is implemented in Allegro
CL which facilitates the coupling to AllegroGraph using a Lisp client.

GenDL, or the General-purpose Declarative Language, is an open-source program-
ming language designed by Genworks International (n.d.). It is a superset of ANSI Com-
mon Lisp and hence offers the features and robustness of the CL language. Furthermore,
it is an object-oriented and declarative language, meaning that it is able to describe ob-
jects, their properties, and the hierarchy of objects in an “engineer-friendly” way. GenDL
is capable of performing geometry manipulation and visualisation through an integrated
geometry kernel based on SMLib from Solid Modeling Solutions (2012). It is the KBE
platform that is used throughout this research.

Optimus is the PIDO solution from Noesis (Noesis, n.d.). It is powered by a rich GUI,
which makes simulation process integration and automated design optimisation accessible
to design engineers. The addition of various data analysis and post-processing tools
turn Optimus into a complete design optimisation system. A Python API has been
included since version 10.2, allowing users to interact with Optimus using the popular
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Python scripting language. Optimus has been selected as the PIDO platform for this
research, where its API has been used extensively in creating the coupling with GenDL
and AllegroGraph.

5.1.2 Implementation of the Framework

The integration framework has been implemented in two ways. In the first implementa-
tion, product and process knowledge are stored explicitly in a central KB. Central is the
key here, as the product can then be linked to the process. Code generation techniques
ensure that no programming skills are required for generating the product model and
simulation workflow. This solution allows engineers without programming experience to
work with KBE and PIDO software.
The second option is for experienced users of KBE and PIDO software who want to per-
form optimisation quickly from within their familiar environment, and do not want to
spend much time on modelling in the KB. These users may be programmers or design
engineers with programming skills who can get things done more quickly in the KBE or
PIDO software. Round-tripping techniques can be applied to commit their work to the
KB.

Thus, there are two couplings. The remainder of this chapter discusses the differences
between these two.

1. KBE–PIDO coupling: direct coupling between product and process tools without
a connection to the KB (for experienced users).

2. KB–PIDO coupling: workflows are generated from process knowledge in the KB.

5.2 KBE–PIDO coupling

The KBE–PIDO coupling focuses on the link between product and process tools (see
Figure 5.3). With this configuration there are again two ways to implement the coupling.

1. Optimisation within a PIDO environment
2. Optimisation within a KBE environment

5.2.1 Optimisation within a PIDO environment

The PIDO-oriented solution is a more common approach, where a KBE application is
built first and the PIDO tool is used to model a workflow and perform optimisation.
Current PIDO platforms already provide standard interfaces to CAD systems, but not
to KBE platforms. This is partly because KBE is less established in the engineering
industry. If an integrated solution exists for design optimisation, it might attract PIDO
users to KBE.

The work consists of developing a standard interface to GenDL, that allows users to
control product parameters, model the workflow, set up the optimisation problem, and
analyse results from within a single environment. However, from a research point of view
this is not as interesting nor as innovative as the KBE-oriented solution. Therefore, the
decision was made to focus on the latter option.
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Figure 5.3: The KBE–PIDO coupling focuses on the bottom half of the integration frame-
work.

5.2.2 Optimisation within a KBE environment

The goal in the KBE-oriented approach is to add optimisation capabilities to the KBE
platform. This section describes how the coupling has been realised by showing the
software architecture and two new domain-specific languages for describing problems and
workflows in GenDL. The end result is that workflows, design problems, and product
models are modelled in the same programming environment, while a PIDO system solves
the problem in the background, out of sight of the user.

The Software Architecture

For this research a coupling has been created between GenDL (KBE tool) and Optimus
(PIDO tool). In this Service Oriented Architecture (SOA) there are two servers: one for
GenDL and one for Optimus (see Figure 5.4).

Optimus
kernel

Python server

Request
handlers

Request
handlers

Execution
manager

Builder

Python API

HTTP request

calls

input for

input for

composed
of

composed
of

User
defines

Request
manager

Product
object

Problem
object

Workflow
object

Optimus
mixin

update vars
retrieve params

HTTP request
(during runs)

reponse w
param values

GenDL server

Figure 5.4: Software architecture of the GenDL-Optimus coupling.

The design process starts on the left, where the user defines a product, problem, and
workflow object in GenDL. In reality, it may be a programmer who writes the code for
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the product model and workflow, and a design engineer who creates the problem object
(using the GUI shown in Figure 5.6). After defining these objects, the user gives the
command to run the optimisation from within GenDL. From that moment, GenDL makes
a series of calls over HTTP to generate the entire workflow, all automatically. These calls
are sent to the Python server, which acts as a wrapper around the Optimus API. The
wrapper has been implemented to simplify interaction with the Optimus API. Although
it is running on a local computer now, it can easily be deployed on a remote server. With
this feature, Optimus has become available as an optimisation service within the IDEA
framework.

Once the workflow is generated, a final request is sent to execute the workflow. During
execution, Optimus will update the product and retrieve values from the product model
in every iteration. Since GenDL is running on a server as well, Optimus can send HTTP
requests to interact with the product model. This solution is more flexible, as GenDL
can be running on another server than Optimus. Thus, GenDL has become available as a
service to other applications as well. Once Optimus has found the optimum, the product
model is updated for a final time and the result is an optimised product.

Automatic Workflow Generation
Optimus mixin is the component that pulls information from the problem and workflow
object and makes calls to the request manager to generate the workflow. From the problem
object it needs the design variables, objective, constraints, and algorithm, and from the
workflow object the activities and connections that need to be generated. The mixin
component is also coupled to Graphviz (Graphviz, n.d.), a graph visualisation software
for automatically drawing the layout of various diagrams. Graphviz determines the x, y-
positions of the activities in Optimus. At the end, the mixin component sets up the
problem in Optimus and makes the call to execute the workflow.

The request manager processes the calls from Optimus mixin and sends HTTP requests
to the Python server. Figure 5.4 shows that the Python code consists of a request handler,
execution manager, and builder. The request handler contains the server functions,
and ‘listens’ to incoming HTTP requests and relays requests to the appropriate wrapper
functions. These requests are processed by the execution manager. This module is
connected to the Optimus API and to the builder, which creates the various workflow
elements. The builder is in fact divided into two modules: an item builder and execution
configurator. The item builder creates all the workflow elements, whereas the execution
configurator is responsible for setting up the execution method. Appendix B describes
the wrapper code in more detail.

This concludes the section on the architecture and workflow generation process. The
above-mentioned problem and workflow objects are actually new to the GenDL language.
The section below describes these new objects.

New Domain-Specific Languages

Two new Domain-Specific Languages (DSL) have been developed to complement the
coupling: a problem DSL and workflow DSL. Both languages have been used in the use
case in Chapter 6.
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Problem DSL
Product objects are native to GenDL, and are modelled with the define-object state-
ment. However, design problems are new to GenDL, and thus a new problem object has
been introduced using a comparable define-problem statement (van Dijk, 2013). It fol-
lows the same structure of product objects, but redefines the object with problem-specific
terms, such as algorithm, design variables, constraints, and objective (see Figure 5.5).

problem

product

algorithm
-min-or-max : keyword = min
-expression : Lisp expression

objective

-expression : Lisp expression

constraint

-bashee : product
-message-key : keyword

variable

-bashee : product
-message-key : keyword

response

workflow

1..*

1

1

Problem primitive

Figure 5.5: UML class diagram of the new problem DSL.

Since it is written in a human-oriented engineering language, most objects require little
explanation. However, there are a few terms that should be clarified.
First, the attributes of algorithm depend on its type. An optimisation algorithm requires
different settings than, for instance, a DOE.
Responses are the results of the design problem. Here, a response retrieves a value from
the product model, so that the expressions of the objective and constraints can be eval-
uated. This is useful for checking the constraints or even perform optimisation within
GenDL. Without the responses, the variables in the expressions would be unknown and
the evaluation would raise an error.
Lastly, the two attributes bashee and message-key relate design variables and responses
to the actual parameters of the product. The bashee is related to the product object, and
points by default to the root object of the product. However, if a parameter belongs to a
subcomponent of the product (i.e. a child of the product), then it is necessary to provide
the bashee that will point the variable or response to the right object. For example, if
only a single rib is varied in the design of an aircraft movable (e.g. rudder or elevator),
then this rib instance is provided to the bashee attribute. The message-key attribute is
used to point the variable or response to the right parameter, e.g. “length” of the rib. By
default, this is the same name as the variable or response.

To assist the engineer in modelling problems, there is a web interface for adding and
removing objects (i.e. design variables, responses, constraints, etc.) and for providing
values to these objects (see Figure 5.6). It is a fairly straightforward design with input
boxes and buttons for modelling these objects. Additional tabs are offered for algorithms
and results. It is an alternative to writing GenDL code, which lowers the threshold for
new users.

Workflow DSL
The second DSL has been introduced to describe workflows. It consists of classes de-
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Figure 5.6: First prototype of the problem modelling web interface (source: van Dijk, 2013).
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Figure 5.7: UML class diagram of the new workflow DSL.

scribing activities, the flow, and data objects that are necessary for generating simulation
workflows (see Figure 5.7).

A workflow is composed of workflow primitives, which are basic elements of a workflow.
Examples of primitives are file, input and output, transformation steps, and data transfer.
These can be further specialised into types, e.g. file system data transfer is a type of data
transfer. The main object, the HLA with its five elementary steps, is also applied here.
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Every activity in the workflow can be built on this basic structure. With this DSL, the
KBE user is able to model workflows in GenDL using object-oriented programming, that
can be translated into a simulation workflow.

The workflow DSL is still under development, but in its current state it is sufficient to
model relatively simple workflows. This is demonstrated in the use case in Chapter 6.
Moreover, the chapter will also introduce a parametric high-level workflow, built with this
workflow DSL, that allows design engineers to optimise a KBE product model without
modelling the workflow. It is a solution for engineers without SWFM experience.

5.3 KB–PIDO Coupling

The KB–PIDO coupling is designed to be more accessible to non-programmers. The
target is the design engineer. Eventually, the goal is to have design engineers model the
product and process without support from others.

In this implementation, code generators take over the programmer’s task of writing code.
This saves development time, reduces number of human errors, and reduces the required
IT expertise. KBE and PIDO applications are automatically built from the KB models.
This section explains the role of reasoning in this coupling and describes the software
architecture. A schematic of the framework is presented in Figure 5.8.

Integration Framework Framework for
KB-PIDO Coupling

Reasoner
Lisa

KB

code generation

round-tripping

interface (HTTP)

Product
(KBE)

Process
(PIDO)

Optimus
ModelCenter
Simulia iSight

AllegroGraph
Jena
Virtuoso

Knowledge Fusion
Pacelab

GenDL

KB

code generation

round-tripping

interface (HTTP)

Product
(KBE)

Process
(PIDO)

GenDL Optimus

AllegroGraph

Figure 5.8: The KB–PIDO coupling uses all components of the integration framework, in-
cluding a KB and reasoner.

Reasoning over Knowledge

Ultimately, the goal is not only to shift the focus from programming to modelling, but also
to bring modelling to a higher abstraction level. Knowledge can be used to automatically
fill in lower level details. For instance, modelling the transformation steps of a HLA
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requires expertise about sending HTTP requests and parsing files, and is typically a task
that a design engineer should not be troubled with. This knowledge can instead be
captured in classes, properties, and restrictions in the ontology.

This level of automation is achieved by interpreting restrictions in OWL in an uncon-
ventional way. Normally in OWL, reasoning is used to derive facts that are not stated
explicitly. In this research, reasoning is applied to instantiate classes.
For example, Figure 5.9 shows the class Bike with restrictions that it has exactly one En-
gine and two Wheels. Then, if there is an instance of an object with exactly one engine
and two wheels, it is classified as a bike. Thus, in this example, the Yamaha R1 can be
classified as a bike through reasoning.
The same restrictions are interpreted differently for the Ducati Monster. In this second
example, an instance is created that is known to be a bike. However, its engine and
wheels have not been instantiated. Then, through reasoning, a computer can instantiate
an engine and two wheels based on the restrictions.
This is how a higher level of abstraction is achieved for HLAs. The aim is to let users
instantiate the HLAs, but not the transformation steps of the HLAs. How this works is
demonstrated in the use cases in Chapters 7 and 8.

Figure 5.9: Classes and restrictions are used to instantiate classes through reasoning.

The Software Architecture

The architecture has been extended with a triple store (AllegroGraph), a Reasoning En-
gine (RE), and several new components in the GenDL server (see Figure 5.10). In this
new configuration, the user defines the engineering rules, product model, and process
model according to their respective ontologies. Reijnders (2012) has already built a web
interface for modelling rules. GUIs for modelling product and process models are being
developed by collaborators in this research.

The workflow generation process begins with defining the process model, after which the
facts and rules are imported into the Reasoning Engine (RE) (see Figure 5.11). The
RE developed for this framework is a modified version of Lisa (Young, 2010). Reijnders
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Figure 5.10: Software architecture of the integration framework.

(2012) has modified Lisa to be compatible with RIF and to have an interface with the triple
store. Lisa is a forward RE implemented in Common Lisp (CL) and has therefore access
to the full CL language from within the RE. It is an expert system shell, meaning that it
offers the full functionality of an expert system but does not provide the knowledge. The
user feeds the knowledge to the system. This knowledge ends up in the working memory,
which normally contains the facts, or triples in this case. Then, the rule memory (or
knowledge base in the traditional terminology) contains the rules, which are translated
from RIF. The inference engine does the actual work, and can infer new facts or trigger
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Figure 5.11: The workflow generation process (source: Reijnders, 2012).
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actions (functions in CL). Chapter 7 explains how the RE is used to instantiate the
workflow. The workflow is stored back into the KB as new triples. From this point, the
interpreter can automatically generate and execute the simulation workflow.

Automatic Workflow Generation
The query manager is in control of interacting with the triple store and sends queries
to retrieve relevant knowledge. The code generator uses this knowledge to build KBE
applications of product models, which is explained in detail by van Dijk (2013). The
interpreter on the other hand, focuses on the process knowledge to automatically generate
an executable simulation workflow. Simply stated, the interpretation process consists of
four steps:

1. The interpreter sorts out which activity needs to be created in Optimus, and trans-
lates properties of the activity to the right input for Optimus.

2. It then creates the connections that determine the flow through the workflow.
3. When the entire workflow is generated, it sets up the optimisation problem.
4. At the final stage, it executes the Optimus workflow (optional).

A more elaborate explanation of the process can be found in Appendix B. The remaining
components, including the Python server, remained the same.

The entire methodology, including a framework, has been explained in the past two chap-
ters. The next chapters are use cases that demonstrate the new methods and tools that
have been introduced.



Chapter 6

Use Case 1: KBE–PIDO Coupling

The previous chapters have described a new methodology for engineering design, including
a framework for design systems. The remainder of this thesis describes use cases that
demonstrate the capabilities of the solutions, with the purpose to verify the methods and
tools that have been developed.
The use case in this chapter is an implementation of the KBE–PIDO coupling. It has been
designed to demonstrate optimisation within a KBE environment, and more specifically,
to show how the new problem object is used in GenDL to perform optimisation. The
goal is to provide a solution for design engineers to do design optimisation with minimal
effort. This can be achieved by capturing process knowledge in a KBE application that
describes a parametric workflow for optimising KBE product models.

The subject of the use case is the optimisation of a product packaging. The first section
describes the mathematical problem and presents the analytical solution that is used later
for verification (Section 6.1). It is a relatively simple problem so that the answer can be
verified with the analytical solution. The main part of this chapter is the implementation,
which runs through the code and shows the results (Section 6.2). The chapter is concluded
with an evaluation of the use case in Section 6.3.

6.1 Problem Description

A fictional company has sent a request to their design team to design a new packaging
for their product. The company has stressed that the cost of the packaging should be
minimised. The cost for the packaging material is given as:

e 20/m2 for the bottom
e 30/m2 for the sides
e 10/m2 for the top

Furthermore, the design team is told that the packaging must have a volume of exactly
4m3. With this information the design team starts working on the challenge of optimising
the product packaging.

73
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Figure 6.1: Dimensions of the packaging object.

In fact, it is a simple object that can easily be solved analytically (see Figure 6.1). First,
the areas of the surfaces are calculated as:

Abottom = xy

Asides = 2xz + 2yz

Atop = xy

Putting this together with the material cost gives the objective function (minimise cost):

f(x̄) = 30xy + 60(xz + yz)

The optimisation problem has one equality constraint for the volume:

h(x̄) = xyz = 4

Solving the optimisation problem gives:

x = y = 2, z = 1

fmin = 360

Thus, the optimised packaging has a length and width of 2m and a height of 1m. For
these dimensions the cost has been calculated at e 360.

The next step is to solve the optimisation problem using the integration framework. It
is a simple object, but it is a good example for demonstrating the capabilities of the
framework.

6.2 Implementation

The primary actor in this process is the KBE user who writes code to build KBE ap-
plications. Building the packaging object is not the challenge, however optimising the
packaging is. In this framework, the KBE user benefits from having the KBE–PIDO
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coupling to perform optimisation. It is a relatively simple problem that does not involve
any CAE tools other than the KBE and PIDO platforms. Yet, it is a problem that occurs
often. Therefore, it is worthwhile to capture the knowledge about the workflows that solve
these kind of problems. This knowledge is then used to create a high-level parametric
workflow, tailored to optimise KBE product models. With this solution, the user can
simply define a problem object and execute the optimisation process without defining a
workflow. This section demonstrates how it is done.

6.2.1 KBE code

The KBE code for the packaging is fairly straightforward, because a packaging is nothing
more than a box, which is a native object (class) in GenDL. This code is written first,
before the user writes the code for the problem. Figure 6.2 shows the code for the
packaging object.

(define-object packaging (box)
  :input-slots
  (length width height
 (cost/m2-top 10) (cost/m2-bottom 20) (cost/m2-sides 30))
  :computed-slots
  ((cost (+ (the top :cost) (the bottom :cost)
            (sum-elements (the sides) (the-element :cost)))))
  (volume (* (the width) (the height) (the length)))
  :objects
  ((top :type 'face 
        :width (the width) :length (the length) 
        :cost/m2 (the cost/m2-top))
  (sides :type 'face 
         :sequence (:size 4)
         :width (nth (the-child :index) 
                     (list (the width) (the width)
             (the length) (the length)))
         :length (the height) 
         :cost/m2 (the cost/m2-sides))
  (bottom :type 'face 
          :width (the width) :length (the length)
          :cost/m2 (the cost/m2-bottom))))

(define-object face (base-object)
  :input-slots
  (width length cost/m2)
  :computed-slots
  ((cost (* (the cost/m2) (the width) (the length)))))

‹‹input›› +length : number
‹‹input›› +width : number
‹‹input›› +height : number
+cost-m2-top = 10
+cost-m2-bottom = 20
+cost-m2-sides = 30
+cost() : number
+volume() : number

gdl-user::packaging

‹‹input›› +length : number
‹‹input›› +width : number
‹‹input›› +cost-m2 : number
+cost() : number

gdl-user::face

1
top

4 sides

1
bottom

Figure 6.2: GenDL source code for the packaging.

