

Delft University of Technology

PEBL: Pessimistic Ensembles for Offline Deep Reinforcement Learning

Smit, Jordi; Ponnambalam, Canmanie; Spaan, Matthijs T.J.; Oliehoek, Frans A.

Publication date
2021
Document Version
Final published version
Published in
Robust and Reliable Autonomy in the Wild Workshop at the 30th International Joint Conference of Artificial
Intelligence

Citation (APA)
Smit, J., Ponnambalam, C., Spaan, M. T. J., & Oliehoek, F. A. (2021). PEBL: Pessimistic Ensembles for
Offline Deep Reinforcement Learning. In Robust and Reliable Autonomy in the Wild Workshop at the 30th
International Joint Conference of Artificial Intelligence

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

PEBL: Pessimistic Ensembles for Offline Deep Reinforcement Learning

Jordi Smit, Canmanie T. Ponnambalam, Matthijs T. J. Spaan, Frans A. Oliehoek
Delft University of Technology

j.smit-6@student.tudelft.nl, {c.t.ponnambalam, m.t.j.spaan, f.a.oliehoek}@tudelft.nl

Abstract

Offline reinforcement learning (RL), or learning from a fixed
data set, is an attractive alternative to online RL. Offline RL
promises to address the cost and safety implications of tak-
ing numerous random or bad actions online, a crucial as-
pect of traditional RL that makes it difficult to apply in real-
world problems. However, when RL is naı̈vely applied to a
fixed data set, the resulting policy may exhibit poor perfor-
mance in the real environment. This happens due to over-
estimation of the value of state-action pairs not sufficiently
covered by the data set. A promising way to avoid this is by
applying pessimism and acting according to a lower bound
estimate on the value. In deep reinforcement learning, how-
ever, uncertainty estimation is highly non-trivial and devel-
opment of effective uncertainty-based pessimistic algorithms
remains an open question. This paper introduces two novel
offline deep RL methods built on Double Deep Q-Learning
and Soft Actor-Critic. We show how a multi-headed bootstrap
approach to uncertainty estimation is used to calculate an ef-
fective pessimistic value penalty. Our approach is applied to
benchmark offline deep RL domains, where we demonstrate
that our methods can often beat the current state-of-the-art.

Introduction
Offline (batch) reinforcement learning (RL), addresses some
of the key problems that make general reinforcement learn-
ing unsuitable for real-world applications such as robotics
(Cabi et al. 2020), healthcare (Wang et al. 2018), recom-
mender systems (Strehl et al. 2010), and chatbots (Pietquin
et al. 2011). In offline RL, a particular core issue of stan-
dard RL is absent: the exploration-exploitation trade-off. In-
stead, a data set is available that contains transitions sam-
pled from the environment that ideally provide useful in-
formation about its dynamics and the task we want to op-
timize. This suggests that we can find a policy that opti-
mizes the task, given only the data set, and avoid taking ad-
ditional exploratory actions online whose consequences are
unknown. In safety-critical applications or anywhere ample
offline data is available, offline RL is an attractive approach
to automation. However, naı̈vely applying policy optimiza-
tion to a fixed data set has been repeatedly shown in practice
to produce a policy that performs very poorly on the true task

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Levine et al. 2020; Fujimoto et al. 2019; Fu et al. 2020; Kim
2020; Hou et al. 2020). The fundamental issue arises in the
likely case that the data has insufficient information to allow
the transition and reward model to be adequately estimated,
either explicitly or implicitly, in the model-free case. This
issue arises from the strong bias introduced by the policies
that generated the data set, rendering the data unrepresenta-
tive of the true MDP.

A theoretical analysis of the offline RL problem sug-
gests that policies learned on fixed data will become over-
optimistic, meaning they assign values to actions that are
higher than the true value in areas with insufficient informa-
tion (Buckman, Gelada, and Bellemare 2020). If the offline
data is collected by selecting actions at random, it is more
likely that the coverage of the problem space is sufficient
to recover the transition and reward functions. In this case,
over-estimation is less likely, but significantly more data is
needed to uncover optimal behavior. In the other extreme,
where data is collected according to expert demonstrations,
the data is highly biased and will contain transitions from
only a subset of the overall state-action space. The value at-
tributed to parts of the state-action space that were not rep-
resented enough in the data set is likely to not only be in-
correct but over-estimated. This effect occurs because over-
estimations have a larger impact on the performance of the
offline RL agent in the true environment (Buckman, Gelada,
and Bellemare 2020). One way to bypass this issue is to con-
strain the learned policy to lie near the policy exhibited in the
data. This has been shown to be effective (Levine et al. 2020;
Fujimoto et al. 2019; Kim 2020; Fujimoto, Meger, and Pre-
cup 2019), but such an approach is limited in its ability to
improve on the policy emergent in the data set. The ideal ap-
proach should be robust to many data collection strategies,
ranging from random actions to expert demonstrations.

An alternative to penalizing actions that are under-
represented in the data set is to penalize actions whose es-
timated value is highly uncertain. The penalty allows poli-
cies to deviate from the empirical policy in high infor-
mation regions while closely imitating the empirical pol-
icy in low information regions. This principle, referred to
as uncertainty-based pessimism, is a promising approach
to producing offline RL algorithms that are robust to var-
ious data collection policies (Jin, Yang, and Wang 2020;
Rashidinejad et al. 2021). The effectiveness of such an ap-

proach has been demonstrated in tabular problems, where
a principled approach can be taken to uncertainty estima-
tion (Buckman, Gelada, and Bellemare 2020). We aim to
extend these findings to deep RL, where the continuous
nature of the state-action space and use of function ap-
proximation means that count-based methods can no longer
be used for uncertainty estimation. We propose a multi-
headed bootstrap approach with randomized priors to esti-
mating epistemic uncertainty in deep learning settings (Os-
band, Aslanides, and Cassirer 2018). With the inclusion of
randomized priors, every ensemble member learns a differ-
ent function in regions with no training data, resulting in
better epistemic uncertainty estimation. With this, we de-
rive a pessimistically-penalized offline deep reinforcement
learning approach, which we call PEssimistic ensemBLe,
or PEBL (pronounced “pebble”). This paper introduces two
versions of PEBL, one built on Double Deep Q-Learning
(Van Hasselt, Guez, and Silver 2016) and another variant
based on Soft Actor-Critic (Haarnoja et al. 2018). Our im-
plementation of these techniques is available in an open-
source repository at: github.com/j0rd1smit/PEBL.

