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Abstract

The TUDelft spectrally resolved albedometer is a measurement device whose design began in 2019
and aims to accurately reconstruct spectral irradiance and spectral albedo using reconstruction tech-
niques which enable this device to be produced at a lower cost than its competitors.

The measurement of spectral albedo using an albedometer device is a crucial component in predicting
energy yield for bifacial PV panels, expected to become the dominant photovoltaic technology by mar-
ket share in 2030 [13]. Building on the work of previous thesis projects at TUDelft, this thesis focuses
on the following three topics of improvement:

Accuracy improvement in spectral reconstruction: The albedometer device is recalibrated accord-
ing to the recently recalibrated EKO device, succeeding in reducing the error uncertainty in the first
and last wavelength ranges of the spectral irradiance reconstruction. Whilst the average errors lie out-
side of acceptable uncertainty bounds, the systematic errors in the first and last wavelength bands are
identified and proposed solutions involve adjusting the PSO algorithm and using machine learning to
improve the prediction of atmospheric absorption parameters such as total precipitable water.

Spectral albedo reconstruction using Machine Learning: Machine learning techniques are em-
ployed to reconstruct down-facing spectral irradiance, achieving errors below ±5% for various sky
classes and demonstrating the method’s potential for spectral albedo reconstruction in future work.

Improving device usability: The Albedometer App centralizes and automates data processing code,
simplifying spectral irradiance and albedo reconstruction processes and greatly enhancing user expe-
rience.

This research is key for the development for the albedometer’s accuracy, functionality and usability. By
integrating the model for spectral albedo reconstruction this thesis advances the overall development
of the albedometer device, bring it one step closer to realising its full potential as a high accuracy, low
cost measurement device, making it a valuable tool for spectral albedo reconstructions and precise
energy yield predictions in the bifacial PV sector.
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1
Introduction & Literature Review

Climate change and sustainability are paramount global concerns. In 2015, under the Paris agreement,
the United Nations signed an international treaty on climate change which strives to limit the average
global temperature to 1.5°C above pre-industrial levels. Recent IPCC reports have shown that the
1.5°C limit can be reached in as little as two decades [19]. The need for renewable energy sources
has never been more important.

Solar energy emerges as a pivotal player in the quest to achieve these renewable energy goals and
combat climate change. Solar power, harnessed from the sun’s abundant and renewable rays, offers
an environmentally friendly and sustainable alternative to fossil fuels. Bifacial photovoltaic (PV) sys-
tems have gained significant traction in recent years and according to the International Technology
Roadmap for Photovoltaic [13], bifacial modules are set to become dominant photovoltaic technology
by market share in 2030, see figure 1.1. The development of cost-effective albedometer devices ca-
pable of accurately measuring spectral albedo, harbors significant potential, not only to contribute to
advancing bifacial PV technology but also to aid in monitoring the Earth’s response to global warming
by assessing changes in surface reflectivity, see section 1.1. By supporting the implementation of bifa-
cial PV and aiding in climate change tracking, the albedometer play a vital role in driving the transition
towards a more sustainable future.

This thesis consists of the following chapters, with the research questions detailed in section 1.5. In this
chapter, chapter 1, a literature review is provided on spectral albedo and its practical applications, along
with an introduction to the TUDelft albedometer and project background. In chapter 2, the methodology
of the project is outlined, explaining the steps taken to address three key research questions: improving
the accuracy of spectral irradiance reconstruction, developing a model for spectral albedo reconstruc-
tion, and designing the Albedometer App. In chapter 3, the results for each of the aforementioned
research questions are presented, followed by in-depth discussions of these findings. The conclusion
can be found in chapter 4, and recommendations for future work are outlined in chapter 5.

1.1. Bifacial PV and Applications of Spectral Albedo
Bifacial Photovoltaics (PV), unlike conventional monofacial PV modules, are capable of converting so-
lar energy into electricity on both side of the device, thereby being capable of generating more power.
Bifacial PV has been shown to increase the power production of some of the typical configurations of
PV systems. Bifacial modules attached to a sun tracker in Madrid, Spain, generated 1.7 times the an-
nual energy yield of that with a monofacial panel [27] and the configuration of bifacial module in rows as
though in a PV plant, increases the energy yield by 110% compared to monofacial modules for optimal
correct packing factor and panel tilt [6].

An additional strength of bifacial PV is in the vertical configuration. Whilst it has been shown that tilted
bifacial PV panels may produce 32% more energy than vertical bifacial PV panels, more vertical col-
lectors can be installed for the same field size [1]. There is also a large potential for vertical and tilted

1
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Figure 1.1: Predicted world market share for monofacial and bifacial modules. Bifacial cells are expected to exceed 60%
market share by 2030.

bifacial PV in the field of Agrivoltaics, the study of how solar energy and crop production can mutually
fulfil growing food and energy demands. A study on vertical bifacial module orientation over a crop
producing field found that the panels in the East-West orientation preserved > 80% of the crop yield
and reduced water demand of the crops due to increased shading during harsh weather conditions [28].

In each of the aforementioned bifacial PV projects and model, spectral albedo is of utmost importance
for energy yield predictions where ground reflected radiation is reported to contribute approximately
10% of the effective irradiance received by bifacial systems compared to the approximately 3% for
monofacial systems [29][26]. Spectral albedo, the measure of reflected light across different wave-
lengths, as a percentage of the total up-facing spectral irradiance, is a vital component of bifacial irra-
diation modelling - required to calculate the energy yield of a bifacial system. Spectral albedo is further
explored in the next section, section 1.2.

The use of spectral albedo is not unique to bifacial PV, and is also be used as in indicator for local
and global warming as measured by the heat island effect, as an indicator for wildlife conservation,
particularly in polar regions and for remote sensing.

The urban head island (UHI) effect is a well documented phenomenon, that the temperatures around
cities and urbanised areas are increased due to the manmade structures such as buildings and roads
which absorb heat differently to the natural landscapes of forest and water bodies [35]. Studies have
used spectral albedo to measure how increasing material’s spectral reflectivity in the urban environ-
ment, such as in concrete roads [22] and ceramic tiles on roofs [5] can be used to mitigate the effect
of UHI. The reduction of UHI locally has a wider effect on global warming, considering the challenges
of increasing urbanisation, every increase of local warming contributes in part to the global warming of
the planet [35][36]. Spectral albedo therefore is an important indicator of increasing reflectivity within
the urban environment, but also plays a part in the research for UHI effect mitigation.

