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Abstract: In this paper we address the identification of (2D) spatial-temporal dynamical
systems governed by the Vector Auto-Regressive (VAR) form. The coefficient-matrices of the
VAR model are parametrized as sums of Kronecker products. When the number of terms in
the sum is small compared to the size of the matrix, such a Kronecker representation leads
to high data compression. Estimating in least-squares sense the coefficient-matrices gives rise
to a bilinear estimation problem, which is tackled using a three-stage algorithm. A numerical
example demonstrates the advantages of the new modeling paradigm. It leads to comparable
performances with the unstructured least-squares estimation of VAR models. However, the
number of parameters in the new modeling paradigm grows linearly w.r.t. the number of nodes
in the 2D sensor network instead of quadratically in the full unstructured matrix case.

Keywords: 2D large-scale systems, Vector AutoRegressive model, Kronecker product, low-rank
approximation.

1. INTRODUCTION

Modeling large-scale networks has been stirring much de-
velopments in various fields such as machine learning and
system identification. Networks with unknown intercon-
nection pattern arise for example in fields such as biology,
e.g with the modeling of brain neurons, or in optics while
modeling the atmospheric turbulence. Due to the large
size of input-output data batches, identifying locally the
behavior of the network is a major challenge that has been
mainly addressed by using prior knowledge on how the
nodes, or subsystems, are connected to one another. One
common assumption is sparsity and relies on the fact that
each node is connected to a limited number of other nodes
with respect to the network’s size. In the so-called sparse
plus low rank networks -Zorzi and Chiuso (2016)-, a few
latent variables relate most of the measured nodes from
which few of them influence each other. Model identi-
fication remains however computationally challenging to
handle the combination of these two matrix structure.
Other well-studied structures include interconnected one-
dimensional strings of subsystems in Rice (2010), or clus-
ters of different subsystems with known connection pat-
terns, named as alpha-heterogeneous in Massioni (2014).
However the links between the subsystems in the network
might not be known beforehand.

Inspired by the multi-level structured matrices that arise
in image processing, e.g deblurring, we introduce a new
class of structured interconnected systems to model 2D
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spatial-temporal systems. Denoting an object O imaged
with a static optical system, the resulting blurred image B
undergoes the linear blurring operation as follows, Hansen
(2006):

vec(B) = Avec(O) (1)

The coefficient-matrix A is related to the Point-Spread
Function (PSF) (or 2D impulse response) of the optical
system. The equation (1) represents the 2D convolution
operation between the PSF and the object O. The struc-
ture in A is related to the separability of the PSF. For
example, the PSF for blurring caused by atmospheric
turbulence can be described as a two-dimensional Gaus-
sian function, Roggemann and Welsh (1996). The latter
function is separable in both horizontal and vertical coor-
dinates, which implies the following Kronecker structure
for the coefficient-matrix A:

A = Ar ⊗Ac (2)

where Ar and Ac represent respectively the 1D convolution
with the rows and columns. The Kronecker representa-
tion enables a data-sparse representation of A and fast
computations thanks to the very pleasant algebra of the
Kronecker product, van Loan (2000). For example with
Ar, Ac ∈ RN×N , matrix-matrix multiplication and inver-
sion both require O(N4) complexity instead of O(N6) for
the unstructured case. A large-scale static input-output
map in (1) is represented by a Kronecker matrix as in
(2). It provides with a motivation to analyze Kronecker
networks with a dynamical systems perspective.

In this paper we address the identification of (2D) spatial-
temporal dynamical models of the Vector Auto-Regressive

(VAR) form. The coefficient-matrices {Ai}i=1..p ∈ RN2×N2

of this temporal model with order p are parametrized as
sums of Kronecker products:
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vec
(
Sk

)
=

p∑
i=1

Aivec
(
Sk−i

)
+ C0vec

(
Ek

)
(3)

with vec
(
Ek

)
zero-mean white noise with covariance ma-

trix I. The coefficient matrices Ai and C0 in the VARX
(we will restrict for simplicity to the VAR-case) model (3),
in general are highly structured. We will consider the case
they belong to the set K, and for the moment only focus
on the coefficient matrices Ai. To address an identification
problem we will parametrize these coefficient matrices as:

Ai =

ri∑
j=1

M(b
(j)
i )T ⊗M(a

(j)
i ) (4)

with the vectors a
(j)
i and b

(j)
i parametrizing the matrices

M(a
(j)
i ) and M(b

(j)
i ) in an affine manner. If we consider

the term C0ek as a temporally white sequence vk, then
the VARX model (3) can be written as,

sk =

p∑
i=1

( ri∑
j=1

M(b
(j)
i )T ⊗M(a

(j)
i )

)
sk−i + vk (5)

Using the following Kronecker rule, for matrices X,Y, Z of
compatible dimensions such that the product XY Z exists,

vec
(
XY Z

)
=

(
ZT ⊗X

)
vec

(
Y
)

we can write the ARX model (5) as,

Sk =

p∑
i=1

( ri∑
j=1

M(a
(j)
i )Sk−iM(b

(j)
i )

)
+ Vk (6)

This can also be written explicitly as,

Sk =

p∑
i=1

Ma,i

(
Iri ⊗ Sk−i

)
Mb,i + Vk (7)

where:

Ma,i =
[
M(a

(1)
i ) · · · M(a

(ri)
i )

]
, Mb,i =



M(b

(1)
i )
...