This paper first highlights related literature and describes
how our work builds upon recent advances in offline deep
RL. We then discuss uncertainty estimation in deep RL and
the motivations for the approach used in our method. This is
followed by the description of our two PEBL variants for of-
fline deep RL, tackling both discrete and continuous action
spaces. In experiments, we demonstrate that our uncertainty-
based pessimistic methods achieve state-of-the-art perfor-
mance, often improving on existing benchmarks. Finally, we
conclude and suggest directions for future work in this area.

Background
In this section, we formalize established concepts that pro-
vide a foundation for our work.

Reinforcement Learning
In reinforcement learning, the environment or task is mod-
eled as a Markov decision process (MDP). Formally, an
MDP is a tupleM = (S,A,R, T , γ) containing state space
S, action space A, reward function R, transition function
T , and a discount factor γ. An agent acting in an MDP at
time step t receives a state st and then executes an action
at which causes the environment to transition according to
T (st, at, st+1), a function that maps state-action pairs to a
distribution over next states T : S ×A×S → [0, 1].
The agent enters the next state st+1, and receives a re-
ward rt according to reward functionR(st, at, st+1), where
R : S ×A×S → R. The solution to an MDP is a policy
π that maps states to actions. The value of a policy V πs0=si is
the sum of expected discounted rewards when following pol-
icy π from initial state si. An optimal policy π∗ maximizes
this value for every state. The action-conditioned value is re-
ferred to as Q(s, a), which returns the value for a particular
action in a given state.

In reinforcement learning, the transition and reward dy-
namics of the MDP are unknown. An agent must there-
fore interact with the environment in order to learn to op-

timize rewards. In Q-learning, a common model-free ap-
proach for tabular problems, this is done by continuously
applying the Bellman update on experience sampled from
the MDP (s, a, r, s′) (collected by the agent) until Q con-
verges with learning rate α (Watkins and Dayan 1992):

Q(s, a) = Q(s, a)+α(r+γmax
a′

Q(s′, a′))+(1−α)Q(s, a)

Deep Reinforcement Learning
In continuous state-space environments, the Q-function can
no longer be represented in a table, and function approxi-
mation is required. In deep reinforcement learning, a multi-
layered neural network is used to approximate Q. The most
basic method applying this is Deep Q-Learning (DQN)
(Mnih et al. 2013, 2015), where the TD-target yt is calcu-
lated by the neural network (with parameters θ) is:

yt = rt + γmax
a′

Q(s′, a′ : θ)

Double Deep Q-Learning (DDQN) Naı̈ve applications of
DQN has been known to exhibit instability due to over-
estimation, thus DDQN (which originated in tabular set-
tings) was posed as a solution to this problem (Van Has-
selt, Guez, and Silver 2016). In DDQN, two Q-functions
are maintained, one of which is used for action selection
(parameterized by θ) and the other for evaluation (param-
eterized by θ′). The original DDQN algorithm calculates the
target using the formula:

yt = rt + (1− dt) · γQ(st+1, argmax
a
{Q(st+1, a; θ)}; θ′)

In this equation, rt is the reward, and dt is a flag indicating
whether the episode terminated or not at the t-th time step.

Soft Actor-Critic (SAC) Both DQN and DDQN are suit-
able for discrete-action problems. Soft Actor-Critic is an al-
gorithm that can also be applied to problems with continuous
action spaces. It builds on the popular Actor-Critic approach,
which splits learning the policy from the value function. In
this approach, the actor learns an action distribution that
maximizes the expected reward based on the feedback from
the critic, while the critic learns to approximates the value
function (Sutton and Barto 2018). Actor-Critic approaches
are typically used in on-policy settings. However, using im-
portance sampling, it is also possible to use this approach
in an off-policy setting (Haarnoja et al. 2018). In SAC, the
goal is to optimize for a trade-off of expected return and en-
tropy of the policy. The TD-target yt is calculated using the
formula:

yt = rt + (1− dt) · γ min
j=1,2

{Q(st+1, ãt+1; θ
′
j)}−

α log πφ(ãt+1|st+1)

In this equation, ãt+1 is sampled from the learned policy
πφ(.|st+1), and α is the entropy trade-off parameter. Simi-
lar to DDQN, SAC tries to minimize instability issues due
to over-estimations caused by the function approximation.
It does this by learning two Q-value functions, parameter-
ized by θ1 and θ2. It uses the lowerest Q-value estimation
for its policy losses, and it is TD-target to prevent over-
estimations.

Uncertainty-Aware Offline Reinforcement
Learning
Buckman, Gelada, and Bellemare describe two types of
offline reinforcement learning algorithms that apply pes-
simism: proximal (which we call policy-constrained) pes-
simistic algorithms and uncertainty-aware pessimistic algo-
rithms (2020). In their experiments, the performance of four
algorithmic families was demonstrated: naı̈ve (simply ap-
plies standard reinforcement learning on the given data set),
behavior cloning (copies the empirical policy followed in the
data set), policy-constrained pessimistic (penalizes actions
not well-represented in the data set), and uncertainty-aware
pessimistic (penalizes actions with high uncertainty in the
data set). A behavior cloning-based policy can only perform
as well as the data collection policy. The policy-constrained
pessimistic family can improve upon the data collection pol-
icy, but only slightly, as these algorithms are constrained to
stay close to it. The naı̈ve algorithmic family performs well
if the data set contains sufficient exploratory data, such as
in a huge randomly generated data set. However, its perfor-
mance quickly deteriorates when the data set is more biased
(such as that generated by expert demonstrations). Theoreti-
cally, and then in tabular experiments, it was shown that the
uncertainty-aware pessimistic approach was the most robust
to different types of data sets.