In wildlife conservation, the spectral albedo is commonly used in polar regions. Since snow is the
”brightest substance of considerable extent on the surface of our planet and, because of its high albedo
compared to other natural surfaces” [24], the seasonal fluctuations of the the earth’s ice sheets has a
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significant effect upon the average albedo of the planet. Tracking of the seasonal fluctuations of ice-
sheets using spectral albedo also relates to the remote sensing application of an albedometer sensor.
Spectral albedo has also been used to to measure contamination of the snow due to pollutants in the
atmosphere, not only to measure the quality of the snow and ice but as a measure of global emissions
affecting nature [9][15].

1.2. Spectral Albedo
Spectral albedo is a measure of reflected light across different wavelengths, quantifying the fraction of
incoming radiation that is reflecting back into the atmosphere. Spectral albedo changes daily according
to the time of day and position of the sun, but the reflected component of albedo means that it is also
affected by the changing geometry of the environment at different times of day [36]. The measurement
of spectral albedo also changes seasonally and due to weather conditions. On a shorter timescale, a
wet ground changes the reflectivity of the material significantly to that in dry conditions and the reflec-
tivity of snowy ground in seasonal changes varies greatly [2].

The basis for the spectral albedo modelling in this thesis is the equation developed by H. Ziar in 2019
[36] which mathematically models how the geometry of shadows, material spectral features and tem-
poral changes affect the spectral albedo. The equation for spectral albedo is given as:

α (λ) =

i=N∑
i=1

Ri (λ)

(
CiFS→Ai1 +

1

H + 1

(
C

′

iFS→Ai1 + FS→Ai2

))
(1.1)

A detailed derivation is carried out in the original paper to arrive at this equation. The layout of surfaces
highlighted in this equation are visualised in figure 1.2. To explain the components of equation (1.1), it
is first assumed that the point at which spectral albedo, α (λ) is desired, lies on the surface S (depicted
as the albedometer) which lies above the surface of the ground, A. Ri (λ) represents the reflectivity
of the ground and the factor H models the effect of solar position and sky conditions, as given by
equation (1.2), where surface M is parallel to surface S and the point at which DNI and DHI are
measured.

H =
DNIM
DHIM

cos (θM ) (1.2)

In equation (1.1), FS→Ai1
and FS→Ai2

are the view factors of shaded and unshaded parts of the ground,
as viewed by the down facing side of surface S.Ci andC

′

i represent the roughness of the ground, where
Ci is the chance (probability) that the unshaded surface Ai1 is illuminated, and visible to the surface S
and C

′

i is the chance that the unshaded surface Ai1 is visible to surface S but not illuminated.

To summarise, the equation for spectral albedo is a function of the spectral reflectivity and roughness
of the ground, the view factor of shaded and unshaded parts of the ground, the solar position and sky
conditions at the time of measurement.

1.3. About the Albedometer
The TU Delft spectrally resolved albedometer is a measurement device capable of measuring irra-
diance in three bands between 320nm and 1100nm. The device features six photosensitive diodes
(sensors)1 split between the top and bottom of the device. The layout of the sensors is symmetrical on
the top and bottom. The 3D printed bio-inspired casing separates top and bottom sensors, preventing
light on one side from affecting the measurements of the other. Light enters through hybrid diffusers
which diffuse light as evenly as possible inside the device. The scattered light inside the device is then
measured by the sensors, each capable of detecting light in the ranges of 320nm to 1100nm. Two of
the three sensors are covered by long-pass filters which limit the wavelengths of light passing through
them. The sensors therefore measure irradiance in the wavelengths ranges shown in table 1.1. The
device is also equipped with a temperature sensor in the top and bottom sections to enable temper-
ature calibration, and identification of possible short circuits which may cause overheating in the device.

1’Photosensitive diodes’, ’photodiodes’ and ’sensors’ are used interchangeably in this report.
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Figure 1.2: Layout of surfaces to visualise equation (1.1). Surface S is parallel to surface M while the surface A is not
necessarily. The angle of incidence between sunlight rays and the surface S, θS and M, θM are equal but not necessarily equal

to that of surface A, θA [36]

The albedometer begins recording data when it’s data collection software is turned on manually via
the computer at the PVMD monitoring roof. Continual measurements are taken every second and
recording is stopped manually, during normal operation, or automatically, when an error occurs. Data
files, in .csv format, can therefore contain weeks worth of data, resulting in large datasets, greater than
100MBs. At each timestep, the albedometer records: the date and time, the irradiance measured by
the sensors, and the internal temperature of both sides of the device. Sample albedometer data can
be found in appendix A

The spectral reconstruction of the top-side of the device was developed in 2020 by W. Meines [23].
The reconstruction uses SMARTS2, a spectral radiation model which ”can be used in a variety of appli-
cations to predict full terrestrial spectra under any cloudless atmospheric condition” [7]. The measure-
ments of the three top-side sensors are used to determine the irradiance in the three wavelength bands
required by SMARTS, see table 1.2. The model outputs the spectral reconstruction in the range of
320-1100nm with wavelength interval of 0.5nm between 320nm and 400nm and 1nm between 400nm-
1100nm.
The albedometer is mounted to a ’SOLYS 2’ sun tracker on the PVMDmonitoring roof which follows the
position of the sun whilst keeping the equipment horizontal [37], see figure 1.3. Mounted alongside it are
the EKOMS-700 Spectroradiometer and two pyranometers. The EKOMS-700, built by EKO Intruments
Co., Ltd, can measure spectral irradiance values in the range of 320-1100nm with wavelength intervals
of 3.2nm [3]. The spectral irradiance measured by the EKO device is used as a reference for the error
analysis shown in this paper.

1.4. Previous Thesis Work
Work on TUDelft’s spectrally resolved albedometer first began in 2019. A. Kaul, designed and fab-
ricated an irradiance sensor [18] featuring three photosensitive diodes on the top and bottom of the
device, see figure 1.4a, which took instantaneous readings of the output current and converted them
into irradiance measurements. The three irradiance sensors measured in the wavelength bands of
300nm to 1100nm and were split into three wavelength bands using optical filters. In the full wave-

Table 1.1: Wavelength ranges measured by the albedometer sensors.