M(b
(ri)
i )




(8)
The AR(X) models (5), (6) or (7) are called Kronecker
ARX models, or briefly denoted with KrARX (pronounce
quarks).

3.1 The identification problem of KrARX models.

The estimation of the matrices Ma,i and Mb,i is unique
up to an ambiguity transformation that we describe in the
following lemma.

Lemma 3. Let i ∈ {1..p}. Denote a low-rank decomposi-

tion of R(Ai) be given by UiV
T
i , where Ui, Vi ∈ RN2×ri .

Let Ûi, V̂i ∈ RN2×ri .

Then, the pairs of matrices Ui, Vi and Ûi, V̂i equivalently
represent the reshuffled matrix R(Ai) if and only if they
satisfy the following relationships:

Ûi = UiTi, V̂ T
i = T−1

i V T
i

where Ti ∈ Rri×ri is a non-singular similarity transforma-
tion. Moreover, the N ×N matrices in (4) are such that,
for j = 1..ri:

M(b
(j)
i ) = ivec

(
Ui(:, j)

)T

, M(a
(j)
i ) = ivec

(
Vi(:, j)

)

We are now ready to formulate the identification problem.
Given the model structure of KrARX models, the problem
of identifying these models from measurement sequences
{Sk}Nt

k=1 is fourfold:

(1) The temporal order index p.
(2) The spatial order index ri for each coefficient matrix.

(3) The parametrization of the matrices M(a
(j)
i ) and

M(b
(j)
i ). An example of a parametrization of the

matrices M(a
(j)
i ) and M(b

(j)
i ) is (block) Banded.

(4) The estimation of the parameter vectors a
(j)
i , b

(j)
i

up to an ambiguity transformation. This requires the
specification of a cost function. An example of such
a cost function using the model (6) is the following
least squares cost function,

min
p,ri,a

(j)
i

,b
(j)
i

Nt∑
k=p+1

‖Sk −
p∑

i=1

( ri∑
j=1

M(a
(j)
i )Sk−iM(b

(j)
i )

)
‖2F

(9)
for data batches with Nt points. By the selection of the
parameter p and particular choices of the parametrizations
in step 3 above, various special cases of restricting the
coefficient matrices Ai in (3) to particular sets (such as
Dα,D or K) can be considered. Further constraints to the
least-squares cost function might be introduced to look for

sparsity in the parametrization vectors a
(j)
i and b

(j)
i .

An important challenge of the parameter estimation prob-
lem is the computational efficiency. The covariance matrix
estimation in high dimensional spaces has already been
addressed in Tsiligkaridis and Hero (2013) and is not
considered further on in this brief paper.

4. ESTIMATING KRARX MODELS WITH A
THREE-STAGE APPROACH

In the sequel we assume the Kronecker rank to be time-
invariant, i.e ri = r for all i ∈ {1..p}.

4.1 A least squares cost function with rank minimization

According to the model (5) and the definition of the re-
shuffling operator R(.) we have,

R
(
Ai

)
=

r∑
j=1

vec
(
M(b

(j)
i )T

)
vec

(
M(a

(j)
i )

)T

(10)

A way to find the spatial order index r is via the Kronecker
rank. Let this be denoted by r. Recall that from Lemma

3, the estimation of the matrices M(a
(j)
i ) and M(b

(j)
i ) for

different j is not unique. Then, we write

R
(
Ai

)
= UiV

T
i (11)

with Ui, Vi ∈ RN2×r. Not knowing the Kronecker rank, a
possible way to retrieve it from data in combination with
the coefficient matrices Ai for a given temporal order p is
via the following multi-criteria optimization problem:

min
Ai

(
Nt∑

k=p+1

‖sk −
p∑

i=1

Aisk−i‖2F , rank
(
R(Ai)

))
(12)