Related work
Uncertainty-aware approaches to reinforcement learning
have been used in the traditional online setting, notably in
the robust MDP framework which aims to build policies
that are robust to modeling errors (Zhou et al. 1996; Gi-
van, Leach, and Dean 2000; Nilim and El Ghaoui 2005;
Wiesemann, Kuhn, and Rustem 2013). Recently, the theo-
retical advantages of uncertainty-aware algorithms in the of-
fline setting have been demonstrated in tabular experiments
(Buckman, Gelada, and Bellemare 2020; Rashidinejad et al.
2021) and linear function approximation experiments (Jin,
Yang, and Wang 2020). We are concerned with the appli-
cation of uncertainty-aware pessimism in offline deep re-
inforcement learning, where quantifying uncertainty is par-
ticularly difficult (Buckman, Gelada, and Bellemare 2020;
Abdar et al. 2020). Recently, deep learning approaches for
offline reinforcement learning have received considerable at-
tention. Several of these advances can be viewed as members
of the policy-constrained pessimistic family (Kim 2020; Ku-
mar et al. 2020; Hou et al. 2020), where the primary dif-
ferences between approaches are the choice of constraint
(Buckman, Gelada, and Bellemare 2020). For example, both
Batch Constrained Q-Learning (Fujimoto et al. 2019) and
Pessimistic Offline Policy Optimization (POPO) (Hou et al.
2020) can be viewed as pessimistic algorithms because they
are pessimistic with respect to Q-values for state-action pairs
not covered by the behavior policy. However, because this
pessimism is based on the observed behavior policy, they
belong to the policy-constrained pessimistic family, whereas
we are interested in the uncertainty-based pessimistic family
and its theoretical advantages over the alternative.

Like our method, many other offline deep RL algo-

rithms also use an ensemble of Q-functions to prevent over-
estimating the Bellman backup. For example, the methods
BEAR (Kim 2020), POPO (Hou et al. 2020), and BRAC
(Wu, Tucker, and Nachum 2019) use ensembles to do this
by picking either the Q-function with the lowest value or
they pick a weighted average of the current highest and low-
est Q-value in the ensemble. This technique reduces the
over-estimation propagation caused by the target network
and the max operator in the Bellman equation. This works
well in online RL (Haarnoja et al. 2018; Fujimoto, Hoof,
and Meger 2018), but in offline RL, insufficient informa-
tion and insufficient coverage in the data set also causes
over-estimations which are not addressed by this technique
(Rashidinejad et al. 2021; Jin, Yang, and Wang 2020). Meth-
ods like BEAR, POPO, and BRAC have to resort to policy-
constrained techniques such as the maximum mean discrep-
ancy, KL divergence, and Wasserstein Distance to counter-
act this secondary source of over-estimations (Kim 2020;
Hou et al. 2020; Wu, Tucker, and Nachum 2019). In con-
trast, our method addresses the over-estimations caused by
insufficient information by penalizing the Q-values based on
the epistemic uncertainty.

Another interesting approach is Conservative Q-learning
(Kumar et al. 2020) and its model-based version Conserva-
tive Offline Model-Based Policy Optimization (COMBO)
(Yu et al. 2021). These methods regularize the Q-values
by simultaneously minimizing all the Q-values and maxi-
mizing the Q-values in the data set, finding a lower bound
on the Q-value. While it appears that this algorithm aims
to avoid low-information regions similar to the algorithms
in the uncertainty-aware pessimistic family, this is not the
case because it uses data concentration as a proxy for infor-
mation. In reality, it belongs to the policy-constrained pes-
simistic algorithmic family because it aims to stay close to
the empirical policy, especially in very noisy or small data
sets. This constraint is much looser than the previously men-
tioned policy constraints in practice, allowing for larger im-
provements. In contrast, our uncertainty-aware pessimistic
algorithm is not constrained by any empirical policy, which
theoretically allows for even larger improvements upon the
empirical policy in a wider range of data sets (Rashidinejad
et al. 2021; Jin, Yang, and Wang 2020).

Currently, Model-based Offline Policy Optimization
(MOPO) (Yu et al. 2020) and Model-Based Offline Rein-
forcement Learning (MOReL) (Kidambi et al. 2020) are
the most similar to our model-free algorithm. These model-
based methods use an ensemble of models to estimate the
uncertainty in the MDP. This uncertainty estimate is used
to construct a pessimistic version of the MDP by subtract-
ing the state uncertainty from the modeled rewards. The re-
sulting pessimistic MDP is then used as input to a model-
free method to learn a pessimistic policy. The major disad-
vantage of these methods is that they do not learn a pes-
simistic policy using an end-to-end based technique, as our
method does. This is potentially an issue because when a
Bellman update is performed on a function approximated Q-
network, the value of a particular state is impacted by gen-
eralizations from other states, which potentially confounds
the pessimistic penalties (Buckman, Gelada, and Bellemare

2020). We conclude that there is a gap in the offline deep RL
literature for an end-to-end model-free uncertainty-aware
pessimistic algorithm, which we aim to address using our
method PEBL.

Uncertainty-Based Pessimism in Deep
Reinforcement Learning

The uncertainty in reinforcement learning can be decom-
posed into two types of uncertainty, aleatoric and epistemic
(Abdar et al. 2020; Kendall and Gal 2017). Aleatoric uncer-
tainty arises from the stochasticity that is naturally present
in the observations. Its key property is that it cannot be re-
duced by adding more data. A typical example of aleatoric
uncertainty is a random or noisy reward function; adding
more data from this function will not remove the noise in
the observations. Epistemic uncertainty describes what the
model does not know due to limitations in the observed data.
This type of uncertainty has the key property that it can be
reduced by adding more data. In this work, we are mainly
concerned with epistemic uncertainty.

We seek to apply uncertainty-based pessimism to address
two key challenges emergent in offline deep reinforcement
learning. The first issue arises when a naı̈ve algorithm, such
as an online version of DDQN or SAC, is applied to an of-
fline data set. In this scenario, a wide range of literature has
observed that the Q-values can increase continuously until
the algorithm diverges (Levine et al. 2020; Fujimoto et al.
2019; Kim 2020). This effect is most apparent in data sets
with low state-action space coverage, such as small data sets
and expertly generated data sets. The issue is caused by over-
optimistic value estimations of the next state. These over-
estimations can be small initially, but they compound over
time due to the Bellman equation, resulting in divergent be-
havior. One way to apply pessimism to counter this com-
pounding effect is by penalizing the estimated Q-value in the
Bellman backup of the target network by a factor of the un-
certainty (estimated by the standard deviation) (Levine et al.
2020):

yt = µQ(st+1, a; θ
′)− σQ(st+1, a; θ

′) (1)

In this equation, µQ is the mean, σQ is the standard deviation
of the Q-value approximations, and θ′ is the weights of the
target network.

