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Abstract

Active inference is a neuroscientific theory, which states that all living systems (e.g. the human brain)
minimize a quantity termed the free energy. By minimizing this free energy, living systems keep an
accurate representation of the world in their internal model (learning), are provided with an optimal
way of acting on the world (action selection), and can predict incoming sensory data (perception).
Considering the fact that these properties are sought after in artificial intelligence systems as well,
active inference has also become an interesting topic from an engineering point of view.

The application of active inference can be done with both a continuous and a discrete state-space
framework. However, research on discrete state-space active inference has neglected the extension
of its applicability to nonstationary environments. This work aims to fill that gap. More specifically,
the goal of this research is to evaluate the performance of state-of-the-art discrete state-space active
inference agents in nonstationary environments, and assess whether forgetting part of the agent’s
previous experiences can increase its performance.

The type of nonstationarity that is used in this work is cyclostationarity, and this nonstationarity will
only be manifested in the transition process of the active inference task. Moreover, the specific type of
task solved is one of planning and navigation in a gridworld. Since the agent has to deal with a planning
and navigation task, performance is quantified by the number of steps the agent needs to take in order
to reach its goal.

Three methods of forgetting are implemented and compared, inspired by techniques from reinforce-
ment learning, deep learning and time series analysis respectively. These are: (1) the use of a constant
forget rate, (2) the use of the updating mechanism of a long short-term memory (LSTM) cell applied
to the updating of the generative model in active inference, and (3) the use of a memory window that
stores experience only from a certain trial onwards and forgets experience from before this trial by
utilizing a rolling summation of the concentration parameters.

The results show that forgetting with the use of a memory window can significantly improve perfor-
mance, provided that the agent can reach the goal state from the initial state in one trial. When this is
not the case, the use of a memory window does not (positively or negatively) influence performance.
Both the implementation of forgetting based on the updating of an LSTM cell and the use of a constant
forget rate have unanimously shown to decrease performance, and thus should not be implemented in
active inference.
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Introduction

This introductory chapter will start by putting this thesis and the research topic of active inference in
context. Hereafter, a formal description of the problem statement will be given, along with the main
contributions of this research. Finally, at the end of this chapter the thesis structure is provided, which
will give a preview of the content that will be discussed in the upcoming chapters.

1.1. Context

The search for intelligent agents that match the natural intelligence displayed by humans is an ongo-
ing one in the field of artificial intelligence. In recent years, machines have become increasingly more
competent in solving tasks that typically require human intelligence, up to the point that it is not uncom-
mon for these artificial agents to surpass humans in certain tasks. However, the way in which these
artificial agents learn and solve their tasks might differ drastically from the way humans do. Instead of
trying to solve one specific task in the best way possible, one can take another approach in designing
artificial intelligence: trying to understand how biological agents learn and embedding artificial agents
with a similar form of intelligence. One attempt at doing so has led to the emergence of the free energy
principle, and in extension active inference, which is the main theory discussed in this thesis.

Active inference is a theory originating from the field of cognitive neuroscience, and is a corollary of
the free energy principle. The free energy principle states that in agents, both biological and artificial,
perception, action selection and learning are unified in the sense that all are the result of optimizing the
same objective function, termed the free energy. By minimizing the free energy, agents keep an accu-
rate representation of the world in their internal model (learning), are provided with an optimal way of
acting on the world (action selection), and can predict incoming sensory data (perception). Therefore,
the brain, as well as other autonomous agents, can essentially be seen as inference engines that seek
to minimize prediction error, and have the tools to do so by their choice of action selection and by the
updating of their internal model of the world. Because all of these elements that comprise active in-
ference can be evaluated mathematically, active inference can find applications beyond neuroscience,
making it also an interesting topic from an engineering point of view.

The theory of active inference is still a relatively new one, with the free energy principle having
been coined by neuroscientist Karl Friston a little more than a decade ago [9]. Since then, examples of
problems to which active inference has been applied to include planning and navigation [18], reading
[16], visual attention [22] and the mountain car problem [15]. However, not all of these problems are
solved in the same way. The generative processes encountered in active inference can entail either
continuous or discrete state-spaces (or even a mixture of both in more complicated tasks), and the
continuous and discrete state-space variants of active inference differ in their computational frameworks
as well. Whether to utilize the continuous or discrete state-space framework is dependent on the task,
with the former typically being used in lower level control and the latter typically being used in higher
level decision making. This thesis will focus on the discrete representation of states, because it will be
an extension to the research on planning and navigation tasks as will be seen later on. For these tasks,
the processes encountered are generally modeled as slight variations of Markov decision processes.

Markov decision processes are widely used in the solving of optimization problems and are known

1



2 1. Introduction

to have been used at least since the late 1950s [1]. However, with active inference being such a
novel theory, a multitude type of problems are still unexplored, even if the scope is just restricted to
active inference on Markov decision processes. One type of problem that is neglected in this scope of
problems, but will be essential for active inference agents to deal with, is active inference in nonsta-
tionary environments. While with the current technological advances machines prosper in stationary,
controlled environments, it is the reality that not all real-world environments can be regulated to ensure
stationarity [6]. A common example of an environment that does not have the property of stationarity
is simply the outside world disturbed by meteorological phenomena. As such, one can comprehend
that nonstationarity arises in everyday situations. Eventually, true intelligent agents should (up to a
certain extent) be able to adapt to nonstationary environments. This thesis aims to make a start in the
research of discrete state-space active inference in nonstationary environments.

1.2. Problem statement

The first section outlined the context of and motivation behind this thesis. This section will build on
that by giving a formal description of the problem to be solved and defining the corresponding research
questions. The research questions that will be addressed in this thesis, are formulated as follows:

1. How do state-of-the-art active inference agents perform in discrete state-space nonstationary
environments?

2. Can the performance of discrete state-space active inference agents in nonstationary environ-
ments be improved by forgetting part of their previous experiences?

3. What are the most effective methods for implementing forgetting in discrete state-space active
inference?

The second research question is defined, because it is expected that with discrete state-space active
inference as it currently is, the agent is not able to attain satisfactory performance. This expectation
is based on the difficulties that nonstationarity has brought in related fields of research [3, 6]. This
expectation is confirmed later when going through the results in chapter 5. The third research question
is a natural extension to the second research question.

Since nonstationary processes encompass a large variety of subtypes, constraints have to be set in
what type of nonstationarity will be researched. Being one of the most common instances of nonstation-
arity and providing a bridge between stationary processes and other more complicated nonstationary
processes [24], the choice is made to focus on cyclostationary processes in this research. To constrain
the problem further, in what follows, the nonstationarity will be exclusively manifested in the transition
process. Aside from the fact that nonstationarity in the transition process has not been addressed
in discrete state-space active inference research literature, the literature often neglects the transition
model in favor of working on the observation model. Getting results that focus on the transition process
will therefore be valuable even outside the scope of nonstationarity.

For creating a working environment of the active inference agent in this research, the main task to
be solved by the agent will be a MATLAB simulation in which the agent has to traverse a maze-like
gridworld, trying to find the shortest path from start to goal in a transition-nonstationary environment.
Since the task to be solved is one of planning and navigation, the number of steps the agent needs to
take in order to reach its goal will be used to quantify the performance. Regarding the nonstationarity
in the transition process, in this task it will be modeled as an external perturbating force, that can be
interpreted as wind, for which the direction changes over time.

1.3. Contribution

The contribution of this thesis to the active inference research will be to modify the updating scheme
of the agent’s generative model to better cope with nonstationary state transitions. As is evident from
the last two research questions, this will be done by providing the agent with a way of forgetting infor-
mation gained by previous experiences. This is currently not possible in active inference. Since this
modification allows the agent to forget experiences that do not conform with the present, it is expected
that this can improve the agent’s performance in nonstationary environments.
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Implementing forgetting in the updating scheme of the agent can be done in several ways, and as
such different methods will be tested. Three methods for implementing forgetting will be discussed in
this research:

1. The approach arguably closest to the conventional discrete state-space active inference updat-
ing of the generative model is to implement a forget rate parameter to the updating of the agent’s
transition model, thereby simply expanding the updating scheme of the generative model. The
use of forget rate parameters in general is not new, as these have been implemented in reinforce-
ment learning before [19, 20]. The implementation in active inference however, is novel and as
such, this is one of the approaches that will be taken.

2. Besides expanding the agent’s updating scheme of the transition model with a forget rate param-
eter, other approaches for implementing forgetting can be taken that are inherently different from
the conventional updating of the generative model in active inference. One approach from the
field of deep learning that has proven to be capable of forgetting is the application of the long
short-term memory (LSTM) [17]. Therefore, it will be investigated whether the way of updating
an LSTM cell can be translated to the updating of the generative model in active inference to
accommodate forgetting.

3. The final approach that will be taken for implementing forgetting is to apply a rolling summation
for the parameters of the generative model instead of a total summation. Similar to a rolling
average, the rolling summation takes into account only the most recent information stored in the
agent’s generative model, the amount determined by the width of the summation window. Rolling
averages have proven to be effective for detecting patterns and transient events in time series
analysis [23]. As such, this could be the case for handling nonstationarity in active inference as
well.

The resulting behavior of these agents embedded with different ways of forgetting will be compared
to each other and to the behavior of an agent incapable of forgetting, when solving the task in the
previously described MATLAB setup. This allows for the first-time evaluation of performance for active
inference agents using novel updating schemes for the generative model.

1.4. Thesis structure

Succeeding this introductory chapter is chapter 2, which will give an introduction to the theory of discrete
state-space active inference. This chapter contains the fundamental concepts and definitions, among
which the generative model and the free energy, and will also provide an overview of the numerous
symbols and notations that will be used throughout this work.

Chapter 3 will introduce nonstationarity in stochastic processes and describe the manifestations of
nonstationarity in active inference. It will also discuss possible approaches to handle nonstationarity in
active inference and zoom in on the implementation of the chosen methods.

Chapter 4 will describe the problem setup that will be used for testing the performance of dis-
crete state-space active inference agents in this research. A detailed explanation of the experimental
methodology will be given, along with all the variables that will influence the performance of the agents.
For this, the metrics and statistics that will be used for quantifying the performance of the agents need
to be declared, which will be done at the end of this chapter.

Chapter 5 will provide the results of the experiments and their statistical significance. The end of
this chapter will also provide a tuning analysis by repeating the experiments with different values for
the selected tunable parameters.

The penultimate chapter 6 will go deeper into the performance of the proposed methods in this
research, by explaining the causes of the obtained results. This chapter will also discuss possible
additions to the proposed methods and even alternatives to these methods.

Finally, chapter 7 will give a recap of the findings in this research and end with the conclusions that
answer the research questions defined in this chapter.






Active inference

This chapter will give an introduction to the theory of active inference, focussing on its discrete state-
space variant. After section 2.1 has provided the motivation behind active inference, sections 2.2
and 2.3 will introduce the general concepts of the agent-environment interface and the free energy
respectively. The following sections, 2.4 and 2.5, will explain the fundamental concepts of discrete
state-space active inference in detail. It is important to become acquainted with these concepts, as
these will be further addressed in the subsequent chapters.

2.1. The motivation behind active inference

Active inference is a neuroscientific theory based on the free energy principle, a statement introduced
by neuroscientist Karl Friston, which proposes that everything in life minimizes a quantity termed the
free energy [8]. The motivation behind this theory comes from the question how a biological system
(e.g. the brain) can stay at equilibrium with its environment, even in a constantly changing environ-
ment. Equivalently, this question can be formulated as how these systems resist a natural tendency to
disorder [7]. To answer this question, the free energy principle starts by stating that systems typically
restrict themselves to a limited number of states. That is, for most of the part, these systems will find
themselves in the same small number of states out of all the possible states they could occupy. Statisti-
cally speaking, this means that the probability is high that a system will be in any of the aforementioned
small number of states, and low that it will be in the remaining states. This finding can be rephrased by
saying that it would be suprising to find the system in any of the remaining states, and not so surprising
to find the system in the smaller subset of states. A commonly used example of this would be a fish.
For an ordinary fish, living its life in the water comes naturally: it is not surprising at all for the fish to find
itself in the water. However, a fish will not want to find itself out of the water: this would be detrimental
to its survival and can be regarded as a very surprising state. As can be seen from this simple example,
avoiding surprising states seems beneficial to prolonging existence.

This is exactly what is done in active inference. The free energy that is minimized by active inference
can actually be regarded as a measure of the 'surprisingness’. This minimization of free energy embeds
biological systems with the behavior that characterizes their nature: action selection, perception and
learning. By minimizing the free energy, they keep an accurate representation of the world (learning),
are provided with an optimal way of acting on the world (action selection), and can predict incoming
sensory data (perception). The use of the term 'minimization’ here implicitly suggested that the free
energy can be evaluated mathematically. Because of this property, active inference can find use in
applications beyond neuroscience. After all, the features of active inference mentioned in the previous
paragraphs do not solely hold for biological systems: they can be embedded in artificial systems as well.
This makes active inference an interesting topic from an engineering point of view, and in particular
makes it an attractive framework to pursue in the design of novel artificial intelligence systems and
robots.

Any scientific theory trying to explain the working principles of the nervous system faces a dual
challenge in quantifying behavior [28]. On the one hand, to act upon the world, it is necessary to make
changes to continuous variables: an example is the change in length of the different muscles in the
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6 2. Active inference

arm when extending that arm. On the other hand, the preceding process, that of decision making, is
intrinsically discrete: a choice is being made between a finite set of different possibilities. This duality is
also present in the theory of active inference. Active inference can be applied to problems regardless
of whether the state-space representation is continuous or discrete. However, as the continuous and
discrete state-space variants of active inference differ in their computational frameworks, the nature
of the problem will determine the framework it will be used in. Generally, the continuous state-space
framework is used in lower-level tasks, e.g. when controlling forces or velocities, whereas the discrete
state-space framework is used in higher-level tasks, e.g. in abstract problem solving [28]. As mentioned
in the introduction, this thesis will focus on the discrete state-space representation of active inference.
It will be seen in the remainder of this chapter that the processes encountered in this framework can
be modeled as slight variations of Markov decision processes.

2.2. The agent and the environment

The start of this chapter questioned how some systems can stay in equilibrium with their environments.
Such a system that is capable of interacting with its environment is referred to as an agent in artificial
intelligence terminology [29].

In order to interact with its environment, an agent has to be able to perceive the environment, and
also can be capable of learning from the interaction with the environment. This environment comprises
everything outside the agent, and is represented by the set of possible states it can take on. Crucially,
in an active inference task, the agent is not able to determine the state of the environment directly.
Because of this, they are denoted as hidden states in the literature [13]. Nevertheless, the agent is able
to observe the outcomes in a task through its sensors. A simple example of this would be an agent
whose only sensor is a moisture sensor: through its measurements of the water content in the soil,
the agent can determine whether it has rained or not, even though the agent is incapable of observing
rainfall directly. Thus, the agent has to infer the states from the outcomes.