Let the estimated coefficient matrices be denoted by Âi,

then subsequently an SVD of the matricesR
(
Âi

)
provides
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Ai =

r∑
i=1

Ui ⊗ Vi

where r � N2 and Ui, Vi ∈ RN×N . The integer r is called
the spatial order, or Kronecker rank. The matrices Ui, Vi

are called the factor matrices.
For a given labeling of the 2D network, the coefficient-
matrices in the VAR model may be represented with as
few terms as possible in the Kronecker sum while still
guaranteeing a given level of performance with respect
to the standard least squares solution with unstructured
coefficient matrices. A major challenge in the estimation
of the Kronecker product matrices is the computational
efficiency. Rather than estimating the full coefficient-
matrices, the optimization is formulated on the factor ma-
trices which gives rise to a bilinear least squares problem.
We formulate here a three-stage algorithm whose non-
regularized version is non-iterative. Such a formulation
shares similarities with the identification of Hammerstein
systems for which a two-stage algorithm was proposed
in Wang (2009). A numerical example on Multi-Level
Sequentially Semi-Separable (MSSS) matrices illustrates
the performances of the Kronecker VAR identification.
This paper is organized as follows. In the second section
the class of Kronecker networks is defined. The third sec-
tion formulates the Kronecker VAR identification frame-
work while the fourth section describes the non-iterative
three-stage algorithm to estimate the factor matrices with
minimum computational complexity. Section V is dedi-
cated to a numerical example.

Notations. The vectorization operator for a matrix X is
vec(X), shortly denoted in bold x. ivec(x) reshapes the
vector x into a matrix whose size will be clear from the
context. The Kronecker product between two matrices
X,Y is denoted by X ⊗ Y . The 2-norm of a vector x is
written as ‖x‖2. The nuclear norm of X, denoted with
‖X‖�, represents the sum of the singular values of X.

2. PRELIMINARIES

Definition 1. (van Loan (2000)). Let X be a m1×n1 block
matrix with blocks X(i, j) in Rm2×n2 , given as:

X =




X(1, 1) · · · X(1, n1)
...

. . .
...

X(m1, 1) · · · X(m1, n1)


 ∈ Rm1m2×n1n2

then the re-shuffle operator R(X) is defined as:

R(X) =




vec
(
X(1, 1)

)T

...

vec
(
X(m1, 1)

)T

...

vec
(
X(1, n1)

)T

...

vec
(
X(m1, n1)

)T




∈ Rm1n1×m2n2

Lemma 1. (van Loan (2000)). Let X be defined as in
Definition 1, and let X = F ⊗ G, with F,G ∈ Rm1×n1 ×

Rm2×n2 .
Then:

R(X) = vec(F )vec(G)T

The operation in Lemma 1 can also be reversed by the
definition of the inverse vec operator, ivec(.).

Lemma 2. (van Loan (2000)). Let X be defined as in
Definition 1, and let a Singular Value Decomposition of
R(X) be given as:

R(X) =

r∑
�=1

σ�u�v
T
�

and let ivec
(
u�

)
= U�, ivec

(
v�

)
= V�:

X =

r∑
�=1

σ�U� ⊗ V�

The integer r is called the Kronecker rank of X w.r.t. the
chosen block partitioning of X as given in Definition 1.

Definition 2. (α-decomposable matrices, Massioni (2014)).

Let P be a N × N pattern matrix. Define βj =
∑j

i=1 Ni

(with β0 = 0) and I[a1:a2] as an N × N diagonal matrix
which contains 1 in the diagonal entries of indices from a1
to a2 (included) and 0 elsewhere, then an α-decomposable
matrix (for a given α) is a matrix of the following kind:

M =

α∑
i=1

(
I[βi−1+1:βi] ⊗M (i)

a + I[βi−1+1:βi]P ⊗M
(i)
b

)

The matrices M
(i)
a are the diagonal blocks of M, while the

matrices M
(i)
b constitute the off-diagonal blocks, according

to the structure of P .

For α = 1 (and β1 = N), these matrices are simply
called decomposablematrices. The class of α-decomposable
matrices will be denoted by Dα, with for α = 1 just the
symbol D will be used. As a generalization of this class Dα

of structured matrices, we define next the class of sums of
Kronecker product matrices.

Definition 3. The class of sums of Kronecker product
matrices, denoted by K, contains matrices of the following
kind:

M =
r∑

i=1

M (i)
a ⊗M

(i)
b

with M
(i)
a ∈ Rm1×n1 and M

(i)
b ∈ Rm2×n2 , and the

Kronecker rank r such that r ≤ min(m1n1,m2n2).

Without further specification on the factor matrices, the
network may be composed of heterogeneous subsystems.

3. PROBLEM FORMULATION

The sensor readings of a square N by N sensor grid at
time instance k are stored in the matrix Sk as:

Sk =




s1,1(k) s1,2(k) · · · s1,N (k)
s2,1(k) s2,2(k) s2,N (k)

...
...