Another issue that must be addressed is the trade-off be-
tween minimizing uncertainty and maximizing the Q-values
in the learned policy. Uncertainty-aware offline RL algo-
rithms do this by learning a policy that maximizes the un-
certainty lower bound of the Q-values:

πp = argmax
a
{µQ(st, a; θ)− σQ(st, a; θ)} (2)

In the remainder of this section, we will discuss how this
estimate σQ can be obtained.

Estimating Uncertainty in Deep Reinforcement
Learning
We seek a penalty that represents the epistemic uncertainty,
not the aleatoric uncertainty, which means it should be in-
versely proportional to the density in the data set as well as

our confidence. The deep learning literature proposes mul-
tiple ways to estimate the uncertainty in the predictions of
a neural network (Osband et al. 2016; Osband, Aslanides,
and Cassirer 2018; Gal and Ghahramani 2016; Blundell
et al. 2015; Kendall and Gal 2017; Liu et al. 2020). One of
the best-known uncertainty estimation techniques methods
is Monte Carlo dropout (Gal and Ghahramani 2016). This
method measures the uncertainty as the sample standard de-
viation over N Monte Carlo samples of slightly differing
network configurations. Dropout has been shown to success-
fully capture uncertainty in several applications (Wang et al.
2019; Nair et al. 2020; Do et al. 2020). However, it mainly
focuses on aleatoric uncertainty because its Bayesian poste-
rior does not concentrate on the observed data and it cannot
propagate its uncertainty through the Bellman fixed point
(Osband, Aslanides, and Cassirer 2018). These properties
make Monte Carlo dropout an unsuitable candidate for our
problem.

Another well-known uncertainty estimation technique is
the ensemble (Pearce, Leibfried, and Brintrup 2020; Os-
band, Aslanides, and Cassirer 2018; Lakshminarayanan,
Pritzel, and Blundell 2017). An ensemble measures the un-
certainty as the sample standard deviation between the pre-
diction of its members. Ensembles are very good at estimat-
ing epistemic uncertainty as long as every member learns
a different function in low data density areas. Another ad-
vantage of the ensemble is that its uncertainty measure is
function-dependent and can propagate uncertainties through
the Bellman fixed-point by definition (Osband, Aslanides,
and Cassirer 2018).

Our method uses the multi-headed bootstrap ensemble
with random priors to ensure that the ensemble members
are as diverse as possible (Osband, Aslanides, and Cassirer
2018). This approach is similar to the traditional deep learn-
ing ensemble, but it improves upon it in two ways. First,
it adds a different parallel prior to the prediction of each
head (Figure 1). This prior is a randomly initialized but
frozen network, meaning its weights will not change during
the training process. Due to this strategy, each head has an
input-dependent prior, while the mapping remains constant
throughout the training process. Thus, in high data concen-
tration areas, each head learns to ignore its prior and ap-
proaches a similar function, while in the low data concentra-
tion areas, each head is biased by its prior and there are more
significant disagreements in the learned function between
heads. This results in better epistemic uncertainty estima-
tion for out-of-distribution data. The second improvement
is the addition of the bootstrap. By training each ensemble
member on a slightly different subset of the data, we ensure
that it learns a different function where data is sparse, which
results in improved epistemic uncertainty estimation at the
edges of dense data concentration.

There is one notable disadvantage to our proposed uncer-
tainty estimation technique: the number of weights and com-
pute of this method increases linearly with the number of
heads used. However, it is possible to share a feature extrac-
tor such as a convolutional neural network (CNN). In theory,
this shared encoder can reduce the diversity in the ensemble,
but it has been observed empirically that this negative ef-

fect is minimal, making this a valid computational trade-off
(Osband et al. 2016; Osband, Aslanides, and Cassirer 2018;
Sedlmeier et al. 2019). In practice, the parallel heads and
their priors contain only one or two fully connected layers
making the memory and performance requirements manage-
able.

MLP 1Frozen
Prior MLP 1

+

Q-values 1

Frozen
Prior MLP H MLP H

+

Q-values H

Shared
(CNN)

Encoder

Inputs

Figure 1: The multi-headed bootstrap ensemble with random
priors network architecture. The architecture is similar to
traditional ensembles but adds the output of a frozen prior
network to each head’s output to create a state depended
prior.

Pessimistic Ensembles for Offline Deep
Reinforcement Learning

We propose two new PEssimistic ensemBLe (PEBL) algo-
rithms that use a multi-headed bootstrap with priors archi-
tecture to approximate the Q-function. The first algorithm
is a pessimistic version of DDQN (Van Hasselt, Guez, and
Silver 2016) aimed at problems with discrete action spaces.
The use of two Q-networks helps avoid over-estimations
in the function approximation, offering more stable perfor-
mance. The second algorithm is a pessimistic version of
SAC (Haarnoja et al. 2018) and works in both continuous
and discrete action-space cases. Although SAC can also be
applied to discrete action spaces, DDQN is often preferred in
this setting due to its lower memory and computation costs.

Pessimistic Ensemble DDQN
Our pessimistic version of DDQN, which we call PEBL
DDQN changes the TD-target of DDQN to:

yt = rt+(1−dt)∗γµQ(st, a∗; θ′)−σQ(st, a∗; θ′) (3)

a∗ = argmax
a
{µQ(st, a; θ)σQ(st, a∗; θ)}

In this equation, µQ(st, a; θ) and σQ(st, a; θ) are the sam-
ple mean and sample standard deviation over the different
heads:

µQ(st, a; θ) =
1

h

h−1∑
i=0

Qi(st, a; θi) (4)

σQ(st, a; θ) =

√∑h−1
i=0 (Qi(st, a; θi)− µQ(st, a; θi))2

h− 1
(5)

In this equation, Qi is the Q-value prediction of the i-th en-
semble head. This definition is different from the original
definition from the bootstrapped DQN (Osband et al. 2016;
Osband, Aslanides, and Cassirer 2018), which trained each
head on its own target head. This is because we need to sub-
tract an uncertainty penalty; if the penalty was subtracted
from each head directly, an unstable feedback loop is cre-
ated, resulting in potentially very large negative Q-values.
Finally, we add the bootstrapping masks as described in the
efficient implementation of bootstrapped DQN (Sedlmeier
et al. 2019), giving the following definition for the TD-error
for head i:

TDi = mi,j · (Qi(st, a; θi)− yt)

In this equation, mi,j is a boolean mask that has been sam-
pled for each training sample j from a Bernoulli distribution
with p = 0.8 as suggested by (Pearce, Leibfried, and Brin-
trup 2020). Note that the mi,j remains constant through the
entire training process. The final policy selects the action
with the highest pessimistic q-value.