Additionally, the agent can interact with the environment through actions, whereby it transitions from
one state to another. This closes the loop between agent and environment, as shown in figure 2.1. The
result is an almost identical representation of the agent-environment interface used in standard Markov
decision processes and reinforcement learning [32], the only difference being the absent notion of
explicit rewards.

2.3. Free energy: a bound on surprisal

Active inference is a corollary of the free-energy principle: the behavior that characterizes active infer-
ence, that is perception, action selection and learning are all the result of minimizing the free energy.
But what is free energy exactly? With just the concepts defined so far in this thesis, it is difficult to
give an elaborate definition of free energy. What can already be defined however, is that free energy
is a quantity from the field of information theory (it is different from the energy encountered in physics)
that provides an upper bound on the surprisal. The surprisal of a state is a quantification of how sur-
prising a certain state is. Remembering from section 2.1, the avoiding of surprising states by agents
is beneficial to prolonging their existence. However, as mentioned in section 2.2, agents are not able
to determine the state of the environment directly, let alone to avoid the surprising ones in this way.
Although incapable of minimizing the surprisal of states, agent are able to approximate this minimiza-
tion by minimizing the sensory surprisal, that is the suprisal of outcomes. Mathematically, the surprisal
of a certain outcome o is given by the negative log-probability of that outcome, i.e. —Ilnp(0). Since
probabilities exist in the range between 0 and 1, the surprisal of an outcome is a value between 0 (when
the probability of that outcome is 1) and oo (which is approached when the probability of that outcome
goes to 0).

Thus, to calculate the surprisal of a certain outcome o, one first needs to determine the probability
of that outcome. However, this task is not as trivial as it seems. Using the law of total probability, it
can be seen that determining the probability of a certain outcome o would entail summation over all
possible hidden states s € §:

p(0) = ) p(oIP(s) 2.1)

SES

The problem with this computation is that it becomes intractable as the state-space gets large, since the
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External
states

Figure 2.1: A schematic depiction of the agent-environment interface. The external states represent the states of the environment
as they are in reality. The agent however, is not able to determine the external states directly, which is why these are often referred
to as hidden states. What the agent can do, is observe the external states through sensory states. Therefore, these sensory
states are commonly referred to as observations or outcomes. An agent can infer the external states, with the use of its sensory
states, the result which is given by the internal states. These internal states represent the agent’s beliefs about the environment.
To close the loop, the agent can act on the environment, with the use of active states, often simply referred to as actions or
control variables. (This figure is adapted from [4].)



8 2. Active inference

number of calculations grows exponentially with the number of states [2]. Therefore, another approach
has to be taken to minimize the surprisal.

A good starting point when trying to minimize the surprisal of states, is to have a way of determining
the states first. Since hidden states can be inferred from outcomes, Bayes’ rule can be utilized to
calculate the posterior probability of the hidden states p(s|o), given the prior probability of the hidden
states p(s) and the likelihood p(o|s):

p(ols)p(s)
p(o)

Unfortunately, as can be seen from equation 2.2, this also requires knowledge about the marginal
likelihood p(0), which was the reason to try another approach in the first place.

Since it seems to be impossible to solve this type of problem with traditional Bayesian inference,
variational Bayesian inference provides an alternative. Variational Bayesian inference uses an approx-
imation of the posterior probability over states, instead of the exact calculation in equation 2.2, thereby
avoiding the need to marginalize out the probability of all states s in set S. This approximate pos-
terior is a distribution parameterized by the parameters of the agent’s generative model. By closely
approximating the real posterior distribution with this approximate distribution, the agent obtains the
best estimation of the sensory surprisal. This will be mathematically proven in section 2.5. But first,
section 2.4 will provide the mathematical concepts that underlie this proof.

p(slo) = (2.2)

2.4. The generative process, generative model and approximate

posterior

With the concepts introduced thus far, a formal description of the discrete state-space representation
of active inference can be given by the following list. There exist:

+ Hidden states s forming the set of all possible hidden states §, thatis s € §. The states are called
hidden, because the agent cannot observe them directly.

» Outcomes o forming the set of all possible outcomes 0, that is 0 € 0. Outcomes are also referred
to as observations, because these are what the agent observes directly.

 Actions u forming the set of all possible actions U, that is u € U. Actions are also referred to as
control variables.

* A generative process, that is the real world dynamics as they are specified by the environment.
It is denoted by R(9, §, it).

» A generative model, that is the agent’s beliefs about the real world dynamics. It is denoted by
P(6,5,m,n).

» An approximate posterior, which is denoted by Q(§, , 7).

The first three items in this list have already been introduced in the previous sections in this chapter.
The last three items in this list are the topic of this section and will be explained here in more detail. For
an overview of the numerous symbols and notations used throughout this chapter, refer to table 2.1.

2.4.1. The generative process

The generative process R(6, §, 1) describes the world by generating outcomes from hidden states and
actions, and state transitions in time. To exemplify this, if the agent takes a certain action in a certain
state at the current timestep, the generative process will determine what the state will be at the next
timestep and what will be observable for the agent. Since the generative process samples states given
the previous state and current action, and outcomes given the current state, it is also known as the
sampling probability in earlier literature [10]. Important to note here is that the agent does not have
access to the information contained within the generative process. This has important consequences
depending on the nature of the active inference task. In real-world tasks, this means that the generative
process is not explicitly known at all. In simulated tasks, this means that the designer has to specify
the generative process to simulate the environmental dynamics, but must ensure that the agent is
precluded from this information.
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Table 2.1: List of frequently used symbols and notations used in discrete state-space active inference.

(a) List of frequently used symbols and their meaning.

| Symbol | Meaning \

T The general notation of a timestep, usually used for indexing other vari-
ables.

T The time horizon, which specifies the total number of timesteps in a trial.

S¢ A vector containing the probabilities of hidden states at timestep .

st A vector containing the probabilities of hidden states at timestep t, ac-
cording to policy m.

07 A vector containing the probabilities of outcomes or observations at
timestep .

oF A vector containing the probabilities of outcomes or observations at
timestep t, according to policy m.

u The general notation of an action or control variable.

T The general notation of a policy, which specifies a sequence of actions.

A The likelihood or observation matrix, which specifies the probabilities of
outcomes given hidden states.

a The concentration parameters of the likelihood matrix.

BF The transition matrix, which specifies the probabilities of the next hidden

state given the current hidden state and policy.

b The concentration parameters of the transition matrix.

D The initial state vector, which specifies the probabilities over initial states.
U The utility vector, which specifies how the agent prefers possible out-
comes over one another.

c The prior preference vector, which is the utility vector normalized into a
probability distribution.

y The precision, which refers to the agent’s randomness in policy selection.
B The inverse precision, which is used for easier updating of the precision.
Ui The parameters of the generative model, composed of the set of concen-
tration parameters and inverse precision, i.e. n = {a, b, d, f}.

x The hidden causes, composed of the set of hidden states, policies and
model parameters, i.e. x = {§,m,n}.

F The variational free energy. The agent infers the hidden causes by min-
imizing this quantity with respect to those hidden causes.

G The expected free energy. The agent evaluates policies by minimizing

this quantity with respect to those policies.

(b) List of frequently used notations and their meaning.

| Notation | Meaning \

subscript The subscript notation is commonly used for the time indexing of vari-
ables, e.g. s;.

superscript The superscript notation is commonly used for indicating that a distribu-
tion is specific for a policy, e.g. sF.

Bold When a distribution is depicted in boldface font, it concerns the posterior
expectation of that distribution, e.g. sF.

hat The hat notation indicates the natural logarithm of the corresponding dis-
tribution, e.g. §T = InsT.

tilde The tilde notation indicates a sequence, e.g. § = (sq, .., St)-
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2.4.2. The generative model

Although the agent does not have access to the information in the generative process, it does have
its own generative model of the world. The generative model P(9, §, ,n) is a model that describes the
dynamics of the world according to the agent’s beliefs. In general, these beliefs are different from the
actual dynamics generated by the generative process (except in the unlikely case where the agent has
a perfect model of the world). The generative model is used to infer hidden causes from outcomes, and
is simply the joint probability of outcomes and their hidden causes. Causes can be defined as the set
of states, policies and model parameters. The term causes is used, because hidden states are not the
only quantities that determine observations: the different policies the agent can follow also influence
what the agent will observe (e.g. the choice of where to look plays a role in what will be seen), as
do the parameters of the model (e.g. past experiences play a role in how something is perceived).
This means that — besides inferring the hidden states from the observations — the agent also has to
select policies and learn the model parameters as will be seen later. As the generative model is a joint
probability of outcomes and their causes, it can be parameterized in the following way:

P(6,3,m,n) = P(0|3)P(3|m)P(m|y)P(y)P(A)P(B)P(D)

T T
(2.3)
= [ [peodso | [Peselse-rmPsP@EIIPGIPAPEIPD)
=1 =2

The meaning of each of the terms in this equation will be clarified in the remaining paragraphs of this
subsection.

In most of the terms in equation 2.3, a probabilistic mapping is made from one variable to another.
For example, P(o|s) denotes the probability of the observation being o when the state is s. Naturally,
the observations and states (along with the other variables) can take on different values. Therefore,
the values of all combinations in the probabilistic mapping are typically stored in matrices:

P(0ls;) = Cat(A) (2.4)
P(S¢41ls,m) = Cat(B(u = (7)) (2.5)

These matrices, specified by Cat, are categorical distributions. The categorical distribution is nothing
more than a discrete probability distribution that describes the probability of all the possible categories
that the random variable can result in. When dealing with two random variables (as is the case here),
each element in a column of the matrix specifies the probability that the dependent variable takes on
that value, whereas every different column represents the categories the independent variables can
take on. Or mathematically stated, P(o|s) = Cat(A) implies P(o = i|s = j) = Cat(4;;). A graphical
example is given in figure 2.2.

The matrix described in equation 2.4, A, is known as the likelihood matrix or observation model.
Each element in A specifies the likelihood of a certain observation given a certain state. The columns
in the A-matrix correspond to all possible hidden states, whereas the rows correspond to all possible
observations. Since the A-matrix takes on a categorical distribution (it is a probabilistic mapping from
hidden states to outcomes), the elements in each column sum to one.

The matrix described in equation 2.5, B(r(t)), is known as the transition matrix or model, for which
each element in the matrix gives the probability of transitioning to a next state given a current state and
policy. Note that there is a separate B-matrix for every possible control variable, since the state transi-
tion probabilities are conditional on the chosen policy. In the B-matrix for a specific control variable, the
columns correspond to all possible current hidden states, whereas the rows correspond to all possible
next hidden states. Similar to the A-matrix, the elements in the columns of the B-matrices sum to one.

A special case of the transition model exists when 'transitioning’ to the initial state:

P(s1ls9, ) = P(s1) = Cat(D) (2.6)

Since the initial state is not actually dependent on a previous state or policy, it is not a conditional
probability. As such, the categorical distribution in equation 2.6 takes not the form of a two-dimensional
matrix, but rather a one-dimensional vector. It is therefore known as the initial state vector or D-vector.
Each element in the D-vector specifies the agent’s beliefs about the probability of that state being the
initial state.
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Returning to equation 2.3, the third term P (r|y) specifies the agent’s probability of following policy r,
dependent on the agent’s precision y. The precision refers to the degree of randomness in the agent’s
behavior. Simply stated, if an agent believes a certain policy is best (how the agent actually determines
which policy is best will be discussed in 2.5) there remains a chance that the agent will not follow that
policy if the precision is low.

The agent has prior beliefs over the precision y itself. The prior on the precision takes the form of
a gamma distribution P(y) = Gamma(1, 8). Even though the gamma distribution is a two-parameter
continuous probability distribution, when the first parameter is equal to one (like in this case), the dis-
tribution is essentially reduced to an exponential distribution [5]. Therefore, the precision is effectively
parameterized only by the variable g, which is called the temperature or inverse precision [13]. This
comes from the fact that the expected value of the precision y equals 1/ (since the expected value of
an exponential distribution f(x; 1) is equal to 1/2).

The final three terms in equation 2.3 are the priors over the observation matrix, transition matrix and
initial state vector respectively:

P(A) = Dir(a) (2.7)
P(B) = Dir(b) (2.8)
P(D) = Dir(d) (2.9)

These priors are specified by a Dirichlet distribution of so-called concentration parameters a, b and d.
In a Dirichlet distribution, the input concentration parameters take the form of an array, whose size is
equal to the array of the conjugate distribution (which in this case is the categorical distribution). For
example, concentration parameter matrix a is a matrix equal in size to observation matrix A. In fact,
since matrix A represents a probability distribution, it is the column-normalized version of matrix a (the
same relation holds between matrices B and b, and vectors D and d). These concentration parameters
describe the confidence of the probabilities specified by their normalized counterparts. Again taking
the observation matrix as an example, when a specific outcome is observed more often in a specific
state, the agent becomes increasingly certain that that particular state will give that particular outcome
as observation, and the value for the corresponding element in the concentration parameter matrix
increases. Intuitively, the concentration parameters can be seen as counts that keep track of how often
state-outcome pairs (for a) or state transition pairs (for b) have occurred, or how often states have been
encountered as the initial state (for d).

Readers with a keen eye will have noticed that while the arrays A, B and D have all been men-
tioned, a possible C array is missing. A vector C actually exists in discrete state-space active inference,
although it does not appear in equation 2.3:

P(0,) = Cat(C) (2.10)

The reason for this omission, is that the elements in the C-vector do not represent actual probabilities.
Rather, they represent the prior probabilities over outcomes as specified (indirectly) by the designer.
As such, the amount of possible values the elements in the C-vector can take on are endless in theory.
In practice however, the priors over outcomes are usually set to reflect the agent’s preferences over
outcomes [14]. Since the elements in the C-vector must sum to one, it is obtained by applying the
softmax function on the so-called utility vector U:

P(or) = a(U(or)) (2.11)

It is this utility vector that is directly specified by the designer, which tells how the agent rates its pref-
erences over outcomes. That is, higher values in the utility vector simply correspond to outcomes that
are more preferred by the agent. Prior preferences over outcomes are used in the evaluation of policies
the agent can select, and will be further encountered in section 2.5.