. . .
...

sN,1(k) sN,2(k) · · · sN,N (k)




In this paper we will consider that the temporal dynamics
of this array of sensors is governed by the following
VAR(X) model:
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vec
(
Sk

)
=

p∑
i=1

Aivec
(
Sk−i

)
+ C0vec

(
Ek

)
(3)

with vec
(
Ek

)
zero-mean white noise with covariance ma-

trix I. The coefficient matrices Ai and C0 in the VARX
(we will restrict for simplicity to the VAR-case) model (3),
in general are highly structured. We will consider the case
they belong to the set K, and for the moment only focus
on the coefficient matrices Ai. To address an identification
problem we will parametrize these coefficient matrices as:

Ai =

ri∑
j=1

M(b
(j)
i )T ⊗M(a

(j)
i ) (4)

with the vectors a
(j)
i and b

(j)
i parametrizing the matrices

M(a
(j)
i ) and M(b

(j)
i ) in an affine manner. If we consider

the term C0ek as a temporally white sequence vk, then
the VARX model (3) can be written as,

sk =

p∑
i=1

( ri∑
j=1

M(b
(j)
i )T ⊗M(a

(j)
i )

)
sk−i + vk (5)

Using the following Kronecker rule, for matrices X,Y, Z of
compatible dimensions such that the product XY Z exists,

vec
(
XY Z

)
=

(
ZT ⊗X

)
vec

(
Y
)

we can write the ARX model (5) as,

Sk =

p∑
i=1

( ri∑
j=1

M(a
(j)
i )Sk−iM(b

(j)
i )

)
+ Vk (6)

This can also be written explicitly as,

Sk =

p∑
i=1

Ma,i

(
Iri ⊗ Sk−i

)
Mb,i + Vk (7)

where:

Ma,i =
[
M(a

(1)
i ) · · · M(a

(ri)
i )

]
, Mb,i =



M(b

(1)
i )
...

M(b
(ri)
i )




(8)
The AR(X) models (5), (6) or (7) are called Kronecker
ARX models, or briefly denoted with KrARX (pronounce
quarks).

3.1 The identification problem of KrARX models.

The estimation of the matrices Ma,i and Mb,i is unique
up to an ambiguity transformation that we describe in the
following lemma.

Lemma 3. Let i ∈ {1..p}. Denote a low-rank decomposi-

tion of R(Ai) be given by UiV
T
i , where Ui, Vi ∈ RN2×ri .

Let Ûi, V̂i ∈ RN2×ri .

Then, the pairs of matrices Ui, Vi and Ûi, V̂i equivalently
represent the reshuffled matrix R(Ai) if and only if they
satisfy the following relationships:

Ûi = UiTi, V̂ T
i = T−1

i V T
i

where Ti ∈ Rri×ri is a non-singular similarity transforma-
tion. Moreover, the N ×N matrices in (4) are such that,
for j = 1..ri:

M(b
(j)
i ) = ivec

(
Ui(:, j)

)T

, M(a
(j)
i ) = ivec

(
Vi(:, j)

)

We are now ready to formulate the identification problem.
Given the model structure of KrARX models, the problem
of identifying these models from measurement sequences
{Sk}Nt

k=1 is fourfold:

(1) The temporal order index p.
(2) The spatial order index ri for each coefficient matrix.

(3) The parametrization of the matrices M(a
(j)
i ) and

M(b
(j)
i ). An example of a parametrization of the

matrices M(a
(j)
i ) and M(b

(j)
i ) is (block) Banded.

(4) The estimation of the parameter vectors a
(j)
i , b

(j)
i

up to an ambiguity transformation. This requires the
specification of a cost function. An example of such
a cost function using the model (6) is the following
least squares cost function,

min
p,ri,a

(j)
i

,b
(j)
i

Nt∑
k=p+1

‖Sk −
p∑

i=1

( ri∑
j=1

M(a
(j)
i )Sk−iM(b

(j)
i )

)
‖2F

(9)
for data batches with Nt points. By the selection of the
parameter p and particular choices of the parametrizations
in step 3 above, various special cases of restricting the
coefficient matrices Ai in (3) to particular sets (such as
Dα,D or K) can be considered. Further constraints to the
least-squares cost function might be introduced to look for

sparsity in the parametrization vectors a
(j)
i and b

(j)
i .

An important challenge of the parameter estimation prob-
lem is the computational efficiency. The covariance matrix
estimation in high dimensional spaces has already been
addressed in Tsiligkaridis and Hero (2013) and is not
considered further on in this brief paper.

4. ESTIMATING KRARX MODELS WITH A
THREE-STAGE APPROACH

In the sequel we assume the Kronecker rank to be time-
invariant, i.e ri = r for all i ∈ {1..p}.