πt = argmax
a
{µQ(st, a; θ)− Cπ · σQ(st, a; θ)}

Pessimistic Ensemble SAC
Our pessimistic version of Soft Actor-Critic, called PEBL
SAC, changes the target to:

yt = rt + (1− dt) · γ · (µQ(s, a; θ1, θ2)
− σQ(s, a; θ1, θ2))− α log πφ(ãt+1|st+1) (6)

where ãt+1 is sampled from the learned policy πφ(.|st+1).
We define µQ(s, a; θ1, θ2) and σQ(s, a; θ1, θ2) as:

µQ(s, a; θ1, θ2) =
1

h

h−1∑
i=0

min
j=1,2

Q(s, a; θj,i) (7)

σQ(s, a; θ1, θ2) =√√√√ 1

h− 1

h−1∑
i=0

(µQ(s, a; θ1, θ2)− min
j=1,2

Q(s, a; θj,i))2 (8)

Using these targets, we can calculate the TD-errors of the
PEBL SAC algorithm in the same way we calculated the
TD-errors for the PEBL DDQN algorithm with head i and
mask mi:

TDi,j = mi · (Qi(st, a; θi)− yt)

The original SAC algorithm calculates the policy loss using
the formula:

L =
1

|B|
∑
s∈B

(α log πφ(ãt, st) − min
i=1,2
{Q(st, ãt; θi)})

Our pessimistic version of this algorithm changes the loss
policy function to:

L =
1

|B|
∑
s∈B

(α log πφ(ãt, st)− (µQ(s, a; θ1, θ2)−

Cπ · σQ(s, a; θ1, θ2)) (9)

In this equation, we also introduce the uncertainty weight
trade-off parameter Cπ . This parameter controls the trade-
off between minimizing uncertainty and maximizing the
Q-values in the learned policy. This trade-off parameter
is needed because the policy loss in SAC is similar to a
white box adversarial attack on the Q-function due to the
re-parameterization trick (Akhtar and Mian 2018). This ad-
versarial formulation of the policy loss is not a problem in
deep online RL because it forces the agent to learn about the
flaws in its Q-function, which helps with exploration. How-
ever, in offline RL, this adversarial formulation is a problem
because the agent can no longer collect counterexamples in
the environment. Therefore, selecting the right parameter for
Cπ is crucial. Empirically, we found that it can be difficult
to find the right value for Cπ because it depends on many
factors such as the size of the data set, the state-action space
coverage, or the difficulty of modeling the true MDP. How-
ever, we can tune this parameter online using dual gradient
descent, a technique that is increasingly common in deep
reinforcement learning (Haarnoja et al. 2018; Kumar et al.
2020). We apply dual gradient descent and transform Cπ
into a Lagrangian multiplier by adding the constraint that
the average uncertainty of the actions selected by the learned
pessimistic policy π should be equal to the average uncer-
tainty observed in the actions for the data set:

1

n

D∑
st,at

σQ(st, at; θ) =
1

n

D∑
st

σQ(st, ap; θ), ap ∈ πp (10)

This constraint is possible because we are only interested in
avoiding epistemic uncertainty, which is high in areas where
the network cannot model the function well. Thus, we al-
low the selection of out-of-distribution actions as long as we
avoid areas with above-average epistemic uncertainty. The
constraint in Equation 10 captures this property, which re-
sults in a higher value of Cπ if πp chooses actions with
above-average epistemic uncertainty. It results in a lower
value for Cπ if πp chooses actions with below-average epis-
temic uncertainty.

Experimental Results
In this section, we discuss the results of several empirical
evaluations of our PEBL methods. The main purpose of our
experiments is to demonstrate that uncertainty-based pes-
simistic algorithms can be applied to offline deep RL prob-
lems and achieve high performance and that they can do well
for a wide range of provided data distributions. In all experi-
ments, the trade-off parameter Cπ in the SAC version of our
algorithm is learned using Lagrangian dual gradient descent
(Equation 10). For an open-source implementation, please
refer to the code in the accompanying GitHub repository:
github.com/j0rd1smit/PEBL.

MinAtar
We first aimed to reproduce the results presented by Buck-
man, Gelada, and Bellemare in their paper (2020). In con-
tinuous experiments, they compared only three algorithmic
families, excluding the uncertainty-aware pessimistic and
leaving it as an open research question. We use their same
experimental set-up and additionally assess the performance
of our uncertainty-aware pessimistic algorithm PEBL.

The two environments used in this experiment are from
MinAtar, which contains several miniaturized versions of
Atari 2600 games (Young and Tian 2019). As is common in
offline deep RL experiments, we first train an online agent to
obtain an optimal policy for each of the environments (Buck-
man, Gelada, and Bellemare 2020; Fujimoto et al. 2019;
Fu et al. 2020; Agarwal, Schuurmans, and Norouzi 2020).
We then use this policy to generate several data sets with
different expert/random ratios by modifying epsilon in an
epsilon-greedy strategy. The generated data sets used in this
experiment contain 50000 transitions. We chose this slightly
smaller data set size because it highlights the advantages
of the uncertainty-based method. Using this experimental
setup, we evaluate our method in two ways. Firstly, we val-
idate that our method does not overestimate the expected
discounted return. We do this by comparing the return our
method obtains in the real environment with its prediction
for the discounted return at the start of the episode. Sec-
ondly, we evaluate how well our method adheres to the theo-
retically predicted property of uncertainty-aware algorithms
by measuring the final performance of the learned policy for
varying values of epsilon.

Baselines We compare PEBL to methods representing the
aforementioned algorithmic families. The first is the behav-
ior clone, referred to as BC. The policy-based pessimistic
family is represented by Batch-Constrained Q-Learning
(BCQ) (Fujimoto, Meger, and Precup 2019). The third cate-
gory is the naı̈ve algorithmic family, represented by DDQN
(Van Hasselt, Guez, and Silver 2016).