Sensor Number Sensor 1 Sensor 2 Sensor 3
Wavelength range (nm) 320-1100 590-1100 850-1100
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Figure 1.3: Installation of albedometer and EKO device on PVMD monitoring roof.

length range, the irradiance measurement error relative to the reference EKO device was 14.15%.

In the second project, A.R.Olvera improved the accuracy of the device by experimenting with the optical
design of the device as well as the electrical and mechanical design [25]. In the optical design, new
diffusers and filters were tested. The diffusers were changed from N-BKT diffusers to hybrid diffusers
due to their superior scattering properties at high wavelengths. Long-pass optical filters were selected
as the primary filter type due to their lower price and sharper cut-off wavelengths relative to the hot-
mirror filter used in the previous irradiance sensor. Furthermore, long-pass filters are widely available
and can be easily integrated if an additional sensor is placed in the future.

The albedometer PCB was redesigned to better fit the device’s casing and to improve the reliability of
data transfer from the device via the cable. The additional function of the bio-inspired casing design
was to reduce the internal operating temperatures of the device by mimicking the high surface area of
a cactus, allowing heat to dissipate easily to the surroundings, see figure 1.4b. The white 3D printed
casing demonstrated operating temperatures of 2°C less than the first, non-ribbed design.

Based on the temperature dependency of the sensors’ readings, A. Romero also developed a tem-
perature calibration method. Temperature coefficients were calculated for each sensor and used to
correct the sensors’ readings based on the difference between the external temperature and the inter-

Table 1.2: Wavelength bands required by SMARTS.

Band 1 Band 2 Band 3
320-590nm 590-850nm 850-1100nm
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(a) First iteration of irradiance sensor [18].

(b) Bio-Inspired design of albedometer [25]

nal temperature of the device. Following implementation of the improvements discussed above, the
final measured relative error in the full wavelength range was 7.3%.

Finally, in 2022 W. Meines designed a reconstruction model which ”simulates clear-sky solar spectra
with limited irradiance inputs from a spectrally resolved albedometer” [23] based on SMARTS2 spec-
tral irradiance model [7]. In this thesis, W. Meines uses measurements from the three sensors of the
albedometer, to reconstruct the top-side irradiance of the device. Competitor devices, such as the Spec-
trafy SolarSIM:ALB [32] feature additional irradiance sensors placed at specific wavelengths in order
to isolate the atmospheric parameters that determine the precise shape of the reconstructed spectrum.
The TUDelft albedometer determines these values instead using Particle Swarm Optimisation (PSO),
which solves for the optimal values of three atmospheric parameters which most affect the spectrum
in the 320nm to 1100nm range: aerosol optical depth at 550nm, ozone reduced pathlength and total
precipitable water.

The final reconstruction errors as compared to the reference EKO device in each of the three measured
wavelength bands, can be found in table 1.3.

Table 1.3: Absolute and relative errors of spectral reconstructions in each wavelength range [23]. The ’Range’ rows indicate
the range of the 95% confidence interval.

Wavelength range [nm]
320-590 590-850 850-1100 Total (320-1100)

Absolute error
[W/m2/nm]

Range [-0.055, 0.043] [-0.021, 0.032] [-0.022, 0.029] [-0.033, 0.035]
Mean -0.008 0.010 0.004 0.002

Relative error
[%]

Range [11.3, 9.1] [-2.1, 4.9] [-4.6, 10.1] [-6.2, 8.2]
Mean -1.9 2.1 2.3 0.82

1.5. Research Aims and Project Scope
The global aim of this project is to create an accurate, cost-effective, and easy-to-use albedometer
device. In pursuit of this objective, the project has been divided into three distinct sections, outlined in
the following research questions:

1. Can the recalibration of the albedometer improve the error measurements of the device or
is a physical change to the device required?

2. Can a model be built to reconstruct spectral albedo using the data available to the device?
3. How can a user interface be designed which simplifies user experience for spectral irradi-

ance and albedo reconstruction?
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To answer the first research question, the recommendations from the previous thesis [23] must be
investigated. To conclude the work of W. Meines, the uncertainties of the spectral irradiance recon-
struction model were compared to those reported of the reference EKO device, see table 1.4. The
uncertainty of the EKO device is reported in the calibration certificate of the July 2022 recalibration. It
is observed that in the first and last wavelength ranges in table 1.4, the albedometer spectral recon-
struction violates the uncertainty bounds by 0.5% and 8% respectively. Three recommendations are
suggested to address the violation of the uncertainty bounds:

1. Repeat error analysis with recalibrated EKO and albedometer.
2. Aerosol transmittance and trace gas investigation.
3. Place additional sensors.

It was suspected that the EKO device had become uncalibrated with time, which in turn, affected
the calibration of the Albedometer device. In this research, the spectral irradiance reconstructions
are repeated with the newly calibrated reference device, to analyse how the relative errors in each
wavelength band are affected. The next recommendation suggests that finding the optimal values of
Trace gas and Aerosol transmittance in the SMARTS reconstruction may reduce the error in the region
of 320-590nm , especially below 499nm, where the coefficients for aerosol transmittance change [23].
Finally, should neither of these recommendations work, the placing of an additional sensor can be
considered.

Table 1.4: Reconstruction errors vs EKO reported uncertainties [23].

Wavelength range [nm]
350-450 450-900 900-1050

Reconstruction 95% error range [%] [-11.62, 11.87] [-3.92, 3.73] [-3.3, 12.75]
Reconstruction mean error [%] -1.43 0.43 4.07

EKO uncertainty [%] ± 11.35 ± 5.00 ± 4.39

The second research question aims to design a model for reconstructing spectral albedo. A key design
requirements of the albedometer referenced in this project, is the capability to reconstruct spectral irra-
diance and spectral albedo within a certain error margin. A machine learning method will be employed
to help predict the down-facing spectral irradiance (DFSI) using minimal external inputs. The research
question will be answered by analysing the error of the reconstruction relative to its reference DFSI,
then comparing it to the relative error of our competitor device, the Spectrafy SolarSIM:ALB, < 5% ±
0.05 W/m2 per wavelength [31]. The results of the reconstruction of DFSI will demonstrate the potential
for ML reconstruction of the Spectral Albedo in future work.

The third research question relates to the development of a user interface which simplifies the use of
the albedometer device spectral reconstruction. In this section, the target audience is identified, based
on the literature review in section 1.2 and the design requirements of the app are determined. The app
is developed using MATLAB app designer.