4.1 A least squares cost function with rank minimization

According to the model (5) and the definition of the re-
shuffling operator R(.) we have,

R
(
Ai

)
=

r∑
j=1

vec
(
M(b

(j)
i )T

)
vec

(
M(a

(j)
i )

)T

(10)

A way to find the spatial order index r is via the Kronecker
rank. Let this be denoted by r. Recall that from Lemma

3, the estimation of the matrices M(a
(j)
i ) and M(b

(j)
i ) for

different j is not unique. Then, we write

R
(
Ai

)
= UiV

T
i (11)

with Ui, Vi ∈ RN2×r. Not knowing the Kronecker rank, a
possible way to retrieve it from data in combination with
the coefficient matrices Ai for a given temporal order p is
via the following multi-criteria optimization problem:

min
Ai

(
Nt∑

k=p+1

‖sk −
p∑

i=1

Aisk−i‖2F , rank
(
R(Ai)

))
(12)

Let the estimated coefficient matrices be denoted by Âi,

then subsequently an SVD of the matricesR
(
Âi

)
provides
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4.3 Generalization to higher Kronecker ranks

The three-step algorithm has been discussed for the case
r < N . In most cases, the Kronecker rank is not known
a priori and it has to be detected with cross-validation.
Therefore we analyze how to deal with higher Kronecker
ranks, more particularly r < 2N . In the previous para-
graph, the Kronecker rank was limited by the size of the
submatrices P(θi,j) ∈ RN×N . A submatrix of size 2N×2N
shall be selected such that the SVD in (15) is then carried
out on a rank-deficient matrix L. For example, when con-
sidering the output data at the locations {(n, j)}n,j=1,2,
the matrix L is defined as:

L =

[
P(θ1,1) P(θ1,2)
P(θ2,1) P(θ2,2)

]
=

[
u1

u2

] [
vT1 vT2

]

Let us denote the set {� ∈ N|� = N(n − 1) + j, (n, j) ∈
{1, 2}} with L. The regularized least squares in (14) is
then extended into:

min
A1(�,:)

Nt∑
k=2

∑
�∈L

‖sk(�)−A1(�, :)sk−1‖22 + λ‖L‖� (19)

Similarly, the SVD is performed on L and the least
squares in (17) and (18) are formulated using the estimates
{ûi, v̂i}i=1,2. Figure 2 illustrates.

Fig. 2. Square array: the colored entries locate in the
matrix Sk which data to consider in order to estimate
the coefficient-matrices with minimum computational
complexity. Blue entry: minimization of type (14)-
(16). Yellow entry: minimization of type (17). Green
entry: minimization of type (18). Left: identification
for matrices of Kronecker rank smaller than N . Right:
Kronecker rank between N and 2N .

The computational complexity is reduced exploiting the
Kronecker structure and is attractive for being non-
iterative and parallelizable to a large extent.

4.4 Computational complexity

Consider the estimation problem (14) with λ = 0, Nt = N
and r < N . Solving the full unstructured least squares
requires inverting a N2 ×N2 matrix and a matrix-matrix
multiplication, which scales up to O(2N6). Solving (14)
for only the least-squares term requires inverting a matrix
of size N2 ×N2. Moreover, the SVD (16) is performed on
a matrix of size N ×N . Last, each of the 2(N − 1) least-
squares with N unknowns in (17) and (18) scales up to
O(N3). They can be carried out in parallel with η different

workers, hence the complexity O( 2(N−1)N3

η ) for this third
step.

Another optimization method using Alternating Least
Squares and featuring only 2rN2 unknowns is proposed
in Sinquin and Verhaegen (2016).

5. ILLUSTRATIVE EXAMPLE

In this numerical illustration, we consider an 2D array
of subsystems that interact with their neighbors through
some unknown coupling. The spatial and temporal behav-
ior of each subsystem is stable and all subsystems are
assumed identical. We introduce a state-space represen-
tation of the network with the 2-level Sequentially Semi-
Separable structure. Such a 2D model is built from a 1D
string of 1D strings. A SSS matrix M̄ is built from a set
of matrices-generators as follows:

M̄ =




D UV . . . UWN−2V

PQ D
...

...
. . .

...
...

...
. . . UV

PRN−2Q . . . . . . PQ D




which is compactly denoted with:

M̄ = SSS(P,R,Q,D,U,W, V )

Both R and Q have spectral radius strictly inferior to
1. The matrix M̄ represents the static input-output map
from a string of N mixed causal anti-causal interconnected
systems. A 2-level matrix M is built from N sets of 1D SSS
matrices as generators:

M = SSS(P̄ , R̄, Q̄, D̄, Ū , W̄ , V̄ )

More details on such recursive structures can be found in
Rice (2010). Although each of the 1D matrix generator
(such as P̄ ∈ RN×N ) are block-Toeplitz, it is no longer the
case for the 2-level matrix as the product of two block-
Toeplitz matrices is in general not block-Toeplitz.