Results The outcomes of our MinAtar experiments are
pictured in Figures 2 and 3. The results of Figure 2 show that
the value function learned by our PEBL DDQN method does
not overestimate the expected discounted return for any ep-
silon value in both the Space Invaders and Breakout environ-
ment. In contrast, the baseline DDQN method overestimates
the expected discounted return for every epsilon value, and
this overestimation gets worse when the amount of informa-
tion in the data decreases.

In Figure 3, we see that PEBL DDQN performs best for
a wider range of epsilon-greedy policy data sets than the
other algorithmic families, in line with the theoretical results
we aimed to replicate (Buckman, Gelada, and Bellemare
2020). However, our method does not follow the theoret-
ically predicted behavior for uncertainty-aware pessimistic
algorithms in the expert data regime. We expected to per-
form as well as or similarly to the behavior cloning method
but fall notably short. This suggests that our epistemic uncer-
tainty estimation techniques are not expressive enough for
highly biased data. This result is interesting because Figure

2 shows that our method does not overestimate the expected
discounted return in these highly biased expert data sets.

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon

40

20

0

20

40

60

Ov
er

es
tim

at
io

n

Space Invaders
DDQN
PEBL

(a) Space invaders

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon

0

20

40

60

80

100

Ov
er

es
tim

at
io

n

Breakout
DDQN
PEBL DDQN

(b) Breakout

Figure 2: The over-estimations in our MinAtar experiment.
We define the overestimation as the obtained return minus
the predicted Q-value in the initial state. Our PEBL DDQN
method does not over-estimate the expected discounted re-
turn for any ε in both the Space Invaders and Breakout envi-
ronment. In contrast, the naive DDQN method overestimates
for every ε.

Maze-2D: Uncertainty Visualization
We applied PEBL SAC to the Maze-2D environment (Fig-
ure 4a) from the D4RL benchmark (Fu et al. 2020). A mo-
tivation for using this 2-dimensional domain is that we can
visualize the influence of pessimism on what our algorithm
learns. In this task, the agent is shown a data set with un-
related paths through the maze containing only x and y po-
sitions and velocities. The agent has to stitch these transi-
tions together to find a path to a goal location in the maze.
The challenge of this environment is that the agent never
observes the optimal path and has to learn the maze’s layout
through the data set.

Baselines We compare our method to the results provided
in the benchmark paper for SAC, Behavior Cloning (BC),

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon

0

10

20

30

40

50

60

70

Re
tu

rn

Space Invaders
BCQ
DDQN
PEBL DDQN
Dataset
BC
Greedy

(a) Space invaders

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon

0

5

10

15

20

25

Re
tu

rn

Breakout
BCQ
DDQN
PEBL DDQN
Dataset
BC
Greedy

(b) Breakout

Figure 3: The performance of different representatives of
each offline RL algorithmic families compared to our algo-
rithm. Measurements are obtained by taking the average per-
formance of the final policy over 100 episodes averaged over
3 random seeds. Each random seed has its own data set con-
taining 50000 transitions sampled with an ε-greedy policy,
where the greedy policy is an expert DDQN agent.

and Continuous Batch-Constrained Q-Learning (CBCQ)
(Fujimoto, Hoof, and Meger 2018; Fu et al. 2020).

Results The performance of the algorithms in the Maze-
2D experiment are displayed in Table 1. PEBL SAC is able
to deviate further from the observed behavior policy than the
other baselines. This allows it to solve all mazes, including
the large maze, which has not yet been solved by any exist-
ing policy-based pessimistic method (Fu et al. 2020). Figure
4b visualizes the value of the uncertainty-based penalty and
the penalized Q-values. We see that the result of our pes-
simistic penalty is that the agent assigns low Q-values to ar-
eas which it is uncertain about, such as positions occupied
by walls.

D4RL: MuJoCo gym
In this group of experiments, we compare PEBL SAC to
some of the more difficult continuous-action tasks in the
D4RL benchmark.

Maze type SAC BC CBCQ PEBL SAC
U 88.2 3.8 12.8 151.1

Medium 26.1 30.3 8.3 146.6
Large -1.9 5.0 6.2 129.5

Table 1: Results for D4RL’s Maze-2D benchmark. Each
score is the average normalized reward over 100 runs at the
last iteration of training.

(a) Maze-2D environment

(b) The uncertainty-based penalty and the penalized Q-values per
location on the map

Figure 4: A visualization of the learned Q-function and its
uncertainty for the large Maze-2D environment (Fu et al.
2020). Note that the agent only observes (x, y, vx, vy).
Figure b) shows the uncertainty-based penalty Cπ ·
σQ(s, a;φ1, φ2) where Cπ was learned and converged to
Cπ = 12.53 and the penalized Q-values, where the grey
areas are data points provided in the data set.

Baselines Similarly to the first experiment, we compare
our methods to representatives of each algorithmic family.
The methods are SAC (Haarnoja et al. 2018) and Continuous
Batch-Constrained Q-Learning (CBCQ) (Fujimoto, Meger,
and Precup 2019) for the naı̈ve and the policy-based pes-
simistic algorithmic family, respectively. We also compare
our method to Conservative Q-learning (CQL) (Kumar et al.
2020) and Conservative Offline Model-Based Policy Opti-
mization (COMBO) (Yu et al. 2021). Both methods are con-
sidered state-of-the-art offline RL methods and members of
the policy-based pessimistic algorithmic family (Buckman,
Gelada, and Bellemare 2020). Compared to other policy-
based pessimistic algorithms, these methods have a signif-
icantly looser constraint, allowing for larger improvements
upon the data collection policies.

Results The results are shown in Table 2, where the per-
formance of SAC, BC, and CBCQ is given as reported
in (Fujimoto, Meger, and Precup 2019), and for CQL and
COMBO are the number reported in (Kumar et al. 2020)
and (Yu et al. 2021), respectively. On the data sets gener-
ated using non-expert data policies, marked Random and
Medium, PEBL SAC performs on par or exceeds the best
prior methods. Interestingly, it even out-performs a model-
based method, while PEBL SAC is a model-free method it-
self. Similar to the PEBL DDQN algorithm, we are unable
to match the performance of behavior cloning in the expert
data regime.