The define-object statement in GenDL defines a class, which can be instantiated using
the make-object function. The input-slots of the class show the inputs of the packaging
object, which are the dimensional parameters and the material cost. The costs have
default values as specified in the problem description. Furthermore, the second block
of code, computed-slots, can be used for attaching additional properties to the object.
In this example, the additional properties are cost and volume, both computed from a
formula. The total cost of the packaging is a sum of the cost of its child objects: the
top, sides, and bottom. These objects are of the type “face” that is defined below the
packaging object. The face object is used for modelling the cost of the top, sides, and
bottom. It takes three inputs, as can be seen in the code, and it calculates its own cost
based on these inputs.

For this new KBE–PIDO coupling, a new problem object is introduced to the GenDL
platform. It follows the same syntax as define-object, except that it has been tailored
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to define optimisation problems. The code for the problem is shown in Figure 6.3.

(define-problem packaging-problem (optimization-problem)
  :objects  
  ((product :type 'packaging)
   (algorithm :type 'SQP
              :tolerance 0.0001
              :max-iterations 100
              :max-line-search 10
              :gradient-calculation :finite-difference
              :gradient-method :forward-difference)
   
   ;; ## OBJECTIVE (f) ##
   (f :type 'objective
      :min-or-max :min
      :expression (the cost :value))
   
   ;; ## VARIABLES {X} ##
   (width :type 'continuous-variable :min 1 :nominal 5 :max 10) 
   (length :type 'continuous-variable :min 1 :nominal 5 :max 10)
   (height :type 'continuous-variable :min 1 :nominal 5 :max 10)
   
   ;; ## RESPONSES {Y} ##
   (volume :type 'response)
   (cost :type 'response)      

   ;; ## CONSTRAINTS {G} & {H} ##
   (h :type 'equality-constraint
      :expression (= (the volume :value) 4))
   
   (workflow :type 'KBE-centric-workflow)))

optimization-problem

product

algorithm

objective

-min-or-max : keyword = min
-expression : Lisp expression

constraint

-expression : Lisp expression
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-min
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-message-key : keyword
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1
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Figure 6.3: GenDL source code for the new problem object.

Looking closely at the code reveals that the problem is only composed of objects. These
objects are instantiated once the problem object is instantiated. The objects are common
to design optimisation, but have also been explained in Chapter 5. The only new class is
SQP, which is a subclass of algorithm and introduces new attributes that are native to
the SQP algorithm.
The first object, product, refers to the packaging code in Figure 6.2. Further down the code
are the responses. Responses are necessary for evaluating the expressions in the objective
function and constraints in GenDL (hence the keyword :value, which retrieves the value
of the parameter). The versatility of the language allows users to create additional checks
or even perform optimisation within GenDL. But in this use case, the problem is solved
by a workflow, which is placed at the bottom of the code.
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Figure 6.4: The KBE Centric Workflow follows the DEE framework.

KBE Centric Workflow

Normally, the programmer would build a workflow with the new domain-specific language
in GenDL (see Section 5.2). But for this use case, a new high-level workflow (KBE Cen-
tric Workflow) has been developed for optimising KBE product models. It follows the
DEE framework, although it does not involve any analysis tools (see Figure 6.4).
The KBE Centric Workflow captures the knowledge about the activities, such as param-
eters for sending HTTP requests and knowledge about modelling design variables and
constraints in Optimus. Then, with only the information from the problem object, a
workflow is generated in Optimus that will solve the problem. Thus, the user is not
troubled with modelling the workflow. This knowledge is stored in the code so that
optimisation becomes more accessible.

The KBE Centric Workflow consists of three activities. The main activity is the interac-
tion with the MMG. During each iteration, this activity updates the product model and
retrieves responses that appear in the objective function and constraints.
The activity is a HLA, where the inputs are the design variables and the outputs the
responses. There are two transformation steps: analysis and postprocessing. The
analysis step sends a HTTP request to GenDL, and thus contains knowledge about server
location and how to build the query string. The postprocessor reads the HTTP response
that is returned, which is done with extraction rules in Optimus. This object contains
knowledge about how to create these extraction rules for the outputs of the HLA.
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The remaining two activities are default activities that appear in every workflow. “Set
initial values” maps onto an input array in Optimus, which is how design variables are
declared in Optimus. “Check functions” maps onto an output array, and contains the
formulas for the objective function and constraints and sets the constraints (i.e. equality
type and the value).

Because the entire workflow has been parameterised, it is not bound to only this packaging
product. With this solution, it will be significantly easier for KBE users without SWFM
experience, to optimise KBE product models. The results section shows how this code is
mapped onto an Optimus workflow.

Execution
After compilation, the whole optimisation process is initiated either from the command
line or from GenDL’s GUI, called Tasty. From the command line, this can be done with
only two commands (see Listing 6.1). The first line instantiates the problem and all its
child objects, including the product. Then, a simple command will trigger the whole
process. This is all the input the user has to provide.

Listing 6.1: GenDL commands for instantiating the problem object, and to initiate the op-
timisation process.

>(setf MyProblem (make -problem ’packaging ))

>(the -object MyProblem :optimize !)

The same process can also be triggered from within the GUI. One of the computed-slots
is linked to the same function (or method) :optimize!. Thus, clicking the attribute in
Tasty triggers the same action (attributes of an object are presented in the inspector of
Tasty, i.e. the table in the middle in Figure 6.5).

Behind the scenes, GenDL sends HTTP requests to the Optimus Python server to generate
the workflow elements and set up the optimisation problem. When this is finished, a final
request is sent to execute the workflow. During each iteration, Optimus sends an HTTP
request to the GenDL server to update the packaging object with new values for the
design variables and to retrieve updated values for cost (the objective) and volume (the
constraint). When Optimus has reached an optimum, it saves these values to a file. This
file is then parsed to update the packaging with the optimal values.

6.2.2 Results

The results section shows the product geometry, generated workflow, and optimisation
results. It starts with inspecting the geometry in Tasty. Figure 6.5 shows the instantiated
packaging in its initial state.

Optimus has generated the workflow that will optimise the packaging (see Figure 6.6). The
figure shows how the KBE Centric Workflow has been translated into Optimus workflow
elements. The series of screenshots in Figures 6.7, 6.8, 6.9, and 6.10, show how the
KBE code is translated into the workflow. The values have been magnified for better
readability.
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Figure 6.5: Screenshot of Tasty showing the packaging before optimisation. The inspector
shows the computed-slot :optimize! which triggers the optimisation process.

Figure 6.6: Optimus screenshot of the generated workflow. The figure illustrates how each
activity of the KBE Centric Workflow is mapped onto the Optimus workflow.
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Figure 6.7: Optimus screenshot of the design variables. It shows how the KBE code is
translated to values in the Optimus workflow.

Figure 6.8: Optimus screenshot of the cost objective function and volume constraint formu-
las.

Figure 6.9: Optimus screenshot of the volume constraint equation (equality type and value).
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Figure 6.10: Optimus screenshot of the optimisation settings.

From the moment that the user gives the command, the whole process is executed auto-
matically. Generating the workflow and setting up the optimisation problem takes less
than a second for such a small workflow. When Optimus has found an optimum, the
packaging is automatically updated with the optimal values. The optimised geometry is
again inspected using the Tasty web interface (see Figure 6.11).

Figure 6.11: Screenshot of Tasty showing the optimised packaging.

There is a slight deviation from the analytical results because of the tolerance (see Ta-
ble 6.1). Aside from that, the results show the optimal values.
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Table 6.1: Comparison of the analytical solution with the simulation results. The differences
are caused by the tolerance value.

Parameter Analytical Simulation

solution results

length 2 2.0002

width 2 2.0002

height 1 1.0

cost 360 360.0492

volume 4 4.0008

Reconfigurability

The real strength of parametric, object-oriented modelling emerges once changes are made
to the design problem. For this second test, two changes are made:

1. The height parameter is removed as a design variable. It is now fixed to its initial
value of 3.

2. A new weight constraint is added to the problem: ρV < 5000 (where ρ = 1200)

To incorporate these changes, the user has to alter the problem code from Figure 6.3.
For the first change, the user can simply remove the line for height under variables. The
second change can be implemented in two ways:

1. Add weight to the computed-slots of the packaging object and let GenDL calculate
the weight.

2. Model the constraint as a mathematical expression and let Optimus evaluate the
constraint instead.

The first is exactly the same as the volume constraint. GenDL evaluates the expression
and returns the value to Optimus, which checks the constraint. It requires two changes
to the product code, highlighted in Figure 6.12.

The second option allows users to use formulas for constraints in the problem object. The
following lines are added to the problem object to include the new weight constraint.

(g :type ’opt:inequality-constraint

:expression (< (* (the density :value) (the volume :value)) 5000))

Note that also here the density should be added to the input-slots of the packaging object
and as an additional response to the problem.

All other objects in the problem code remain the same, including the workflow. Because
it is parametric, it will change automatically according to the new problem definition.
The user can simply execute the optimisation process without worrying about how these
changes affect the workflow.

The presented results emphasise on the parametric characteristics of the workflow. First,
the height now no longer appears in the list of design variables in the Optimus workflow.
Additionally, the HTTP request sent by “Interact with MMG” has been adjusted auto-
matically to exclude height as well. A comparison between the two requests is shown
here, where height is omitted in the new request.
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(define-object packaging (box)
  :input-slots
  (length width height
 (cost/m2-top 10) (cost/m2-bottom 20) (cost/m2-sides 30)
 (density 1200))
  :computed-slots
  ((cost (+ (the top :cost) (the bottom :cost)
            (sum-elements (the sides) (the-element :cost))))
  (volume (* (the width) (the height) (the length)))
  (weight (* (the density) (the volume))))
  :objects
  ((top :type 'face 
        :width (the width) :length (the length) 
        :cost/m2 (the cost/m2-top))
  (sides :type 'face 
         :sequence (:size 4)
         :width (nth (the-child :index) 
                     (list (the width) (the width)
             (the length) (the length)))
         :length (the height) 
         :cost/m2 (the cost/m2-sides))
  (bottom :type 'face 
          :width (the width) :length (the length)
          :cost/m2 (the cost/m2-bottom))))

Figure 6.12: The density is added to the input-slots (in blue) of the packaging source code,
and weight to the computed-slots (in red).

Previous HTTP request: http://127.0.0.1:9000/Optimus-GenDL/set-get?id=g30289&
variables(0)=width&values(0)=$width$&variables(1)=length
&values(1)=$length$&variables(2)=height&values(2)=
$height$&responses(0)=volume&responses(1)=cost

New HTTP request: http://127.0.0.1:9000/Optimus-GenDL/set-get?id=g30954&
variables(0)=width&values(0)=$width$&variables(1)=length
&values(1)=$length$&responses(0)=volume&responses(1)=
density&responses(2)=cost

Figure 6.13: Constraints (and objective functions) can be full mathematical expressions as
is shown here.

The new weight constraint is an expression that is evaluated by Optimus (see Figure 6.13).
Note that the new equation requires the values for ρ and V to calculate the weight. The
KBE Centric Workflow understands this and automatically updates the HTTP request
to retrieve the density in the new request. Additionally, the output file parser is also
updated to parse the new values.
The new workflow is generated and executed automatically in the background. This
example is a good demonstration of how everything that is connected changes according
to modifications in the definition. The optimised values of the reconfigured optimisation
problem are listed in Table 6.2
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Table 6.2: The results of the new design problem with a modified design variable and con-
straint.

Parameter Initial value Optimised value Optimised value

(Old problem) (New problem)

length 1 2.0002 1.1558

width 1 2.0002 1.1547

height 3 1.0 3

cost 390 360.0492 455.9405

volume 3 4.0008 4.0040

weight 3600 4800.96 4804.8098

6.3 Discussion

This chapter demonstrated a solution that extends KBE platforms with design optimi-
sation capabilities. It showed how the problem and workflow DSL are used in practice.
Moreover, the workflow DSL has been used to build a parametric high-level workflow
(KBE Centric Workflow). With this solution, the user only needs to model the prod-
uct and problem to perform design optimisation. Execution is an automated process, as
the workflow is generated and executed automatically in the background by Optimus.
Furthermore, the parametric capabilities of the KBE Centric Workflow enables users to
quickly reconfigure problems without modifying the workflow. For optimisation problems,
the product object is updated with its optimum values at the end.

At the end of this use case, it can be concluded that:

• The common engineering language in the problem object is lightweight, domain-
specific, and thus also accessible to newcomers. Moreover, these newcomers can use
the GUI to model the problem instead of writing programming code (see Figure 5.6).
• The KBE Centric Workflow introduced parametric process modelling for design

engineers without SWFM experience to solve their design problem.
• Automatically generating the workflow has been successful, as the problem is solved

in the background and the product model is automatically updated with the opti-
mum values. These values have been validated with the analytical results.
• Since both GenDL and Optimus are deployed as web services, it is possible to

implement this coupling across physical boundaries.

Limitations and Future Direction

Although the coupling provides powerful features for automated design optimisation, a few
limitations are worth mentioning. Until now, it has only been tested with this relatively
simple object. Although deemed possible, it is unknown how the system will handle more
complex products composed of multiple sub-components. Similarly, it is expected that
more complex workflows can be generated that involve external CAE tools, but this has
also not been tested in this use case. It is recommended to investigate these possibilities
in the future.
The current solution is limited to single-level optimisation problems only. Work is being
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done on extending functionality to multi-level optimisation problems. This requires a
top-level optimiser that acts as a controller, varying problem definitions of sub-problems.
With a parametric workflow, the top-level optimiser could rapidly generate workflows,
each solving one problem, and select the best solution.

Normally, Optimus provides extensive postprocessing tools through the GUI. However,
direct access to the data through the API is not available yet, thus limiting analysis
capabilities in this system. It is expected that future updates of Optimus will provide
this functionality. Meanwhile, it would be possible to provide postprocessing capabilities
in GenDL. This has not been implemented yet as it was not within the scope of this
research.
Furthermore, only a limited number of optimisation methods have been implemented in
the Python wrapper. Optimus provides a whole range of methods, but for this prototype
it was not necessary to include all.

Even though the coupling is a great addition to KBE platforms, it does not solve the
issues associated with KBE itself. Some transparency issues remain, as the knowledge
is still mainly hidden in the code. Eventually, this may lead to the loss of knowledge or
limit reuse due to misunderstanding of the KBE application. Therefore, another solution
has been developed that applies MOKA 2’s methodological approach using a KB.
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Chapter 7

Use Case 2: KB–PIDO Coupling

The use case in this chapter demonstrates the methodological approach for the same
packaging optimisation problem as in the previous use case. Applying the methodology
changes the focus from programming to modelling, which allows for design engineers to
be more involved in the modelling process. The simulation workflow is generated directly
from the KB and, unlike the previous use case, there is no coding involved. Moreover,
when knowledge is captured and structured according to the methodology, it will be clear
how the end result (generated workflow) is obtained. Since the problem is identical, it is
expected that the generated workflow will be identical as well. An additional objective is
to recreate the KBE Centric Workflow in this approach.

The step-by-step instructions of the methodology are central to this use case, starting at
the informal level (Section 7.1.1) and continuing to the formal level (Section 7.1.2). An
additional step (step 6*) describes how the workflow can be parameterised to replicate
the KBE Centric Workflow. The chapter is completed with a discussion on the results
and experiences (Section 7.2).
Note that this thesis focuses on the process side of knowledge modelling, even though
there are links to the product knowledge. The chapter begins with the assumption that:

• the packaging product has already been modelled in the KB.
• that the KBE code for packaging object is either written manually or automatically

generated.
• and that the packaging object is instantiated before the workflow is executed.

7.1 Implementation

Several actors are involved in the modelling process. Identified in Chapter 4, these are:

• Design engineer - responsible for steps 1 and 2.
• IT engineer - responsible for step 3, provide support in step 5.
• Knowledge engineer - responsible for steps 4 and 5.

87
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7.1.1 Informal Model

This section shows the standard methodological approach to model simulation workflows.
As a result, the process will iterate over steps 2 and 3. However, for such a simple problem,
it is likely that the N2 and BPMN diagrams can be modelled immediately. There are no
restrictions in the methodology that prohibit users from doing this. But for demonstration
purposes, the modelling process is explained step-by-step. This begins with formulating
the problem statement.

Step 1: Define problem statement
The (mathematical) problem has not changed from the description in Section 6.1. Refor-
mulating the design problem in a problem statement gives:

“Design a packaging with minimum cost and a fixed volume of 4m3.”

From this statement it can be concluded that:

• The product is a packaging.
• It is an optimisation problem.
• The objective is to minimise cost.
• There is one equality constraint: the volume is fixed at 4m3.

Step 2: Structure the problem and disciplines
The design engineer works through step 2 with the information from step 1. Here, the
N2 notation helps the design engineer to visualise the relationships between the problem
and disciplines.

Figure 7.1: N2 diagram describing the packaging optimisation problem. At this stage, the
diagram can only be filled partially.
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At this stage, there is only one discipline: Product definition. From the problem statement
it is known that the two responses cost and volume are needed to evaluate the objective
function and constraints. These can be placed in the diagram as shown in Figure 7.1. It
is also known that it is an optimisation problem, hence optimisation is placed in the top
left corner. Once this is finished, the methodology proceeds to step 3.

Step 3: Model the activities
In step 3, the IT engineer models the activities for the discipline Product definition. From
the output of the discipline that is known (cost and volume), the IT engineer can reason
which sequence of activities can produce this output. In this case, there is only one
HLA (see Figure 7.2). This activity requires input from outside this discipline. This new
information can be used to update the N2 diagram.

cost,
volume

cost,
volume

output
maps to

input
maps to

?

Activities

Discipline

Interact
with MMG

length, width, height
Required input:

Optional input:
cost/m2 top,
cost/m2 sides,
cost/m2 bottom

Product
definition

Figure 7.2: The Product definition discipline has only one HLA.

Step 2, iteration 2: Update the N2 diagram
Modelling the problem and modelling activities is an iterative process. In this second
iteration, the design engineer updates the N2 diagram with the inputs found in step 3.

3

3

1

1

1

0

2

2

4
Optimisation

Product
definition

Functions

l, w, h

1: l, w, h

3: f, h

2: cost,
    volume

cost*, 
volume*

cost/m2 top,
cost/m2 sides,
cost/m2 bottom

l*, w*, h*

Figure 7.3: A completed N2 diagram describing the packaging optimisation problem.

The inputs for product definition are placed in the same column as the discipline (see
Figure 7.3). The three cost/m2 parameters are external inputs, and therefore positioned
along the top edge of the diagram. In this use case, these parameters are optional and
have tool defaults (i.e. values are provided in the KBE application). The length, width,
and height of the packaging are the design variables, and are placed in the N2 diagram
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above the optimisation block. Now, the N2 diagram has been completed and the process
continues to step 3 to finish the workflow diagram.

Step 3, iteration 2: Completing the workflow diagram
The IT engineer completes the workflow with two standard activities: one for setting
initial values (for declaring design variables) and one for checking objective and constraint
functions in the workflow. The final workflow is modelled as shown in Figure 7.4.

Figure 7.4: Mockup showing how the final workflow is modelled in a web interface.

Once both diagrams have been completed, the process proceeds to step 4.

Step 4: Fill in ICARE PDT-forms
In this step, the knowledge engineer captures knowledge of the problem, disciplines, activ-
ities, and software tools in ICARE PDT-forms. Figure 7.5 shows an example of a P-form
for the packaging design problem. The P-form provides fields to describe the problem
in more detail. Among these fields are a description of the problem, the optimisation
algorithm and settings, and values of the design variables. Examples of the remaining
forms are included in Appendix E.