2.4.3. The approximate posterior

Section 2.3 concluded by stating the need for approximating the real posterior distribution with an
approximate posterior distribution, as this way, the agent obtains the best estimation of the sensory
surprisal. In variational Bayesian inference, one first has to specify the form of the approximate posterior
distribution. In active inference this can be done with the mean field approximation. By factorizing the
approximate posterior into a product of smaller terms, the dependency structure can be simplified. Even
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1 3
A = p(0]s7)
1 0 0 O
o100
“10 0 1 0
2 4 0 0 0 1
B(west) = p(sr+1ls7) B(east) = p(sr+1ls7)
1 01 0 0 0 0 O
o1 01 o0 o0 o0
{00 0O 11 0 1 0
0 0 0 O 0 1 0 1
B(north) = p(sr+1ls:) B(south) = p(sg+1lsc)
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o0 0 o0 [t 100
10 0 1 1 ~]10 0 0 O
0 0 0 O 0 0 1 1
0.1 0
0.1 1
C=p(01—)= 0.7 D=p(51)= 0
0.1 0

Figure 2.2: Example of the arrays used in the generative model. There exists a 2 x 2 gridworld, in which each cell represents
one specific state, for which the state number is shown in the corresponding cell. These state numbers are used for indexing the
arrays of the generative model. In this example, the agent is able to directly observe the states, because there is a one-to-one
mapping from states to observations, as is seen from the A-matrix. To transition between states, the agent has four control
variables at its disposal: west, east, north and south. In the B-matrices, it can be seen how taking one action in a specific
state leads to what state transition. For example, in the transition matrix of the west control variable, the value of 1 in row 2
column 4, means that taking the action to the west in state 4 leads to a transition to state 2. The C-vector tells how the agent
prefers its outcomes: in this example, the agent prefers to observe (in these kind of tasks, to be in) state 3 over the other states.
Finally, the D-vector specifies the probabilities of the agent’s initial state: in this example, the agent beliefs that it will certainly
start in state 2.
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though the structure of the model becomes simpler with this factorization, it has a sound mathematical
foundation and has been used with success in many previous applications of variational methods [34].
The result is the following equation for the approximate posterior:

QB,mn) = QBIMQ(MQ ()R (AR (B)Q(D)

2 (2.12)
= 1—[ Q(s:|m)QmMQ(QA)Q(B)Q(D)
T=1

A description of the meaning of the terms that appear in equation 2.12 has been provided in the previous
subsection. The difference now however, is that the probabilities in equation 2.12 concern posterior
probabilities, which was not the case for equation 2.3. That is, equation 2.12 relates to the probabilities
after the agent’s observations have been taken into account. How each of the factors in the approx-
imate posterior is calculated and updated, will be explained in section 2.6. Although, that requires
understanding of the mathematical evaluation of the free energy first.

2.5. Variational and expected free energy

The minimization of free energy lies at the heart of the theory of active inference. In the discrete
state-space active inference literature, actually two forms of free energy are mentioned, namely the
variational free energy and the expected free energy. Both forms of the free energy will be discussed
in this section.

2.5.1. Variational free energy

The variational free energy is used by the agent for making optimal inferences about the hidden states,
policies and model parameters. The starting point for the equation of the variational free energy is
usually the expression of the expected log difference between the approximate posterior (what the
agent beliefs that has happened) and the joint distribution of the generative model (what the agent
expected to happen), after which the variational free energy can be expressed further in different ways:

F =Ey[lnQ(s,m,A,B,D) —InP(s,m,A,B,D,0)]
=Eg[InQ(s,m, A, B,D) —InP(s,m,A,B,D|6) — In P(6)] (2.13)
= Dxo[Q(s,m, A, B,D)|P(s,m, A, B,D|6)] — In P(6)
Here, Dy, is the Kullback-Leibler (KL) divergence. The KL divergence is used for measuring how

one probability distribution is quantitatively different from another one. For two discrete probability
distributions Q(x) and P(x), that is:

Q(x)>

DulQ@IP@] = ) @n ( P

xX€X

(2.14)

A useful property of the KL divergence is that its output is always a nonnegative value [21]. Taking this
property into account, it can be seen from the last equality in equation 2.13 that the variational free
energy is minimized when the KL divergence is zero. As can be seen from equation 2.14, this is the
case when Q is equal to P. Moving back to 2.13, it can then be seen that in the case of Q being equal to
P, the free energy becomes equal to the sensory surprisal —In P(é). This also means that when Q and
P are not equal, the free energy will always be larger than the surprisal, as the KL divergence will then
be some positive number. As such, the free energy will always be larger than or equal to the surprisal.
This proves why the free energy is an upper bound on the surprisal, as was concluded in section 2.3.

2.5.2. Expected free energy

With the theory described thus far, it is known that the agent wants to minimize the variational free
energy as this allows the agent to make optimal inferences. However, this is just one side of active
inference. As mentioned at the start of this chapter, free energy minimization also provides the agent
with an optimal way of acting on the world. However, the minimization of equation 2.13 is of little use
for taking future actions (policy selection), since the variational free energy is to be calculated only after
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the agent has observed the outcomes. To define the value of policies, the agent has to consider the
free energy over (potential) future outcomes and hidden states under a given policy. This free energy
expected under a policy is termed the expected free energy. The equation for the expected free energy
of a policy 7 is given by:

T
G(n) = Z GOt 7) (2.15)
=1

G(m,7) = Eg[In Q(s¢|m) —In Q(s¢|or, m) — In P(0;)]
= Eg[In Q(s¢|m) — In Q(s¢|or, m)] — Eg[ln P(0)]
= EQ [In Q(o;|m) — In Q(or|s;, )] — EQ [In P(0,)]
= Dy [Q(0:|m)|P(0;)] + Eg[H[P(0r]s:)]]
where § = Q(o,, s;|m) is a posterior predictive distribution. This means that unlike the expectations in
the variational free energy equation, where the outcomes were actually observed (i.e. according to the
generative process), the expectations here consider outcomes that the agent would observe according

to its generative model. The final expression in equation 2.16 can be rewritten in terms of the agent’s
generative model, which simplifies the calculation:

G(m,7) = Do[Q(0:|m)|P(0)] + EG[H[P(0]s)]]
=o7-(6f —U)+sf-H

(2.16)

(2.17)

In the equation above, U is the utility vector and H is a vector encoding the entropy or ambiguity over
outcomes:
H = —diag(A- A) (2.18)

Also seen from equation 2.17 is the subscript-superscript notation for states and outcomes (e.g. of
denotes the probability over outcomes at time t when policy 7 is followed), which is commonly used in
literature. In this notation, the boldface symbols indicate that the distributions in question are posterior
distributions (or in this case posterior predictive distributions). Additionally, the hat notation in equations
above is a shorthand notation for the natural logarithm of the corresponding distribution, e.g. o7 =
In oF. These notations will be used throughout the rest of this report.

The agent performs the calculation in equation 2.15 for every possible policy. When this is done,
the probability of pursuing a certain policy is given by the following equation:

P(m) =mo = o(~y - G(m)) (2.19)

This means that the probability of pursuing a policy is proportional to the negative expected free energy
of that policy. This shows how the minimization of the free energy of beliefs about the future shapes
the agent’s behavior.

2.6. Belief updating

The previous section ended with evaluating the expected free energy of each policy, which allows the
agent to select what policy to follow. The policy specifies an action at each timestep, which will result
in a state transition and the generation of a new outcome per timestep as well. Just like the agent
predicted what would happen by evaluating the expected free energy before taking action, the agent
will infer what actually has happened after observing the outcomes, and learn from its inferences. The
agent does this by minimizing the variational free energy (equation 2.13) with respect to hidden states,
precision of action selection, policies and model parameters.

2.6.1. States, policies and precision (inference)
The agent can infer the most likely states per policy, based on the observed outcomes in the trial and
the parameters of the generative model. The posterior beliefs over the hidden states are given by the
following equation:

Q(sclm) = ST = 0 (A 0p + By sy + BF - sT,,) (2.20)

As seen from this equation, the posterior beliefs about a state at one timestep depends on beliefs about
both the state at the previous timestep and the state at the next timestep. As such, this requires for



2.6. Belief updating 15

each timestep equation 2.20 to be iterated until convergence. However, this iteration until convergence
is typically not the approach taken in active inference, as it does not seem to be in line with biological
plausibility in cognitive neuroscience. Therefore, active inference takes a biologically more plausible
approach by doing a gradient descent on the free energy [13]:

T

& = 0gsT - e (2.21)
sT = g(§T) (2.22)
ef = (A- o, + Bl STy + BT - s7,,) — &7 (2.23)

The solving of these equation results in the posterior expectations of the hidden states that minimize
the total variational free energy.

At the end of the trial, the agent also infers the policies. The inference of policies at the end of a
trial is very similar to the selection of policies at the start of a trial (equation 2.19), with the difference
being that the agent now also takes into account the variational free energy:

Q(m) =m=o0(=F —y-G(m)) (2.24)

Important to emphasize is that equation 2.24 is not used to select policies, since the policy for the trial
has already been executed at this point. Rather, it is used to infer the policy that has been executed.

In addition to the states and policies, the agent infers the precision of policy selection y, or more
precise, its inverse B (see section 2.4):

B=pF+(m—my) G(m) (2.25)

Similar to the inference of states, the updated value of the inverse precision can be obtained by doing
a gradient descent on the free energy: .
B =vy% (2.26)

e =B -+ (1) G(m) (2.27)

Finally, with the expected states per policy s and the posterior over policies T now computed, the
agent can obtain a posterior distribution over states, independent of policies, by creating a Bayesian
model average of the states:

s, = Z 7T, - ST (2.28)
This distribution is used by the agent in the updating of the parameters of its generative model.

2.6.2. Model parameters (learning)

After having inferred the hidden causes at every timestep in a trial, the agent is able to update the
parameters of its generative model at the end of that trial. The agent does this by the accumulation of
concentration parameters:

T
a=a+ZoT®sT (2.29)
7=1
T-1
b(w) = b@) + ) ) Sxeyutesty ® ¥ (2.30)
m€ell =1

where § is the Kronecker delta. Similar to how a boldface symbol for the state distribution represents
a posterior distribution, a boldface symbol for the concentration parameters represents those concen-
tration parameters after accumulation at the end of the trial.

For simplifying the cross-referencing later on, the second term in equation 2.30 will be given its own
variable:

T-1
B = ) Sreultastss @ ¥ (2.31)

nell t=1
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This variable 4 (u) represents the concentration parameters accumulated in one trial, and can be in-
terpreted as the experience the agent has gained from that trial.
After the accumulation of concentration parameters, the generative model is updated as follows:

A =1y() - y(y) (2.32)
B = y(b) — ¥(by) (2.33)

where ) is the digamma function. In the above equations, a, and b, are matrices in which each element
in the same column is equal to the sum of elements of the corresponding column in the a and b matrix

respectively. That is:
Ag;; = Z a;j (2.34)
i

by;; = z b;; (2.35)
i

In the end, what equations 2.32 and 2.33 boil down to, is that the resulting matrices A and B become
column-normalized versions of their concentration parameter matrix counterparts a and b.



Nonstationarity in active inference

The previous chapter gave a condensed overview of the fundamental concepts and working principles
in discrete state-space active inference. As mentioned in the introduction, these principles have shown
to be capable of solving a wide range of problems, but these implementations had in common that the
problems to be solved were stationary in nature. Therefore, this chapter will give an introduction to
nonstationarity in stochastic processes, zoom in on the type of nonstationarity applied in this research
(cyclostationarity) and describe the manifestations of nonstationarity in active inference. The remainder
of this chapter will concern possible methods to cope with nonstationarity in active inference, from which
the focus will be set on forgetting. Consequently, this chapter will conclude with the elaboration of three
different ways for implementing forgetting in discrete state-space active inference.

3.1. Stationary and nonstationary processes

Stochastic processes can be classified based on many different basic properties. One such property
that can be used in the classification of stochastic processes is the distinction between stationarity and
nonstationarity. The literature on stochastic processes makes a further division in stationary processes
between strict sense stationary processes and wide sense stationary processes [26]. Formally, a strict
sense stationary process is a stochastic process for which all statistical properties are identical at any
point in time. Mathematically, a stochastic process X is a strict sense stationary process if:

P(X(t)) = P(X(t + At) Vt,At (3.1)

For a wide sense stationary process, this identity over time is restricted to just the mean and autoco-
variance of that process:
E[X(t1)] = E[X(t2)] Vit (3.2)

Cxx[t1, t2] = Cxx[ty — t3,0] Vi, t, (3.3)

In general, it is valid to identify stationarity processes in discrete state-space active inference as strict
sense stationary, since the probability distribution of the generative process is usually explicitly defined.
The property of stationarity is very desirable when dealing with highly automated tasks. After all,
with just the knowledge about the process obtained from the past, predictions can be made about the
process in the future. Unfortunately, real-world processes are often not stationary. Any process for
which equation 3.1 does not hold, is said to be nonstationary. Nonstationarity poses an extra challenge
when dealing with stochastic processes, since the knowledge obtained in the past might be insufficient
in predicting the process in the future. In the next section, it will be seen what kind of knowledge
this concerns when dealing with nonstationary processes in an active inference task. But first, a brief
overview will be given of the specific type of nonstationarity that will be focussed on in this research.

3.1.1. Cyclostationary processes
When dealing with nonstationary processes, it is helpful to identify the nature of the nonstationarity
to determine the constraints of the process, if possible. An exhaustive list on types of nonstationarity

17
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will not be provided here, since the scope of this research will be restricted to cyclostationarity. The
choice for focussing on cyclostationarity is substantiated by the fact that it provides a bridge between
stationary processes that have already been studied in discrete state-space active inference in the
past, and other more complicated nonstationary processes that can be a topic for further research in
the future. In fact, a discrete-time cyclostationary process can be expressed in terms of a finite number
of nonoverlapping stationary processes [24].

Cyclostationary processes are stochastic processes that have statistical properties that change
over time, but repeat after a certain period. Just as with stationary processes, a division can be made
between strict sense cyclostationary processes and wide sense cyclostationary processes. Mathemat-
ically, a stochastic process X is said to be strict sense cyclostationary if there exists a period T for
which:

PX(t)=PX(t+T) Vt (3.4)

Cyclostationarity is commonly encountered in real-world processes. An example of a cyclostation-
ary process is the average measured temperature per month: in a specfic year large differences can
exist in the average temperature per month between different months, but the average temperatures
of the months in one year will be approximately equal to the average temperatures of the same months
in the next the year.

3.2. Manifestations of nonstationarity in active inference

Nonstationarity can manifest itself in multiple ways in an active inference task. As mentioned in section
2.4, the generative process in active inference describes the world by generating outcomes from hidden
states and actions, and state transitions in time. This implies two distinct probabilistic mappings as
mentioned in that same section: a mapping from current states to observations (i.e. the likelihood
matrix) and a mapping from current states to next states (i.e. the transition matrix). As such, these
two probabilistic mappings can be exhibitions of nonstationarity. Additionally, nonstationarity can even
be manifested in the state-space itself, but that is outside the scope of this research. To constrain
the problem of nonstationarity in active inference, the scope will be entirely restricted to the transition
process, as this will be the point of focus of the experiments in chapter 4.

3.2.1. Nonstationarity in the transition process

The transition process specifies what the next state of the world will be, given the current state of the
world and the most recent action taken by the agent. Nonstationarity in the transition process implies
that the probability distribution of the possible next states given a certain current state and a certain
action taken at one point in time, will be different from the probability distribution of the possible next
states given the same current state and same action taken at a different point in time. This means that
the transition process B is stationary only if:

Bt == Bt’+At Vt, At (35)

Important to note is that the B-matrix in equation 3.5 concerns the transition matrix of the generative
process, which is different than the transition matrix of the generative model. As mentioned in chapter
2, the latter matrix gets updated at the end of every ftrial, so it does not make sense to speak about a
stationary or nonstationary transition model. To make this more explicit, even in the case when the tran-
sition process is stationary, the transition model will be different between trials due to the accumulation
of concentration parameters.