Data set type SAC BC CBCQ CQL COMBO PEBL SAC
Random 30.5 2.1 2.2 35.4 38.8 35.7

Medium-Replay 1.9 38.4 38.2 44.4 54.2 57.5
Medium -4.3 36.1 40.7 46.2 55.1 61.5
Expert -1.9 107.0 - 104.0 - 3.6

Table 2: Results for the D4RL benchmark. Each score is the
average normalized reward over 100 runs at the last iteration
of training as described in the D4RL benchmark.

Conclusion and Future Work

We introduced the multi-headed bootstrap with randomized
priors approach to measuring epistemic uncertainty. Using
this ensemble-based method, we penalized the value func-
tion to produce two new pessimistic offline RL algorithms,
called PEBL DDQN and PEBL SAC. These algorithms are
a step towards robust uncertainty-aware pessimistic offline
RL algorithms in the deep learning setting. We have shown
that our methods are able to perform well on a wide range
of data set distributions compared to algorithms from the
naı̈ve and policy-based pessimistic families. However, in ex-
periments, we also showed that our methods do not perform
well on expert data sets, even though the theory predicts they
would. We expect that our epistemic uncertainty estimation
techniques are not expressive enough for highly biased data.
A more suitable uncertainty measure may address this is-
sue. Thus we hope to continue to investigate appropriate
measures of uncertainty for these problems. Some promis-
ing methods for future work are Bayesian neural networks
(Blundell et al. 2015) and deep Gaussian processes (Liu
et al. 2020; van Amersfoort et al. 2021). Both methods are
more accurate in their estimation of epistemic uncertainty
but are more difficult to optimize in practice. We would also
like to examine whether the epistemic uncertainty estima-
tion of our method can be improved using self-supervised
representation learning (Stooke et al. 2020; Laskin, Srini-
vas, and Abbeel 2020; Laskin et al. 2020). This technique
has been shown to improve existing offline RL methods in
various ways (Sinha and Garg 2021). It may prove beneficial
for our method as the improved representations might make
out-of-distribution detection easier. In general, we hope that
our work inspires further investigation into the development
of uncertainty-aware pessimistic algorithms that adhere to
the theoretical support of their abilities.

Acknowledgments and Disclosure of Funding
This work received support as part of the research
programme Physical Sciences TOP-2 project number
612.001.602, which is financed by the Dutch Research
Council (NWO).

References
Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.;
Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Khosravi, A.;
Acharya, U. R.; Makarenkov, V.; et al. 2020. A review of
uncertainty quantification in deep learning: Techniques, ap-
plications and challenges. arXiv preprint:2011.06225 .

Agarwal, R.; Schuurmans, D.; and Norouzi, M. 2020. An
optimistic perspective on offline reinforcement learning. In
International Conference on Machine Learning, 104–114.
PMLR.

Akhtar, N.; and Mian, A. 2018. Threat of adversarial attacks
on deep learning in computer vision: A survey. Ieee Access
6: 14410–14430.

Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; and Wierstra,
D. 2015. Weight uncertainty in neural network. In In-
ternational Conference on Machine Learning, 1613–1622.
PMLR.

Buckman, J.; Gelada, C.; and Bellemare, M. G. 2020. The
importance of pessimism in fixed-dataset policy optimiza-
tion. arXiv preprint:2009.06799 .

Cabi, S.; Gómez, S.; Novikov, A.; Konyushova, K.; Reed,
S.; Jeong, R.; Zołna, K.; Aytar, Y.; Budden, D.; Vecerik, M.;
Sushkov, O.; Barker, D.; Scholz, J.; Denil, M.; Freitas, N.;
and Wang, Z. 2020. Scaling data-driven robotics with reward
sketching and batch reinforcement learning. In Robotics:
Science and Systems. doi:10.15607/RSS.2020.XVI.076.

Do, H. P.; Guo, Y.; Yoon, A. J.; and Nayak, K. S. 2020. Ac-
curacy, uncertainty, and adaptability of automatic myocar-
dial ASL segmentation using deep CNN. Magnetic reso-
nance in medicine 83(5): 1863–1874.

Fu, J.; Kumar, A.; Nachum, O.; Tucker, G.; and Levine, S.
2020. D4RL: Datasets for Deep Data-Driven Reinforcement
Learning. CoRR abs/2004.07219.

Fujimoto, S.; Conti, E.; Ghavamzadeh, M.; and Pineau, J.
2019. Benchmarking batch deep reinforcement learning al-
gorithms. arXiv preprint:1910.01708 .

Fujimoto, S.; Hoof, H.; and Meger, D. 2018. Addressing
function approximation error in actor-critic methods. In In-
ternational Conference on Machine Learning, 1587–1596.
PMLR.

Fujimoto, S.; Meger, D.; and Precup, D. 2019. Off-policy
deep reinforcement learning without exploration. In In-
ternational Conference on Machine Learning, 2052–2062.
PMLR.

Gal, Y.; and Ghahramani, Z. 2016. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, 1050–
1059. PMLR.

Givan, R.; Leach, S.; and Dean, T. 2000. Bounded-
parameter Markov decision processes. Artificial Intelligence
122(1-2): 71–109.

Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.;
Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al.
2018. Soft actor-critic algorithms and applications. arXiv
preprint:1812.05905 .

Hou, Q. H.; et al. 2020. POPO: Pessimistic Offline Policy
Optimization. arXiv preprint:2012.13682 .

Jin, Y.; Yang, Z.; and Wang, Z. 2020. Is Pessimism Provably
Efficient for Offline RL? arXiv preprint:2012.15085 .

Kendall, A.; and Gal, Y. 2017. What Uncertainties Do We
Need in Bayesian Deep Learning for Computer Vision? In
Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fer-
gus, R.; Vishwanathan, S.; and Garnett, R., eds., Advances in
Neural Information Processing Systems, volume 30. Curran
Associates, Inc.

Kidambi, R.; Rajeswaran, A.; Netrapalli, P.; and Joachims,
T. 2020. MOReL: Model-Based Offline Reinforcement
Learning. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Bal-
can, M. F.; and Lin, H., eds., Advances in Neural Informa-
tion Processing Systems, volume 33, 21810–21823. Curran
Associates, Inc.

Kim, S. 2020. Stabilizing Off-Policy Q-Learning via Boot-
strapping Error Reduction. Submitted to NeurIPS 2019 Re-
producibility Challenge.