When the diagrams are completed and the ICARE PDT-forms filled, the modelling pro-
cess continues with formalising this knowledge.
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Figure 7.5: The P-form captures the packaging problem details.

7.1.2 Formal Model

The objective is to map the knowledge that is stored in diagrams and forms onto the
formal process ontology. This formalisation process is a task for the knowledge engineer,
who understands the ontology and knows what input is required for automatic work-
flow generation. This section shows how the problem and workflow are modelled in the
ontology.

In future updates, the ontology is modelled in a web interface (see Appendix C). The
interfaces presented in this thesis are only mockups and not yet functional (except for
the interface for filling in ICARE PDT forms; see Figure C.6). Therefore, the ontology
is modelled in Protégé (Protégé, 2013), an editor for modelling OWL ontologies (see
Figure 7.6).

Step 5: Formalise process knowledge
Starting with the workflow, the knowledge engineer has to model all the activities (incl.
all their properties) and connections. This part of the explanation follows a bottom-up
approach. Thus, the end result is shown first for every activity.

Modelling the activities
There is one HLA in the workflow: “Interact with MMG”. Figure 7.7 shows how this
activity is modelled in Optimus.
The first activity sends an HTTP request to GenDL and receives a response that is saved
in a file by Optimus. This is then parsed by a file parser. Next to the activities, the
figure also shows which HTTP request is sent and the two extraction rules for parsing the
HTTP response exactly as it appears in Optimus.
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Figure 7.6: Screenshot of OWL classes and restrictions modelled in Protégé.

http://127.0.0.1:9000/set-get?
iid=MyProduct
&variables(0)=width & values(0)=$width$
&variables(1)=height & values(1)=$height$
&variables(2)=length & values(2)=$length$
&responses(0)=cost
&responses(1)=volume

HTTP requestActivity

Parse response
output

HTTPResponse.txtSend
request

A Post

Interact
with

MMG

HTTP response parser (extraction rule)
* Spaces and line breaks are added for readability

Figure 7.7: This figure shows how the HLA “Interact with MMG” is modelled in Optimus.
It has one Analysis and one Postprocessing step.

This is then modelled in the ontology as shown in Figure 7.8). The knowledge engineer
models all the classes, properties, and restrictions, and ensures it follows the informal
process model. Then, the figure highlights which classes are instantiated by the user,
the knowledge engineer, and the computer. Starting from the left, the user connects the
product model to the HLA with the hasModel property. That would be the packaging
instance. The inputs to this activity are provided in Table 7.1. Below, in Table 7.2, are
the outputs of the activity.

The binding with the product attribute (last column in Table 7.1) is necessary for getting
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Figure 7.8: UML class diagram of the HLA “Interact with MMG”.

Table 7.1: Inputs for “Interact with MMG”

Input Variable/ Required/ Parameter Default Binding

Fixed Optional Value Value

length Variable Required - - packaging.length

width Variable Required - - packaging.width

height Variable Required - - packaging.height

Table 7.2: Outputs for “Interact with MMG”

Output File parameter settings Binding

label word nr occurrence row offset start pos end pos

cost cost - - - - - packaging.
cost

volume volume - - - - - packaging.
volume

the right name, which is then used to update the product model. This is an example where
the relationship between product and process is unmissable. Eventually, the inputs and
outputs are mapped onto the query string.

• Inputs to variables(i) and values(i).
• Outputs to responses(i)

Outputs are also translated to extraction rules for file parsing (according to the file pa-
rameter settings in Table 7.2). This is shown in Rule R19 in Appendix D.
These are trivial tasks in the modelling process, and are therefore done by the RE. The
knowledge of how to do it, is captured in a rule (Rule R13 in Appendix D). Rules are
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also used to have the computer instantiate classes (see Figure 7.8). Figure 7.9 shows a
screenshot of a rule that instantiates flow elements.

Figure 7.9: Screenshot of the Ruler interface developed by Reijnders (2012). The boxes
display the rule in RIF, written in frame logic.

This rule instantiates the flow elements of the HLA, thus the two activities and one
sequence flow. Rule modelling works with variables, which are similar to the variables in
SPARQL (terms with ‘?’). If a pattern in the triple store matches the statement in the
antecedent, then the RE will execute what is specified in the consequent. Simply stated,
this rule looks for elements (?elem) that need to be instantiated. This works as follows:

1. The RE matches objects to ?process. Its class has a restriction on the property
flowElements. In this example, the HLA instance would be a match.

2. The restriction has the information about the element that needs to be instantiated,
which is stored in the variable ?elem. For example, Send request is an ?elem.

3. Then, according to the consequent, two new triples are asserted:

(a) The first assigns the new instance to the ?process found in step 1. The
function new-individual aggregates two URIs to create a new URI for the new
instance.

(b) The second states that the new instance is of type ?elem.

This example showed how restrictions in the ontology cooperate with rules to instantiate
flow elements. The entire list of rules applied to this use case can be found at the end
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of this section. The remaining two activities, “Set initial values” and “Check functions”,
are explained after showing how the problem is modelled.

Modelling the problem
Before the workflow can be generated, the knowledge engineer has to set up the problem
in the ontology (see Figure 7.10). Modelling the problem object and its attributes is fairly
straightforward. This problem has three continuous design variables and is subjected to
one constraint. The product instance is placed on the left, and has a direct link with the
problem instance.

convergence_criteria
locality
max_iterations = 100
min_or_max = minimize
objective_function
single_or_multiple_objective = single
target_value
uncertainty
gradient_method = forward difference
max_line_search = 10
termination_accuracy

MyOptimization : 
OPMD::Sequential_quadratic_programing

initialValue = 5.0
lowerBound = 1.0
upperBound = 10.0

var1 : 
PDSL::ContinuousDesignVariable

initialValue = 5.0
lowerBound = 1.0
upperBound = 10.0

var2 : 
PDSL::ContinuousDesignVariable

initialValue = 5.0
lowerBound = 1.0
upperBound = 10.0

var3 : 
PDSL::ContinuousDesignVariable

targetPlatform = Optimus

MyWorkflow : SWFM-
user::KBECentricWorkflow

hasDesVar

hasDesVar

hasDesVar

hasConstraint

optimizes

solvedBy

sets

sets

sets

Volume Constraint : 
RULE::Rule

Cost Objective : 
RULE::Rule

appliesTo
equation

VolumeConstraint : 
opt::Constraint

inConsequent

inConsequent

appliesTo

length = 1.5
width = 1.5
height = 3.0
volume
cost-m2-top = 10
cost-m2-bottom = 20
cost-m2-sides = 30
density = 1200
cost
weight

MyProduct : 
pf::Packaging

Figure 7.10: UML diagram of the packaging optimisation problem in the formal process
ontology.

Figure 7.10 shows the relationships between the product, rule, and process domains.
Besides the obvious relation between the problem and the product to be optimised, there
are relationships between design variables and product attributes, and between rules and
functions (constraint and objective). These have been modelled as follows.

Design Variables
Although in engineering terms it is natural to talk about the length as a design variable,
in the ontology the length as a design variable is not the same as length as a product
attribute. This is an intrinsic property of ontology modelling in OWL, where each entity
is unique. Thus, instead of designating the product’s length attribute as the actual design
variable, a separate entity is created (var1 ) that sets the length attribute. The two
entities are related, but a design variable is its own object with its own attributes. The
values of design variables are determined per case, and can therefore not be fixed to the
product attribute. This would affect all optimisation problems where the same product
is the subject.

Design variables are inputs to the activity “Set initial values” (see Table 7.3). The activity
maps onto an input array in Optimus, which declares the design variables in the workflow.
The end result is shown in Figure 7.11.

Additionally, the activity has an output for every design variable. This output parameter
has a UPI, which is the name that appears in the input array in Figure 7.11. Outputs have
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Activity Variables

Set initial
values

Set initial
values

Figure 7.11: Figure showing how the activity “Set initial values” is modelled in Optimus.

Table 7.3: Inputs for “Set initial values”

Design
Variable

Type Initial
value

Lower
bound

Upper
bound

Sets

var1 Continuous 5.0 1.0 10.0 packaging.length

var2 Continuous 5.0 1.0 10.0 packaging.width

var3 Continuous 5.0 1.0 10.0 packaging.height

been added to model the data flow in the Optimus workflow (see rule R3 in Appendix D).

Objective function and constraints
Mathematical formulas in the optimisation problem are entities defined in the rules do-
main. As Figure 7.10 shows, formulas (formally a Rule in the ontology) are linked to
both the product parameters that appear in the formula and the entity that it applies to
(constraints and objective function). Formulas are modelled in Ruler (see Figure 7.12),
which includes a mathematics editor that stores expressions in MathML (an XML-based
syntax for mathematical expressions). There are two formulas in this use case.

Objective function: cost
Volume constraint: V = 4

Every parameter in the formula has a definitionURL attribute in the MathML string,
which adds semantics to MathML by linking the parameter to an entity in the KB. In
this example, the definitionURL of parameter V is the URI of the packaging’s volume.

The objective function and constraints appear in the activity “Check functions” in Opti-
mus. The MathML string is translated to Optimus’ mathematics syntax and inserted in
the formula field. The end result is shown in Figure 8.18.

Now that all three activities have been formalised, the workflow has been completed.
Once the problem is linked to the workflow, it can be automatically generated in Optimus.
However, one of the objectives for this use case is to recreate the KBE Centric Workflow.
How this is done is explained in step 6*.

Step 6*: Parameterise the Workflow
Step 6 is starred because it is an additional step that is not part of the (core) methodology.
It is included in this use case to show high-level modelling in practice.

In a parametric workflow, it is impossible to define certain facts in advance because it
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Figure 7.12: Screenshot of the volume constraint in the MathML editor. The string be-
low the editor shows (in red) how the equation is stored. The definitionURL
attribute adds semantics to MathML.

Activity Functions

Check
Functions

Check
Functions

Figure 7.13: Figure showing how the activity “Check functions” is modelled in Optimus.
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1:
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Figure 7.14: N2 diagram of the parametric workflow. x1 and y1 vary per case.
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PDSL::Design variable

PDSL::Constraint

SWFM-user::KBE
Centric Workflow

RULE::Rule

sets

inConsequent appliesTo

appliesTo

hasDesVar

solvedBy

hasConstraint

optimizes

PDSL::Problem

- objective function

pf::Product

- x
- y

1

1

Figure 7.15: This figure shows what the origin is of x1 and y1.

And(
?problem[
    hasDesVar -> ?desvar
    solvedBy -> ?wf]
?desvar[
    sets -> ?par]
?wf[
    flowElements -> ?activity]
?activity[
    type -> ?class]
?class[
    subClassOf -> ?restr]
?restr[
    type -> Restriction
    onProperty -> hasInput
    someValuesFrom -> ?input]
?input[
    subClassOf -> ?restr2
    subClassOf -> ?restr3]
?restr2[
    type -> Restriction
    onProperty -> binding
    valuesFrom -> ?odtp]
External(func:resource-of-type(?par ?odtp))
?restr3[
    type -> Restriction
    onProperty -> hasParameterID
    valuesFrom -> ?upi]
)

And(
Do(Assert(?activity[
    hasInput -> External(func:new-individual(?input ?par))]
))
Do(Assert(External(func:new-individual(?input ?par))[
    type -> ?input
    binding -> ?par
    hasParameterID -> External(func:new-individual(?upi ?par))]
))
Do(Assert(External(func:new-individual(?upi ?par))[
    type -> ?upi]
))
)

Antecedent

find design variables
of the problem, and the
parameter it “sets” (?par)

Check if found ?par is 
of the type ?odtp

instantiate the input and 
relate it to the activity

input has a type,
a binding to the parameter,
and a UPI

find the activity that
requires input of type ?input

this ?input requires a “binding”
to parameters of type ?odtp

Consequent

Figure 7.16: This rule instantiates inputs for the activity “Interact with MMG” for every
design variable in a problem.
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varies per case. It is the input to the parametric workflow. This is visualised in the N2

diagram in Figure 7.14, where x1 and y1 are the parameters of the workflow.

Although it is impossible to define in advance what these parameters are, it is possible
to describe what kind of parameter it should be. For the KBE Centric Workflow it is
known that x1 and y1 are related to product attributes (see Figure 7.15). To be more
specific:

• x1 is a vector of attributes that are set by design variables.
• y1 is a vector of attributes that are responses of the problem, i.e. parameters in

objective function and constraint formulas.

Thus, instead of providing x1 and y1, it is possible to capture in rules what it should be.
For example, the rule shown in Figure 7.16 instantiates inputs for the activity “Interact
with MMG” for every design variable in a design problem. The remaining set of rules,
used to instantiate the KBE Centric Workflow, are listed below. The code for these rules,
written in RIF, is included in Appendix D.

• R1
• R3-R9
• R11-R13
• R19-R26

The KBE Centric Workflow class is modelled by the knowledge engineer in a similar way
as the HLAs (see Figure 7.17). Since the activities of the workflow show similarities to
the lower level activities of the HLA, the same techniques can be used to instantiate these
activities.

SWFM-user::KBECentricWorkflow

SWFM-user::Sequence 
flow 1

SWFM-user::Sequence 
flow 2

SWFM-user::Interact 
with MMG

SWFM-user::Set 
initial values

SWFM-user::Check 
functions

1

flowElements

1
1

1

flowElements

1

flowElements

1 sourceRef 1 sourceRef1targetRef 1targetRef

Figure 7.17: UML class diagram of the KBE Centric Workflow.

Then, in the modelling process, the design engineer defines the design problem (instanti-
ates problem, design variables, and constraints), adds relations to the product attributes,
and models formulas in Ruler (basically what is shown in Figure 7.10). The design en-
gineer does not have to model the workflow. Instead, the RE will instantiate the entire
workflow and stores it in the KB. From this moment, the workflow can be generated
automatically in Optimus.

Reconfigurability

The KBE Centric Workflow allows for the design engineer to adjust the problem without
modifying the workflow. Following the same example as in the previous use case:

1. The height parameter is removed as a design variable. It is now fixed to its initial
value of 3.
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2. A new weight constraint is added to the problem: ρV < 5000 (where ρ = 1200)

In the ontology this is modelled as follows (see Figure 7.18):

• Remove the design variable for height from the problem instance.

• Add a weight constraint instance to the problem.

• Provide the weight constraint equation in Ruler (see Figure 7.19).

convergence_criteria
locality
max_iterations = 100
min_or_max = minimize
objective_function
single_or_multiple_objective = single
target_value
uncertainty
gradient_method = forward difference
max_line_search = 10
termination_accuracy

MyOptimization : 
OPMD::Sequential_quadratic_programing

initialValue = 5.0
lowerBound = 1.0
upperBound = 10.0

var1 : 
PDSL::ContinuousDesignVariable

initialValue = 5.0
lowerBound = 1.0
upperBound = 10.0

var2 : 
PDSL::ContinuousDesignVariable

targetPlatform = Optimus

MyWorkflow : SWFM-
user::KBECentricWorkflow

hasDesVar

hasDesVar

hasConstraint

hasConstraint

optimizes

solvedBy

sets

sets

Volume Constraint : 
RULE::Rule

Weight Constraint : 
RULE::Rule

Cost Objective : 
RULE::Rule

appliesTo

appliesTo

equation

VolumeConstraint : 
opt::Constraint

equation

WeightConstraint : 
opt::Constraint

inConsequent

inConsequent

appliesTo

length = 1.5
width = 1.5
height = 3.0
volume
cost-m2-top = 10
cost-m2-bottom = 20
cost-m2-sides = 30
density = 1200
cost
weight

MyProduct : 
pf::Packaging

initialValue = 5.0
lowerBound = 1.0
upperBound = 10.0

var3 : 
PDSL::ContinuousDesignVariable

hasDesVar

sets

removed

newnew

Figure 7.18: Class diagram of the new optimisation problem. The figure shows which objects
are new and which are removed.

Figure 7.19: Screenshot of the new weight constraint in the MathML editor.
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Figure 7.20: The new weight constraint in Optimus.

The interpreter translates the MathML string into a formula in Optimus. The result is
the new weight constraint in Figure 7.20.

The RE instantiates a new workflow according to the changes made to the problem
definition. This workflow is then generated in Optimus. The results are discussed in the
next section.

7.1.3 Results

The interpreter translates the knowledge from the KB into an Optimus workflow. This
workflow generation process is fully automated, hence no human activities are involved.
The result is the workflow in Figure 7.21, which is identical to the generated workflow
from the previous use case. Note that the different naming scheme of the activities in
this workflow is the result of instantiating these activities by the RE. The function new-
individual from Figure 7.9 aggregates two URIs to create a new URI.

Figure 7.21: The generated workflow is identical to the workflow created with the KBE–
PIDO coupling.

Because the optimisation is executed in Optimus, and thus independent of the perfor-
mance of the KB–PIDO coupling, the optimisation results are exactly the same as in the
previous use case. Table 7.4 shows the optimisation results for the standard problem and
the new problem (with fixed height and additional weight constraint).

Table 7.4: The results of the optimisation problem are exactly the same as in the previous
use case (under the same conditions).

Parameter Initial value Optimised value Optimised value

(Old problem) (New problem)

length 1 2.0002 1.1558

width 1 2.0002 1.1547

height 3 1.0 3

cost 390 360.0492 455.9405

volume 3 4.0008 4.0040

weight 3600 4800.96 4804.8098
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7.2 Discussion

In the end, both implementations (KBE–PIDO and KB–PIDO coupling) have a shared
objective, which is to reduce complexity of WFM and design optimisation. This use case
demonstrated a methodological approach to WFM for a relatively simple optimisation
problem. Working out a simple problem is easier for understanding the methodology. It
has been a good example for demonstrating:

• how to apply the methodology step-by-step.
• how process knowledge is linked with product knowledge and rules.
• how the KBE Centric Workflow is implemented in a KB.
• that the interpreter can successfully translate process knowledge into a simulation

workflow.

The goal to generate the workflow from knowledge in the KB has been achieved. There
is no coding required, and the system is no longer dependent on the KBE platform for
generating and executing the workflow. An additional step in the methodology explained
how the workflow is parameterised to replicate the KBE Centric Workflow in the KB.
With this solution, the design engineer can be more involved in the modelling process.
Finally, the step-by-step approach clarifies where the knowledge in the workflow comes
from.

Limitations and Future Direction

Despite being a success, there are already some thoughts for improvement. The first, and
most important improvement, is to build a unified web interface for modelling diagrams
and the ontology. In order to raise acceptance among engineers, it is crucial to provide
intuitive interfaces to the system. And once Optimus extends its API, it will be possible
to provide postprocessing capabilities in the web interface as well.
Ultimately, it should be integrated with the product and rule modelling interfaces. Then,
together with the centralised KB, the integration framework will turn into a shared plat-
form that enhances collaboration between design teams, domain experts, and IT engineers.
A second improvement, is to implement round-tripping. This feature has not been de-
veloped yet because of other priorities, however it would be valuable if the system could
automatically return results and process knowledge to the KB.
The KBE Centric Workflow proved to be a powerful tool for optimising KBE models,
however it is limited to performing analyses in the KBE platform only. Future research
should focus on developing more high level parametric processes for common analyses,
such as FEA or CFD. This will make design optimisation more accessible to non-SWFM
experts.

Incorporating these changes would truly be a leap forward towards the next generation
design system, featuring an intelligent, web-based engineering environment. But before
this research is concluded, the same methodological approach is applied to an MDO
problem.