Large differences in the values of the transition process over time (i.e. a highly nonstationary tran-
sition process) will result in the agent using outdated information for its own transition model. At any
moment in time, the agent therefore needs a way to only use that information in its generative model
that is still relevant to the agent’s explaining of the current real world dynamics.

3.3. Suggested resolution

The solution to using only that information in the generative model that is still relevant to the agent, and
as such having better performance in nonstationary environments, is unlikely to be onefold. In theory,
multiple solutions exist. A register of possible resolutions that can be considered will be discussed in
chapter 6. One possible resolution is to expand the generative model with a higher level that represents
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a collection of possible variations the dynamics of the world can take on. While this seems an excel-
lent option on paper, a problem that arises is that the designer manually has to partition all possible
variations of the dynamics the world can take on (or at least the most important ones) into a finite set,
and this has some important consequences: (1) it requires extra prior knowledge from the designer
about the world (that is not always available), and (2) it requires extra computational resources, which
can be problematic when dealing with already large state- and policy-spaces. Another approach that
is much less dependent on the prior knowledge of the designer and less computationally expensive as
well (and thus more generally applicable), is to implement a way of forgetting part of the information in
the agent’s generative model. This will be the approach taken in this thesis to cope with nonstationary
state transitions.

Although active inference is said to be a candidate theory of explaining brain function, the existing
updating scheme of discrete state-space active inference is incapable of forgetting — a phenomenon
common in cognition. The need for a forget mechanism in active inference can be reinforced by the fact
that the standard discrete state-space formulation of active inference does not take into account the
uncertainty in the transition model for the evaluation of policies [12, 13, 18]. While uncertainty in policy
selection itself is mentioned in literature (usually the inverse of uncertainty is mentioned, i.e. precision
as mentioned in chapter 2), uncertainty in the transition model does not influence the agent’s policy
selection. Uncertainty in the transition model is not a completely unexplored topic in active inference
though, as it has been discussed before in [27]. This paper tries to equip the agent with beliefs about
the uncertainty in the transitions of hidden states, by introducing a precision parameter for the state
transitions. However, this parameter is subsequently only used to determine the weight the agent
gives to the knowledge contained in the transition matrix when performing state estimation (the agent
also weighs other knowledge, e.g. that contained in the likelihood matrix). While this can be useful to
infer the agent’s state history in cases where the agent needs to know whether the knowledge in its
likelihood matrix or transition matrix is more reliable, it does not solve the problem of actually getting
an accurate model of the transition dynamics (especially in nonstationary environments), since the
learning scheme remains unchanged. Forgetting can be a solution to this problem.

For this work, inspiration for the mathematical implementation of forgetting will be drawn from rein-
forcement learning, deep learning and time series analysis. As such, three main ways of implementing
forgetting will be described in this section: (1) the addition of a forget rate parameter to the existing
updating scheme of the generative model, (2) an alternative updating scheme for the generative model
based on the updating of an LSTM cell, and (3) an updating scheme for the generative model using a
rolling summation for the accumulation of concentration parameters.

3.3.1. Forget rate parameter

Forget rate parameters have previously been used in reinforcement learning as an extension to tem-
poral difference learning methods [19, 20]. These forget rates can be seen as counterparts to the
traditional learning rates in temporal difference learning: whereas learning rates are used to scale the
value of the temporal difference error (the difference between the estimated value at the current step
and the estimated value at the next step) like in equation 3.6, forget rates can be used to scale just the
estimated value at the current step like in equation 3.7:

Q(st,ar) « Q(spyar) + a6(t) (3.6)

Q(st,ar) « (1 — ap)Q(st, ar) (3.7)

Equation 3.6 is commonly used in reinforcement learning, whereas equation 3.7 has only been used
in certain papers to update the action value of the unchosen actions [19, 20]. Since learning rates are
more commonly used than forget rates in reinforcement learning, a question that arises is why to not
simply use a learning rate in active inference instead of a forget rate when dealing with nonstationarity.
As a matter of fact, learning rates have been mentioned in the discrete state-space active inference
literature before [31], but there is a major caveat why using a learning rate in active inference might not
be sufficient. This has to do with the fact that in reinforcement learning, the updating of the estimated
value Q(s;, a¢) can go in two directions, that is the temporal difference error §(t) can be either positive or
negative. Active inference does not make use of value functions, and updates the generative model with
the use of concentration parameters, as mentioned in chapter 2. Since these concentration parameters
can be seen as a form of counting, by definition these parameters are always nonnegative and thus, will
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never decrease. The updating of the generative model therefore always happens in one direction. By
adding a forget rate parameter instead, the generative model can actually be updated in two directions.

Moving on to the implementation, with the forget rate parameter approach, a forget rate parameter
ar will be applied to the old concentration parameter matrix b of the transition model at the time when the
new values for this concentration parameter matrix b are calculated. Mathematically, the concentration
parameters for the transition model will be updated as follows:

bw)=0—-ap) b)) + &)

T-1

= (1= ap) bW+ ) ) Sneutnstes B 57

nell =1

(3.8)

with § being the Kronecker delta. Here, the forget rate a; takes a value between 0 and 1. When ay = 0,
the agent will not forget any part of its previously accumulated concentration parameters, and equation
3.8 effectively reduces to equation 2.30. At the other extreme, when a; = 1, the agent will forget all
of its previously accumulated concentration parameters. This has as consequence that the generative
model of the agent at the next trial will exclusively be comprised of the experience gained at the current
trial. A value of 1 for the forget rate is something to avoid: since it is very unlikely that the agent can
take all possible actions in every possible state at least once in a single trial, this will leave the agent
with large knowledge gaps in its generative model.

This leaves the question what values for the forget rate are good values to use in practice. This
will usually depend on the dynamics of the task to be solved by the agent, although the simplest option
is to set the forget rate to a small constant number. To stay in line with previous implementations in
reinforcement learning [19], this will be the approach taken.

Algorithm 1 shows the pseudocode for implementing the forget rate parameter update scheme
applied to the transition model in active inference.

Algorithm 1 Implementation of the forget rate parameter update scheme in active inference.

initialize b, forgetRate, ...
for nTrials do
procedure Activelnference(b, ...)

end procedure
procedure updateSchemeForgetRate(b, trialExperience, forgetRate)
b < (1 — forgetRate) * b + trialExperience
9 return b
10: end procedure
11: end for

1:

2:

3

4:

5: return trialExperience, ...
6

7

8

3.3.2. LSTM cell
The second main approach taken in this section for implementing forgetting in active inference is to use
an updating scheme inherently different from the existing updating scheme in active inference. This
subsection will describe an update method for active inference based on the updating of an LSTM cell.

A long short-term memory (LSTM) is a type of recurrent neural network (RNN), which is often used
for handling temporal sequences of data. However, unlike regular RNNs, LSTMs are equipped with a
so-called cell state, which embodies the network with a form of memory. At every timestep, the cell state
is updated by forgetting part of the old information in the cell state and adding new information from the
input. The notion of forgetting old and adding new information is exactly what is desired for the updating
of an active inference agent’s generative model when dealing with nonstationarity. Therefore, adding
elements of the updating mechanism of an LSTM cell to the updating mechanism of the generative
model in active inference can result in the agent dealing better with nonstationarity.

A diagram depicting the control flow of an LSTM cell can be found in figure 3.1. The main signals in
this diagram are the cell state ¢, the hidden state h; (not to be confused with the hidden states used in
active inference) and the input x;. Besides these signals, additional signals f;, i¢, ¢; and o, are used to
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Figure 3.1: Visualization of the signals in an LSTM cell. The multiplication operator x is applied on an elementwise basis,
whereas ¢ and tanh refer to the logistic function and hyperbolic tangent respectively. (This figure is adapted from [25].)

store the values of intermediate calculations. These latter symbols are not chosen randomly, because
they represent a characteristic of the LSTM cell, namely its gates. The symbols f;, i;, and o, represent
the forget gate, input gate and output gate respectively. Keeping this in mind helps in understanding
the equations for the LSTM cell, which are then given by:

ft = oe(Wrx + Ughe_q + by) (3.9)
ir = oy(Wyxy + Uihe—1 + by) (3.10)
¢ = oy (Woxy + Uchyq + be) (3.11)
ot = oy(Wox¢ + Ughy—q + b,) (3.12)
Ct=frocCi_q1 +ioC (3.13)

he = op(cy) © o (3.14)

Here, the W and U are weight matrices for the input and recurrent connections respectively, whereas
the b are bias vectors (confusion with the transition concentration parameters in active inference, which
use the same symbol, can be prevented by looking at the subscrips). Moreover, g; denotes the logistic
function, whereas a;, denotes the hyperbolic tangent. Furthermore, - represents the Hadamard product,
i.e. an elementwise multiplication.

However, before these equations can be used in the first place, a translation has to be made from
the variables that are used during the updating of the generative model in active inference to the signals
that are used in an LSTM cell. For this translation, the following choices have been made:
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» The concentration parameter matrix b is used as the cell state. Since the cell state represents the
memory of an LSTM cell, it is rational to use the concentration parameter matrix as this signal,
as the concentration parameter matrix keeps track of how often what transitions have occurred
in the past.

« Similarly, the initial concentration parameter matrix (as set by the designer) is given as the initial
cell state (i.e. the signal c,_, at trial 1). Likewise, a version of this matrix normalized by the
hyperbolic tangent is given as the initial hidden state (i.e. the signal h;_, at trial 1), since the
hidden state can never exceed this value when following the normal flow of signals in figure 3.1.

» The experience gained at the current trial, & (see equation 2.31), is used as the input, since this
is the new information to be added every iteration.

» The weight matrices are set to identity matrices, whereas the bias vectors are set to zero vectors.
The reason for this is that in supervised learning, the network is given input with known labels,
and as such is able to modify the weight matrices and bias vectors to attain optimal performance.
In active inference however, the data is not labeled, and as such, updating the weights and biases
in this way is not possible.

Algorithm 2 shows the pseudocode for implementing the LSTM cell update scheme applied to the
transition model in active inference.

Algorithm 2 Implementation of the LSTM cell update scheme in active inference.

1: initialize b, ...

2: cellState « b

3: hiddenState « tanh (cellState)
4: for nTrials do

5 procedure Activelnference(b, ...)
6:
7 return trialExperience, ...
8 end procedure
9: input < trialExperience
10: procedure updateSchemelLstm(input, cellState, hiddenState)
1: forgetGate < sigmoid(input + hiddenState)
12: inputGate « sigmoid(input + hiddenState)
13: cellStateTilde « tanh (input + hiddenState)
14: outputGate « sigmoid(input + hiddenState)
15: cellState « cellState .* forgetGate + inputGate .x cellStateTilde
16: hiddenState « tanh (cellState) .x outputGate
17: return cellState, hiddenState
18: end procedure
19: b « cellState
20: end for

3.3.3. Rolling summation

The final approach taken here for implementing forgetting in active inference is to use a rolling sum-
mation instead of a total summation for the accumulation of the concentration parameters. Similar to a
rolling average, a rolling summation takes into account only the most recent experience gained in the
form of the concentration parameters. How many trials the agent takes into consideration depends on
the width of the window w.

With the way the concentration parameters construct the agent’s generative model, there is one
caveat. If the agent would use exclusively the concentration parameters of the past w trials, in the case
that the agent did not execute certain actions in certain states during the time window, the agent will not
have concentration parameters for those state transitions. The remedy for this problem chosen here, is
to complement the concentration parameters with the priors (i.e. the initial concentration parameters)
provided by the designer. This means that in the absence of experience about certain state transitions
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in the last w trials, the agent will be reset to its original parameters instead of having to restart without
concentration parameters at all. Therefore, at any given trial k, the agent will use only the concentration
parameters that were accumulated during trials k — w to k — 1, in addition to the initial concentration
parameters, to construct its transition model:

k-1
b = binieiar + ). By (3.15)
K=k-w
b,=0, VK<0 (3.16)

Equation 3.16 is a constraint to define that there are no concentration parameters for trials before the
first trial, because there does not exist a zero or negative numbered trial. This definition is needed,
because the summation index k = k — w in equation 3.15 is nonpositive during the first w trials.

The advantage this rolling summation updating scheme is expected to have over the other update
methods, is that the agent is able to rapidly forget all of the experience that it gained w trials before
the current trial, instead of having that experience slowly decay. This trait is especially desired in
environments that evolve in quick succession.

Algorithm 3 shows the pseudocode for implementing the rolling summation update scheme applied
to the transition model in active inference.

Algorithm 3 Implementation of the rolling summation update scheme in active inference.

1: initialize b, windowSize, ...

2: binitial < b

3: summationWindow « zeros(size(b,dim1), size(b, dim?2), size(b, dim3), windowSize)
4: for nTrials do

5: procedure Activelnference(b, ...)

6:

7: return trialExperience, ...

8: end procedure

9: procedure updateSchemeRollingSummation(trialExperience, summationWindow)
10: fori=1,.. windowSize — 1 do

11: summationWindow][all, all, all, i] « summationWindow|all, all,all, i + 1]
12: end for
13: summationWindow[all, all, all, windowSize] « trialExperience
14: return summationWindow
15: end procedure
16: b < binitial + sum(summationWindow, dim4)

17: end for
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The preceding two chapters explained the theory behind the fundamental working principles of discrete
state-space active inference, and introduced the notion of nonstationarity in active inference along
with possible methods to cope with nonstationarity respectively. This chapter will put that theoretical
knowledge into practice by testing the performance of those methods. First, the problem setup that will
be used for testing the performance of a discrete state-space active inference agent in a nonstationary
environment is described, after which the way nonstationarity is modeled in this setup is illustrated.
Hereupon, the elements that influence the performance of the agent are specified, and the chapter is
concluded by defining the metrics that will be used to quantify this performance.

4.1. Problem setup

The problem to be solved by the active inference agent in this thesis is a simulated navigation task, in
which the agent has to traverse a maze-like gridworld, trying to find the shortest path from start to goal.
For this task, there exists an M x N gridworld, which is composed of cells of three distinct types:

» Open cells. These are the cells that the agent can freely traverse from any other open cell.

+ Starting cell. This is the cell from which the agent will start at the first trial of the task. It is also
the cell from which the agent will start the next trial after it has reached the goal cell during the
previous trial. Apart from these properties, the starting cell has the same properties as a regular
open cell.

» Goal cell. This is the cell the agent has to reach during the task. When the agent has done so, it
will remain in the goal cell until the end of the trial, after which it will return to the starting cell for
the beginning of the next trial.

The composition of the gridworld does not change during a task. The space enclosing the perimeter
of the gridworld will act as a barricade, thereby preventing the agent from exiting the gridworld. Figure
4.1 shows an example of a gridworld, containing each of the cell types described above.