Kumar, A.; Zhou, A.; Tucker, G.; and Levine, S. 2020.
Conservative q-learning for offline reinforcement learning.
arXiv preprint:2006.04779 .

Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2017.
Simple and Scalable Predictive Uncertainty Estimation us-
ing Deep Ensembles. In Guyon, I.; Luxburg, U. V.; Bengio,
S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and Garnett,
R., eds., Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc.

Laskin, M.; Lee, K.; Stooke, A.; Pinto, L.; Abbeel, P.; and
Srinivas, A. 2020. Reinforcement Learning with Augmented
Data. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan,
M. F.; and Lin, H., eds., Advances in Neural Information
Processing Systems, volume 33, 19884–19895. Curran As-
sociates, Inc.

Laskin, M.; Srinivas, A.; and Abbeel, P. 2020. CURL: Con-
trastive Unsupervised Representations for Reinforcement
Learning. In III, H. D.; and Singh, A., eds., Proceedings
of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research,
5639–5650. PMLR.

Levine, S.; Kumar, A.; Tucker, G.; and Fu, J. 2020. Offline
reinforcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint:2005.01643 .

Liu, J. Z.; Lin, Z.; Padhy, S.; Tran, D.; Bedrax-Weiss, T.; and
Lakshminarayanan, B. 2020. Simple and principled uncer-
tainty estimation with deterministic deep learning via dis-
tance awareness. arXiv preprint:2006.10108 .

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013.
Playing atari with deep reinforcement learning. arXiv
preprint:1312.5602 .

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fid-
jeland, A. K.; Ostrovski, G.; et al. 2015. Human-level con-
trol through deep reinforcement learning. Nature 518(7540):
529–533.

Nair, T.; Precup, D.; Arnold, D. L.; and Arbel, T. 2020. Ex-
ploring uncertainty measures in deep networks for multiple
sclerosis lesion detection and segmentation. Medical image
analysis 59: 101557.

Nilim, A.; and El Ghaoui, L. 2005. Robust control of
Markov decision processes with uncertain transition matri-
ces. Operations Research 53(5): 780–798.

Osband, I.; Aslanides, J.; and Cassirer, A. 2018. Random-
ized prior functions for deep reinforcement learning. arXiv
preprint:1806.03335 .

Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B. 2016.
Deep Exploration via Bootstrapped DQN. In Lee, D.;
Sugiyama, M.; Luxburg, U.; Guyon, I.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems, vol-
ume 29. Curran Associates, Inc.

Pearce, T.; Leibfried, F.; and Brintrup, A. 2020. Uncertainty
in neural networks: Approximately bayesian ensembling. In
International conference on artificial intelligence and statis-
tics, 234–244. PMLR.

Pietquin, O.; Geist, M.; Chandramohan, S.; and Frezza-
Buet, H. 2011. Sample-efficient batch reinforcement learn-
ing for dialogue management optimization. ACM Transac-
tions on Speech and Language Processing (TSLP) 7(3): 1–
21.

Rashidinejad, P.; Zhu, B.; Ma, C.; Jiao, J.; and Rus-
sell, S. 2021. Bridging Offline Reinforcement Learn-
ing and Imitation Learning: A Tale of Pessimism. arXiv
preprint:2103.12021 .

Sedlmeier, A.; Gabor, T.; Phan, T.; Belzner, L.; and
Linnhoff-Popien, C. 2019. Uncertainty-based out-of-
distribution classification in deep reinforcement learning.
arXiv preprint:2001.00496 .

Sinha, S.; and Garg, A. 2021. S4RL: Surprisingly Simple
Self-Supervision for Offline Reinforcement Learning. arXiv
preprint:2103.06326 .

Stooke, A.; Lee, K.; Abbeel, P.; and Laskin, M. 2020. De-
coupling representation learning from reinforcement learn-
ing. arXiv preprint:2009.08319 .

Strehl, A.; Langford, J.; Li, L.; and Kakade, S. M. 2010.
Learning from Logged Implicit Exploration Data. In Laf-
ferty, J.; Williams, C.; Shawe-Taylor, J.; Zemel, R.; and Cu-
lotta, A., eds., Advances in Neural Information Processing
Systems, volume 23. Curran Associates, Inc.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.

van Amersfoort, J.; Smith, L.; Jesson, A.; Key, O.; and Gal,
Y. 2021. Improving Deterministic Uncertainty Estimation
in Deep Learning for Classification and Regression. arXiv
preprint:2102.11409 .
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep re-
inforcement learning with double q-learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 30.
Wang, G.; Li, W.; Aertsen, M.; Deprest, J.; Ourselin, S.;
and Vercauteren, T. 2019. Aleatoric uncertainty estimation
with test-time augmentation for medical image segmenta-
tion with convolutional neural networks. Neurocomputing
338: 34–45.
Wang, L.; Zhang, W.; He, X.; and Zha, H. 2018. Super-
vised reinforcement learning with recurrent neural network
for dynamic treatment recommendation. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, 2447–2456.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4): 279–292.
Wiesemann, W.; Kuhn, D.; and Rustem, B. 2013. Robust
Markov decision processes. Mathematics of Operations Re-
search 38(1): 153–183.
Wu, Y.; Tucker, G.; and Nachum, O. 2019. Behav-
ior regularized offline reinforcement learning. arXiv
preprint:1911.11361 .
Young, K.; and Tian, T. 2019. MinAtar: An Atari-Inspired
Testbed for Thorough and Reproducible Reinforcement
Learning Experiments. arXiv preprint:1903.03176 .
Yu, T.; Kumar, A.; Rafailov, R.; Rajeswaran, A.; Levine, S.;
and Finn, C. 2021. Combo: Conservative offline model-
based policy optimization. arXiv preprint:2102.08363 .
Yu, T.; Thomas, G.; Yu, L.; Ermon, S.; Zou, J. Y.; Levine,
S.; Finn, C.; and Ma, T. 2020. MOPO: Model-based Offline
Policy Optimization. In Larochelle, H.; Ranzato, M.; Had-
sell, R.; Balcan, M. F.; and Lin, H., eds., Advances in Neural
Information Processing Systems, volume 33, 14129–14142.
Curran Associates, Inc.
Zhou, K.; Doyle, J. C.; Glover, K.; et al. 1996. Robust and
optimal control, volume 40. Prentice hall New Jersey.