Chapter 8

Use Case 3: MDO Workflows

The methodology has been demonstrated for a relatively simple engineering problem in
the previous use case. The challenge now is to take a similar approach for an MDO
problem.
In realistic engineering problems, where MDO is involved, there is an increased risk that
a workflow becomes a black box, where no one understands how it works and what it does
except for the person who built it. An example where this has occurred, is the workflow
that has been used for the Pegasus project. Without a methodological approach, it is
very difficult to reuse the knowledge in this workflow. And reusing knowledge is a key
element in reducing development time and cost.
In this use case the workflow is rebuilt with the methodology to make clear what it does.
Meanwhile, with the knowledge that is captured, it is possible to reach a higher level
of abstraction and to implement intelligent features that will simplify SWFM. The main
goal though, is to demonstrate that the methodology is effective not only for simple cases
but also for more complex workflows.

The chapter begins with background information about the Pegasus project (Section 8.1).
This section explains what issues may occur in ad hoc solutions and presents an improved
solution. Section 8.2 goes through the methodology, showing the steps for this design
problem. Eventually, the simulation workflow is automatically generated in Optimus
(Section 8.2.3). The chapter ends with a discussion in Section 8.3.
Also here, there is the assumption that:

• the product has already been modelled in the KB or round-tripped from KBE code
(if code is already written).

• the KBE code for the mould has been written or automatically generated (if product
model exists in the KB).

• and that the mould is instantiated before the workflow is executed.

103
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8.1 Problem Description

The Pegasus project is a European collaboration under the FP6 framework between the
automotive industry and various research institutes (Pegasus, 2010). The objective was
to develop an automated design framework for optimising the design of thermoplastic
injection moulds. The final result of the project is a framework that changed the mould
optimisation process using KBE and PIDO technologies. The main interest in this re-
search is the workflow that has been created in Optimus (see Figure 8.1). More details
about the project, including design challenges in thermoplastic injection moulding, are
described by Janse (2013).

Figure 8.1: The original Pegasus workflow, created in the Optimus GUI (source: Janse,
2013).

The workflow covers multiple disciplines, using the following set of simulation tools. All
these tools are set up as web services.

• A KBE application for mould design has been created in GenDL (product master
model).
• Sizing the mould is done by a tool written in Python.
• The commercial tool Moldflow (Autodesk, 2012) is used for flow analysis.
• Various Analysis Modules (AM) are created in GenDL for analysing cost, energy

usage, and material usage. AMs are similar to CMs, with the difference that AMs
produce results through analysis.
• A Life Cycle Assessment (LCA) tool is used to calculate the environmental impact

of the moulding process.

The Pegasus workflow has been designed and modelled in the Optimus GUI as an ad hoc
solution. It exemplifies what problems may occur when a workflow is designed without
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Figure 8.2: The diagram on the left shows the current architecture of the framework and
the diagram on the right what it should have been in the ideal case.

following a methodology. Below are four main points that highlight undesired character-
istics of this workflow.

1. It is unclear what the exact disciplines are in this workflow. The main problem
in this workflow is that the product definition has become one big black box where multiple
disciplines are integrated into one tool. In terms of modularity, the framework scores very
low. Figure 8.2 shows the software architecture of the current framework. There are three
issues regarding modularity and transparency:

1. The sizing tool is fully integrated into the MMG.
2. It is unknown what information flows from the product master model to the various

modules (see question marks in the left diagram).
3. The workflow gives the impression that the AMs for cost, energy usage, and material

usage are built into one module. There is only one activity that sends a request to
the MMG to retrieve values from these modules.

2. The inputs and outputs of activities, and dependencies between disciplines
are not made explicit. While looking at the workflow in Figure 8.1, it is not clear how
the data flows between activities. When this information is lacking, then:

• How is the correct order of activities determined?
• What are dependencies between inputs and outputs?
• Which inputs are required/optional, and which are fixed/variable?

Even when inputs and outputs are handled internally by the tool itself, it is still worthwhile
to make this explicit. It may not be necessary for modelling the workflow, but it increases
transparency and eventually the understanding of the tools.

3. The sizing tool is tightly coupled to the product model. In the current
framework, the sizing tool is completely integrated into the MMG. To understand what
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the tool does and to maintain modularity it should be separated instead. Figure 8.2 shows
a better solution on the right, where a CM for sizing is added and the sizing tool has
become an analysis tool outside the MMG.

4. The flow analysis tool should be decoupled from the product model. Even
as a service, Moldflow is depending on GenDL to provide the paths to the input files for
running the analysis. Also, the HTTP request that is sent to run Moldflow requires the
product name. These couplings to the product model are not necessary, and complicate
the reuse of Moldflow as an engineering service.

In an ideal architecture (see right diagram in Figure 8.2), all tools are decoupled and also
the internal data flow of the MMG (presented as x) is specified. An even better solution
is to break down the product definition into several disciplines:

• Mould configuration
• Cooling system definition
• Feeding system definition
• Demolding mechanism definition

This would be the ideal case, if the Pegasus framework was built from the start with a
methodological approach. Since these tools are already built, it would take too much time
to redo it all afterwards. Therefore, this use case is executed under the assumption that
the sizing tool remains integrated into the MMG.

High-Level Engineering Workflow
The ideal, high-level engineering workflow reduces the amount of work for the workflow
modeller and is modelled with engineering knowledge instead of IT knowledge. The result
is shown in Figure 8.3. The number of activities has been reduced to 11, compared to
the 33 activities in the generated workflow (see end result in Figure 8.19). The required
amount of work and knowledge for modelling the workflow has decreased significantly.
This is the goal. However, this is currently not achieved yet. It is a topic for future
research where modelling high-level workflows with HESs is the focus. In this use case,
the MDO workflow is modelled with HLAs, which is described in the remainder of this
chapter.

Set initial
values

Perform
sizing

Update
mould

Preprocess
flow analysis

Update
mould

Calculate
total mass

of part

Calculate
energy

usage per kg

Calculate
total cost

Check
functions

Converged?Feasible? End EventStart Event

Perform
flow analysis

Perform
Life Cycle

Assessment yesyes

no

no

Figure 8.3: This high-level engineering workflow would be the ideal workflow for this MDO
problem.

8.2 Implementation

The primary function of a methodology is to provide methods and guidelines to support
people in their work. Thus far, the methodology has been applied to a relatively simple
packaging design problem. This section demonstrates the five steps of the methodology
for a more complex problem.
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8.2.1 Informal Model

The Optimus workflow, which is the end result, has already been shown in the problem
description. An existing workflow was selected because for development it is easier to
follow a bottom-up approach. But since the methodology follows a top-down approach, it
is assumed that the modelling process starts with a clean sheet. Nothing is known about
the workflow, thus it begins with defining the problem statement.

Step 1: Define problem statement
The problem in the Pegasus project can be stated as follows:

“Design a mould for the manufacturing of laptop bezels with minimum cost
and environmental impact. The produced parts have to fulfil quality re-
quirements on maximum warpage. Moreover, the injection moulding ma-
chine has a maximum limit on its clamp force.”

From this statement it can be concluded that:

• The product is a mould.
• It is a minimisation problem.
• There are two objectives: total cost and total CO2 emission.
• There are two inequality constraints: maximum on warpage and a maximum on

clamp force that is allowed.

With this much information, the design engineer can proceed to the next step.

Step 2: Structure the problem and disciplines
In step 2, the design engineer takes the information from the problem statement and
structures it. The design engineer can visualise the relationships between problem and
disciplines using the N2 notation.

Total CO2Total cost. .+=f 1w 2w

Max abs warpage ≤ 10=1g

Max clamp force ≤ 100=2
g

Max abs warpage,
Max clamp force

Flow
analysis

Total CO2

Total cost Cost

Functionsf, g

Optimisation

Environmental

Figure 8.4: First snapshot of the problem and disciplines visualised in an N2 diagram.

Although there is no fixed order in an N2 diagram, it is convenient to put optimisation
at the top-left corner, with functions directly below it (see Figure 8.4). The disciplines
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are aligned further down the diagonal in a random order. Finally, the responses can also
be added to the diagram, with the right connections to their respective discipline and to
functions.

Creating this diagram is an iterative process and cannot be completed right away. It is
handed to the IT engineer, who will model the activities in step 3.

Step 3: Model the activities
For every discipline that delivers results, the IT engineer needs to model the activities
that will produce these results. For example, the discipline environmental analysis delivers
the output total CO2 emission. Then, the IT engineer needs to reason backwards what
sequence of activities will produce the total CO2 emission (see Figure 8.5 (a)). At some
point, the IT engineer ends up at the beginning of the sequence where inputs are required
from another discipline than environmental analysis. This is when this step is completed
for this single discipline.
The same procedure can be repeated for the other disciplines (see Figure 8.5 (b) and (c)).
When this is done, the process goes back to step 2 to update the N2 diagram with the
latest findings.

Total CO2

Total CO2
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maps to

input
maps to

?

Activities

Discipline

Retrieve
LCA data

Calculate
total CO2

Environmental

Required input:
E / kg
Total mass

40 parameters
Optional input (fixed):

(a) (b)

(c)

Total cost

Total cost

output
maps to

input
maps to

?

Activities

Discipline

Calculate
total cost

parameters from
product master model

Required input:

Cost

output
maps to

Max abs warpage,
Max clamp force

Max abs warpage,
Max clamp force?

Activities

Discipline

Product geometry files
Product parameters
script files
(User input) parameters
script file

Required input:

input
maps to

Flow
analysis

Calculate max
abs warpage

Perform
Moldflow
analysis

Create
Moldflow

model
Calculate max
clamp force

Figure 8.5: Activities are modelled according to the output that is required from the disci-
plinary analysis. This is done for environmental analysis (a), cost analysis (b),
and flow analysis (c).

Step 2, iteration 2: Update the N2 diagram
In this second iteration, the N2 diagram is updated with the inputs found in the previous
step. Several of these inputs have been identified as outputs from new disciplines: energy
usage, material usage, and preprocessing flow analysis. These are then added to the
diagram, as shown in Figure 8.6.

Completing the diagrams
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Figure 8.6: Completing the N2 diagram is an iterative process. This figure shows the diagram
at the second iteration.

From here on, the modelling process continues to step 3, where the same method is used
to model the activities. Step 2 and 3 are repeated until the N2 diagram and workflow are
completed. The final diagrams are shown in Figure 8.7.

Explaining the N2 diagram: In this final diagram, the disciplines are reordered for
convenience. External inputs and outputs are placed at the edge of the diagram. Other
noticeable elements are the coupling variables with a blue colour. These are new to the
notation and have been introduced to indicate that these inputs and outputs are managed
internally by the MMG. The data flow is not visible in the workflow, but it is still useful
to make it explicit. The vectors in the diagram are briefly explained below.

• x0 is a vector of the design variables.
• y1 is a vector of fixed input parameters to product definition.
• yt1 is a vector of output parameters from the product master model.
• yt2 is a vector containing the results of the sizing step.
• yt3 is a set of product geometry and parameter script files for flow analysis.
• y8 is a vector of fixed input parameters for the Life Cycle Analysis.

The numbers in the diagram indicate the flow through the disciplines, going from low
to high. These are determined by the flow of inputs and outputs between disciplines.
A discipline cannot deliver outputs until it receives the required inputs from another
discipline (or the user).
There was one difficulty in determining the right order of disciplines. As the diagram
shows, there are many disciplines dependent on the product definition. The problem is
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Figure 8.7: Completed N2 and BPMN diagram for the Pegasus project.
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that the product model exists at any time in the workflow, but with different values.
Technically, it is possible to retrieve values from the product model at any time, because
most parameters have default values. However, this will not give the correct results. Take
for example the cost, which can be asked ahead of the flow analysis, but this will not
be the desired answer. There is a link missing, namely that cost responses can only be
requested after the mould has been updated with results from the flow analysis (updated
with cooling, packing, and filling times). There are two ways to include this crucial bit
of information in the definition: (1) using states, and (2) define dependencies between
inputs and outputs.

A product model can be in a certain state. Its state changes when the product model
is modified. By using states, it is possible to define when a discipline may request values
from the product model. In a workflow this can be modelled as pre- and postconditions
of an activity.

The other method is to define dependencies between inputs and outputs. This dependency
is a relationship that states that an output can only be given on the condition that the
required inputs have been provided. For instance, the inputs for cost analysis are outputs
of product definition (see Figure 8.7). By stating that these outputs depend on cooling,
packing, and filling times, it can be reasoned that a cost analysis can only be done after
flow analysis.

Both methods work equally well, although the solution using dependencies may be leaner
(in the ontology). For this use case, the first method using states has been applied, which
are shown in Table 8.1.

Table 8.1: Pre- and postconditions that have been used in this workflow.

Activity Precondition Postcondition

Update mould (1) - Mould with initial values

Perform sizing Mould with initial values Sized mould

Preprocess flow analysis Sized mould -

Update mould (2) - Mould updated with flow
analysis results

Calculate total mass of
part

Mould updated with flow
analysis results

-

Calculate energy usage
per kg

Mould updated with flow
analysis results

-

Calculate total cost Mould updated with flow
analysis results

-

Explaining the BPMN diagram: The final workflow is built by chaining activities
that have been modelled in step 3. The order is defined by the numbers in the N2 diagram.
There is one flaw in the workflow right after the “Perform sizing” activity. According to
the flow in the N2 diagram, another “Update mould” activity is expected between the
sizing and preprocess activities. But because the original application has been designed
as a tightly coupled system, updating the mould is done internally by the tool and not
from the workflow. Once both diagrams have been completed, the process proceeds to
step 4.



112 Use Case 3: MDO Workflows

Step 4: Fill in ICARE PDT-forms
Step 4 is the knowledge acquisition phase, where the knowledge engineer captures knowl-
edge regarding the optimisation problem, disciplines, activities, and tools in ICARE PDT-
forms. An example of a filled D-form is given in Figure 8.8.

Figure 8.8: Example of a filled D-form capturing details of the Flow analysis discipline.

8.2.2 Formal Model

This section contains only one step, which is to formalise process knowledge. It explains
how process knowledge can be modelled, so that an interpreter can generate the workflow
automatically. The focus is on modelling High-Level Activities (HLA).

Step 5: Formalise process knowledge
Instead of showing how to model all activities, similar activities are grouped and only
one of each group is explained. The other activities in the same group are modelled in a
similar way. There is a total of seven groups.

Group 1
The first group of activities updates the product master model, thus setting new values
to variables. There are two tasks in this group:

• Update mould (1)
• Update mould (2)

Figure 8.9 shows the target for this activity. It is mapped onto a single activity in Optimus,
an HTTP request UCA. The activity sends the request that is displayed next to it.

The UML diagram shows how it is modelled in the ontology. The product model, related
to the activity through the hasModel property, provides its name to iid (instance ID) in
the query string. Input parameters are mapped onto variables and values. The keyword
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Send
request

http://131.180.117.19:9002/set-get?
iid=mould
&variables(0)=exp-no & values(0)=$EXP$
&variables(1)=cooling-no & values(1)=$CoolingNumber$
&variables(2)=sprue-diameter-1 & values(2)=$SprueDiameter$
&variables(3)=n-gates & values(3)=$NumberOfGates$
&variables(4)=cooling-system-diameter & values(4)=$CoolingLineDiameter$
&variables(5)=part-mesh-type & values(5)=Fusion
&variables(6)=cooling-nodes-calculation-nr & values(6)=6
&variables(7)=WInjMinDist & values(7)=9.0E-1
&variables(8)=Wmindist & values(8)=1.0E0
&variables(9)=file-name2 & values(9)=laptop.stp
&variables(10)=project-name-python & values(10)=auto-generate-pegasus
&variables(11)=T-melt & values(11)=2.3E2
&variables(12)=WInjMinLength & values(12)=1.0E-1
&variables(13)=project-name & values(13)=auto-generate-pegasus
&variables(14)=packing-pressure-time & values(14)=1.0E1
&variables(15)=T-coolant & values(15)=2.0E1
&variables(16)=T-mold & values(16)=6.0E1
&variables(17)=Wminlength & values(17)=0.0E0
&variables(18)=packing-pressure & values(18)=8.0E1
&variables(19)=mesh-edge-length & values(19)=2.0E1

* Spaces and line breaks are added for readability

Update
mould (1)

HTTP requestActivity

A

UML Class diagram

SWFM-user::Update 
mould (1)

-url path = set-get
-product iid
-variables
-values

SWFM-user::Send 
request

1
flowElements

SWFM-user::Initial 
input parameters 1..* hasInput

host = 131.180.117.19
port = 9002

GenDL-Server : 
SWFM::Server

1

performedBy

mould::assembly1

hasModel

Mould initial values : 
SWFM::State

1

hasPostcondition

1..*

hasInput

1

hasModel

Figure 8.9: Figure showing how the HLA “Update mould (1)” is modelled in Optimus (Group
1). The UML class diagram shows how it is modelled in the ontology.

variables contains the names of the product attributes. Then, if the input is variable, its
value will appear with dollar signs in the query string. For example, the sprue diameter
is a variable input parameter (see values(2) in the HTTP request). Otherwise, a fixed
value is inserted in the query string.
All inputs of the activity “Update mould (1)” are provided in Table 8.2. Rules R11 and
R13-R15 perform the mapping for this group of activities (see Appendix D).

Group 2
The second group consists of activities that trigger a CM in the MMG.

• Perform sizing
• Preprocess flow analysis

“Perform sizing” is a relatively simple activity in the workflow because most actions are
handled internally by the tool. This is an example where tools are tightly coupled. As
a result, the sizing tool is executed by asking a response from the product model. The
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Table 8.2: Inputs for “Update mould (1)” (Group 1)

Input Variable/ Required/ Parameter Default Binding

Fixed Optional Value Value

Cooling
number

Variable Required - - assembly.cooling-no

Number
of gates

Variable Required - - assembly.n-gates

Sprue
diameter

Variable Required - - assembly.sprue-diameter-
1

Cooling line
diameter

Variable Required - - assembly.cooling-system-
diameter

Experiment
number

Variable Required - - assembly.exp-no

Mould
temperature

Fixed Required 60 - assembly.T-mold

Melt
temperature

Fixed Required 230 - assembly.T-melt

Coolant
temperature

Fixed Required 20 - assembly.T-coolant

Packing
pressure

Fixed Required 80 - assembly.packing-
pressure

Packing
pressure time

Fixed Required 10 - assembly.packing-
pressure-time

Part file name Fixed Required laptop.stp - assembly.file-name2

Project name Fixed Required auto-
generate-
pegasus

- assembly.project-name

Part
mesh type

Fixed Required Fusion - assembly.part-mesh-type

Mesh
edge length

Fixed Optional 20 4.5
(tool default)

assembly.mesh-edge-
length

Project name
sizing

Fixed Optional auto-
generate-
pegasus

same as
project-name
(tool default)

assembly.project-name-
python

Weighting
min distance

Fixed Required 1.0 - assembly.Wmindist

Weighting
min length

Fixed Required 0 - assembly.Wminlength

Weighting
injection min
distance

Fixed Required 0.9 - assembly.WInjMinDist

Weighting
injection min
length

Fixed Required 0.1 - assembly.WInjMinLength

Cooling nodes
calculation nr

Fixed Required 6 - assembly.cooling-nodes-
calculation-nr

Include feed
system in
cooling analy-
sis

Fixed Optional - 0
(tool default)

assembly.include-feed-
sys-in-cooling-analysis



8.2 Implementation 115

request, “responses(0)=size-sub-systems”, is fixed and modelled as a restriction to the
class (see Figure 8.10).