4.1.1. States, outcomes and actions

Since an active inference agent needs a state-space representation of the world in order to interact with
it, first the 2d position coordinates of the cells comprising the gridworld have to be converted to states.
As the 2d positions of the cells in the gridworld are essentially the subscripts of a 2d matrix, a state-
space representation of the gridworld can simply be obtained by converting the subscript notation of the
cells in the gridworld matrix to an index notation. For a 4 x 4 gridworld, this results in a 1d state vector
of length 4 x 4 = 16, in which each different state represents a different grid cell. In this state vector,
the first element refers to the cell in the upper left corner of the gridworld. The numbering continues
by moving down along the rows in the left most column until the final row in this column has been
reached. Hereafter, the process repeats for the next columns, until the cell in the lower right corner of
the gridworld has been reached.

25
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Figure 4.1: Example of a gridworld used in the active inference tasks. This figure shows each type of cell described at the start
of this section in a 4 x 4 gridworld. White squares represent open cells, the starting cell is marked with four corner symbols, and
the goal cell is marked with a checkered pattern. Additionally, everything outside of the grid is inaccessible. Finally, during the
simulation, the current position of the agent would be marked with an X.

For the outcomes in this task, the choice has been made to have a one-to-one mapping from states
to outcomes. In other words, in this task the agent is capable of observing the states directly. This
choice was substantiated by the fact that the emphasis in this task is not on perception: rather it is on
action selection and learning.

Regarding action selection, the agent has 4 options of possible actions at its disposal. These options
are to move to the west, east, north, and south respectively:

U = {west, east,north, south} (4.1)

Whether the agent actually arrives at its cell of choice depends on the transition dynamics of the world.
For example, when the agents chooses u = west, but there is no west-neighboring cell (i.e. the
gridworld boundary is located to the west of the current cell), the agent will remain at the same position.

4.1.2. Policies, time horizons and trials

The agent has to take multiple consecutive actions to arrive at the goal state. The agent will look
forward a certain amount of steps into the future to determine the best sequence of actions, or policy.
This window which the agent uses to look forward a number of steps into the future is referred to as
the time horizon [18]. How many actions are needed to reach the goal state depends on the distance
between the goal state and the current state. However, there is a limiting factor in setting the time
horizon of a policy. This limiting factor is easily exposed with the following example. Since the agent
has the choice of 4 possible actions at any state, when the agent uses a time horizon of 2, it has
to consider 42 = 16 different policies. Using a time horizon of 3, the agent already has to consider
43 = 64 different policies. As can be seen from this example, the number of policies to consider grows
exponentially with the size of the time horizon. As such, the computation time for evaluating these
policies grows exponentially as well. Clocking the computation times for different time horizons has
shown that for a single trial, the computation time goes from the order of milliseconds into the order of
seconds when the horizon increases from 3 to 4, and goes from the order of seconds into the order of
minutes when the horizon increases from 7 to 8.

A time horizon of 4 would entail that the agent will look forward 4 steps into the future before selecting
its action to take in the current state. However, this does not necessarily mean that the agent will be
able to reach the goal state within those 4 steps. Thus, depending on the layout of the maze, the agent
might need multiple trials to reach the goal state from the starting state. As such, if the agent was not
able to reach the goal state in the previous trial, it will start the next trial from the state it ended the
previous trial and not from the designated starting state. This is different from other work on similar
tasks, in which the agent was always able to reach its goal within one trial [12, 13, 31].
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4.2. Nonstationarity

With the setup described in the previous section, itis now possible to add nonstationarity to the equation.
As mentioned in chapter 3, nonstationarity can have different manifestations in active inference, but
the nonstationarity in this task is embodied exclusively in the transition process. For this task, the
nonstationarity in the transition process is modeled as an external force acting on the agent that will be
present for the whole duration of the task. Crucially, the properties of this force will change over time.
Intuitively, this force can be interpreted as a wind, varying in magnitude and direction over the trials of

the task:
Wy| _ [IW]cos(®)
[Wy] - [|W| sin(0) (4.2)

As such, the nonstationary force perturbation will be referred to as the wind in what follows.

4.2.1. Cyclostationarity
In chapter 3, it was mentioned that this research will focus on cyclostationarity. In this subsection, it
will be described how this type of nonstationarity is implemented in the force perturbation that changes
over time.

When the force perturbation is modeled as a cyclostationary process, the wind magnitude is set at
the start of the first trial and remains unchanged for the whole task. Additionally, the wind direction is
set at the start of the first trial, but changes by A8 every 1/fchange trials:

0 = Oinitiar + ([k 'fchange] - 1) - A6 (43)

where k is the number of the current trial. For this type of task, the change in frequency of the wind
direction, the initial wind direction and the angle of change in wind direction are tunable parameters.
These, along with other tunable parameters and the assignment of their values are further discussed
in the next section.

4.2.2. Calculating the transition probabilities

When the magnitude and direction of the wind are known for the trial, the x- and y-components of the
wind can be calculated with equation 4.2. Hereafter, the only step remaining in defining the transition
process is to map the state transition probabilities given the selected action and wind perturbation.

To make the analysis of the results in the upcoming chapter not unnecessarily complex, for the
experiments that follow, it has been chosen to keep the magnitude of the wind constant at |W| = 1 and
only change the direction of the wind. When the wind direction changes, it will always be by an angle of
/2. This way, at any given time, the wind direction can simply be expressed by one of the four cardinal
directions: north, east, south or west. This allows for an easy mapping of the state transitions given the
selected action of the agent and the current wind direction, since the possible actions now correspond
to the wind directions. Table 4.1 gives a general mapping of the state transition probabilities.

4.3. Experiments

The experiments to be conducted will have the agent performing in a gridworld, while varying certain
conditions of the tasks. The conditions that will be varied are the layout of the maze, the nonstation-
arity type in the force perturbation and the update method of the generative model. In the end, the
performance of the agent will be compared between these conditions. Besides the task conditions,
there exists a set of tunable parameters that will influence the performance of the agent as well. To en-
sure fair comparison between conditions, the values for the tunable parameters will be identical when
comparing different conditions.

During the simulation of a task, the conditions are set and will not change. That is, changes in con-
ditions only happen between tasks, not within tasks. To prevent misunderstandings, table 4.2 provides
the temporal hierarchy of the experiments, showing what happens at every level of the timescale.

4.3.1. Conditions
The agent will have to solve the task in different layouts of the maze, prone to force perturbations that
will take on different nonstationarity types, and using different update methods of the generative model.
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Table 4.1: General mapping of the state transition probabilities in a cyclostationary environment.

Probability of the agent:

Moving in the direc-
tion of the selected
action*

Moving in the direc-
tion perpendicular to
the selected action,
parallel to the wind*

Staying in place

dicular to the wind

The agent selects the action to:

The same direction || 1 0 0
as the wind

The opposite direc- || 0.5 0 0.5
tion of the wind

A direction perpen- || 0.5 0.5 0

*The probability of moving in this direction applies only to the case that the cell in this direction is accessible (i.e.

it is

not to the outside of the gridworld). In the case that this cell is inaccessible, the agent will stay in place. For example, consider
the gridworld in figure 4.1 with the agent in the bottom left cell: now, when the wind is facing to the west and the agent takes the
action to the north, there is 50% probability that the agent will move to the north and a 50% probability that the agent will stay in
place (since it cannot move any further to the west).

Table 4.2: Temporal hierarchy of the experiments.

] Level

Description

|

Episode

An episode is a sequence of trials. Experience from one episode is not
carried over to another episode. The purpose of having multiple episodes
is just to average the results for a specific combination of conditions.

Trial

A trial is a sequence of timesteps. At each trial, the agent selects a pol-
icy to follow, performs state inference and updates its generative model.
For the experiments in this research, the nonstationarity in the transition
model only presents itself at this level.

Timestep

A timestep is the smallest level of the timescale in a discrete state-space
active inference task. At each timestep, the agent finds itself in a specific
state, observes a specific outcome and (with the exception of the final
timestep in a trial) takes a specific action.
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(a) Layout of map1, a 3 x 3 gridworld. (b) Layout of map2, a 4 x 4 gridworld.

Figure 4.2: Layouts of the different maps. Refer to figure 4.1 for a description of the shapes that comprise the gridworld. At first
glance, there does not seem to be an optimal path in these maps, as multiple shortest paths exist between start and goal. This
however, is only true when the state transitions are deterministic in nature. For example, consider in map1 a wind that faces in
the eastern direction. In this case, it is better to select a policy in which the agent first moves in the northern direction and only
then in the eastern direction. This is because the agent can get stuck along the eastern edge of the map, since there is a chance
that the east facing wind will push the agent against that edge of the map.

Gridworld layouts

Regarding the layout of the gridworlds, the agent will be tested in gridworlds of different sizes, to de-
termine the influence of the size of the state-space. The layouts of the gridworlds are kept simple to
obtain general conclusions about the performance of the agents. Figure 4.2 shows a map for each of
the different gridworld layouts. To simplify the cross-referencing later in the next chapters, each map
is given its own tag, following the simple naming convention ‘'map#’, where # is a number.

Nonstationarity types
Regarding the nonstationarity type, the agent will be tested in environments that make use of one of
the two following types of transition processes:

» A deterministic stationary transition process. In this case, the agent will always end up in the
same state when taking a specific action in a specific state, regardless of the time this action was
taken. Generally, this means that when the agent decides to take an action to move in a certain
direction, the agent will always move in that direction. These probabilities for transitioning will
remain unchanged for the whole episode.

* A cyclostationary transition process. In this case, the initial transition probabilities conform to the
dynamics of a nondeterministic stationary process. That is, the agent will not always ends up
in the same state when taking a specific action in a specific state. For example, when the wind
is facing to the west and the agent decides to take the action to move to the north, there is a
possibility that the agent moves either to the west or to the north. Moreover, between trials within
the episode, the dynamics also change cyclically over time as mentioned in section 4.2. The
frequency of the change in dynamics is a tunable parameter.

Just like the maps, the nonstationarity types will be given their own tag for future referencing. The two
nonstationarity types will be given the tags ’'stationary’ and 'cyclostationary’ respectively.

Update methods

To discover whether the performance can be improved from the standard implementation of discrete
state-space active inference, the agent will be tested while using one of the different update methods
for its generative model that were mentioned in section 3.3:

» The standard updating scheme used in discrete state-space active inference. Being the default
method, incapable of forgetting, this is the method the other methods have to outperform.
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» The updating scheme with the added forget rate parameter, in which case the forget rate param-
eter is set to a constant value. The exact value of this constant is a tunable parameter.

» The updating scheme that translates the updating of an LSTM cell to the updating of the gener-
ative model in discrete state space active inference.

» The updating scheme using a rolling summation instead of a total summation for the accumulation
of the concentration parameters. The rolling summation uses a window width that determines how
many trials are taken into account when accumulating concentration parameters. The value of
the window width is a tunable parameter.

Again, each of the update methods is given their own tags, which are 'standard’, ’constant’, ’Istm’ and
‘rolling’ respectively.

4.3.2. Tunable parameters

Besides the previously mentioned task conditions, there are other elements that will influence the per-
formance of the agent, even when the former task conditions remain unchanged. The following list
shows the parameters that can be tuned. For the results given in the first two sections of the next
chapter, these parameters have been set to constant values, for which the argumentation will be given
below.

« Utility, U. As mentioned in chapter 2, the utility determines the agent’s prior preferences over
outcomes. Since every type of outcome is given its own utility value, these values can influence
for example to what extent the agent prioritizes reaching its goal over exploring other outcomes.
For the experiments that follow, the utility of observations has been set as follows:

10, o = goal
U(o) =1-5, o =start
0, otherwise

In principle, the exact values are not as important as long as the more preferable outcomes are
given higher values than less preferable outcomes.

+ Initial concentration for the transition model, b;,itiq;- A higher value for the initial concentration
parameters of the transition model means that the agent will have a harder time to adapt to
dynamics that do not correspond to these concentration parameters. For the experiments that
follow, the agent is provided nonzero initial concentration parameters for state transitions that
would happen when the transition process would be deterministic. For example, when in a certain
state the agent would take an action to the west, the only nonzero concentration parameter for
that action in that state would be the state transition to the west. The values for the nonzero initial
concentration parameters are set to 8, a value commonly used in literature [18].

» Length of the policies. The policy length determines how many consecutive actions the agent
takes per trial. A longer policy length means in theory that the agent will have an easier time
reaching goals that are more distant. However, this also comes at the cost of a longer computation
time. For the experiments that follow, a policy length of 4 is utilized. This is chosen because the
computation time does not increase significantly when changing the length from 3 to 4 (order of
milliseconds per trial), but does increase significantly when changing the length from 4 to 5 (order
of multiple seconds per trial).

« Frequency of change in dynamics, f;nqnge- The agent needs time to learn and adapt to the
transition dynamics. As such, changing the dynamics of the task too frequently (expressed in the
inverse of the number of trials) generally means that the agent will have decreased performance.
For the experiments that follow, f.nqnge = 1/16.

+ Initial wind direction, 6;,ii4;- Since the wind direction changes cyclically, the initial wind direction
is of less importance. For these tasks, 0;,;:i;1 = 0 (to the east).
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» Angle of change in wind direction, A8. To expose the agent to the wind an equal amount of trials
in all four cardinal directions, A8 = m/2 clockwise. This means that the wind will follow the cycle
east — south - west - north — east.

» Constant forget rate, ar. The value the forget rate parameter takes when the update method is
set to ‘constant’. For the experiments that follow, ay = 0.1. The discussion in chapter 6 debates
the modification of this value.

* Window width, w. The value of the window width (expressed in the number of trials) when the
update method is set to 'rolling’. For the experiments that follow, w = 8.

The final section of the next chapter will also provide tuning results for when these parameters take
different values. Considering the large number of tuning parameters, it is practically not feasible to test
the influence of all of these and simultaneously repeat the tasks for a sufficient amount of episodes.
Therefore, a choice has to be made for selecting those tuning parameters for which the influence on
the performance is the most relevant. The chosen parameters that will be tested are the length of the
policies and the window width.

4.4. Performance metrics

To realize a quantifiable evaluation of performance in general, suitable metrics have to be defined.
For this kind of task, it is chosen to evaluate the performance of the agents based on the number of
steps the agent needs to reach the goal state from the starting state per successful arrival at the goal
state. As such, low values for the number of steps are an indication of good performance. The median,
along with the first and third quartile will be the statistical values used to report the number of steps.
These are used as opposed to the mean and standard deviation, considering that the distribution of the
number of steps is highly skewed for each of the methods, as will be seen in the next chapter. Besides
comparing the statistical values between the different methods, the differences in performance between
the standard and newly suggested update methods need to be assessed for significance, in order to
draw substantiated conclusions. Significance will be tested by using the Wilcoxon rank sum test (also
known as the Mann—Whitney U test) [33], as this method is applicable when dealing with non-normally
distributed unpaired datasets.