2
Methodology

2.1. Data Collection & Preparation
2.1.1. Sky Classification Data Gathering
Using the sky classification model, developed by G. van Urk in 2022 [33] and later improved by V.A.
Martinez Lopez et al. [21], sky images of Delft can be analysed and sorted into 5 different sky classes,
depending on their clear sky index (Kc) and cloud cover. Clear sky index, Kc is the ”ratio of measured
irradiance at ground level to estimated irradiance in clear sky conditions at ground level” [17]. At low
elevations and in partly cloudy conditions, it is possible for Kc to exceed 1, this is due to the cloud
enhancement effect, where photons are scatted by water droplets in the direction of the sensor and
measured as direct irradiance [16]. Cloud cover is the proportion of the sky which is covered by clouds,
where 0, is a cloudless sky and 1 is an overcast sky. The sky images are processed and categorised
into different Skyclasses, as indicated by table 2.1

A sky camera is installed near the albedometer which captures sky images at the top of each minute.
The sky classification code was run for all sky images between September 2022 and May 2023. The
data is then used for error analysis in the top-side spectral reconstructions of the albedometer, sec-
tion 3.1 and spectral reconstruction of albedo, section 3.2 . Figure 2.1 shows the SkyClass data of all
the reconstructed points as well as their clear sky index and cloud cover values.

Sample data from the sky classification code can be found in appendix A.

Table 2.1: SkyClass category separation as determined by K-means data clusters for clear sky index (Kc) and cloud cover
(CC) values [21].

Skyclass (SC) Sky condition Clear Sky Index (Kc) & Cloud Cover (CC)
1 Clear-sky High Kc, Very low CC
2 Partly cloudy Lower Kc and Higher CC relative to SC 1
3 Overcast with high irradiance High Kc, High CC
4 Overcast Very low Kc, Very high CC
5 Partly clear skies with obscured sun Low Kc, Low CC

2.1.2. Albedometer Data Timeline
Albedometer data, is the raw data collected by the albedometer device. As previously mentioned in
section 1.3, the files can contain weeks worth of data, resulting in large datasets greater than 100MBs.
Consequently, loading, reading and processing the datafiles from the albedometer and EKO device is
computationally time-consuming. In addition, the times at which the data coincide with one another is
unclear and sorting though the data to find relevant information is time consuming. Improved under-
standing of the quantity and contents of available data files would help to select relevant and usable
files for reconstructions and error analyses. The first task is therefore to visualise the available data by

8
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Figure 2.1: SkyClass, clear sky index and cloud cover of datapoints for which the spectrum was reconstructed.

creating a timeline.

The EKO device measures data from 6am to 10pm every day at 1 minute intervals. Raw EKO data
comes in two files, ’specoverview’ and ’specdata’. The ’specdata’ files store the irradiance data for
each of the 255 measured wavelengths, ranging from 300nm to 1150nm, whilst the ’specoverview’
files indicate the indexes of the ’specdata’ files which refer to a specific date and time.

To create the timeline, a Python scipt was written, which extracted the start and end times of each
albedometer and EKO data files, sorting them into chronological order alongside their respective file-
names. The timeline also includes the range of times for which sky classification analysis was per-
formed, as well as a timeline of which EKO devices were in operation. The full timeline is shown in
figure 2.2.

Sample data for Albedometer and EKO data can be found in appendix A.

To perform reconstructions and error analysis, the following data must be met: Albedometer data must
be available to run the spectral reconstructions, EKO data must be available to compare the recon-
structed data to the real values and sky classification data must be available to provide insight as to
what sky conditions are causing certain errors. Since only EKO 1 was recalibrated, we may only use
the EKO data for when EKO 1 is installed. We can therefore determine the following usable dates given
the constraints:

• 7th to 30th September, 2022
• 1st to 30th November, 2022
• 1st to 17th February 2023
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2.1.3. EKO recalibration and extrapolation
As mentioned in section 1.5, in the previous thesis, W.Meines recommends that by recalibrating the
EKO and albedometer device, the reconstruction errors may fall into acceptable ranges.

The EKO spectroradiometer is a measurement device which provides the user with measurements of
spectral irradiance in the range of 300nm to 1150nm. In July of 2022, one of the EKO devices was sent
to Japan for recalibration. Upon it’s return in the beginning of September, the PVMD department was
provided with the old, and new updated calibration function which could be applied to the EKO device.

Figure 2.3 shows the uncalibrated and calibrated EKO data on the 22nd September at 2pm. Observing
the raw data, depicted as the red line, a large peak can be seen in the 1050nm range as well as an
inverted peak around the 500nm wavelength. It can therefore be seen that the new calibration has not
been applied and that the old calibration function was still in use. These anomalies in the raw data
can be observed from the beginning of September to the 10th October. All the data in this time range
therefore needed to be recalibrated by removing the old calibration and reapplying the new one, see
the blue line in figure 2.3. In all the EKO data collected after the 10th October, the correct calibration
is already applied.

After applying the new calibration, the spectrum is cut off at 350nm and 1050nm. According to the
contact at EKO Instruments, this is due to an issue in the sensors measuring the extreme values of the
spectrum which were therefore removed. The hardware of the albedometer device however, measures
in the full wavelength range of 320nm to 1100nm which can not be changed without physical change to
the device. It was therefore decided to linearly extrapolate the values of the EKO device in the ranges
of 320nm to 350nm and 1050nm to 1100nm. The result of the extrapolation is shown in figure 2.4,
where the red line is the recalibrated spectrum, and the blue points indicate the 20 points which were
used to calculate the line of best fit and at the end of the red line, the linear extrapolation.

This extrapolation is applied to each of the EKO device measurements which are later used as a ref-
erence for error analysis. It is important to note that the extrapolated ranges can contribute to a slight
inaccuracy in the error calculation; particularly in the end extrapolation where the spectrum is expected
to tend downwards where water vapor in the atmosphere absorbs the wavelengths of light between
1070nm and 1220nm [32]. The effect of this can be seen in the SMARTS reconstructions in the results
section, section 3.1, under figure 3.1, where the the tail of the reconstruction after 1050nm is expected
to be lower than that of the reference spectrum.