For A,B,C defined as 2-level SSS matrices, we write the
global state-space:{

xk+1 = Axk +Buk

yk = Cxk + ek
(20)

where:

A ∈ RN2n2×N2n2

,B ∈ RN2n2×N2m,C ∈ RN2p×N2n2

We choose N = 10, n = 2,m = 1, p = 1. In this section,
we estimate a high-order Finite Impulse Response (FIR)
model from input-output data generated according to the
state-space (20). The noise sequence ek is a white Gaussian
noise with zero mean and a variance such that the Signal
to Noise Ratio on the output is 20dB. The temporal order
of the FIR model is chosen equal to 5. The identification
and validation set are independent from one another and
each contain 5× 103 temporal measurements.

The coefficient-matrices {Ai}i=1..p (corresponding to the

Markov parameters {CAi−1B}i=1..p) are estimated using
the following methods:

• a standard unstructured least-squares

min
Ai

Nt∑
k=p+1

‖yk −
p∑

i=1

Aiyk−i‖22

• the KrARX identification with (14), (17) and (18).
The Kronecker rank takes values between 1 and 10.

• a sparse least-squares solving the following minimiza-
tion, Kim et al. (2007):
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with estimates of the terms Ui and Vi in the Kronecker
products in (11). Since the rank operator in the cost
function (12) turns this cost function into a non-convex
optimization problem, the nuclear norm can be used
to convexify this problem. Dealing with nuclear norm
regularization on p matrices of size N2 × N2 is costly,
especially whenN is large. However, we see in the following
section that some more efficient computations can be
performed by parallelizing the optimization problem.

4.2 Local least squares for parallel computations, r < N

In this paragraph, we consider p = 1 for the sake of clarity.
The least squares term in the cost function (12) can be
addressed row by row. Let j, n be integers in {1, ..., N},
and � be such that � = N(n− 1)+ j. The �-th line of A1 is
denoted with θn,j . Using ”standard” Matlab notation to
select part of a matrix, the matrix P(θi,j) and R(A1) are
related as:

P(θi,j) = R(A1)(i : N : end, j : N : end) (13)

To further clarify this notation, we refer to Figure 1 for a
display of the different matrices in the above relation.

Fig. 1. Schematic representation of the matrices A1(left),
R(A1)(middle) and P(θ1,1)(right) for a 2-level matrix
with 4 blocks.

We state the following lemma:

Lemma 4. If rank(R(A1)) = r < N , then for all i, j in the
set {1..N}, rank(P(θi,j)) ≤ r.

Proof. Let a low-rank decomposition of R(A1) be such
that:

R(A1) =UiV
T
i

R(A1) =




u1(1, :)
...

uN (1, :)
...

u1(N, :)
...

uN (N, :)




[
v1(1, :)

T . . . vN (1, :)T . . . vN (N, :)T
]

where ui, vj ∈ RN×r. From (13), P(θi,j) = uiv
T
j . The vec-

tors ui, vj are not necessarily full column rank, therefore
rank(P(θi,j)) ≤ r. �

The reverse implication is in general not true. However by
assuming that a low-rank decomposition of P(θi,j) is given
with uiv

T
j and by estimating all ui, vj ∈ RN×r, a low-rank

matrix R(A1) is built using (13).

We describe the algorithm in the following lines. Let
the measurement sj,n(k) correspond to the �-th entry of

the vector s(k). Then, a rank-constrained least squares
optimization is formulated to estimate the matrix A1(�, :):

min
A1(�,:)

Nt∑
k=2

‖sk(�)−A1(�, :)sk−i‖22

s.t rank
(
P(A1(�, :))

)
= r

Here we assumed that the row was selected such that the
rank constraint can be satisfied. The above problem is
convexified as:

min
A1(�,:)

Nt∑
k=2

‖sk(�)−A1(�, :)sk−1‖22 + λ‖P(A1(�, :))‖� (14)

An SVD of the low-rank matrix P(A1(�, :)) yields the
following decomposition:

P(A1(�, :)) = [U1,� �]