Results

This chapter will give the quantified results of the experiments provided by the performance metrics
described at the end of the previous chapter. Both of the maps introduced in the previous chapter will be
given its own section, which includes one table containing two subtables, each corresponding to one of
the nonstationarity types. The first column in each individual table indicates each of the update methods
described in the previous chapters. The second column quantifies the performance by providing the
steps to the goal for each update method. The steps to goal are given in the format: median, [first
quartile, third quartile]. The third column gives the sample size of the data for the corresponding update
method. The sample size corresponds to how often the agent was able to reach the goal using a specific
update method. The final column gives the p-values to indicate statistical significance of the results.
The p-values are the result of applying the Wilcoxon rank sum test between the corresponding update
method and the standard update method. Since p-values are not defined when comparing identical
statistical quantities, this explains the blank entries that are present in the p-value column. The results
in the tables are accompanied by the boxplots of the same results.

For both maps, for each combination of nonstationarity type and update method, the agent is ex-
posed to the environment for 8 episodes, consisting each of 128 trials. Therefore, data is obtained for
1024 trials in total per map per nonstationarity type per update method. An important reminder is that
experience gained from one episode (one sequence of 128 trials) is not transferred to another episode.

Besides the tables and boxplots, for the results that have shown to be statistically significant, a
visualization of the results per nonstationarity type and update method is given by providing a heatmap
displaying the locations the agent has visited the most. Additionally, a visualization of the transition
concentration parameter matrices at the end of the final trial is given for each update method, allowing
insight of how these matrices were updated.

Finally, at the end of this chapter, tuning results for both maps will be provided, which will summarize
the influence of changing a selection of tunable parameters described in subsection 4.3.2.

5.1. Results map1

From the results in table 5.1, it can be seen that for a deterministic stationary transition process, the
agent is able to reach the goal in every trial and does so in the least amount of steps, regardless of
the update method it is using. However, when the transition process is not deterministic stationary
in nature, the performance decreases significantly. For a cyclostationary transition process, an agent
using the standard update method is roughly 3 times less likely to reach the goal (as can be seen from
the sample sizes in table 5.1), and often needs more than twice as many steps to reach its goal (as can
seen from figure 5.1). Figure 5.2 zooms in on the distribution of the steps to the goal for the standard
active inference agent in the cyclostationary environment. Thus, going by the results for map1, with
active inference as it currently is, performance in cyclostationary environments is suboptimal and should
be improved upon.

When comparing the results in table 5.1 and figure 5.1 of the standard update method with those of
the constant update method, it can be seen that the performance in cyclostationary environments is not
improved when using the update scheme with an added forget rate parameter set to a constant value.
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Table 5.1: Results for map1 after simulating 8 episodes of 128 trials, with in subtable (a) a deterministic stationary transition

process, and (b) a cyclostationary transition process.

(a) Using a deterministic stationary transition process.

| Update method || Steps to goal | Sample size | p-value
Standard 4,14, 4] 1024 _
Constant 4,4, 4] 1024 -
LSTM 4,14, 4] 1024 -
Rolling 4,4, 4] 1024 -

(b) Using a cyclostationary transition process.

| Update method || Steps to goal | Sample size | p-value
Standard 6, [4, 11.75] 383 -
Constant 5, [4, 11] 376 0.5476
LSTM 5[4, 14] 329 0.5645
Rolling 5, [4, 9] 475 1.8268 x 10~

Figure 5.1: Boxplot showing the results for map1, with in subfigure (a) the results for a deterministic stationary transition process,
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Figure 5.2: Histogram showing the relative count of the number of steps the standard active inference agent needs to reach
the goal in the cyclostationary environment in map1. As can be seen from this histogram, the distribution of the steps to goal
is highly skewed. This is caused by the fact that, as the number of timesteps in the task increases, it will be less likely that the
agent has been influenced by the wind perturbation at every timestep up till that timestep. The distribution of the steps to goal
for the other update methods take on a similar shape, as can also be inferred from the boxplots in this chapter.

In fact, it even seems to be the case that using a constant value for the forget rate parameter decreases
performance. Similarly, the use of the LSTM update method also brings a decrease in performance,
even more so than with the constant update method.

From the remainder of table 5.1 and figure 5.1, it can be seen that the performance in cyclosta-
tionary environments actually can be improved: the rolling update method bring about an increase in
performance. An agent using the rolling updating scheme is roughly 25% more likely to reach the goal
than an agent using the standard updating scheme, and when reaching the goal, the agent also does
so in less steps. By looking at the p-values in table 5.1, it can also be seen that the improvement the
rolling update method gives, is actually statistically significant.

To zoom in on the comparison between the update methods in the cyclostationary environment,
figure 5.3 shows a heatmap of map1 displaying the average state count per trial for an agent using
the standard, constant, LSTM and rolling update methods for the four different wind directions. The
heatmaps seem mostly similar, but a striking difference can be seen between the heatmaps of the
standard and rolling update methods when the wind is facing north: the agent actively avoids the most
northwest cell when the agent uses the rolling update method, which is beneficial in preventing to get
stuck along the edge of the map. This phenomenon is also present in the easternmost cell when the
wind is facing east, although somewhat less striking.

Differences in behavior are further supported by two additional statistics presented in table 5.2.
These are the ’bumped-into-wall ratio’, that is the amount of times the agent bumped into the perimeter
divided by the total amount of trials; and the 'best-first-action ratio’, that is the number of times the agent
has taken the best action in the starting state divided by the total number of times the agent has been in
the starting state. This best action is the action that does not increase the agent’s chances of bumping
into a wall before it reaches the goal, and depends on the wind direction (for example, taking the action
to the east when the wind is facing to the north). As can be seen from the table, the agent using the
rolling update method is less likely to bump into a wall, and more likely to take the best action in the
starting state. The information in this table, along with the heatmaps, contribute to evidence that an
agent using the rolling update method plans to navigate through the gridworld by using different paths
than an agent using the standard update method.

Finally, to show that there actually exists a difference in the updating of the generative model be-
tween the different methods, figure 5.4 shows heatmaps of the concentration parameters at the end of
the final trial (128) for each of the update methods in the cyclostationary environment. These heatmaps
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Figure 5.3: Heatmap of map1 displaying the average state count per trial for an agent. Each subfigure shows the results for one
of the four wind directions, and within each subfigure, the results of the four update methods are visualized.
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Figure 5.3: Heatmap of map1 displaying the average state count per trial for an agent. Each subfigure shows the results for one
of the four wind directions, and within each subfigure, the results of the four update methods are visualized.
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Table 5.2: Additional statistics for map1 using a cyclostationary transition process. More details on the definition of these two
statistics are given in the final paragraph of section 5.1.

| Update method | Bumped-into-wall ratio | Best-first-action ratio
Standard 1.0957 0.5349
Constant 1.0537 0.5863
LSTM 1.1689 0.5430
Rolling 0.8525 0.6647

are the average of the 8 simulated episodes. As is expected, it can be seen that the concentration pa-
rameters for the standard update method have the highest values, since agents using the standard
update method do not forget part of their concentration parameters. Also as expected is that the con-
stant update method overall has low values for the concentration parameters. This phenomenon is
also present for the LSTM update method. The values for the rolling update method are somewhere
between the high values of the standard update method and the low values of the constant and LSTM
update methods. However, unlike the standard update method, the rolling update method generally
does not have multiple nonzero transition concentration parameters for one particular state (i.e. the
concentration parameter matrices mostly have only one brightly colored cell in each column), and addi-
tionally still has relatively high values for these nonzero concentration parameters, unlike the constant
and LSTM update methods. For a more comprehensive comparison of the concentration parameter
matrices in time, refer to the appendix for a visualization of the evolution of the concentration parame-
ters.

5.2. Results map2

In contrast to map1, in map2 it is impossible to reach the goal state from the starting state in one trial,
since the shortest path from start to goal is larger than the policy horizon the agent utilizes (6 vs 4
respectively). This means that the agent requires at least two trials to reach the goal. Going by the
results in table 5.3, when dealing with a deterministic stationary transition process, the agent using the
standard update method is always able to reach the goal in the minimum amount of trials possible (2),
as is evident from the sample size (1024/2 = 512). Compared to map1 though, the agent does not
always reach the goal in the least amount of steps (6). However, different than in map1, the agent can
afford to not take the shortest path and still reach the goal in the minimum amount of trials.

The agent using the rolling update methods performs very similarly to the agent using the standard
update method. When the transition process is stationary, the agent using the rolling update method
takes a fraction of steps more to reach the goal, and given the relatively large sample size, these results
are even statistically significant. However, one can argue the practical significance of this difference,
considering the effect size is very small. The boxplots in figure 5.5 even show identical results for the
standard and rolling update methods.

More noticable is the decrease in performance for the constant and LSTM update methods. This
was already assumed from the results for map1, but the effect size for the constant update method
was small and the results for both the constant and LSTM update methods were not statistically signifi-
cant. Here, the effect size is noticable for both methods and the differences are statistically significant.
Moreover, in contrast to map1, for map2 this decline is already present when the transition process is
just stationary in nature.

Similar to map1, the performance decreases considerably when the transition process is not de-
terministic stationary in nature. For a cyclostationary transition process, an agent using the standard
update method is roughly 2 times less likely to reach the goal, and often needs twice or more as many
steps to reach its goal. Thus, there is room for improvement in the case of a cyclostationary transition
process for map2 as well.

However unlike map1, going by the results from the remainder of table 5.3, it cannot be said that
using another update scheme for the generative model improves performance in the case of cyclosta-
tionarity. The results show a slight increase in performance when using the rolling update method, but
this improvement is not statistically significant, as is seen from the high p-values. On the other hand, it
is reinforced that the constant and LSTM update methods actually decrease performance.
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Figure 5.4: Heatmap of the transition concentration parameters at the end of trial 128 for map1. Each subfigure shows to
results for one of the four update methods, and within each subfigure, the concentration parameters for each control variable are
visualized.
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Figure 5.4: Heatmap of the transition concentration parameters at the end of trial 128 for map1. Each subfigure shows to
results for one of the four update methods, and within each subfigure, the concentration parameters for each control variable are
visualized.
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Table 5.3: Results for map2 after simulating 8 episodes of 128 trials, with in subtable (a) a deterministic stationary transition
process, and (b) a cyclostationary transition process.

(a) Using a deterministic stationary transition process.

| Update method | Steps to goal | Sample size | p-value
Standard 6, [6, 6] 512 -
Constant 6, [6, 8] 500 1.9876 x 10~20
LSTM 7,16, 8] 452 42978 x 10727
Rolling 6, [6, 6] 512 0.0046

(b) Using a cyclostationary transition process.

| Update method | Steps to goal | Sample size | p-value
Standard 9, [6, 16] 293 -
Constant 11, [8, 19] 226 25730 x 107°
LSTM 11, [8, 21] 190 1.9477 x 107
Rolling 9.5, [7, 13] 306 0.4210
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Figure 5.5: Boxplot showing the results for map2, with in subfigure (a) the results for a deterministic stationary transition process,
and in (b) the results for a cyclostationary transition process.
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5.3. Tuning results

This final section of chapter 5 will provide tuning results obtained by repeating the experiments con-
ducted, but now with different values for the tunable parameters. As mentioned in subsection 4.3.2,
the tunable parameters that will be tested are the length of the policies, which will be set to 3 (instead
of 4); and the window width, for which values of 4 and 16 will be tested (instead of 8).

5.3.1. Policy length

Despite the fact that map1 and map2 are very similar, a drastic difference in performance was observed
between the results from the previous two sections. This has to do with the reachability of the goal: in
map1 the goal can be reached in one trial, whereas in map2 this can only be done in a minimum of two
trials. Therefore, changing the policy length can give more insight in the performance.

Ideally, it is desired to obtain results about the performance when the agent is able to reach the
goal in one trial for map2 as well. However, this would require a policy length of 6, considering that the
shortest path from start to goal equals 6 cells. Ultimately, experiments using a policy length of 6 have
not been performed: considering the fact that the computation time per trial increases exponentially
when increasing the policy length, it would be practically infeasible to obtain enough data.

Even though the influence of a larger policy length will not be tested here, testing the influence of a
smaller policy length is still possible. Therefore, for the following experiments, the length of the policies
is set to 3 instead of 4. This means that the agent is now unable to reach the goal in one trial for map1.
Also for map2, the agent now must take one of the multiple shortest paths in order to reach the goal in
two trials. Table 5.4 shows the results for map1, whereas table 5.5 shows the results for map2.

When looking at table 5.4, the results are mostly similar to the main results of map2 instead of
map1, keeping in mind that it is now impossible for the agent to reach the goal in one trial. The con-
stant and LSTM update methods still perform the worst, and the rolling update method gives the best
performance, although the difference with the standard update method is small.

The results in table 5.5 are also similar to the main results of map2. The constant and LSTM update
methods perform the worst, whereas the rolling update method performs only somewhat better than
the standard update method. An important observation here is that, even though the policy length is
decreased by 1 compared to the main results, the agent does not need more steps to reach the goal
for the standard and rolling update methods. The reason for this is that the agent now does not have
an extra step to afford per trial. For the main results of map2 this was the case, and this allowed the
agent to make a step not in the direction towards the goal, while still being able to reach the goal in
the minimum amount of trials (2). For the results here, the agent must take all steps in the direction
towards the goal to be able to reach the goal in the minimum amount of trials.

5.3.2. Window width

Since the rolling update scheme performed best overall when going by the previous results, with the
following experiments, the influence of the window width of the rolling update scheme will be tested.
The influence of both a smaller window width (w = 4) and a larger window width (w = 16) will be
investigated. Table 5.6 shows the results of the experiments with the agents using the modified window
widths for map1, whereas table 5.7 shows those for map2.

As can be seen from table 5.6, regardless of the size the window width, the agent using the rolling
update scheme always significantly outperforms the agent using the standard update scheme. How-
ever, differences do exist within the results of the rolling update scheme as well. When the agent uses
a window width that is twice as large, the agent requires almost one extra step (an increase of approx-
imately 10%) on average to reach its goal. Conversely, when the agent uses a window width that is
twice as small, no notable difference in the performance can be observed.

Just like was the case for the main results in section 5.2, the results between the different update
methods for map2 are largely similar. Using the rolling update method, regardless of the window width
seems to result in the best performance, but the difference with the standard update method is still not
statistically significant, as is seen from table 5.7.
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Table 5.4: Results for map1 after simulating 8 episodes of 128 trials with the policy length set to 3. Subtable (a) shows the results

for a deterministic stationary transition process, and (b) the results for a cyclostationary transition process.