2.2. Albedometer Calibration
2.2.1. Albedometer Calibration based on EKO reference device
The calibration of the albedometer was performed according to ISO 9847, Calibration of field pyra-
nometers, [14]. The EKO device is used as the reference device. To complete the calibration, stable
cloudless sky conditions, with the sun at elevation > 20°are required. Instantaneous voltage readings
must then be taken ”for a minimum of fifteen 10min to 20min measurement series, each consisting
of 21 or more instantaneous readings” and must be taken over a 2 day to 3 day period. Using the
CloudModel data, the days in table 2.2 were calculated as having the most stable and cloudless sky
conditions by calculating the average SkyClass of each day in September:

Table 2.2: Clearest days in September according to CloudModel data.

Day Average Clear Sky Index, Kc Average Cloud Cover Average SkyClass
22nd September 2022 0.9768 0 1.0252
29th September 2022 1.0396 0 1.0252
12th September 2022 0.9494 0.0014 1.1379

As previously mentioned in section 1.3. the albedometer has three upward facing sensors which must
be calibrated. Figure 2.5 shows the range that each sensor measures. The red line is the spectral
irradiance measured by the EKO device. Integrating the EKO spectrum over each sensor range, the
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Figure 2.3: EKO data, before and after recalibration

Figure 2.4: Linear Extrapolated EKO data between 320-350nm and 1050-1100nm.
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’true’ values of the irradiance in each sensor wavelength range are calculated. These values are then
comparedto the measured albedometer sensor values; dividing the true value by the measured value,
the calibration factor is calculated for each measurement. In order to meet the ISO 9847 requirements
however, the EKO sensor integration must be repeated for each of the stable cloudless times for each
day in table 2.2. A MATLAB code was written to extract all the albedometer sensor measurements and
EKO spectra at times where SkyClass was equal to 1.

Dividing each albedometer measured value by its ’true’ value, the calibration factor for each wavelength
range is found, see table 2.3.

Figure 2.5: Measured albedometer sensor ranges against an EKO spectrum

Table 2.3: Calibration factors for each albedometer sensor.

Sensor Number Sensor 1 Sensor 2 Sensor 3
Wavelength range (nm) 320-1100 590-1100 850-1100

Calibration Factor 1.5835 1.2792 0.7855

2.2.2. Calibration Validation
In order to validate the calibration, the calibration factors are applied to the sensors for clear-sky times
outside of the times used for calibration. The results of the validation can be seen in figure 2.6. A slight
cosine curve can be seen in the data with its lowest points at the edges around 9:30 and 18:00 and
its highest point around 14:00. This curve is typical of a pyranometer’s cosine response or ’directional
response’ and is related to the cosine response of the diffuser. The optimal diffusion within the device,
and therefore, most accurate irradiance measurement, is when the sun is at its minimum zenith angle
(maximum elevation) [4]. As the sun elevation decreases, the diffusion becomes less optimal within
the device and the sensors measure less accurately.

The two spikes in relative error 3:02pm and 3:53pm come from an error in the sky classification code
where cloudy sky conditions are incorrectly categorised as skyclass 1, see section 2.2.2, where the
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Figure 2.6: Calibration validation applied to times in September where SkyClass = 1.

sky image at 3:53pm on the 10th September 2022, is compared to the correctly classified sky image
at 11:59am, 30th September, 2022.

The standard for calibration of pyranometers requires that only times with sun elevation > 20°[14] be
used for calibration. In September, the month of data used to calibrate the device, 20°elevation occurs
at approximately 9:45am and 17:30pm.

The calibration fails completely at times before 9:30am and after 6pm. These are the approximate
times at which the sun becomes visible to the device after sunrise and before sunset in September, the
month for which calibration was performed. Outside these times, the small irradiance measurements
measured by the EKO and albedometer sensors can lead to large relative errors.

2.3. Spectral Irradiance Resconstruction
2.3.1. Resconstruction Method
Now that the recalibration of the EKO and albedometer has been performed, the reconstruction of the
top-side spectral reconstruction can be performed so that we may assess the relative error of recon-
struction.

The code for spectral reconstruction was adapted by W. Meines in his 2022 thesis project [23]. The
spectral reconstruction uses the SMARTS clear-sky model [7] with the three top-side irradiance mea-
surements as inputs, as well as three atmospheric parameters, computed using a PSO algorithm. More
information on the model can be found in section 1.4.

The MATLAB class file ’PVMDalbedometer.m’ is used, which contains the parameters and methods
required to run the reconstructions. Such parameters include: the location coordinates, time zone,
predominant albedo around 10km of the site, temperature coefficients and calibration factors. When
the object is created from the class file, default values for the albedometer in Delft, are assigned to
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(a) Sky image taken on 10th September 2022 at 15:53pm.
Clouds surround and partly obscure the sun. Incorrectly

classified as Skyclass 1.

(b) Sky image taken on 10th September 2022 at 11:59am. Clear
sky with few clouds present and away from the sun. Correctly

classified as Skyclass 1.

the each of the parameters. The main method1 in the ’PVMDalbedometer.m’ class is used to run the
SMARTS reconstruction and requires an array with the the calibrated values of measured irradiance in
four wavelength bands: 320-1100nm, 320-590nm, 590-850nm, 850nm-1100nm.

The original class file, would require the user to manually extract, calibrate and split the sensor readings
into their corresponding wavelength bands. To simplify this process, an additional method was added
to the class file:

[albSensorValues, GHI] = calibrateSensorsGetGHI(obj, Time, albFile)
With inputs:

• obj: The object, and associated parameters such as Temperature coefficients and Calibration
factors which are used for the calibration of the measurements.

• Time: Date and time the user would like to reconstruct in ’datetime’ format.
• albFile: The file-path of the raw albedometer data file which contains the measurements at the
desired date and time.

With outputs:

• albSensorValues: Array of calibrated values of measured irradiance in original sensor ranges,
see table 1.1, for both the top and bottom sensors of the albedometer.

• GHI: Array of calibrated values of measured irradiance in the wavelength bands, see table 1.2,
at the top of the device.

The ’GHI’ output is used for top-side spectral reconstruction whilst the albSensorValues output is re-
quired for the spectral albedo reconstruction, as will be outlined in section 2.4. All the methods added
to the ’PVMDalbedometer.m’ class can be found in full, in appendix B.

To perform error analysis on the spectral reconstructions, the reference spectra from the EKO device
are extracted for the same datapoints. CloudModel data is also collected so that the errors can be cat-
egorised by sky condition. Using the updated ’PVMDalbedometer.m’ class method, a code is written
which runs reconstructions continually.