[
Σ1,� 0
0 0

] [
V T
1,�

�

]
(15)

and then, with ûn = U1,�Σ
1/2
1,� and v̂Tj = Σ

1/2
1,� V

T
1,�

P(A1(�, :)) = ûnv̂
T
j (16)

where ûn, v̂j ∈ RN×r This decomposition is unique up
to a (non-singular) ambiguity transformation T ∈ Rr×r.
Therefore, the SVD in (15) cannot be performed for N
independent well-chosen rows, as it would yieldN different
ambiguity transformations. The remaining column-vectors
of both Ui, Vi (2(N − 1) matrices of size N × r) are rather
estimated via least squares based on the estimates ûn, v̂j .
If (14) is solved e.g for � = 1, then for n = 1 and j in
the set {2, ..., N}, we solve the constrained least-squares
optimization:

min
θ1,j ,vj

Nt∑
k=2

‖sk(�)− θ1,jsk−1‖22

s.t P(θ1,j) = û1v
T
j

that is equivalently parametrized with only N unknowns:

min
vj

Nt∑
k=2

‖sk(�)−M(û1, vj)sk−1‖22 (17)

where M(., .) is the operator defined with:

M(û1, vj) =
[
û1(1, :)v

T
j . . . û1(N, :)vTj

]

Similarly, for j = 1 and n in the set {2, ..., N}:

min
un

Nt∑
k=2

‖sk(�)−M(un, v̂1)sk−1‖22 (18)

These 2(N −1) least squares can be performed in parallel,
each of which corresponds to one sensor location as can
be visualized in Figure 2. Choosing the adequate sensor
location, i.e (j = 1, n = 1) in (14), is not unique. We
summarize the algorithm with the following three steps:

(1) Solve the nuclear-norm regularized optimization in
(14), e.g � = 1.

(2) Compute the SVD of P(A1(�, :)) and estimate û1, v̂1.
(3) Solve, in parallel, the least squares:

n = 1, ∀j ∈ {2, ..., N}, solve (17)

j = 1, ∀n ∈ {2, ..., N}, solve (18)
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4.3 Generalization to higher Kronecker ranks

The three-step algorithm has been discussed for the case
r < N . In most cases, the Kronecker rank is not known
a priori and it has to be detected with cross-validation.
Therefore we analyze how to deal with higher Kronecker
ranks, more particularly r < 2N . In the previous para-
graph, the Kronecker rank was limited by the size of the
submatrices P(θi,j) ∈ RN×N . A submatrix of size 2N×2N
shall be selected such that the SVD in (15) is then carried
out on a rank-deficient matrix L. For example, when con-
sidering the output data at the locations {(n, j)}n,j=1,2,
the matrix L is defined as:

L =

[
P(θ1,1) P(θ1,2)
P(θ2,1) P(θ2,2)

]
=

[
u1

u2

] [
vT1 vT2

]

Let us denote the set {� ∈ N|� = N(n − 1) + j, (n, j) ∈
{1, 2}} with L. The regularized least squares in (14) is
then extended into:

min
A1(�,:)

Nt∑
k=2

∑
�∈L

‖sk(�)−A1(�, :)sk−1‖22 + λ‖L‖� (19)

Similarly, the SVD is performed on L and the least
squares in (17) and (18) are formulated using the estimates
{ûi, v̂i}i=1,2. Figure 2 illustrates.

Fig. 2. Square array: the colored entries locate in the
matrix Sk which data to consider in order to estimate
the coefficient-matrices with minimum computational
complexity. Blue entry: minimization of type (14)-
(16). Yellow entry: minimization of type (17). Green
entry: minimization of type (18). Left: identification
for matrices of Kronecker rank smaller than N . Right:
Kronecker rank between N and 2N .

The computational complexity is reduced exploiting the
Kronecker structure and is attractive for being non-
iterative and parallelizable to a large extent.

4.4 Computational complexity

Consider the estimation problem (14) with λ = 0, Nt = N
and r < N . Solving the full unstructured least squares
requires inverting a N2 ×N2 matrix and a matrix-matrix
multiplication, which scales up to O(2N6). Solving (14)
for only the least-squares term requires inverting a matrix
of size N2 ×N2. Moreover, the SVD (16) is performed on
a matrix of size N ×N . Last, each of the 2(N − 1) least-
squares with N unknowns in (17) and (18) scales up to
O(N3). They can be carried out in parallel with η different

workers, hence the complexity O( 2(N−1)N3

η ) for this third
step.

Another optimization method using Alternating Least
Squares and featuring only 2rN2 unknowns is proposed
in Sinquin and Verhaegen (2016).

5. ILLUSTRATIVE EXAMPLE

In this numerical illustration, we consider an 2D array
of subsystems that interact with their neighbors through
some unknown coupling. The spatial and temporal behav-
ior of each subsystem is stable and all subsystems are
assumed identical. We introduce a state-space represen-
tation of the network with the 2-level Sequentially Semi-
Separable structure. Such a 2D model is built from a 1D
string of 1D strings. A SSS matrix M̄ is built from a set
of matrices-generators as follows:

M̄ =




D UV . . . UWN−2V

PQ D
...