Send
request

http://131.180.117.19:9002/set-get?
iid=mould&
responses(0)=size-sub-systems

* Spaces and line breaks are added for readability

Perform
sizing

HTTP requestActivity

A

UML Class diagram

1

flowElements mould::assembly

Sized mould : 
SWFM::StateSWFM-

user::Perform sizing

-url path = set-get
-product iid
-responses = responses(0)=size-sub-systems

SWFM-user::Send request

Mould initial values : 
SWFM::State

1
hasModel

1

hasModel

1

hasPostcondition

1

hasPrecondition

host = 131.180.117.19
port = 9002

GenDL-Server : 
SWFM::Server

1

performedBy

Figure 8.10: Figure showing how the HLA “Perform sizing” is modelled in Optimus (Group
2). The UML class diagram shows how it is modelled in the ontology.

Group 3
Activities in group three trigger AMs in the MMG and return one or more responses. All
three activities have a precondition to indicate that these responses can only be asked
after the flow analysis has been performed.

• Calculate energy usage per kg
• Calculate total mass of part
• Calculate total cost

AMs only have internal input, which are not visible in the workflow. Therefore, these
three activities only have outputs (see Figure 8.11). Table 8.4 shows all available outputs
for “Calculate energy usage”. The outputs for the other two HLAs are included in Ap-
pendix F.
Selecting the outputs from the list determines which values are retrieved. Thus, the se-
lected outputs appear in the HTTP request (under responses) and as file extraction rules
in the file parser (done by rules R10 and R12). In this example, the activity “Calculate
energy usage per kg” has only one output, which is Total energy usage per kg.

Group 4
Group four consists of two Moldflow activities.

• Create Moldflow model
• Perform Moldflow analysis
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Table 8.3: Outputs for “Calculate energy usage” (Group 3)

Output File parameter settings

label word nr occurrence row offset start pos end pos

Total energy
usage per kg
of material
used

E-total-
molding-per-
kg

- - - - -

Total energy
usage for
manufactur-
ing cooling
system

E-total-
cooling-
system-
manufacturing

- - - - -

Total energy
usage

E-total - - - - -

Total energy
usage of
moulding
process

E-total-
molding

- - - - -

http://131.180.117.19:9002/set-get?
iid=mould&
responses(0)=E-total-molding-per-kg

HTTP requestActivity

Energy outputParse HTTP
response

Send
request

A Post

Calculate
energy usage

per kg

HTTP response parser (extraction rule)
* Spaces and line breaks are added for readability

UML Class diagram

SWFM-user::Calculate 
energy usage

-url path = set-get
-product iid
-responses

SWFM-user::Send 
request SWFM-user::Parse 

response

SWFM-
user::Sequence flow

1

flowElements

1

flowElements

1

flowElements

1

sourceRef

1

targetRef

Analysed mould : 
SWFM::State 1

hasPrecondition

mould::assembly

SWFM-user::Energy 
usage results

1..*

hasOutput

1 hasModel

1 hasModel

host = 131.180.117.19
port = 9002

GenDL-Server : 
SWFM::Server

1
performedBy

SWFM-
user::EnergyUsage.txt

1

hasOutput

1..*

hasOutput

1
hasInput

1..*

hasOutput

Figure 8.11: Figure showing how the HLA “Calculate energy usage” is modelled in Optimus
(Group 3). The UML class diagram shows how it is modelled in the ontology.
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http://131.180.117.19:9002/generate-moldfow-model

HTTP requestSFTP �ile transferActivity

UML Class diagram

parameters.vbs Send
request

Send
file

APre

Create
Moldflow

model

SWFM-user::Create 
Moldflow model

SWFM-user::Sequence 
flow 1

SWFM-user::Sequence 
flow 2

SWFM-user::Write 
input file

-ftpDirection = SEND
-transferMode = SFTP
-transferType = COPY
-sourceOfFilenames = LIST

SWFM-user::Send input file

1

flowElements
1

flowElements

1

flowElements

1

flowElements

1

flowElements

1
sourceRef

1

sourceRef

1

targetRef
1

targetRef

SWFM-user::Mould 
geometry file

SWFM-user::Mould 
script file

SWFM-user::Input 
settings file

1 hasInput

1..*

hasInput
1..*

hasInput

1

hasInput1

hasInput

-url path = generate-moldflow-model

SWFM-user::Send request

host = 131.180.117.19
port = 9002

GenDL-Server : 
SWFM::Server

1

performedBy

Figure 8.12: Figure showing how the HLA “Create Moldflow model” is modelled in Optimus
(Group 4). The UML class diagram shows how it is modelled in the ontology.

The activity “Create Moldflow model” has a preprocessing and analysis step (see Fig-
ure 8.12). The preprocessor writes an input file based on a template. Here, it is an input
settings file (parameters.vbs) containing parameters that are required for creating the
Moldflow model. Optimus inserts values in the template that change during every itera-
tion, such as the experiment number. Input files are then saved in the Optimus project
folder of the current run. Therefore, it is always required to transfer the file to the input
folder of the engineering service.

Figure 8.12 shows the required settings for this file transfer. Since Moldflow is set up
as a web service, the file is transferred over SFTP. Other settings that have fixed values
(COPY, LIST, and SEND) are modelled as restrictions to the class. The values for the
server and destination folder depends on the server that hosts the service and the input
folder of the service. These values are not fixed, therefore a rule is used to provide these
values (rule R28).

The analysis step sends an HTTP request to create the Moldflow model. Previously, this
request required the product name to trigger this action. But because the required inputs
to create the model are only files (geometry and script files), it was not necessary to have
a coupling to the product model. Therefore, it is now a fixed request without a query
string.
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* Spaces and line breaks are added for readability

HTTP request
http://pegasus.cycleco.eu:80/webservices/ws_injection_moulding.php?
Quantity=$TotalMass_Part$
&Electricity=$TotalEnergyUsagePerKG$
&Starch=3.77777E1
&PVC=2.88888E1
&EPS=1.11111E1
&PMMA=2.0E1
&PBT=1.44444E1
&Compatibilizer=3.22222E1
&password=......
&Pigments_aluminium_traces=3.66666E1
&POM=2.22222E1
&PELD=1.77777E1
&Polyester_Resin=2.11111E1
&PEHD=1.66666E1

&Phtalate_plasticizer=3.55555E1
&Charges=3.88888E1
&Carbon%20fiber=3.11111E1
&Light_fuel_oil=6.0E0
&Epoxy_Resin=1.0E1
&EPDM=3.33333E1
&SEBS=2.99999E1
&Natural_gas=4.0E0
&scrap=7.0E0
&PUR,%20rigid%20foam=2.77777E1
&Electricity_mix=5
&name=component1
&Carbon%20black=3.0E1
&PC=1.55555E1

&PUR,_flexible_foam=2.55555E1
&PET=1.88888E1
&Heavy%20fuel_oil=0.0E0
&PLA=1.99999E1
&PA6=1.22222E1
&pseudo=......
&PP=2.33333E1
&Glass_fiber=3.44444E1
&Hardener_amine=3.99999E1
&ABS=9.9999E0
&PS=2.44444E1
&PUR,%20granulates=2.66666E1
&Scrap_management=1
&PA66=1.33333E1

Activity

Environmental
data output

Parse HTTP
response

Send
request

A Post

Retrieve
LCA data

HTTP response parser (extraction rule)

UML Class diagram

-url path = webservices/ws_injection_moulding.php

SWFM-user::Send request

SWFM-user::Retrieve 
LCA data

1

flowElements

SWFM-user::Parse 
responseSWFM-

user::Sequence flow

1

flowElements

1

flowElements

1

sourceRef

1

targetRef

SWFM-user::LCA 
input parameter

SWFM-user::LCA 
results

1..* hasInput

1..*

hasOutput

SWFM-
user::EvironmentalData.txt

1

hasOutput

1
hasInput

1..*

hasOutput

1..*
hasInput

1

performedBy

host = pegasus.cycleco.eu
port = 80

LCA-Server : SWFM::Server

Figure 8.13: Figure showing how the HLA “Retrieve LCA data” is modelled in Optimus
(Group 5). The UML class diagram shows how it is modelled in the ontology.

Group 5
The fifth group consists of one activity that performs an environmental analysis (LCA
web service).

• Retrieve CO2 data

This activity sends a request (with 42 input parameters in total) to retrieve environmental
data (see Figure 8.13). Most parameters are fixed, except for two.

• Quantity, which is the total mass of the part (from the discipline material usage).
• Electricity, which is the total energy usage per kg (from the discipline energy usage).

The meaning of all input parameters is provided in a table in Appendix F. The fixed
parameters is a mix of required and optional inputs.
Regardless of the input, the service always returns four values. These are listed in Ta-
ble 8.4.

The query string for the service, is modelled differently from the other activities. Where
the inputs of the other activities always map onto variables (and values), here the query
string is fixed. Thus, every parameter has a fixed keyword.

Creating a solution, without hardcoding the values in the query string, requires a link
between the query parameter and the corresponding input parameter. The solution is
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Table 8.4: Outputs for “Retrieve LCA data” (Group 5)

Output File parameter settings

label word nr occurrence row offset start pos end pos

CO2 emis-
sion material

climate change - - - 19 30

CO2 emis-
sion process

climate change - - - 29 41

Resources
material

resources - - - 19 30

Resources
process

resources - - - 29 41

scrap

value in the
query string

query parameter
(datatype property)

Activity

Input parameter datatype property

expects

fromSource theParam

7.0

?

parameterValue

ValueOf_scrap : 
SWFM::ValueOf

scrap_input :
SWFM-user::LCA_input

SWFM-user::
Send request

Figure 8.14: Query parameters are linked to input parameters according to this construct
(Group 5).

shown in Figure 8.14. It is inspired by bindings in OWL-S, where in this case a resource
(ValueOf ) ‘tells’ the query parameter which value to take from which source. A rule is
used to actually do the mapping (rules R16-R18).

(max($PackingClampForce$, $FillingClampForce$) / 9810)

Activity Formula

Calculate
response

Calculate max
clamp force

Figure 8.15: Figure showing how the HLA “Calculate max clamp force” is modelled in
Optimus (Group 6). The UML class diagram shows how it is modelled in the
ontology.
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Group 6
The activities in the sixth group calculate a response in Optimus by evaluating a formula.

• Calculate cooling time
• Calculate max abs warpage
• Calculate max clamp force
• Calculate total CO2

These activities are modelled as instances of Calculate Response (see Figure 8.15). Inputs
are parameters that appear in the formula (Packing and Filling clamp force) and the only
output is the parameter that is calculated (Max clamp force). Therefore, the inputs and
output are always the same. The formula is modelled in the MathML editor in Ruler and
translated to Optimus’ mathematics syntax by the interpreter (see Figure 8.16).

Figure 8.16: Screenshot of Ruler where the formula for calculating the max clamp force is
modelled (Group 6).

Group 7
The final group of activities are always required in a workflow.

• Set initial values
• Check functions

Set initial values defines the design variables according to the values provided in Table 8.5.
The end result, as it appears in Optimus, is shown in Figure 8.17.
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Table 8.5: Inputs for “Set initial values”

Design
Variable

Type Initial
value

Lower
bound

Upper
bound

Step
size

Sets

var1 Continuous 1.5 0.5 3.0 - assembly.sprue-diameter-1

var2 Discrete numeric
uniform

1 1 3 1 assembly.cooling-no

var3 Discrete numeric
uniform

1 1 4 1 assembly.n-gates

var4 Continuous 11.5 8 15 - assembly.cooling-system-
diameter

Activity Variables

Set initial
values

Set initial
values

Figure 8.17: Figure showing the end result for the activity “Set initial values”.

For the activity “Check functions” there are two constraints:

Max abs warpage constraint: MaxAbsWarpage ≤ 10[mm]
Max clamp force constraint: MaxClampForce ≤ 100000[kg]

Note that the objective was not to have accurate constraints. A sufficiently large number
is chosen to ensure that results would be valid. Furthermore, the objective function is
lacking here. This design problem is a multi-objective optimisation, which has not been
implemented in the Python wrapper yet. Setting up the problem is done manually in the
Optimus GUI. Then, the end result for “Check functions” is shown in Figure 8.18.

Activity Functions

Check
Functions

Check
Functions

Figure 8.18: Figure showing the end result for the activity “Check functions”.

A total of 21 rules have been applied in this use case (see list below) The code for these
rules, written in RIF, is included in Appendix D.

• R1-R18
• R27-R29
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The workflow generation process is exactly the same as in the previous use case. After
the RE has inferred new facts and stored it in the triple store, the interpreter will initiate
workflow generation. The final result is discussed in the next section.

8.2.3 Results

The generated workflow is presented in two formats (see Figure 8.19). The original format
(at the top) shows the layout as it has been determined by Graphviz. It is a long sequence
of activities and impossible to present on paper. Therefore, the activities are reordered
in the second format to present the workflow in a more readable layout. The activities
are laid out conforming to the DEE framework.

The outlines with rounded corners shows the domain of a HLA. HLAs group activities,
that are always needed in this order, under one higher level activity. As a result, the user
instantiates each HLA as one activity, and the computer reuses knowledge to generate
the actual activities in Optimus.
Another nice feature is demonstrated in this use case. The four SFTP transfer activities,
highlighted in the middle of Figure 8.19, are created entirely by the computer. In the
original workflow, there is a direct flow from “Preprocess flow analysis” to “Create Mold-
flow model”. A rule (R27) has recognised that “Preprocess flow analysis” produces files
that are required by “Create Moldflow model”. Since both activities are performed by a
remote server, the rule has inserted these SFTP activities to manage the file transfers.
Meanwhile, Optimus will create a backup of every file that is transferred.

Before the workflow can be executed, the user must perform three activities:

1. Copy-paste the input settings file template for Moldflow to parameters.vbs.
2. Add an input variable that connects to parameters.vbs. Without the variable, Op-

timus will not recognise variables in the template.
3. Set up the problem (execution method) in the Optimus GUI.

At the time of development, it was not exactly clear how an input file template could be
provided through the API. Since there is only one input file, it has been decided to do
this manually.

The workflow has been executed successfully. The inputs for one of the experiments are
given in Table 8.6, which lead to the responses presented in Table 8.7.

Table 8.6: Values for the design variables in one of the experiments.

Design Variable Unit Value

Sprue diameter mm 3

Cooling number – 3

Number of gates – 4

Cooling line diameter mm 8

During this experiment, Moldflow performed a flow analysis. The results are shown in
Figures 8.20-8.22.
Figure 8.20 displays the mould model created by Moldflow, with the laptop bezel and three
cooling systems (design variable Cooling number) per mould half. Then, Figure 8.21 shows
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Converger
&

Evaluator

Analysis tools & services

Multi Model Generator (MMG)

Automatically generated work�low

Reordered work�low (for readability)

Product definition

CMs & AMs

Discipline-
specific i/o

SFTP
transfers

Initiator

Figure 8.19: The generated workflow is reordered into a more readable layout. The original
workflow is shown at the top.
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Table 8.7: Responses of one of the experiments.

Response Unit Value

Total cost $ 441158.99191905

Total energy usage per kg kWh/kg 1.7326908329483

Total mass kg 35163.823145303

CO2 emission material kg 936160.03926

CO2 emission process kg 80500.2194054

Total CO2 emission kg 1016660.2586654

Max displacement (X) mm 0.10709

Max displacement (Y) mm 0.41241

Max displacement (Z) mm 0.3743

Min displacement (X) mm -0.27176

Min displacement (Y) mm -0.12624

Min displacement (Z) mm -0.70699

Cooling time s 7.5761

Cycle time s 9.5372

Filling time s 1.9611

Packing time s 11.9511

Filling clamp force N 236380

Packing clamp force N 766640

Max abs warpage mm 0.70699

Max clamp force kg 78148.827726809

Figure 8.20: Screenshot taken from Moldflow. It shows the mould model, laptop bezel, and
cooling systems.

the time that is needed to fill the mould cavity with plastic. The four gates (design variable
Number of gates) are visible in this screenshot. The last result shows the temperature of
the coolant inside the cooling system (see Figure 8.22).
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Figure 8.21: Screenshot taken from Moldflow. It shows the filling analysis results. Parts in
red take the longest time to reach.

Figure 8.22: Screenshot taken from Moldflow. It shows the cooling analysis results.

8.3 Discussion

The past use case demonstrated the five steps of the methodology for modelling a simu-
lation workflow for an MDO problem. It began with an analysis of an ad hoc solution,
which illustrated that a methodology is in fact necessary for problems that involve this
many disciplines. Without, there is an increased risk that the end result becomes incom-
prehensible. The consequence is that knowledge cannot be shared or reused.
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Modelling the workflow step-by-step, in a top-down approach, ensures that knowledge in
the workflow can be retraced to its owner. Moreover, the informal representation of the
workflow makes it easier for non-SWFM experts to understand what the workflow does.
Process knowledge is captured in the HLAs. This enables novice users, for instance a
design engineer, to model the workflow at a higher abstraction level than the PIDO level.
Furthermore, with the captured knowledge, it is possible to create intelligent solutions,
such as the automatically derived SFTP file transfers. This reduces the amount of work
for the user, and more importantly, the required expertise.

Altogether, the Pegasus workflow has been a good test that shows the potential of the
methodology. It is a step closer to practical use, although more testing and development
is required to make the system fully functional for the industry. The current WFMS is
still a prototype, and there are many things to improve.

Limitations and Future Direction

The first limitation is that the functionality of the wrapper needs to be expanded. Some
actions required manual input from the user, which would not be acceptable in an au-
tomated system. A future version of the Python wrapper should at least include the
functions to generate an input file in Optimus, and expand the number of execution
methods.

The end of Section 8.1 introduced a high-level engineering workflow for this MDO problem.
That level of abstraction is achieved by modelling High-level Engineering Services (HES).
In the Pegasus workflow, the Moldflow analysis could be modelled as a HES. The HES
groups the Moldflow activities under one activity. Thus, the Moldflow HES consists of
the HLAs defined in this use case (see Figure 8.23). The inputs are geometry and script
files, and the outputs of the service are cooling time, max abs warpage, and max clamp
force. The HES simplifies adding a Moldflow analysis to the workflow even further.

Moldflow
HES

composed of

geometry files,
script files

preprocessing analysis

postprocessing

outputinput

Create 
Moldflow

model

Perform
Moldflow
analysis

Calculate
cooling

time

Calculate
max abs
warpage

Calculate
max clamp

force

cooling time,
max abs warpage,
max clamp force

yFile

Figure 8.23: The transformation steps of the Moldflow HES are HLAs defined in this use
case.



Chapter 9

Conclusions and Recommendations

This thesis presented a new methodology for WFM and an integration framework that
couples a KB, KBE tool, and PIDO tool. Two use cases have demonstrated how the
methodology is applied to model a simulation workflow in a top-down approach. Based
on those experiences, several conclusions can be drawn. Additionally, recommendations
are given for future developments that will further improve these solutions.

9.1 Conclusions

The conclusions are based on the research goals presented in Chapter 1.

� Goal 1: Investigate how current Workflow Management Systems can be comple-
mented with knowledge management technologies and find solutions for reducing the
complexity of Workflow Management.