(a) Using a deterministic stationary transition process.

| Update method || Steps to goal | Sample size | p-value
Standard 6, [4, 6] 512 -
Constant 6, [4, 6] 508 0.1937
LSTM 6, [4, 6] 509 0.6715
Rolling 4,4, 6] 512 1.0657 x 10~7

(b) Using a cyclostationary transition process.

| Update method | Steps to goal | Sample size | p-value
Standard 6, [4, 10] 328 -
Constant 8, [4, 11] 270 0.0052
LSTM 7, 1[5, 13] 261 0.0013
Rolling 6,5, 9] 350 0.9148

Figure 5.6: Boxplot showing the results for map1, with in subfigure (a) the results for a deterministic stationary transition process,

Using a deterministic stationary transition process

12¢ +
10 1
@
Q
o
L gt
%]
[=8
2 N
w I
) ’ ‘ ‘ | ‘
4 o
Standard Constant Lstm Rolling
Update method
(a)
Using a cyclostationary transition process
+
801
® 60T
Q
o
o +
4] L +
A
’ i
1 £
L |
=+ T 4

Standard

Constant Lstm Rolling
Update method

(b)

and in (b) the results for a cyclostationary transition process, when the policy length is set to 3.
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Table 5.5: Results for map2 after simulating 8 episodes of 128 trials with the policy length set to 3. Subtable (a) shows the results
for a deterministic stationary transition process, and (b) the results for a cyclostationary transition process.

(a) Using a deterministic stationary transition process.

| Update method || Steps to goal | Sample size | p-value
Standard 6, [6, 6] 500 -
Constant 6, [6, 8] 361 2.8894 x 10740
LSTM 6, [6, 9] 351 4.4699 x 10720
Rolling 6, [6, 6] 502 0.9880

(b) Using a cyclostationary transition process.

| Update method || Steps to goal | Sample size | p-value
Standard 9,7, 13] 242 -
Constant 10, [7, 18] 172 0.0213
LSTM 11, [7, 19.25] 149 35120 x 1074
Rolling 9, [6.25, 13] 255 0.4482
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Figure 5.7: Boxplot showing the results for map2, with in subfigure (a) the results for a deterministic stationary transition process,
and in (b) the results for a cyclostationary transition process, when the policy length is set to 3.
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Table 5.6: Results for map1 after simulating 8 episodes of 128 trials when determining the influence of the window width of the
rolling update method. Subtable (a) shows the results for a deterministic stationary transition process, and (b) the results for a
cyclostationary transition process. The results of the standard and rolling update methods are the same results from section 5.1
and serve only as a comparison.

(a) Using a deterministic stationary transition process.

| Update method || Steps to goal | Sample size | p-value
Standard 4, [4, 4] 1024 -
Rolling, w = 8 4,4, 4] 1024 -
Rolling, w = 4 4,4, 4] 1024 -
Rolling, w = 16 4,4, 4] 1024 -

(b) Using a cyclostationary transition process.

| Update method | Steps to goal | Sample size | p-value
Standard 6, [4, 11.75] 383 -
Rolling, w = 8 5, [4, 9] 475 1.8268 x 1074
Rolling, w = 4 5,14, 9] 479 0.0027
Rolling, w = 16 6, [4, 10] 434 0.0858
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Figure 5.8: Boxplot showing the results for map1, with in subfigure (a) the results for a deterministic stationary transition process,
and in (b) the results for a cyclostationary transition process, when the window width of the rolling update method is altered.
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Table 5.7: Results for map2 after simulating 8 episodes of 128 trials when determining the influence of the window width of the
rolling update method. Subtable (a) shows the results for a deterministic stationary transition process, and (b) the results for a
cyclostationary transition process. The results of the standard and rolling update methods are the same results from section 5.2
and serve only as a comparison.

(a) Using a deterministic stationary transition process.

| Update method | Steps to goal | Sample size | p-value
Standard 6, [6, 6] 512 -
Rolling, w = 8 6, [6, 6] 512 0.0046
Rolling, w = 4 6, [6, 8] 512 2.3627 x 10~1
Rolling, w = 16 6, [6, 6] 512 25355 x 104

(b) Using a cyclostationary transition process.

| Update method | Steps to goal | Sample size | p-value
Standard 9, [6, 16] 293 -
Rolling, w = 8 9.5, 7, 13] 306 0.4210
Rolling, w = 4 10, [7, 14] 317 0.2821
Rolling, w = 16 9,17, 14] 300 0.3223
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Figure 5.9: Boxplot showing the results for map2, with in subfigure (a) the results for a deterministic stationary transition process,
and in (b) the results for a cyclostationary transition process, when the window width of the rolling update method is altered.



Discussion

This chapter will go deeper into the performance of the different methods, first and foremost by giving a
thorough analysis of the results obtained in the previous chapter. The final two sections in this chapter
will also discuss potential improvements for the methods proposed in this research, by discussing
possible additions to the proposed methods and alternatives to these methods respectively.

6.1. Analysis of the results

6.1.1. How changes in the transition model influence the agent’s performance
As is evident from the results, the way how the transition model gets updated has a large influence on
the performance of the agent. The performance of the agent is directly related to the policy selection
of the agent, since this is the way the agent can exercise influence on the environment. Recalling from
section 2.5, the agent’s policy selection is a function of the expected free energy (equation 2.19):

P(m) = my = a(~y - G(m)) (6.1)
But the agent’s transition model does not appear in the expected free energy equation (equation 2.17):
G(mr,7) =0f - (6F —U)+sT-H (6.2)

To answer the question of how the transition model influences the agent’s policy selection, equation
6.2 has to be further analyzed. From this equation can be seen the expected outcomes under policies
oT. Since the likelihood matrix A is a mapping from states to outcomes, as explained in section 2.4,
these expected outcomes are obtained by multiplying the likelihood matrix A by the expected states
under policies s7:

o} = As? (6.3)

On their turn, these expected states under policies at a certain timestep s7 are obtained by multiplying
the transition matrix B by the expected states under policies at the previous timestep s7_;, which is
where the transition matrix comes into play:

st = Br_1s74 (6.4)

Thus, even though the transition model does not appear explicitly in the expected free energy equation
6.2, the expected free energy is still an indirect function of the transition model, as becomes evident by
substituting equations 6.3 and 6.4 into equation 6.2:

G(m,7) =o0oF - (6 —U)+sTF-H
=AsT - (In(AsF) —U)+sF-H (6.5)
= AB7_;s7_; - (In(AB7_;s74) —U) +Br_ys7, - H

The example in figure 6.1 then shows how having a better model of the transition process leads to the
selection of different policies.

47



48 6. Discussion
1 0 0 O
01 00
4=lo 0 1 o0
0 0 0 1
1 3
0
0
2 4 0
1
b= 0
0
. (b) Likelihood matrix, utility vector and initial state vector, which are iden-
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G(ee) = AB(east)sT - (In (AB(east)sT) — U) + B(east)sT - H
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+ AB(east)sy - (In (AB(east)sy) — U) + B(east)sy - H = =10
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+ AB(north)sT - (In (AB(north)s}) — U) + B(north)sy -H =10
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(c) The agent that has a model of the world in which no wind perturbation exists.
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0 0 0O 0 0 O
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G(ee) =0
G(en) = —5.6931
G(ne) = —6.3863
G(nn) = —6.7329
Ty = a(—l . [0; —5.6931; —6.3863; —6.7329]) = [0.0006; 0.1715; 0.3429;

(d) The agent that has a model of the world in which the wind faces to the east.

o
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0.4850]

Figure 6.1: Worked out example of how having a better model of the transition process leads to the selection of different policies.
Consider the scenario in which the agent is perturbed by a wind that faces to the east. For this example two agents are compared:
(1) an agent that has a model of the world in which no wind perturbation exists (incorrect), and (2) an agent that has a model
of the world in which the wind faces to the east (correct). Both agents have the same observation model, utility vector (the
agent prefers to be in state 3) and initial state vector (the agent beliefs it starts in state 2). For simplicity, the agent only has two
control variables at its disposal: U = {east,north}. Also, the length of the policy is set to 2, i.e. the agent considers only two
consecutive actions. Thus, the possible policies are ee (east, east), en, ne and nn (north, north). After setting the precision
over policies for simplicity to 1 and calculating the expected free energy for all policies for both agents, the policy distribution m,
then shows that the agent with the better model is more likely to move to the north first, since this way the agent is less likely to

get stuck along the eastern edge of the map due to the wind perturbation.
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6.1.2. Why the addition of a constant forget rate leads to a decrease in perfor-
mance

The use of a constant forget rate is not effective in active inference and actually decreases perfor-

mance, as is evident from from every table in the previous chapter. A constant forget rate causes the

concentration parameters of state transitions that are not frequently occuring, to approach zero as the

number of trials grows large. To prove this, equation 3.8 is first rewritten in a recursive manner:

by = (1 —ag) - bg—q + b

ag - bp_1 + by

=ag - (g - bg—2 + by—1) + b

= (ag)? - bg—p + ag - by_1 + by

= (ag)? - (ag * bz + br—3) + ag - by_1 + by

= (ag)® bz + (@r)? bz + ag - by + by (6.6)

oo—1

= (@) Brw + ) (@) By
k=0

o

= ) @) b

k=0

where ap = 1 — ap (which can be interpreted as the remember rate). The final expression of equation
6.6 represents a geometric series

Z ar®

k=0

with a = 64_, and r = ay. If |r| < 1 the geometric series converges:

[ee]

g 6.7
ar - (6.7)
k=0
Since |ag| < 1, this is translated to:
S ’&k—x &k—x
K. = =
2 (ar)" - by 1—a, . (6.8)

k=0

The a in equation 6.7 is a constant, but since the value of the experience 4;._,. in equation 6.8 is de-
pendent on the trial, the average of the experience per trial is considered. Since the experience gained
per trial for the state transitions that are not frequently occuring is zero for most trials, the average
experience per trial is a very small number. As such, the converged value for the concentration param-
eters becomes this small number scaled by the forget rate. This converged value for the concentration
parameters decreases as the forget rate increases and vice versa, which is as expected.

The decay of the concentration parameters is especially problematic when the state transition prob-
abilities are not unimodal (i.e. when selecting a specific action in a specific state does not result in a
high chance of transitioning to only one other specific state). This is because, in the case that a not
frequently ocurring state transition does occur, the agent will believe that its recently experienced state
transition has a much higher chance of occuring than it has in reality (since the other state transitions
have decayed to a low value).

It is not expected that the modification of the exact value of the forget rate will lead to an increase
in performance. Increasing this value will only result in the concentration parameters to approach zero
more quickly, as is evident from equation 6.8. Conversely, decreasing this value will make the impact
of forgetting between two consecutive trials smaller, which means that the actual purpose of forgetting
gets lost, while still contributing to the decay of concentration parameters to zero in the long run.
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6.1.3. Why forgetting with the LSTM update method decreases performance

As was seen from the results in the previous chapter, forgetting by utilizing the update mechanism
of an LSTM cell substantially decreases performance. Since the agent only obtains concentration
parameters for the state transitions experienced during the trial, this means that per trial, for the majority
of state transitions no experience will be gained. For the LSTM implementation in this work, this is
equivalent to the input for the LSTM cell being zero. The following paragraph will mathematically show
how the cell state will change in this case.

As was done in the experiments, all the weight and bias matrices are set to identity and zero re-
spectively. Therefore, to improve readability, the symbols representing these matrices will be omitted
in the following equations. The update equation for the cell state as given in subsection 3.3.2 can then
be written as:

Ce=ftoc1+izoC

6.9
= 0y(ht-1) © ¢t—1 + 01(he—1) © op(he—q1) 69)

Now, by writing a,(x) = tanh (x) and rewriting the logistic function as a function of the hyperbolic
tangent as well,

—1+1t h(x)
crl(x)—2 2an >

equation 6.9 can be written as:

¢e = 0y(he—1) © €1 + 0y(he—q) © op(he—q1)
(1,1 (e Lo (hen ) (6.10)
= E+§ an > °oci_1+ §+§ anh| ——= ) | tan (he-1)

After substituting

Py =24 1tann(Me
-1 = 5 TNl

and writing recursively:

¢t = (P—1) ° ¢t—1 + (P—1) o tanh (h;_,)
= (P—1) ° ((P—2) ° ct—3 + (P—2) o tanh (h;_3)) + (P_1) o tanh (h;_1)
= (P—1) ° (P—2) o ct—3 + (P_1) ° (P—z) o tanh (hy_;) + (P—1) o tanh (h;_)
= (P-1) © (P—2) ° ((P=3) ° ¢t—3 + (P.—3) ° tanh (h;_3)) + (P—1) © (P,—2) ° tanh (h;_3)
+ (P,~1) o tanh (hy_1)
= (Pr—1) © (P—2) ° (P—3) ° ct—3 + (Po—1) © (P.—) © (P.—3) o tanh (h;_3)
+ (P.—1) o (P—3) o tanh (h;_5) + (P,_1) ° tanh (h;_1)

(6.11)

oo

= H Pt—i °Ct_oo + 1_[ Pt—i o tanh (ht—oo) + Z 1_[ Pt—i o tanh (ht—])
i=1 i=1 =1

i=1

From the fact that

p= 1 Yann (M) <1
i T 5 TN

the infinite products in the first two terms of the final equality in equation 6.11 converge to zero. To see
whether the final term in this equation converges, consider the case that P,_; is not dependent on time,
in which case the final term

(o]

Z HPH o tanh (h,_;)

j=1 \i=1

can be rewritten as

> (71 tann ()
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which is a geometric series. Even though P;_; is dependent on time, the series will still converge, since
it always holds that |P._;| < 1.

Thus, similar to the constant update method, the LSTM update method causes the concentration
parameters of state transitions that are not frequently occurring, to converge to a small value. However,
unlike the constant update method, with the LSTM update method this does not exclusively happen
when the number of the trial grows large. As is seen from the multiple instances of sigmoid functions
in the LSTM cell update equations, the signals in the LSTM cell tend to become normalized. As such,
when larger values for the initial concentration parameters are set as the initial cell state, these values
will decrease rapidly. This can be illustrated with the following example. First, the equation for the
hidden state is rewritten, again by setting the input to zero, and the weight and bias matrices to identity
and zero respectively:

hi—1 = op(ce-1) © 01
= op(ct—1) ° 01 (he—3)

1 1 he_s
= tanh (¢;_q) ° 3 + > tanh >

In the most extreme case of ¢;,_; and h,_, both being o, equation 6.12 shows that h;_, becomes
1. Using this result allows one to reapply equation 6.12 with a more reasonable value of h;_, = 1.
When the value for c¢;_, remains large, it is then calculated from equation 6.12 that h,_; = 0.7311.
Subsequently applying equation 6.10 with the value of h;_; = 0.7311, results in ¢; = 0.6750¢;_, +
0.4210. This result gives that ¢; will decrease in value compared to c;_; unless c;_; < 1.295 (this
threshold is even lower when a less optimistic value for h,_, is used). Considering that the initial
nonzero concentration parameters are set to 8 for the experiments, this means that after just one trial,
the concentration parameters for state transitions that are not experienced during the first trial will have
dropped to at most 0.6750 - 8 + 0.4210 = 5.821, which is lower than the (1 — 0.1) - 8 = 7.2 value for
the constant update method with the constant forget rate set to 0.1. This shows that the LSTM update
method is capable of forgetting much faster than the constant update method, although this way of
forgetting is not beneficial to the agent’s performance.