914 Spectra were reconstructed, as visualised in figure 2.8.
1A method is a function which belongs to an object.
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Figure 2.8: Dates of all 914 reconstructed spectra and their sun elevations.

2.3.2. Trace gas and Aerosol transmittance Investigation
The second recommendation from the previous thesis is to investigate how the Trace Gas and Aerosol
Transmittance values can be optimised to reduce the error in the first wavelength range of 320-700nm
where their concentrations most affect the spectrum [23].

According to the SMARTS manual [8], used for the spectral irradiance reconstructions, trace gas con-
centration can be changed using the parameter for tropospheric pollution (ILOAD), which varies from
1 - Pristine Atmostpheric Conditions, to 4 - Severe Pollution and Aerosol transmittance by changing
the parameters of the Aerosol model below. The default values from the S&F Rural Aerosol Model in
SMARTS [30] are also indicated:

• ALPHA1 - Average value of Ångström’s wavelength exponent α for wavelengths < 500nm (gen-
erally between 0.0 and 2.6). Default value = 0.999.

• ALPHA2 - Average value of Ångström’s wavelength exponent α for wavelengths > 500nm (gen-
erally between 0.0 and 2.6). Default value = 1.5650.

• OMEGL - Aerosol single scattering albedo (generally between 0.6 and 1.0). Default value = 0.94.
• GG - Aerosol asymmetry parameter (generally between 0.5 and 0.9). Default value = 0.67.

A code is therefore written which runs a reconstruction for every possible combination of ILOAD, and
for each of the Aerosol model parameters at their minimum, maximum and median value. Reconstruc-
tions were performed in the wavelength ranges 320-590nm, as recommended by the previous thesis,
and where the effects of the parameters most affect the spectrum [23]. Analysing the errors of each
reconstruction should give an idea as to which combination is best for the reconstruction in the first
wavelength band.
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2.4. Spectral Albedo Reconstruction
Spectral albedo is a complex measure of irradiation energy based on many environmental factors, as
described in, section 1.2. In H. Ziar’s 2019 paper on spectral albedomodelling, the equation for spectral
albedo, equation (1.1), is a function of the spectral reflectivity and roughness of the ground, the view
factor of shaded and unshaded parts of the ground, the solar position and sky conditions [36]. At this
point in the project, the albedometer is capable of providing the reconstructed spectral irradiance and
the measured albedo from to the sensors at the front and back of the device. The purpose of this topic
of investigation, is to reconstruct the multi-dimensional equation of spectral albedo using the limited
information measured by the albedometer sensors, as well as the information which can be provided
by the user.

In order to predict spectral albedo using the available inputs, it was decided to use a Machine learning
(ML) model. Machine learning is a branch of artificial intelligence (AI) and computer science which
imitates the way that humans learn by analysing the patterns and relationships between its inputs (fea-
tures) and target output(s) [10].

In this case, the target output is an array of spectral albedo values, with one value per wavelength
increment. At the beginning of this thesis, it was planned that the spectral albedo could be measured
using two EKO devices arranged back to back alongside albedometer. This data would have also
served to calibrate the down facing sensors of the albedometer. However, due to a delay in the supply
of the support structure, the devices could not be installed in time. The calibration of the down facing
sensors was therefore assumed to be the same as those of the corresponding top-facing sensor. Since
the real values of the target spectral albedo, α (λ) could not be measured using the two EKO devices
back to back, a simplified spectral albedo can instead be calculated as such:

α (λ) =
Gdown (λ)

Gup (λ)
(2.1)

Where Gdown and Gup are the measured irradiance at the bottom (down facing) and top (up-facing) of
the device. Gdown can then be approximated as:

Gdown = r (λ) ·Gup (2.2)

WhereGup is themeasured irradiance by the EKO spectroradiometer. Therefore, the simplified spectral
albedo equation is:

α (λ) =
r (λ) ·Gup (λ)

Gup (λ)
(2.3)

In equation (2.3), r (λ) is the spectral reflectance of the material as a percentage (the effectiveness of
reflecting radiant energy at different wavelengths) and is gathered from the ASTER spectral library [2].
A ’Gray/dark brown extremely stoney coarse sandy’ material was chosen as the closest to the pebble
material under the albedometer. The sample reflectance data in the model’s wavelength range can be
found in appendix A.

As the Gup components in equation (2.3) are the same, the equation for spectral albedo becomes
α (λ) = r (λ). As the model inputs already include the reflectivity r (λ), a machine learning model would
not provide significant benefit in this instance. Amodifiedmodel was designed which predicted the spec-
tral albedo without the reflection spectrum as an input, these results would demonstrate whether the
reflectance spectrum was necessary for the reconstruction. However since the output was constant
and equal to the reflectivity spectrum of the ground material, the model became over trained and could
reconstruct the spectrum irrespective of the values of the model’s features. The results of this model
are shown in section 3.2.

To demonstrate the potential for ML models in spectral albedo reconstruction the target output was
changed to that of the down-facing spectral irradiance (DFSI), described in equation (2.2). Since the
r (λ) and Gup are both components of both spectral irradiance and DFSI, the complexities of spectral
albedo, which vary with time, sky condition and ground reflectivity, can be captured and predicted by
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the ML model for DFSI reconstruction. The predictions from this ML model will demonstrate the poten-
tial effectiveness of this reconstruction method when the real spectral albedo values can be measured
in situ using the EKO devices.

Table 2.4 indicates the chosen features and target output for this model. The features provided to the
model were chosen as being most relevant to the spectral albedo reconstruction. Sun elevation was
also added due to its observed effects in the results of the top-side spectral reconstruction, see sec-
tion 3.1.2, but also due to its reported effect on spectral albedo in literature [20].

Table 2.4: List of all the features (inputs) and target output used to train the machine learning model.

Features
Wavelengths: Wavelength array from 320-1100nm with same intervals as

SMARTS reconstruction.
Top sensor values Measured irradiance at the top of the device in wavelength bands

320-590nm, 590-850nm and 850-1100nm.
Bottom sensor values: Measured irradiance at the bottom of the device in wavelength

bands 320-590nm, 590-850nm and 850-1100nm.
Sensor albedo values: Bottom sensor values divided by top sensor values.
SMARTS reconstruction: Spectral irradiance reconstruction values from SMARTS model.
Material spectral reflectance: Material reflectance for the complete wavelength range.
Sun elevation: Sun elevation at the time of measurement.