Setting up simulation workflows in a WFMS requires a fair amount of (low-level) IT
knowledge. Therefore, the first goal was to research and develop a solution for capturing
and storing this knowledge in a way that it can be shared and reused.
This is where MOKA, a methodology for developing KBE applications, came into the
picture. MOKA focuses on capturing and structuring knowledge to increase transparency
of KBE applications. It introduced a methodological approach, with an Informal and
Formal Model, to clarify what knowledge went into the applications. This would improve
the ability to share and reuse knowledge in future projects.

However, MOKA could not be applied straight away to WFM, as the methodology fell
short on modelling process knowledge. MOKA attributes this to the complexity and vari-
ety of design processes. Therefore, this research narrowed down the domain to simulation
workflows and design optimisation.

� Goal 2: Extend the MOKA methodology with an ontology for storing process knowl-
edge (on an informal and formal level) in a platform-independent and transparent
model, as to maximise the potential for sharing and reusing this knowledge.

127
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A new methodology has been developed, named MOKA 2. For this thesis, the focus
was on the process side. The main contribution is the step-by-step instructions for mod-
elling simulation workflows following a top-down approach. As a result, transparency of
simulation workflows has increased because of the link to the source of the knowledge.
Furthermore, the standardised approach facilitates sharing and reuse of knowledge in
other projects.

At the informal level, new Problem-, Discipline-, and Tool-forms have been devel-
oped to extend ICARE. The original ICARE-forms do not capture design problem and
simulation workflow knowledge. Moreover, BPMN and an N2 notation have been in-
troduced to visualise the relationships between these forms. At the formal level, a formal
process ontology has been developed, with relations to the product and rule ontologies.
The objective was to reduce complexity of SWFM, so that less expertise is required to
model simulation workflows and perform design optimisation. This is achieved by bringing
SWFM to a higher abstraction level, with High-Level Activities (HLA) and High-
level Engineering Services (HES) as reusable building blocks. The path to a higher
level led to the design of a parametric high-level workflow, the KBE Centric Work-
flow, which enables users to optimise KBE product models without actually modelling
a workflow. The KBE Centric Workflow contains the knowledge to build the workflow
based on information from the problem definition.

� Goal 3: Build and demonstrate an advanced Workflow Management System in
a number of use cases varying in scope and complexity, that captures and reuses
process knowledge for automatic generation of simulation workflows.

� Goal 4: Integrate the Workflow Management System into an engineering design
framework that supports Knowledge Based Engineering applications and Multi-disciplinary
Design Optimisation.

Workflows are automatically generated and executed by Optimus, which runs as a web
service in the background. The Optimus web service is a cornerstone of the integration
framework: a triangle between a Knowledge Base (KB), product (KBE), and process
(PIDO) tools. Within this framework, two couplings have been developed: a KB–PIDO
and a KBE–PIDO coupling.
The KB–PIDO coupling uses Model Driven Software Engineering (MDSE) techniques
to generate simulation workflows automatically from the knowledge in the Formal Model.
This avoids the step of manually translating knowledge to an executable workflow, to save
time and to make it more accessible to non-experts.
The KBE–PIDO coupling on the other hand, is a solution for programmers who want
to quickly perform design optimisation. The new problem and workflow Domain-
Specific Languages (DSL) provide the tools for programmers to model design problems
and simulation workflows inside the KBE environment.

At the end, it can be concluded that the research goals have been fulfilled for the most
part. This research demonstrated in a number of use cases how:

• knowledge management technologies are applied to WFMS.
• process knowledge is captured and structured on an informal and formal level.
• simulation workflows are automatically generated.
• a KB, product, and process tools are integrated into a framework.
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The methodology also presented new solutions to reduce complexity of SWFM. However,
more extensive research is required to measure the extent to which it has been reduced.
This has not been quantified in this research. Future work can improve the current
accomplishment by following the recommendations in the next section.

9.2 Recommendations

Based on the work performed, several recommendations are given for further improve-
ments that can be made.

Web interface. The first, and likely the most important improvement, is to build a
working web interface for modelling diagrams and the ontology. To make it more accessible
and to raise acceptance among engineers, it is essential to provide intuitive interfaces to
the system. Ideally, it should be integrated with the product and rule modelling interfaces
to create a unified interface to the design system.

Round-tripping. Round-tripping is another valuable feature that would enrich the
system. If the system can automatically return simulation results and process knowledge
from workflows (i.e. reverse automatic workflow generation) to the KB, then users will
always have access to the latest data.

More use cases. Currently, the methodology has been applied to a relatively simple
optimisation problem and a more complex MDO problem. However, a few use cases are
not sufficient to verify the tools and methods. The methodology and framework should
be tested in more use cases, and preferably in an actual engineering environment. This
will most likely generate feedback from engineers, which can be used to further improve
the methodology.

Postprocessing. With the current prototype, postprocessing is only possible from within
the Optimus GUI. But because it is an essential feature for design systems, it is recom-
mended to include postprocessing capabilities in the web interface.

Extend optimisation algorithms. As the system has been built as a prototype, it
does not include all available algorithms that Optimus provides. The Python wrapper
needs to be extended with the remaining algorithms.

More high-level parametric processes. High-level parametric processes, such as the
KBE Centric Workflow, proved to be a valuable contribution to making design opti-
misation more accessible. Future research should focus on developing more high-level
processes, as these processes simplify WFM with intelligent solutions.

Automate the formalisation process. The next step for the formalisation process is
to use rules or an algorithm that formalises knowledge automatically.
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Appendix A

Workflow Modelling Languages

This chapter describes the search for a new workflow modelling language that will be used
in the newly developed Workflow Management System (WFMS). This is desired because
well-known PIDO solutions all have their own modelling language designed specifically
for their platform and not based on industry standards. As a result, users are restricted
to using the native language that is provided. This has several disadvantages.

When the language is not an industry standard, and thus only used in one PIDO system,
then people need to be trained to use the notation. Their gained expertise is not trans-
ferable to another system though. Thus, the amount of qualified experts remains small.
If the PIDO solution is not widely adopted, it will be difficult to find experienced people.
Another consequence is vendor lock-in. This occurs when all the workflows have been
modelled in the vendor’s language, and have become dependent on one platform. Switch-
ing to another PIDO solution will be costly, since saved workflows are not easily transfer-
able and need to be translated to the new language. Even then, it is not certain whether
that is possible. When it is not entirely clear what the workflows are supposed to do, it
will be very difficult, if not impossible, to recreate the workflow in the new language.
Finally, the platform-specific languages do not align with higher level (business) processes.
These processes define what the simulation workflow is supposed to do, and how it con-
tributes to the overall design process. The higher level process needs to be mapped onto
the simulation workflow. This extra step is a non-value adding and time consuming task.

From these reasons emerged the goal to find a neutral language, that is platform-independent
and easy to learn and use also for non-IT experts. Ultimately, it has to fulfil these re-
quirements:

• The language has to provide a graphical notation. Modelling workflows is more
intuitive using diagrams than code.

• Preferably, the language has been designed for execution, as it may facilitate auto-
matic workflow generation.

• The language has to be standardised to ensure that workflows are easily portable
between systems.
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• Besides standardisation, the language should be widely supported. This guarantees
that a sufficient amount of qualified experts is available, that it is well documented,
and that there are enough tools available supporting the language.

• The language must be easy to learn and use. Companies are hesitant to adopt new
technological solutions if it is not clearly understood. Therefore, it is important to
lower the threshold for new users.

The Business Process Management (BPM) community has put much effort in developing
standardised notations for modelling processes. Moreover, as these notations are intended
for business users, simplicity has been highly regarded. Therefore, BPM would be a good
source for finding a suitable language. The most popular languages are briefly analysed
in the section below.

Unified Modeling Language – Activity Diagram

The Unified Modeling Language (UML) is a family of notations, originally designed for
object oriented programming. Since then, it has grown to become the number one stan-
dard in the programming field. Although UML diagrams have been designed for software
modelling, the UML Activity Diagrams (UML AD) are occasionally used for modelling
business processes as well. The characteristics of UML AD are listed in Table A.1.

Table A.1: Strengths and weaknesses of UML Activity Diagrams.

Strengths Weaknesses

• Provides a standardised graphical notation
• Comprehensive support for control flow and

data flow (Russell et al., 2006)
• The UML standard dominates the software

modelling domain

• Some of their constructs lack a precise syntax
and semantics (Dumas & ter Hofstede, 2001).

• Limited in modelling organisational aspects of
business processes (Russell et al., 2006).

Business Process Modeling Notation

The Business Process Modeling Notation (BPMN) is by far getting the most attention
from the BPM community in the last few years. Partly because it has been adopted by the
Object Management Group (OMG) as a BPM standard. It became popular as a graphical
standard, but since version 2.0 the BPMN specification has included execution semantics.
Formerly it relied on other technologies for execution (often BPEL). Furthermore, because
BPMN has been designed for the business user, it is easy to learn, even for non-IT
specialists. Table A.2 summarises the characteristics of BPMN.

Event-driven Process Chain

Another language that is often encountered in BPM is Event-driven Process Chain (EPC).
Similar to BPMN, EPC was not designed for modelling executable processes, but rather
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Table A.2: Strengths and weaknesses of BPMN.

Strengths Weaknesses

• Provides a standardised graphical notation
• Easy to understand for non-IT experts
• BPMN 2.0 includes execution semantics
• A subset of BPMN can be naturally trans-

formed to BPEL for execution

• The BPMN 2.0 execution language is still very
new and not thoroughly tested and supported

• BPMN was initially not designed for process ex-
ecution, but for communication between people

for visualising business processes. It provides the expressiveness to include business-
oriented elements directly in the process. Although EPC is quite well supported, it has
not become a standard. The characteristics of EPC are described in Table A.3.

Table A.3: Strengths and weaknesses of EPC.

Strengths Weaknesses

• EPC is more expressive in linking with
business-oriented elements than most languages

• Is therefore most often used for high-level busi-
ness processes

• It is easier to learn than BPMN

• Less expressive in control flow structures than
BPMN

• Although regularly used, it is not a standard

Business Process Execution Language

BPEL is the preferred execution language for business processes. It has been designed
from the start as an orchestration language for web services. Due to this different ap-
proach, BPEL does not have a standard graphical notation, which was considered as
out of scope. Furthermore, it is part of the WS-∗ (read “WS-Star”) standards for web
services. BPEL’s strengths and weaknesses are listed in Table A.4.

Table A.4: Strengths and weaknesses of BPEL.

Strengths Weaknesses

• BPEL is one of the most frequently used and
widely accepted industry business process exe-
cution language

• Is one of web service standards (WS-∗)
• Focuses on operational semantics for executing

processes, but provides both a programmatic
and graph-oriented approach

• Not great in dealing with data structures and
complex control flows

• No standardised graphical notation
• Limited expressibility compared to BPMN,

which is not ideal for BPM
• No native support for human tasks, but exten-

sions are available with BPEL4People and WS-
HumanTask

Yet Another Workflow Language

YAWL stands for Yet Another Workflow Language, and seems to be designed as a replace-
ment for BPEL. It is an extension of petri nets, which is a mathematical modelling lan-
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guage for processes. Having this mathematical foundation has the benefit that processes
can be analysed more easily. YAWL is thus built on a strong basis, but its acceptance as
a new standard has not occurred yet. See Table A.5 for the characteristics of YAWL.

Table A.5: Strengths and weaknesses of YAWL.

Strengths Weaknesses

• Integrated support for human tasks
• Formal semantics based on mathematical foun-

dation
• Includes (formal) graphical notation

• It is not a standard and neither supported by
industry; currently it is a single system mainly
developed by academia

• No support for meta-modeling, to describe
what the workflow does

Trade-off

Based on the analysis of all languages, a decision can be made in a direct comparison.
The trade-off is done qualitatively using equal weight factors. Each language is evaluated
on the criteria mentioned in the introduction. The results are shown in Table A.6.

Table A.6: Trade-off of the various workflow modelling languages.

Criteria Weight UML BPMN EPC BPEL YAWL
Graphical notation 1 ++ ++ ++ - ++
Designed for execution 1 - + - - ++ ++
Standardised 1 ++ ++ - ++ -
Widely adopted 1 ++ ++ + ++ -
Easy to use 1 + + + - 0
Score max: 10 6 8 1 4 2

BPMN has the highest score after the trade-off, because it is the most complete language
of these five. That may also be the reason that it is quickly becoming the industry
standard in BPM. Its direct competitor, UML AD, is in fact very similar to BPMN. Even
the graphical notation shows some similarities. However, it lost points on execution,
because UML AD cannot be mapped to execution code in contrast to BPMN (Ko et al.,
2009). Moreover, UML AD is losing followers who seem to favour BPMN for process
modelling.

EPC and YAWL have mainly lost points because both languages have not been standard-
ised. The last one, BPEL, has proven itself as a formal execution language, but failed as
a graphical notation. Because of its focus on execution, many implementations of BPEL
only provide a graphical interface that reflects the code underneath (Ko et al., 2009).
This is far from optimal when it comes to ease of use.



Appendix B

Code Documentation

This chapter provides more extensive documentation for the code that has been written
during this research. The schematic architecture shown in Chapter 5 has been repeated
here (see Figure B.1).
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Figure B.1: Architecture of the integration framework. The GenDL server code is written
in Common Lisp.

The programming can be divided into two sections: Common Lisp (CL) code and
Python code. The CL code inside the GenDL server manages all the interactions
with the triple store (AllegroGraph), interprets the knowledge, and sends requests to
the Python server to generate the workflow. This process is fully automated and does
not require human intervention (except for triggering the whole process). It provides the
connection between the KB and Optimus.
The Python code is written to wrap around the Optimus Python API. The wrapper
simplifies interaction with the API. Additionally, it has a built-in server that allows users
to send HTTP requests to generate and execute simulation workflows. Through this
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functionality, Optimus has not only become available to the GenDL server, but to everyone
who has access to the server.
The following sections explains how the code is built up.

B.1 Common Lisp Code

The CL code consists of an interpreter, query manager, and request manager. Together,
these modules ensure a smooth transition from formal knowledge to simulation workflow.
The interpreter is the centre of this subsystem. It controls the main generation process
and is supported by the other modules in this process (see Figure B.2). The query
manager manages all the interactions with the triple store. It only queries the triple store
and returns the results untouched. To keep functions separated, only the interpreter is
able to “interpret” the query results. The remaining component is the request manager.
The request manager is in control of all outgoing HTTP requests to the Python server.
Data is sent in the JSON format. JSON is an alternative to XML that is more concise and
easier to parse by computers. It is a very popular format on the web, because it is natively
supported in JavaScript. The main elements of JSON are object (curly braces {}) and
arrays (square brackets [ ]). Objects contain key-value pairs, similar to dictionaries or
hash-tables in programming languages, and arrays are lists of values. The example below
shows how both elements are used to store data.

{"inputarray" : {"name" : "Design variables", "pos" : [100, 200], "vars" : [

{"name" : "length", "nominal" : 5, "lowerbound" : 1, "upperbound" : 10},

{"name" : "width", "nominal" : 5, "lowerbound" : 1, "upperbound" : 10},

{"name" : "height", "nominal" : 5, "lowerbound" : 1, "upperbound" : 10}]}}

This example will create an input array in Optimus with the name “Design variables” at
the position (100, 200) (x,y-coordinates). Next to the key “vars” begins an array that
contains the design variables length, width, and height.

Figure B.2 shows an UML Activity Diagram of the CL code. At the beginning of the
process, before tasks can be generated, Graphviz is called to determine the x,y-coordinates
of every task in the workflow. Thereafter, the interpreter will loop through all the tasks
and generate these one after another. In this loop, the interpreter determines the type
of the task, retrieves values for necessary input parameters, and sends requests to the
Python server to generate the task. When all tasks are created, the interpreter sends
requests to generate all connections (sequence and data flow). At this point, the entire
workflow has been generated. The final step is to set up the execution method. If the
command is given to execute the workflow immediately, Optimus will execute it and save
the project once it finishes the run. Otherwise, the project is saved immediately, so that
the user can open the workflow in Optimus for inspection.

B.2 Python Code

The Python code is inspired by the facade pattern (see Figure B.3), one of the infamous
design patterns for object oriented programming (Gamma et al., 1994). The facade pat-
tern is, analogous to an architectural facade, a wall that hides everything behind the
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Figure B.2: UML Activity Diagram of the automatic workflow generation process.
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facade. Thus, in programming a facade is a higher level interface that simplifies interac-
tion with the (sub)system behind the facade. Users interact only with the facade, hence
are not troubled with the code behind it. The abstraction works very well for creating
the wrapper code around the Optimus API.

Facade

client classes

subsystem classes

Figure B.3: The facade pattern; one of the many design patterns for object oriented pro-
gramming (source: Gamma et al., 1994)

Figure B.1 shows that the Python code consists of a request handler, execution manager,
and builder. The request handler contains the server functions, and ‘listens’ to incoming
HTTP requests and relays requests to the appropriate wrapper functions. These requests
are processed by the execution manager. This module is connected to the Optimus
API (e.g. for managing Optimus projects), but also directs the builder, which creates
the various workflow elements. The builder in Figure B.1 is divided into two modules:
an item builder and execution configurator. The item builder creates all the workflow
elements, whereas the execution configurator is responsible for setting up the execution
method.

Table B.1: All the functions of the Python server. The function is described by its path in
a URL. The full URL would become: http://host:port/optimus/start/project

Server functions Description

1. /optimus/start/project Starts a new Optimus project

2. /optimus/saveandclose/project Saves and closes the Optimus project

3. /optimus/create/input Creates an input array containing input variables

4. /optimus/create/output Creates an output array containing output variables

5. /optimus/create/action Creates an “action” element that can execute a script

6. /optimus/create/uca Creates a User Customisable Action (UCA), which is
defined by the user to perform a custom task (e.g. send
HTTP request to a web service)

7. /optimus/create/file Creates a file object

8. /optimus/create/connection Creates a connection between two workflow nodes

9. /optimus/configure/execution Configures the execution method

10. /optimus/execute/workflow Triggers execution of the workflow

Table B.1 presents the URLs of all the server functions. The server is built with the
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Bottle web framework (v0.10.2) (Hellkamp, 2012), which is, besides the Optimus Python
API module, the only external module (i.e. not in the standard Python library) used in
the Python code. The server simply redirects the requests to the appropriate wrapper
function. The code for the wrapper is described in the UML diagram in Figure B.4.
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EM = Execution Manager
Module names
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Figure B.4: UML class diagram of the wrapper around the Optimus Python API.

The main component is the Workflow class, which contains the functions that are accessed
by the server. These functions either interact directly with the API or instantiate one
of the other classes. Every class is in itself a facade, as many methods of the classes are
private (denoted by the minus sign in front of the method name). The Workflow class
can simply call the top-level function, provide the necessary input, and the responsible
class will take care of the request.
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Appendix C

MOKA 2: Tools and Methods

This chapter is an addition to Chapter 4, which describes MOKA 2. It contains the new
Discipline-, Activity-, and Tool-forms that are part of the methodology, but have not
been presented in Chapter 4. Since the Problem-form is already included in Chapter 4,
it is not repeated here.
Furthermore, Figures C.4 and C.5 show the ontologies for product and rule respectively.
The ontologies have been included for completeness and are not further explained here.
The product ontology is covered in detail by van Dijk (2013), while the rule ontology is
explained by Reijnders (2012).