...
. . .

...
...

...
. . . UV

PRN−2Q . . . . . . PQ D




which is compactly denoted with:

M̄ = SSS(P,R,Q,D,U,W, V )

Both R and Q have spectral radius strictly inferior to
1. The matrix M̄ represents the static input-output map
from a string of N mixed causal anti-causal interconnected
systems. A 2-level matrix M is built from N sets of 1D SSS
matrices as generators:

M = SSS(P̄ , R̄, Q̄, D̄, Ū , W̄ , V̄ )

More details on such recursive structures can be found in
Rice (2010). Although each of the 1D matrix generator
(such as P̄ ∈ RN×N ) are block-Toeplitz, it is no longer the
case for the 2-level matrix as the product of two block-
Toeplitz matrices is in general not block-Toeplitz.

For A,B,C defined as 2-level SSS matrices, we write the
global state-space:{

xk+1 = Axk +Buk

yk = Cxk + ek
(20)

where:

A ∈ RN2n2×N2n2

,B ∈ RN2n2×N2m,C ∈ RN2p×N2n2

We choose N = 10, n = 2,m = 1, p = 1. In this section,
we estimate a high-order Finite Impulse Response (FIR)
model from input-output data generated according to the
state-space (20). The noise sequence ek is a white Gaussian
noise with zero mean and a variance such that the Signal
to Noise Ratio on the output is 20dB. The temporal order
of the FIR model is chosen equal to 5. The identification
and validation set are independent from one another and
each contain 5× 103 temporal measurements.

The coefficient-matrices {Ai}i=1..p (corresponding to the

Markov parameters {CAi−1B}i=1..p) are estimated using
the following methods:

• a standard unstructured least-squares

min
Ai

Nt∑
k=p+1

‖yk −
p∑

i=1

Aiyk−i‖22

• the KrARX identification with (14), (17) and (18).
The Kronecker rank takes values between 1 and 10.

• a sparse least-squares solving the following minimiza-
tion, Kim et al. (2007):
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min
Ai

Nt∑
k=p+1

‖yk −
p∑

i=1

Aiyk−i‖22 + µ

p∑
i=1

‖vec
(
Ai

)
‖1

where µ belongs to the range logspace(1, 4, 5).

The relative Root-Mean-Square-Error (RMSE) between

the output signals y and the prediction ŷ :=
∑p

i=1 Âiyk−i

is defined with:

Relative RMSE(y, ŷ) =

∑Nt

k=1 ‖yk − ŷk‖22∑Nt

k=1 ‖yk‖22
where Nt is the number of temporal samples in the
validation set.

We define the storage complexity as the number of non-
zero entries needed to construct the p coefficient-matrices.
For example the storage of a KrARX model requires at
most 2prN2 entries, i.e only the non-zero elements of the
factor matrices, while it reaches a total of pN4 for the full
least squares estimation. It is illustrated in Figure 3 that
displays the relative RMSE with respect to the 0-norm of
the entries needed to construct the full coefficient matrix.
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Fig. 3. Relative RMSE for the output error on validation
data versus the storage complexity.

The exact number of non-zero entry (computed with
the Matlab function nnz ) stays constant with increasing
weight on the sparse prior. Truncating all values from
the matrices estimated with �1 prior below 10−6 and
then computing the Relative RMSE on validation data
yields a better data-sparse representation that is however
outperformed by the Kronecker representation in terms of
Relative RMSE.

Consequently, the ability for the KrARX to model MSSS
structures with few Kronecker terms is related to first,
both the stability of the global system (small temporal
order p), and second, the approximate block-Toeplitz with
Toeplitz-block structure from the coefficient-matrices.

6. CONCLUSION

In this paper the class of Kronecker networks is defined
and the modeling of temporal dynamics with VAR models
is investigated. Each coefficient-matrix of the VAR model
is approximated with a sum of few Kronecker matrices
which offers high data compression for large networks.

Estimating in least-squares sense the data matrices gives
rise to a bilinear problem which is addressed with a three-
stage method. Numerical examples on a network mod-
eled with Multi-level Sequentially Semi-Separable matrices
demonstrates comparable output-error performances with
the unstructured least-squares with a low-Kronecker rank
representation which enables a more efficient storage of
the entries for large coefficient-matrices than with a sparse
prior. Such a modeling opens up the way for more useful
identification algorithms, e.g subspace identification.

For an alternative solution of the bilinear estimation
problem via Alternating Least Squares and an application
to atmospheric turbulence modeling, we refer to Sinquin
and Verhaegen (2016). The stability of the KrARX model
identified has not been presented in this paper and is
subject of current investigations.
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