Target Output
Rear-side spectral irradiance: Rear-side spectral irradiance calculated by multiplying the material

reflectivity and EKO top-side irradiance spectrum, equation (2.2).

Two machine learning models were investigated: Gaussian Process Regression (GPR) and Random
Forest (RF) modelling. GPR modelling was originally chosen for its ability to model complex patterns
and the ability to provide probabilistic outputs. Such outputs can provide the user with the uncertainty
at each point in the reconstruction and can help to inform which features most benefit the model [34].
However, GPR is not a very scalable model, and failed to analyse the large dataset as the number of
instances grew. Random Forest Modelling is highly scalable and also able to capture complex non-
linear relationships within the data [12].

When training a machine learning algorithm, one main risk is overfitting the data [11]. Overfitting means
that the model becomes overly well trained on the training data, and does not accurately predict un-
seen data. This is often caused by high model complexity. To prevent and detect overfitting in the
machine learning model, 70% of the data was used for training and the remaining 30% used for testing.
By splitting the data, it’s possible to analyse the error of reconstructions on data which is completely
unseen by the training model. Random Forest modelling is an ’Ensemble method’, meaning that the
model chooses the most popular output frommany decision tree classifiers. It’s possible to increase the
number of decision trees used for training the model, thereby increasing the complexity of the model.
As the complexity increases, so is the likelihood of overfitting. To determine the number of trees which
should be used for modelling, the mean squared error (MSE) of the models is calculated for increasing
number of decision trees, see figure 2.9. It should be noted, that the mean squared error is mostly
useful in comparing different machine learning parameters such as the number of trees, rather than
as an intuitive measure of error. The MSE can be seen to decrease at first, then begins to plateau
after 120 decision trees. The model was chosen therefore to be trained with 120 decision trees, as to
prevent overfitting by overtraining.

The size of the dataset, the number of total ’instances’ collected for each parameter was 768,954.
These instances are composed of 861 wavelength increments between 320 and 1100nm meaning that
914 total spectra were collected for modelling. The total collected data was then split into unique Sky-
class categories and separate models were trained for each, see table 2.5 to investigate how the sky
conditions would affect the accuracy of the down-side spectral irradiance reconstructions.
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Figure 2.9: Mean Squared Error of random forest model reconstructions with increasing number of trees (model complexity).

Table 2.5: Size of each Random Forest model dataset for training and testing.

Skyclass Num. spectra Num. instances
All 914 786,954
1 289 248,829
2 114 98,154
3 67 57,687
4 307 264,327
5 137 117,957
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2.5. Albedometer App
As demonstrated in section 2.3 and section 2.4, running the spectral reconstructions requires in depth
knowledge of the MATLAB coding language which the average user may not have. Furthermore,
preparing the required inputs for the reconstructions can be time-consuming. The purpose of the
Albedometer app is to improve the usability of the albedometer device by designing an app capable of
running both the top-side spectral irradiance and spectral albedo reconstructions in an intuitive manner,
thereby reducing the amount of time spent between measured input and reconstructed output.

First, according to the possible use cases of the device investigated in the literature review, section 1.1,
a list was made of the target end-users, outlined below. The end users are assumed to be technically
knowledgeable in the installation and operation of measurement instruments.

PV systems designers, owners and operators:

• Measuring daily & seasonal variation of irradiance and spectral albedo for determining suitable
location for PV farm construction

• Energy yield prediction pre-installation
• Performance tracking of PV installation - remote sensing of spectral irradiance and spectral
albedo

Urban planners and material scientists:

• Spectral albedo tracking due to urbanisation effects
• Pre- and post- construction effect on measured spectral albedo
• Spectral albedo measurements of materials for Urban Heat Island reduction

Wildlife conservationists:

• Analysing quality of snow and ice in polar regions
• Remote sensing of seasonal fluctuations of ice sheets and snow.

Based on the target users which may interact with the device and the required inputs of the device,
thee following design requirements were chosen:

• Intuitive to navigate and well labeled
• Minimize user inputs
• Process and prepare raw albedometer files for reconstruction
• Perform reconstruction of spectral irradiance and spectral albedo
• Visually display reconstructions
• Export reconstructed data to .csv datafile
• Operate without internet connection

As the spectral irradiance and albedo reconstructions were performed in MATLAB, the app was de-
signed in MATLAB App Designer and requires the following inputs:

• Raw albedometer file in .csv format (see appendix A
• Date and time of desired reconstruction
• Ground material type
• Sky conditions at selected date and time
• Longitude and latitude at albedometer location
• Altitude of the albedometer



3
Results and Discussion

3.1. Spectral Irradiance Reconstruction
In this section, results of spectral irradiance reconstructions are outlined and discussed. The aim of this
section is to demonstrate how the recalibration of the albedometer device and trace gas and aerosol
transmittance investigation can improve the error of the spectral irradiance reconstructions, thereby
answering the first research question:

Can the recalibration of the albedometer improve the error measurements of the device or is a
physical change to the device required?

The results of the following subsections will answer the recommendations from the previous thesis [23]:

1. Repeat error analysis with recalibrated EKO and albedometer.
2. Aerosol transmittance and trace gas investigation.
3. Place additional sensors.

3.1.1. Error analysis with recalibrated device
In this section, the results of the spectral irradiance reconstructions, with the recalibrated albedome-
ter device, are shown. Spectral irradiance reconstructions are performed for 914 spectra. For each
reconstruction, the reference spectrum is extracted from the EKO device measurements and the sky
classification data is collected to determine the sky condition at the reconstruction time.

Figure 3.1 shows two sample reconstructions compared to their reference EKO spectra at the same
time. Despite using the same reconstruction method, both of the spectra have visible differences, no-
tably around 950nm where in some reconstructions, the dip at 950nm is not simulated. Where this dip
is not present however, the accuracy of reconstructions is improved in the wavelengths before 700nm
and vice-versa. This phenomenon also present in the the previous thesis [23], is due to the estima-
tion of Aerosol optimal depth, Ozone reduced path-length and total precipitable water estimated using
the PSO algorithm, previously discussed in section 2.3. The algorithm, which attempts to minimise
the error in each of the sensors’ wavelength ranges prioritises either the value of total precipitable wa-
ter, which affects absorption periodically after 700nm, or those of Aerosol optical depth at 550nm and
Ozone reduced path-length between 320-350nm and 450-750nm [23].