The first form, the D-form, captures relevant knowledge for understanding disciplines (see
Figure C.1). It describes the discipline’s inputs and outputs, and the involved P-, A-, and
E-forms.
The A-form is modified from the original A-form in MOKA’s ICARE to describe simula-
tion workflow activities. The main addition is the more detailed description of input and
output parameters (see Figure C.2).
Finally, the T-form captures knowledge for interacting with tools (see Figure C.3). Ad-
ditionally, it includes the necessary information for selecting the right tool for a cer-
tain design task, such as idealisations that have been applied or the context of the tool
(e.g. buckling analysis). The second table at the bottom is designed to describe web
services, with fields for the HTTP request and HTTP response.

Figure C.6-C.8 show additional user interface mockups for modelling N2 diagrams, filling
in ICARE PDT-forms, and modelling the ontology in the Formal Model. The notation
used in Figure C.8 is based on UML class diagrams, although an extension is needed to
cover OWL. An option is to use OWLGrEd by Bārzdiņs̆ et al. (2013).
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Figure C.1: The new Discipline form (D-form) captures discipline-specific knowledge.

Figure C.2: The modified Activity form (A-form) captures knowledge about activities.
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Figure C.3: The new Tool form (T-form) captures knowledge about software tools.
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Figure C.4: UML diagram of the product ontology (source: van Dijk, 2013).
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Figure C.5: UML diagram of the rule ontology (source: Reijnders, 2012).
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Figure C.6: User interface mockup for modelling N2 diagrams.

Figure C.7: User interface mockup for filling in ICARE PDT-forms.
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Figure C.8: User interface mockup for modelling the ontology in the Formal Model.



Appendix D

Rules for Automatic Workflow
Generation

This chapter contains all the rules that have been modelled for automatic workflow gen-
eration. These rules have been applied to both the packaging use case (Chapter 7) and
MDO use case (Chapter 8). Some rules are applicable to both use cases, while others
are tailored specifically to that use case. Rules that are applied to both, may eventually
become part of the methodology. But with only two use cases, it is not certain whether
these rules are truly generic. Below, in Table D.1, is an index of all rules, including their
domain, description, and the use case it has been applied to.

Two rules have already been explained in the packaging use case (R4 and R21). There
are a total of 29 rules that have been used. Not all rules are explained in this chapter,
as all the rules together take up more than a 1000 lines of code. Instead, six rules have
been selected and are explained in Figures D.1–D.7. The rest of the rules are included,
but not explained in detail.
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Table D.1: Rules index

ID Domain Title In use case
R1 General hasValue restrictions packaging,

MDO
R2 General Inherit hasValue restrictions MDO
R3 General Dataflow packaging,

MDO
R4 HLA Instantiate flow elements packaging,

MDO
R5 HLA Connect sequenceflows packaging,

MDO
R6 HLA Map input from sub-process to tasks packaging,

MDO
R7 HLA Map output from sub-process to tasks packaging,

MDO
R8 HLA Map product model from sub-process to tasks packaging,

MDO
R9 HLA Instantiate data objects in sub-processes packaging,

MDO
R10 HLA Attach file parameters to files in high level processes MDO
R11 HLA Map product name to query parameter packaging,

MDO
R12 HLA Map product attribute to query parameter (get-parameter) packaging,

MDO
R13 HLA Map product attributes to query parameter (set parameter; variable) packaging,

MDO
R14 HLA Map product attribute to query parameter (set parameter; fixed; re-

quired)
MDO

R15 HLA Map product attribute to query parameter (set parameter; optional;
process default)

MDO

R16 HLA Map required input parameters to query parameter (variable) MDO
R17 HLA Map required input parameters to query parameter (required; fixed) MDO
R18 HLA Map required input parameters to query parameter (optional; process

default)
MDO

R19 KBECWF Instantiate file parameters packaging
R20 KBECWF Bind product to activities packaging
R21 KBECWF Design variable input (part 1) packaging
R22 KBECWF Design variable input (part 2) packaging
R23 KBECWF Objective function input (part 1) packaging
R24 KBECWF Objective function input (part 2) packaging
R25 KBECWF Constraint input (part 1) packaging
R26 KBECWF Constraint input (part 2) packaging
R27 Intelligence Automatic file transfer (SFTP) MDO
R28 Moldflow Configure Send SettingsFile MDO
R29 Moldflow Configure Retrieve SimulationResults MDO
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THEN create a dataflow property 
between these activities

IF the output of an activity
is the input of another activity
(i.e. ?par1 and ?par2 have the
same UPI)

And(
?activity1[
    hasOutput -> ?par1]
?activity2[
    hasInput -> ?par2]
?par1[
    hasParameterID -> ?upi]
?par2[
    hasParameterID -> ?upi]
Not(
?activity1[
    dataflowTo -> ?activity2]
)
)

And(
Do(Assert(?activity1[
    dataflowTo -> ?activity2]
))
)

Antecedent

Consequent

Figure D.1: R3 - Dataflow

Listing D.1: R1 - hasValue restrictions

I f
And(
? subj [ type −> ? c l a s s ]
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> ?pred
hasValue −> ? obj ] )

Then
And(
Do( Assert (? subj [ ? pred −> ? obj ] ) ) )

Listing D.2: R2 - Inherit hasValue restrictions

I f
And(
? subc l a s s [ subClassOf −> ? c l a s s ]
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

hasValue −> ? obj
onProperty −> ?pred ] )

Then
And(
Do( Assert (? subc l a s s [ subClassOf −> External ( func : new−i n d i v i dua l (? c l a s s ? r e s t r ) ) ] ) )
Do( Assert ( External ( func : new−i n d i v i dua l (? c l a s s ? r e s t r ) ) [

type −> Res t r i c t i o n
onProperty −> ?pred
hasValue −> ? obj ] ) ) )

Listing D.3: R5 - Connect sequenceflows

I f
And(
? proce s s [ f lowElements −> ? f low

flowElements −> ?node ]
? f low [ type −> ? c l a s s ]
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> ? r e f
valuesFrom −> ? obj ]

?node [ type −> ? obj ]
External ( func : resource−of−type (? f low SequenceFlow ) ) )

Then
And(
Do( Assert (? f low [ ? r e f −> ?node ] ) ) )
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And(
?activity[
    type -> ?class
    hasInput -> ?input
    hasModel -> ?model]
?class[
    subClassOf -> ?restr1
    subClassOf -> ?restr2]
?restr1[
    type -> Restriction
    onProperty -> qp_variables
    minCardinality -> ?x1]
?restr2[
    type -> Restriction
    onProperty -> qp_values
    minCardinality -> ?x2]
qp_variables[
    label -> ?name1]
qp_values[
    label -> ?name2]
?input[
    hasParameterID -> ?upi
    binding -> ?attr
    variable -> "true"]
?model[
    ?attr -> ?x]
)

And(
Do(Assert(?activity[
    qp_variables -> External(func:write-query-array(?name1 
        External(func:URI2literal(?attr)) ?activity))
    qp_values -> External(func:write-query-array(?name2 
        External(func:dollarize(External(func:URI2literal(?upi)))) ?activity))]
))
)

Antecedent

Check if ?model has this ?attr

Write the query parameter
in the form variables(i)=?attr

Write the query parameter
in the form values(i)=$?attr$

activity has an ?input
and (product) ?model

the activity requires values 
for the query parameters 
“variables(i)” and “values(i)”

?input is variable, has 
a UPI, and a binding to a 
product attribute (?attr)

Consequent

Figure D.2: R13 - Map product attributes to query parameter (set parameter; variable)

Listing D.4: R6 - Map input from sub-process to tasks

I f
And(
? sp [ f lowElements −> ? a c t i v i t y

hasInput −> ? input ]
? a c t i v i t y [ type −> ? c l a s s ]
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> hasInput ]
Or(
? r e s t r [ valuesFrom −> ? inputtype

someValuesFrom −> ? inputtype
al lValuesFrom −> ? inputtype ] )

External ( func : resource−of−type (? input ? inputtype ) ) )
Then

And(
Do( Assert (? a c t i v i t y [ hasInput −> ? input ] ) ) )

Listing D.5: R7 - Map output from sub-process to tasks

I f
And(
? sp [ f lowElements −> ? a c t i v i t y

hasOutput −> ? output ]
? a c t i v i t y [ type −> ? c l a s s ]
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> hasOutput ]
Or(
? r e s t r [ valuesFrom −> ? outputtype

someValuesFrom −> ? outputtype
al lValuesFrom −> ? outputtype ] )
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?input is fixed and optional. 
If there is no parameterValue, 
then take the processDefault

Write the query parameter
in the form ?name=?value

activity has an ?input

activity has a fixed query string.
?query matches to one of the
query parameters. Its name is
stored under ?name

the query parameter 
has a link to ?input

And(
?activity[
    type -> ?class
    hasInput -> ?input]
?class[
    subClassOf -> ?restr]
?restr[
    type -> Restriction
    onProperty -> ?query
    cardinality -> ?x]
?query[
    label -> ?name
    expects -> ?valueof]
?valueof[
    fromSource -> ?source]
?source = ?input
Not(
?input[
    parameterValue -> ?y]
)
?input[
    variable -> "false"
    required -> "false"
    processDefault -> ?value]
)

And(
Do(Assert(?activity[
    ?query -> External(func:write-query-parameter(?name ?value))]
))
)

Antecedent

Consequent

Figure D.3: R18 - Map required input parameters to query parameter (optional; process
default)

External ( func : resource−of−type (? output ? outputtype ) ) )
Then

And(
Do( Assert (? a c t i v i t y [ hasOutput −> ? output ] ) ) )

Listing D.6: R8 - Map product model from sub-process to tasks

I f
And(
? sp [ f lowElements −> ? a c t i v i t y

hasModel −> ?model ]
? a c t i v i t y [ type −> ? c l a s s ]
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> hasModel ] )
Then

And(
Do( Assert (? a c t i v i t y [ hasModel −> ?model ] ) ) )

Listing D.7: R9 - Instantiate data objects in sub-processes

I f
And(
? sp [ f lowElements −> ? a c t i v i t y

f lowElements −> ? a c t i v i t y 2 ]
? a c t i v i t y [ type −> ? c l a s s ]
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> hasOutput
valuesFrom −> ? outputtype ]

? a c t i v i t y 2 [ type −> ? c l a s s 2 ]
? c l a s s 2 [ subClassOf −> ? r e s t r 2 ]
? r e s t r 2 [ type −> Res t r i c t i o n

onProperty −> hasInput
valuesFrom −> ? inputtype ]
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activity has ?input, ?output,
and (product) ?model

Check if ?model has this ?attr

relate file parameter to the file fill in values for the file parameter
and create a binding to ?output

?input is a file that has a 
restriction on the property
hasParameter

the product attribute’s name needs
to be parsed from the file

And(
?sp[
    flowElements -> ?activity]
?activity[
    hasInput -> ?input
    hasOutput -> ?output
    hasModel -> ?model]
?input[
    type -> ?class]
?class[
    subClassOf -> ?restr]
?restr[
    type -> Restriction
    onProperty -> hasParameter]
Or(
?restr[
    valuesFrom -> ?par
    someValuesFrom -> ?par
    allValuesFrom -> ?par]
)
?output[
    binding -> ?attr]
?model[
    ?attr -> ?x]
)

And(
Do(Assert(?input[
    hasParameter -> External(func:new-individual(?par ?output))]
))
Do(Assert(External(func:new-individual(?par ?output))[
    type -> ?par
    label -> External(func:URI2literal(?attr))
    binding -> ?output]
))
)

Antecedent

Consequent

Figure D.4: R19 - Instantiate file parameters

? outputtype = ? inputtype )
Then

And(
Do( Assert (? a c t i v i t y [ hasOutput −> External ( func : new−i n d i v i dua l (? sp ? outputtype ) ) ] ) )
Do( Assert (? a c t i v i t y 2 [ hasInput −> External ( func : new−i n d i v i dua l (? sp ? inputtype ) ) ] ) )
Do( Assert ( External ( func : new−i n d i v i dua l (? sp ? outputtype ) ) [ type −> ? outputtype ] ) ) )

Listing D.8: R10 - Attach file parameters to files in high level processes

I f
And(
? act [ hasInput −> ? f i l e

hasOutput −> ? output ]
? output [ b inding −> ? f i l e p a r ]
External ( func : resource−of−type (? f i l e p a r Fi leParameter ) )
External ( func : resource−of−type (? f i l e F i l e ) ) )

Then
And(
Do( Assert (? f i l e [ hasParameter −> ? f i l e p a r ] ) ) )

Listing D.9: R11 - Map product name to query parameter

I f
And(
? a c t i v i t y [ type −> ? c l a s s

hasModel −> ?model ]
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> ? query ]
? query = qp productIID
?query [ l a b e l −> ?name ] )

Then
And(
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ensure that ?file is of the right type

search for two activities: 
one hasOutput ?file and 
the other one hasInput the same ?file

check if the tools are not on 
the same server as Optimus

activity1 has an output folder 
that is not the same folder as
the input folder of activity 2

the activities are performed 
by their respective servers

And(
?wf[
    flowElements -> ?epp1
    flowElements -> ?epp2]
?epp1[
    hasOutput -> ?file
    outputFolder -> ?of
    flowElements -> ?activity1
    type -> ?class1]
?epp2[
    hasInput -> ?file
    inputFolder -> ?if
    flowElements -> ?activity2
    type -> ?class2]
External(func:resource-of-type(?file File))
Not(
?of = ?if)
?activity1[
    performedBy -> ?server1]
?activity2[
    performedBy -> ?server2]
?class1[
    subClassOf -> ?restr1]
?restr1[
    type -> Restriction
    onProperty -> hasOutput
    someValuesFrom -> ?filetype1]
?class2[
    subClassOf -> ?restr2]
?restr2[
    type -> Restriction
    onProperty -> hasInput
    someValuesFrom -> ?filetype2]
?file[
    type -> ?filetype1
    type -> ?filetype2]
Optimus-Server[
    host -> ?opthost]
?server1[
    host -> ?host1]
?server2[
    host -> ?host2]
Not(
?opthost = ?host1)
Not(
?opthost = ?host2)
?flow[
    sourceRef -> ?epp1
    targetRef -> ?epp2]
)

Antecedent

Figure D.5: R27 (Antecedent) - Automatic file transfer (SFTP)

Do( Assert (? a c t i v i t y [ ? query −> External ( func : write−query−parameter (?name
External ( func : URI2 l i t e r a l (?model ) ) ) ) ] ) ) )

Listing D.10: R12 - Map product attribute to query parameter (get-parameter)

I f
And(
? a c t i v i t y [ type −> ? c l a s s

hasModel −> ?model
hasOutput −> ? output ]

? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> ? query ]
? query = qp response s
? query [ l a b e l −> ?name ]
? output [ b inding −> ? a t t r ]
?model [ ? a t t r −> ?x ] )

Then
And(
Do( Assert (? a c t i v i t y [ ? query −> External ( func : write−query−array (?name

External ( func : URI2 l i t e r a l (? a t t r ) ) ? a c t i v i t y ) ) ] ) ) )
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instantiate SFTP transfer activity to “get” 
(retrieve) the files and provide all settings

instantiate SFTP transfer activity to “put” 
(send) the files and provide all settings

this property ensures that the connection between 
activity1 and activity2 will not be generated. It
is now replaced by the SFTP activities

create data flow connections 
from activity1 to SFTP transfer 
“get”, to SFTP transfer “put”, 
and then to activity2

assign the new SFTP transfer 
activities to the workflow

And(
Do(Assert(External(func:new-individual(?epp1 ?filetype1))[
    hasInput -> ?file
    type -> RetrieveSFTP
    fromFolder -> ?of
    toFolder -> "OptimusProjectFolder"
    sourceOfFilenames -> "LIST"
    transferType -> "MOVE"
    ftpServer -> ?server1
    dataflowTo -> External(func:new-individual(?epp2 ?filetype2))]
))
Do(Assert(?epp1[
    dataflowTo -> External(func:new-individual(?epp1 ?filetype1))]
))
Do(Assert(?wf[
    flowElements -> External(func:new-individual(?epp1 ?filetype1))
    flowElements -> External(func:new-individual(?epp2 ?filetype2))]
))
Do(Assert(External(func:new-individual(?epp2 ?filetype2))[
    hasInput -> ?file
    type -> SendSFTP
    fromFolder -> "OptimusProjectFolder"
    toFolder -> ?if
    sourceOfFilenames -> "LIST"
    transferType -> "MOVE"
    ftpServer -> ?server2
    dataflowTo -> ?epp2]
))
Do(Assert(?flow[
    doNotGenerate -> "true"]
))
)

Consequent

Figure D.6: R27 (Consequent) - Automatic file transfer (SFTP)

Listing D.11: R14 - Map product attribute to query parameter (set parameter; fixed; re-
quired)

I f
And(
? a c t i v i t y [ type −> ? c l a s s

hasInput −> ? input
hasModel −> ?model ]

? c l a s s [ subClassOf −> ? r e s t r 1
subClassOf −> ? r e s t r 2 ]

? r e s t r 1 [ type −> Res t r i c t i o n
onProperty −> qp va r i ab l e s
minCardinal i ty −> ?x1 ]

? r e s t r 2 [ type −> Res t r i c t i o n
onProperty −> qp va lues
minCardinal i ty −> ?x2 ]

qp va r i ab l e s [ l a b e l −> ?name1 ]
qp va lues [ l a b e l −> ?name2 ]
? input [ b inding −> ? a t t r

va r i ab l e −> ” f a l s e ”
parameterValue −> ? value ]

?model [ ? a t t r −> ?x ] )
Then

And(
Do( Assert (? a c t i v i t y [

qp va r i ab l e s −> External ( func : write−query−array (?name1
External ( func : URI2 l i t e r a l (? a t t r ) ) ? a c t i v i t y ) )

qp va lues −> External ( func : write−query−array (?name2 ? value ? a c t i v i t y ) ) ] ) ) )

Listing D.12: R15 - Map product attribute to query parameter (set parameter; optional;
process default)

I f
And(
? a c t i v i t y [ type −> ? c l a s s

hasInput −> ? input
hasModel −> ?model ]

? c l a s s [ subClassOf −> ? r e s t r 1
subClassOf −> ? r e s t r 2 ]

? r e s t r 1 [ type −> Res t r i c t i o n
onProperty −> qp va r i ab l e s
minCardinal i ty −> ?x1 ]

? r e s t r 2 [ type −> Res t r i c t i o n
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find the input folder
of the service

Fill in folders (path) and server 
for the SFTP transfer activity

this rule only fires when
the activity is of type
Send_SettingsFile

FTP server

And(
?sp[
    flowElements -> ?activity1
    flowElements -> ?activity2
    inputFolder -> ?if]
?activity1[
    type -> Send_SettingsFile
    hasInput -> ?file]
?activity2[
    performedBy -> ?server]
External(func:resource-of-type(?file File)))

And(
Do(Assert(?activity1[
    fromFolder -> "OptimusProjectFolder"
    toFolder -> ?if
    ftpServer -> ?server]
))
)

Antecedent

Consequent

Figure D.7: R28 - Configure Send SettingsFile

onProperty −> qp va lues
minCardinal i ty −> ?x2 ]

qp va r i ab l e s [ l a b e l −> ?name1 ]
qp va lues [ l a b e l −> ?name2 ]
? input [ b inding −> ? a t t r

va r i ab l e −> ” f a l s e ”
r equ i r ed −> ” f a l s e ”
proce s sDe fau l t −> ? value ]

?model [ ? a t t r −> ?x ]
Not (
? input [ parameterValue −> ?y ] ) )