(6.12)

6.1.4. Possible caveats for the rolling update method

The rolling update method performs the best overall, as it substantially increases performance over the
standard update method in the best case scenario, and does not decrease performance in the worst
case scenario. However, it should be emphasized that the initial concentration parameters play a large
role in the performance of the rolling update method. The role of the initial concentration parameters is
of more importance for the rolling update method than for the standard update method, because with
the rolling update method, the agent’s concentration parameters of certain state transitions get reset to
their initial value when the agent did not gain experience about those state transitions within its memory
window, as is seen from 3.15. In tasks like the one in this research, this does not cause any problems,
because the designer can easily feed the agent with neutral state transition concentration parameters,
that is, how the state transitons would be in absence of nonstationarity (e.g. selecting the action to the
west always results in the state transition to the west, the action to the east always results in the state
transition to the east, etc.). But providing the agent with neutral concentration parameters might not
always be that easy in other types of tasks.

Another point of interest, as is supported by the tuning results in section 5.3, the width of the mem-
ory window for the rolling update method can further increase or decrease the performance. Generally,
increasing the window width will decrease performance, since the agent will use the concentration pa-
rameters of more trials, which means that there is a greater chance that the agent will use outdated
concentration parameters. Similarly, decreasing the window width will increase performance. How-
ever, it is expected that performance will cease to increase when the window width is set too small,
considering that the agent will exclusively use its initial concentration parameters as the window width
approaches zero. This means that the agent will be unable to learn anything, which can result in a
decrease in performance.
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6.1.5. Why an increase in performance for the proposed methods is not present
when the goal is not reachable in one trial

Attaining an increase in performance for bigger maps might be a problem, since the agent just starts
wandering around when the distance between the start and finish is too large. A similar issue already
arises when the agent is not able to reach the goal within one trial. In this case, the agent tries to move
towards the center, because this leaves the agent with the most options. The agent does this, because
it prioritizes keeping its options open when prior preferences are not specified [11]. This is essentially
the case when the agent cannot reach the goal within the trial, because all other outcomes will have
equal utility (which is equivalent to no prior preferences specified). This explains why the differences
in performance between the standard and new update methods in the cyclostationary environment for
map2 are not as striking as they are for map1. The same holds for the performance difference for map1
between agents using a policy length of 4 and agents using a policy length of 3.

Can longer policy lengths solve this problem? Longer policy lengths have an advantage over shorter
lengths in that these allow the agent to take more distant goals into consideration. However, longer
policy lengths also have an important drawback, besides larger computation times. The drawback
is that within the trial that policy is followed, there is a larger chance for errors to accumulate in the
predicting of the sequence of state transitions that come with that policy, because the trial/policy is
longer. This is easier to expose with a real life example, like predicting the weather: with just the
measurements of today, it is easier to correctly predict the weather of only tomorrow than to correctly
predict the weather of the next three days. This problem is of less importance when the agent is
equipped with an accurate observation model (as was the case in this work), since the agent makes
intermediate observations, but this is not always the case.

A better approach would be to tackle this problem at a more fundamental level. Since the problem
is fundamentally caused by the agent having equivalent prior preferences for all outcomes when the
goal is not reachable, a possible solution would be to modify the prior preferences at each trial. This
can for example be done by introducing subgoals for the agent.

6.2. Possible additions to forgetting in active inference

6.2.1. Implementing subgoals

As is evident from the results in the previous chapter, applying forgetting to active inference can increase
performance when the goal is reachable in one trial, but does not affect performance otherwise. As
mentioned in the previous section, introducing subgoals for the agent can potentially solve this problem.
When applied to the type of task in this research, the subgoals would tell the agent at any trial to
move to a cell that is reachable within that trial. Using subgoals would allow the agent to use smaller
policy horizons as well, which is beneficial to the computation time. The use of smaller policy horizons
and subgoals is not new, as this has already been implemented in maze planning tasks, albeit only
in stationary environments [18]. Combining the concepts of subgoals and forgetting might make the
agent able to perform in nonstationary environments with larger state-spaces.

6.2.2. Making forgetting a function of the model parameters

As is the case with the constant forget rate and the memory window, these methods implement for-
getting as a function of time, independent of what happens during the interaction between agent and
environment. A more refined way of forgetting would be to take this interaction into account, and de-
termine what and how much to forget, based on the difference between the agent’s existing transition
model and the experience the agent gained from its most recent trial. This way, forgetting can become
a function of the agent’s model parameters instead of a direct function of time. Currently, this concept
is already present in the LSTM update method, but as seen from the update equations for an LSTM
cell, the cell state has the tendency to maintain values between 0 and 1. Moreover, because of the
complexity of the LSTM update equations, the influence of the difference between the existing transi-
tion model and the experience gained from the most recent trial can be made more explicit. This can
be done by utilizing a direct similarity measure between these two entities and letting the forgetting be
dependent on this similarity measure.
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6.2.3. Specific modifications to the methods in this research
Besides adding new components to the concept of forgetting, specific modifications to the methods
proposed in this research can possibly increase performance as well:

» The performance of the constant update method can possibly be improved by adding a lower
threshold for the concentration parameters. This way, the concentration parameters of infre-
quently occurring state transitions will not approach zero when the number of trials grows large.

» For the LSTM update method, an increase in performance might be obtained by removing the
hyperbolic tangent operators that are applied to obtain the signal ¢; and the updated hidden state
h: (see figure 3.1), as this would allow for maintaining values for the cell state larger than 1. For
updating the LSTM signals, these hyperbolic tangent operators are used to output values between
-1 and 1, but since the implementation of the LSTM cell in this work does not need to output values
in this range, these operators are not necessary. In deep learning, the removal of such a function
can potentially lead to problems in calculating the gradient used for backpropagation, as the
gradient might become too large or small. However, since the implementation of the LSTM cell
in this work only makes use of the forward pass of the LSTM calculation process, this situation is
not an issue here.

* Currently, for the rolling update method, a rectangular window is used to perform the rolling sum-
mation, which causes the agent to completely remember the experience of trials within the window
and completely forget the experience of trials outside of the window. By using different types of
windows, the performance of the rolling update method might be improved.

6.3. Possible alternatives to forgetting in active inference

6.3.1. Learning prior preferences

At the time of conducting the research in this thesis, research that introduces nonstationarity in discrete
state-space active inference has been carried out in parallel by the active inference community [30].
This work similarly focussed on the planning and navigation in gridworlds, but the nonstationarity was
manifested in a different way: instead of the transition process changing over time, in [30] the layout
of the map itself changed over time (e.g. the location of the goal changed). Besides a goal state,
the layouts also included a hole state which the agent had to avoid. Moreover, the way the agents
cope with nonstationarity in [30] was by learning prior preferences instead of forgetting part of the
concentration parameters. This way, the agent could learn whether a certain state is preferred after
reaching it (technically, the agent learns the preferences over outcomes, but since there is a one-to-one
mapping from states to outcomes in [30] as well, the result is the same). Because of the difference in
the tasks between this research and the research in [30], a rational comparison is not practical. But this
shows that different manifestations of nonstationarity might require different solutions. Nevertheless, a
similar point of attention is that all the experiments in [30] were done on gridworlds only of size 3 x 3.
This again raises the question of how the results are scaled to larger state-spaces.

6.3.2. Switching between generative models

Performance can potentially be improved by adding a layer to the generative model that represents
the different variations the dynamics can take on. When this is done, the agent can switch between
generative models, depending on the environmental dynamics of the world. For example, when solving
the tasks in this research, the agent would use a different generative model when the wind is facing
to the west than when the wind is facing to the east, north or south. An advantage of this approach is
that the agent does not lose experience when the environmental dynamics have changed: rather the
experience is distributed over the different generative models. A disadvantage of this approach is that
it requires the designer to manually partition the variations of the dynamics the world can take on into a
finite set. The problem with this is that, in addition to that it would be more computationally expensive,
it requires knowledge of the designer about the real world dynamics which is not always available.

An additional issue is that, even when the designer can implement this knowledge, during runtime
the agent still has to know (i.e. the designer has to modify the updating scheme so the agent can
detect) when there occurs a change in the transition dynamics. This is not a trivial task, considering
that the transition dynamics at any trial have the properties of a stochastic process. The agent therefore
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essentially has to know, not when there occurs a change in the outcome of a stochastic process, but
when there occurs a change between stochastic processes. This task is manageable if the agent is
exposed to the dynamics for a sufficiently large amount of trials, but the problem is that due to the
nature of nonstationarity, the dynamics might already have changed before this can happen.

A solution to the last problem, while this will not always be possible in practice, this is perhaps
the most effective method for dealing with nonstationarity in general: adding a layer of observations
to be able to sense the nonstationarity. In practice this would come down to providing the agent with
additional sensors. For the tasks in this research, the agent would be able to directly observe the wind
direction and switch between generative models accordingly.

6.3.3. Updating the preferences of outcomes, based on the model parameters
The final alternative to forgetting for dealing with nonstationarity discussed here, is to use the model
parameters to update the preferences of outcomes. This might sound similar to the method discussed
in subsection 6.3.1, but the principle is different. Whereas in subsection 6.3.1 the agent has to observe
an outcome to update the preference of that specific outcome, the method suggested here updates
the preferences of a selection of outcomes, based on multiple parameters in the transition model. This
can be made more clear by translating to the tasks in this research. Consider the situation in map1
(figure 4.2a), where the agent has experienced that taking the action to the east in multiple states has
resulted in moving to the north instead. The agent can then lower the preferences of all outcomes that
are associated with states to the south of the northern edge of the map. Although this method sounds
promising, it requires the agent to have understanding of the spatial relationship between the states
in its generative model, which is something that has to be implemented externally (e.g. with a graph
Laplacian).



Conclusion

This thesis focussed on discrete state-space active inference in nonstationary environments. More
specifically, the following research questions have been addressed in this thesis:

1. How do state-of-the-art active inference agents perform in discrete state-space nonstationary
environments?

2. Can the performance of discrete state-space active inference agents in nonstationary environ-
ments be improved by forgetting part of their previous experiences?

3. What are the most effective methods for implementing forgetting in discrete state-space active
inference?

The answer to the first research question is backed up by the following findings: in a planning
and navigation task, when traversing a gridworld, a standard active inference agent needs on average
approximately twice as many steps to reach its goal when the transition dynamics are changed from
stationary deterministic to cyclostationary. As such, an improvement in performance is needed.

To answer the second research question, it turns out that the performance of discrete state-space
active inference agents in nonstationary environments can indeed be improved by forgetting part of
their previous experiences. When the agent is able to reach its goal within one trial, agents capable
of forgetting actually perform better than agents incapable of forgetting (i.e. using the standard update
method), if provided with the correct methods of forgetting (more on this in the answering of the third
research question). However, a possible increase in performance due to forgetting is not apparent
in cyclostationary environments when the agent is not able to reach its goal in one trial. The reason
for this is that when the agent is unable to reach its goal in one trial, it is not moved by goal-directed
behavior, because all of its reachable outcomes have similar prior preferences.

For answering the third and final research question, it cannot be overemphasized that whether an
actual improvement in performance is attained, is largely dependent on how forgetting is implemented.
For cyclostationary environments, periodic complete unlearning of the consequences of actions in the
past with the use of a memory window provides better results than continuous unlearning by using
the updating mechanism of an LSTM cell applied to the updating of the generative model or using a
constant forget rate in active inference. These latter two methods even adversely affect performance,
as it turns out that these update methods can destabilize the agent’s transition model.

As stated before, a possible increase in performance due to forgetting is not apparent in cyclostation-
ary environments when the agent is not able to reach its goal in one trial. That being said, regardless
of the reachability of the goal in the environment, in the cases when an increase in performance of
agents that forget using a memory window is not apparent, an actual decrease in performance is ruled
out according to the results. Moreover, agents provided with a memory window also do not perform
worse than agents incapable of forgetting when the transition dynamics are simply stationary.

In future work, the performance of agents capable of forgetting can even be improved upon, consid-
ering that the forgetting with the memory window (the method currently showing the best results) is a
direct function of time. By making the forgetting a function of the agent’s model parameters, the agent
can have more control of its forgetting.
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56 7. Conclusion

Altogether, summarizing the results in this research, the active inference agent that continuously
forgets by using a constant forget rate and the one that bases its forgetting on the updating mechanism
of an LSTM cell unanimously perform worse than the standard active inference agent incapable of
forgetting. The agent that uses a memory window to completely forget part of its previous experiences
is able to outperform this agent incapable of forgetting. Therefore, the memory window update method
can be considered an improvement over the standard update method for the generative model used in
active inference.
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A.1. The standard update method
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(a) At the end of trial 16.
Figure A.1: Heatmap of the transition concentration parameters for map1 for the standard update method. Each subfigure shows

to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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(c) At the end of trial 48.

Figure A.1: Heatmap of the transition concentration parameters for map1 for the standard update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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(e) At the end of trial 80.

Figure A.1: Heatmap of the transition concentration parameters for map1 for the standard update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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(g) At the end of trial 112.

Figure A.1: Heatmap of the transition concentration parameters for map1 for the standard update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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Figure A.1: Heatmap of the transition concentration parameters for map1 for the standard update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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A.2. The constant update method
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(a) At the end of trial 16.

Figure A.2: Heatmap of the transition concentration parameters for map1 for the constant update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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(c) At the end of trial 48.

Figure A.2: Heatmap of the transition concentration parameters for map1 for the constant update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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(e) At the end of trial 80.

Figure A.2: Heatmap of the transition concentration parameters for map1 for the constant update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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(g) At the end of trial 112.

Figure A.2: Heatmap of the transition concentration parameters for map1 for the constant update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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Figure A.2: Heatmap of the transition concentration parameters for map1 for the constant update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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A.3. The LSTM update method
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Figure A.3: Heatmap of the transition concentration parameters for map1 for the LSTM update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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(c) At the end of trial 48.

Figure A.3: Heatmap of the transition concentration parameters for map1 for the LSTM update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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(e) At the end of trial 80.

Figure A.3: Heatmap of the transition concentration parameters for map1 for the LSTM update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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(g) At the end of trial 112.

Figure A.3: Heatmap of the transition concentration parameters for map1 for the LSTM update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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Figure A.3: Heatmap of the transition concentration parameters for map1 for the LSTM update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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A.4. The rolling update method
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(a) At the end of trial 16.

Figure A.4: Heatmap of the transition concentration parameters for map1 for the rolling update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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(c) At the end of trial 48.

Figure A.4: Heatmap of the transition concentration parameters for map1 for the rolling update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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(e) At the end of trial 80.

Figure A.4: Heatmap of the transition concentration parameters for map1 for the rolling update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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(g) At the end of trial 112.

Figure A.4: Heatmap of the transition concentration parameters for map1 for the rolling update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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(h) At the end of trial 128.

Figure A.4: Heatmap of the transition concentration parameters for map1 for the rolling update method. Each subfigure shows
to results at the final trial before a change in transition dynamics occurs, and within each subfigure, the concentration parameters
for each control variable are visualized.
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