Then
And(
Do( Assert (? a c t i v i t y [

qp va r i ab l e s −> External ( func : write−query−array (?name1
External ( func : URI2 l i t e r a l (? a t t r ) ) ? a c t i v i t y ) )

qp va lues −> External ( func : write−query−array (?name2 ? value ? a c t i v i t y ) ) ] ) ) )

Listing D.13: R16 - Map required input parameters to query parameter (variable)

I f
And(
? a c t i v i t y [ type −> ? c l a s s

hasInput −> ? input ]
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> ? query
c a r d i n a l i t y −> ?x ]

? query [ l a b e l −> ?name
expects −> ? va lueo f ]

? va lueo f [ fromSource −> ? source ]
? input [ hasParameterID −> ? upi

va r i ab l e −> ” true ” ]
? source = ? input )

Then
And(
Do( Assert (? a c t i v i t y [ ? query −> External ( func : write−query−parameter (?name

External ( func : d o l l a r i z e ( External ( func : URI2 l i t e r a l (? upi ) ) ) ) ) ) ] ) ) )

Listing D.14: R17 - Map required input parameters to query parameter (required; fixed)

I f
And(
? a c t i v i t y [ type −> ? c l a s s

hasInput −> ? input ]
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> ? query
c a r d i n a l i t y −> ?x ]

? query [ l a b e l −> ?name
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expects −> ? va lueo f ]
? va lueo f [ fromSource −> ? source ]
? source = ? input
? input [ v a r i ab l e −> ” f a l s e ”

parameterValue −> ? value ] )
Then

And(
Do( Assert (? a c t i v i t y [ ? query −> External ( func : write−query−parameter (?name ? value ) ) ] ) ) )

Listing D.15: R20 - Bind product to activities

I f
And(
?problem [ opt imizes −> ? product

solvedBy −> ?wf ]
?wf [ f lowElements −> ? a c t i v i t y ]
? a c t i v i t y [ type −> ? c l a s s ]
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> hasModel
valuesFrom −> ? source ]

External ( func : resource−of−type (? product ? source ) ) )
Then

And(
Do( Assert (? a c t i v i t y [ hasModel −> ? product ] ) ) )

Listing D.16: R22 - Design variable input (part 2)

I f
And(
?problem [ hasDesVar −> ? desvar

solvedBy −> ?wf ]
?wf [ f lowElements −> ? a c t i v i t y ]
? a c t i v i t y [ type −> ? c l a s s ]
? c l a s s [ subClassOf −> ? r e s t r

subClassOf −> ? r e s t r 2 ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> hasInput
someValuesFrom −> ? input ]

? desvar [ s e t s −> ?par ]
External ( func : resource−of−type (? desvar ? input ) )
? r e s t r 2 [ type −> Res t r i c t i o n

onProperty −> hasOutput
someValuesFrom −> ? output ]

? output [ subClassOf −> ? r e s t r 3
subClassOf −> ? r e s t r 4 ]

? r e s t r 3 [ type −> Res t r i c t i o n
onProperty −> binding
valuesFrom −> ?odtp ]

External ( func : resource−of−type (? par ?odtp ) )
? r e s t r 4 [ type −> Res t r i c t i o n

onProperty −> hasParameterID
valuesFrom −> ? upi ] )

Then
And(
Do( Assert (? a c t i v i t y [ hasInput −> ? desvar

hasOutput −> External ( func : new−i n d i v i dua l (? output ?par ) ) ] ) )
Do( Assert ( External ( func : new−i n d i v i dua l (? output ?par ) ) [

type −> ? output
binding −> ?par
hasParameterID −> External ( func : new−i n d i v i dua l (? upi ? par ) ) ] ) )

Do( Assert ( External ( func : new−i n d i v i dua l (? upi ? par ) ) [ type −> ? upi ] ) ) )

Listing D.17: R23 - Objective function input (part 1)

I f
And(
? ru l e [ inConsequent −> ?problem

inConsequent −> ?par ]
?problem [ ob j e c t i v e f u n c t i o n −> ? formula ]
Not (
? par = ?problem )
Not (
? par = ob j e c t i v e f u n c t i o n )
?wf [ s o l v e s −> ?problem

flowElements −> ? a c t i v i t y ]
? a c t i v i t y [ type −> ? c l a s s ]
? c l a s s = CheckFunctions
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> hasInput
someValuesFrom −> ? input ]

? input [ subClassOf −> ? r e s t r 2
subClassOf −> ? r e s t r 3 ]
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? r e s t r 2 [ type −> Res t r i c t i o n
onProperty −> binding
valuesFrom −> ?odtp ]

External ( func : resource−of−type (? par ?odtp ) )
? r e s t r 3 [ type −> Res t r i c t i o n

onProperty −> hasParameterID
valuesFrom −> ? upi ] )

Then
And(
Do( Assert (? a c t i v i t y [ hasInput −> External ( func : new−i n d i v i dua l (? input ?par ) ) ] ) )
Do( Assert ( External ( func : new−i n d i v i dua l (? input ?par ) ) [

type −> ? input
binding −> ?par
hasParameterID −> External ( func : new−i n d i v i dua l (? upi ? par ) ) ] ) )

Do( Assert ( External ( func : new−i n d i v i dua l (? upi ? par ) ) [ type −> ? upi ] ) ) )

Listing D.18: R24 - Objective function input (part 2)

I f
And(
? ru l e [ inConsequent −> ?problem

inConsequent −> ?par ]
?problem [ ob j e c t i v e f u n c t i o n −> ? formula ]
Not (
? par = ?problem )
Not (
? par = ob j e c t i v e f u n c t i o n )
?wf [ s o l v e s −> ?problem

flowElements −> ? a c t i v i t y ]
? a c t i v i t y [ type −> ? c l a s s ]
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> hasOutput
someValuesFrom −> ? output ]

? output [ subClassOf −> ? r e s t r 2
subClassOf −> ? r e s t r 3 ]

? r e s t r 2 [ type −> Res t r i c t i o n
onProperty −> binding
valuesFrom −> ?odtp ]

External ( func : resource−of−type (? par ?odtp ) )
? r e s t r 3 [ type −> Res t r i c t i o n

onProperty −> hasParameterID
valuesFrom −> ? upi ] )

Then
And(
Do( Assert (? a c t i v i t y [ hasOutput −> External ( func : new−i n d i v i dua l (? output ?par ) ) ] ) )
Do( Assert ( External ( func : new−i n d i v i dua l (? output ?par ) ) [

type −> ? output
binding −> ?par
hasParameterID −> External ( func : new−i n d i v i dua l (? upi ? par ) ) ] ) )

Do( Assert ( External ( func : new−i n d i v i dua l (? upi ? par ) ) [ type −> ? upi ] ) ) )

Listing D.19: R25 - Constraint input (part 1)

I f
And(
? ru l e [ inConsequent −> ? cons t r

inConsequent −> ?par ]
? cons t r [ equat ion −> ? formula ]
Not (
? par = ? cons t r )
Not (
? par = equat ion )
?problem [ hasConstra int −> ? cons t r ]
?wf [ s o l v e s −> ?problem

flowElements −> ? a c t i v i t y ]
? a c t i v i t y [ type −> ? c l a s s ]
? c l a s s = CheckFunctions
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> hasInput
someValuesFrom −> ? input ]

? input [ subClassOf −> ? r e s t r 2
subClassOf −> ? r e s t r 3 ]

? r e s t r 2 [ type −> Res t r i c t i o n
onProperty −> binding
valuesFrom −> ?odtp ]

External ( func : resource−of−type (? par ?odtp ) )
? r e s t r 3 [ type −> Res t r i c t i o n

onProperty −> hasParameterID
valuesFrom −> ? upi ] )

Then
And(
Do( Assert (? a c t i v i t y [ hasInput −> External ( func : new−i n d i v i dua l (? input ?par ) ) ] ) )
Do( Assert ( External ( func : new−i n d i v i dua l (? input ?par ) ) [

type −> ? input
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binding −> ?par
hasParameterID −> External ( func : new−i n d i v i dua l (? upi ? par ) ) ] ) )

Do( Assert ( External ( func : new−i n d i v i dua l (? upi ? par ) ) [ type −> ? upi ] ) ) )

Listing D.20: R26 - Constraint input (part 2)

I f
And(
? ru l e [ inConsequent −> ? cons t r

inConsequent −> ?par ]
? cons t r [ equat ion −> ? formula ]
Not (
? par = ? cons t r )
Not (
? par = equat ion )
?problem [ hasConstra int −> ? cons t r ]
?wf [ s o l v e s −> ?problem

flowElements −> ? a c t i v i t y ]
? a c t i v i t y [ type −> ? c l a s s ]
? c l a s s [ subClassOf −> ? r e s t r ]
? r e s t r [ type −> Res t r i c t i o n

onProperty −> hasOutput
someValuesFrom −> ? output ]

? output [ subClassOf −> ? r e s t r 2
subClassOf −> ? r e s t r 3 ]

? r e s t r 2 [ type −> Res t r i c t i o n
onProperty −> binding
valuesFrom −> ?odtp ]

External ( func : resource−of−type (? par ?odtp ) )
? r e s t r 3 [ type −> Res t r i c t i o n

onProperty −> hasParameterID
valuesFrom −> ? upi ] )

Then
And(
Do( Assert (? a c t i v i t y [ hasOutput −> External ( func : new−i n d i v i dua l (? output ?par ) ) ] ) )
Do( Assert ( External ( func : new−i n d i v i dua l (? output ?par ) ) [

type −> ? output
binding −> ?par
hasParameterID −> External ( func : new−i n d i v i dua l (? upi ? par ) ) ] ) )

Do( Assert ( External ( func : new−i n d i v i dua l (? upi ? par ) ) [ type −> ? upi ] ) ) )

Listing D.21: R29 - Configure Retrieve SimulationResults

I f
And(
? sp [ f lowElements −> ? a c t i v i t y 1

f lowElements −> ? a c t i v i t y 2
outputFolder −> ? o f ]

? a c t i v i t y 1 [ type −> Ret r i eve S imu la t i onResu l t s
hasInput −> ? f i l e ]

? a c t i v i t y 2 [ performedBy −> ? s e rv e r ]
? s e r v e r [ rootFo lder −> ? root ]
External ( func : resource−of−type (? f i l e F i l e ) ) )

Then
And(
Do( Assert (? a c t i v i t y 1 [ fromFolder −> ? o f

toFolder −> ”OptimusProjectFolder ”
f tpSe rve r −> ? s e rv e r ] ) ) )



Appendix E

Extension to Use Case 2: KB-PIDO
Coupling

This appendix contains a Discipline-, Activity-, and Tool-form for the packaging optimi-
sation use case (Chapter 7). It serves as an example for how to fill in the new forms.

• The D-form captures information about the discipline Product definition (see Fig-
ure E.1).
• The A-form describes the HLA Interact with MMG (see Figure E.2).
• And the T-form describes the tool/service that is used to build the product model

(see Figure E.3).

Furthermore, three formulas have been modelled for this use case (see index in Table E.1).
These are included in Listings E.1-E.3.
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Figure E.1: Example of a D-form for the packaging design problem.

Figure E.2: Example of an A-form for the packaging design problem.

Listing E.1: F1 - Objective function: MyOptimization

I f
Then

And(
Do( Assert (MyOptimization [ o b j e c t i v e f u n c t i o n −> ”<math xmlns=\”http ://www.w3 . org /1998/Math/

MathML\” t i t l e =\”Cost ob j e c t i v e\”><c i def in it ionURL=\”http ://www. l r . t u d e l f t . n l /KBE/
product / formal / conta ine r#conta ine r . co s t\”>cost</c i></math>” ] ) ) )
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Table E.1: Formulas index - packaging use case

ID Domain Title
F1 Formula Objective function: MyOptimization
F2 Formula Constraint: Volume
F3 Formula Constraint: Weight

Listing E.2: F2 - Constraint: Volume

I f
Then

And(
Do( Assert ( VolumeConstraint [

equat ion −> ”<math xmlns=\”http ://www.w3 . org /1998/Math/MathML\” t i t l e =\”Volume
con s t r a i n t\”><apply><eq/><c i def in it ionURL=\”http ://www. l r . t u d e l f t . n l /KBE/product /
formal / conta ine r#conta ine r . volume\”>V</c i><cn>4</cn></apply></math>” ] ) ) )

Listing E.3: F3 - Constraint: Weight

I f
Then

And(
Do( Assert ( WeightConstraint [

equat ion −> ”<math xmlns=\”http ://www.w3 . org /1998/Math/MathML\” t i t l e =\”Weight
c on s t r a i n t\”><apply><l t /><apply><t imes/><c i def in it ionURL=\”http ://www. l r . t u d e l f t . n l /
KBE/product / formal / conta ine r#conta ine r . dens i ty\”>$RHO$</c i><c i def in it ionURL=
\” http ://www. l r . t u d e l f t . n l /KBE/product / formal / conta ine r#conta ine r . volume\”>V</c i>
</apply><cn>5000</cn></apply></math>” ] ) ) )

Figure E.3: Example of a T-form for the packaging design problem.
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Appendix F

Extension to Use Case 3: MDO
Workflows

This appendix is an extension of Chapter 8. It contains additional information about
inputs and outputs of the following HLAs:

• Calculate material usage (Table F.1)
• Calculate cost (Table F.2)
• Retrieve LCA data (Figures F.1 and F.2)

Furthermore, six formulas have been modelled for this use case (see index in Table F.3).
These are included in Listings F.1-F.6.
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Table F.1: Outputs for “Calculate material usage”

Output File parameter settings

label word nr occurrence row offset start pos end pos

Total mass of
used material
per cycle

material-
mass-per-
cycle

- - - - -

Total mass of
used material
(all parts)

material-
mass-total

- - - - -

Table F.2: Outputs for “Calculate cost”

Output File parameter settings

label word nr occurrence row offset start pos end pos

Total cost cost-total - - - - -

Cost with-
out cooling
system

cost-without-
cooling-
system

- - - - -

Cost of cool-
ing system

cost-cooling-
system

- - - - -

Cost of mould
without cool-
ing system

cost-mold-
without-
cooling-
system

- - - - -

Cost of part cost-part - - - - -

Cost of mould
maintenance

cost-mold-
maintenance

- - - - -

Cost of mass
production

cost-mass-
production

- - - - -

Cost of mate-
rial

cost-material - - - - -

Cost of de-
fects

cost-defects - - - - -

Cost of man-
ufacturing
cooling sys-
tem

cost-cooling-
system-
manufacturing

- - - - -

Cost of en-
ergy usage in
moulding pro-
cess

cost-energy-
molding

- - - - -
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Figure F.1: List of inputs for the LCA web service. This first table contains parameters
about material composition.
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Figure F.2: List of the remaining inputs of the LCA web service. These inputs are related
to energy consumption and waste management.
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Table F.3: Formulas index - MDO use case

ID Domain Title
F4 Formula Formula: Cooling time
F5 Formula Formula: Max clamp force
F6 Formula Formula: Max abs warpage
F7 Formula Formula: Total CO2
F8 Formula Constraint: Max abs warpage
F9 Formula Constraint: Max clamp force

Listing F.1: F4 - Formula: Cooling time

I f
Then

And(
Do( Assert ( CalculateCool ingTime [ formula −> ”<math t i t l e =\”Cool ing time\” xmlns=\”http ://www.

w3 . org /1998/Math/MathML\”><apply><minus/><c i def in it ionURL=\”http ://www. l r . t u d e l f t . n l /
swfm−user . owl#CycleTime\”>CycleTime</c i><c i def in it ionURL=\”http ://www. l r . t u d e l f t . n l /
swfm−user . owl#Fi l l ingTime\”>Fi l l ingTime</c i></apply></math>” ] ) ) )

Listing F.2: F5 - Formula: Max clamp force

I f
Then

And(
Do( Assert ( CalculateMaxClampForce [ formula −> ”<math xmlns=\”http ://www.w3 . org /1998/Math/

MathML\” t i t l e =\”Max clamp f o r c e\”><apply><d iv ide/><apply><max/><c i def in it ionURL=
\” http ://www. l r . t u d e l f t . n l /swfm−user . owl#PackingClampForce\”>PackingClampForce</c i>
<c i def in it ionURL=\”http ://www. l r . t u d e l f t . n l /swfm−user . owl#Fi l l ingClampForce\”>
Fil l ingClampForce</c i></apply><cn>9810</cn></apply></math>” ] ) ) )

Listing F.3: F6 - Formula: Max abs warpage

I f
Then

And(
Do( Assert ( CalculateMaxAbsWarpage [ formula −> ”<math t i t l e =\”Max abs warpage\” xmlns=\”http ://

www.w3 . org /1998/Math/MathML\”><apply><max/><apply><abs/><c i def in it ionURL=\”http ://www.
l r . t u d e l f t . n l /swfm−user . owl#MinDispX\”>MinDispX</c i></apply><apply><abs/><c i
def in it ionURL=\”http ://www. l r . t u d e l f t . n l /swfm−user . owl#MaxDispX\”>MaxDispX</c i></apply>
<apply><abs/><c i def in it ionURL=\”http ://www. l r . t u d e l f t . n l /swfm−user . owl#MinDispY\”>
MinDispY</c i></apply><apply><abs/><c i def in it ionURL=\”http ://www. l r . t u d e l f t . n l /
swfm−user . owl#MaxDispY\”>MaxDispY</c i></apply><apply><abs/><c i def in it ionURL=\”http ://
www. l r . t u d e l f t . n l /swfm−user . owl#MinDispZ\”>MinDispZ</c i></apply><apply><abs/><c i
def in it ionURL=\”http ://www. l r . t u d e l f t . n l /swfm−user . owl#MaxDispZ\”>MaxDispZ</c i></apply>
</apply></math>” ] ) ) )

Listing F.4: F7 - Formula: Total CO2

I f
Then

And(
Do( Assert ( CalculateTotalCO2 [ formula −> ”<math t i t l e =\”Total CO2\” xmlns=\”http ://www.w3 . org /

1998/Math/MathML\”><apply><plus/><c i def in it ionURL=\”http ://www. l r . t u d e l f t . n l /
swfm−user . owl#CO2Emission Material\”>CO2Material</c i><c i def in it ionURL=\”http ://www. l r .
t u d e l f t . n l /swfm−user . owl#CO2Emission Process\”>CO2Process</c i></apply></math>” ] ) ) )

Listing F.5: F8 - Constraint: Max abs warpage

I f
Then

And(
Do( Assert (WarpageConstraint [ equat ion −> ”<math t i t l e =\”Max abs warpage con s t r a i n t \” xmlns=

\” http ://www.w3 . org /1998/Math/MathML\”><apply><l e q/><c i def in it ionURL=\”http ://www. l r .
t u d e l f t . n l /swfm−user . owl#MaxAbsWarpage\”>MaxAbsWarpage</c i><cn>10</cn></apply></math>”])

) )

Listing F.6: F9 - Constraint: Max clamp force

I f
Then

And(
Do( Assert ( ClampForceConstraint [ equat ion −> ”<math t i t l e =\”Max clamp f o r c e c on s t r a i n t \”

xmlns=\”http ://www.w3 . org /1998/Math/MathML\”><apply><l e q/><c i def in it ionURL=\”http ://
www. l r . t u d e l f t . n l /swfm−user . owl#MaxClampForce\”>MaxClampForce</c i><cn>100</cn></apply>
</math>” ] ) ) )
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