Additionally, as mentioned in the methodology for the EKO recalibration, section 2.1.3, there is a visible
mismatch in the tail of the reconstruction after 950nm where the spectrum of the EKO device is linear
extrapolated where the recalibrated spectrum was cut-off.

In the previous thesis, a results table is shown, indicating the relative errors of the irradiance recon-
struction model in each wavelength band for clear-sky conditions (Skyclass = 1) and GHI > 400. The
relative error of these 99 reconstructed spectra which meet these same conditions are visualised in

21
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(a) (b)

Figure 3.1: Two sample clear-sky reconstructions of spectral irradiance compared to the reference spectrum measured by the
EKO device. Figure 3.1a is for the condition where total precipitable water is correctly found, and figure 3.1b is for when

Aerosol optical depth and Ozone reduced path-length parameters are correctly found.

figure 3.2. Each spectrum is coloured differently and sorted by increasing colour ’height’ according to
the GHI of the reconstruction. The errors in each wavelength band, as compared to those measured
before the new device calibration, can be found in table 3.1. The results, compared to the wavelength
bands and uncertainties of the EKO device, are shown in table 3.2.

Table 3.1: Relative errors of spectral reconstructions measured in the previous thesis [23] compared to reconstructed values
with a recalibrated device. The ’Range’ rows indicate the range of the 95% confidence interval.

Wavelength range [nm]
320-590 590-850 850-1100 Total (320-1100)

Relative error
Old Calib. [%]

Range [11.3, 9.1] [-2.1, 4.9] [-4.6, 10.1] [-6.2, 8.2]
Mean -1.9 2.1 2.3 0.82

Relative error
New Calib. [%]

Range [3.49, 7.23] [-5.44,-2.81] [0.75,4.62] [-0.78, 2.13]
Mean 5.36 -4.12 2.69 0.67

Table 3.2: Reconstruction errors before and after new calibration vs EKO reported uncertainties [23]. The ’Range’ rows
indicate the range of the 95% confidence interval.

Wavelength range [nm]
350-450 450-900 900-1050

Before new Calibration 95% error range [%] [-11.62, 11.87] [-3.92, 3.73] [-3.3, 12.75]
Mean error [%] -1.43 0.43 4.07

With new Calibration 95% error range [%] [13.2,18.48] [-4.3, -1.48] [8.35, 13.79]
Mean error [%] 15.84 -2.89 11.07

EKO uncertainty [%] ± 11.35 ± 5.00 ± 4.39

Three clear error fluctuations can be observed in figure 3.2. Between 320 and 400nm, the the relative
error is noticeably large, though due to the low values of irradiance in this range, the error can appear
exaggeratedly large. Such is the case also for the wavelength range 900-1000nm where the atmo-
spheric absorption due to water vapour occurs. The reference value of irradiance can drop below 0.2
W/m2/nm, meaning that in the case that the ’total precipitable water’ dip is not correctly reconstructed,
as demonstrated in figure 3.1b a large relative error can be calculated even though the absolute error
may not be as large as the absolute error at 770nm for instance. At 770nm, there is am error fluctuation
due to trace gas transmittance, an atmospheric parameter used in the SMARTS program.

The results in table 3.1 show how the range of the reconstructions errors have improved in each wave-
length band as compared to the in the previous thesis. In each of the wavelength bands, the range
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Figure 3.2: Relative Error of all 99 reconstructions which have a Skyclass of 1 and GHI above 400. Each spectrum is plotted in
a different colour and the increasing ’height’ of the colour, indicated by the colour bar on the right, corresponds to increasing

GHI value.

95% confidence interval has decreased significantly, however, the mean values have shifted further
from 0 than in the previous thesis, as will be discussed in section 3.1.4. The results in table 3.2 show
that with the new calibration, only the central wavelength bound stays within acceptable bounds. For
the remaining reconstruction ranges, whilst the error ranges have decreased, the mean error of recon-
structions overestimates the correct values, though as previously mentioned, due to the low values of
irradiance in the 350-450nm and 900-1050nm ranges, the relative error can appear much larger than
its absolute values. These two wavelength ranges also coincide with the regions in which the atmo-
spheric parameters of trace gas transmittance, ozone transmittance and water vapor are most affecting
the spectrum.

3.1.2. Reconstruction Error in Changing Sky Conditions
In this section, the results of the reconstructions will be plotted for changing conditions: sun elevation,
GHI, Skyclass, Cloud cover and Clear sky index.

The relative error of all reconstructions with increasing sun elevation and GHI can be found in fig-
ure 3.3. The figures show that with increasing GHI or sun elevation, the relative reconstruction error
decreases in each wavelength band. The SMARTS irradiance reconstruction model is designed for
clear sky conditions. High GHI measurements will only occur in clear sky conditions when the sun is
unobscured, therefore decreasing the reconstruction error with increasing GHI. In high sun elevation
times figure 3.3a, a higher GHI is expected due to the decreased angle of incidence between the sun
and the device and therefore lower error. However, high sun elevation does not guarantee that clear-
sky conditions are present, hence the large number of random outliers in figure 3.3a where non-clear
sky conditions are present.
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(a) (b)

Figure 3.3: Relative Error of reconstructions in each wavelength band, with changing sun elevation and GHI at the time of
measurement.

To understand which sky conditions lead to the most accurate results, the accuracy of the reconstruc-
tions is compared to the Skyclass at the time of measurement, see figure 3.4. Skyclass 1, 2 and 3,
representing clear-sky, partly cloudy and overcast with high irradiance are the three categories with
highest accuracy. Skyclasses 4 abd 5 have significantly lower reconstruction accuracy. The high ac-
curacy of the overcast skyClass 3, even relative to Skyclass 2, is surprising given that SMARTS is
only for use in clear-sky conditions. Referring again to figure 2.1 in section 2.1.1, Skyclass 1, 2 and 3
each have high Clear Sky Index (Kc) in common, indicating that accuracy of reconstruction may over-
come high cloud cover if the clear sky index is sufficiently high. Figure 3.5 shows how reconstruction
error decreases with decreasing cloudcover and increasing clear sky index. It is possible, given this
data, to determine the minimum or maximum values of these sky conditions which returns an accurate
reconstruction.

3.1.3. Trace Gas and Aerosol Transmittance
As explained in section 2.3.2, the trace gas and aerosol transmittance values are atmospheric parame-
ters which affect the absorption of light in different wavelength bands. Trace gas levels in the SMARTS
reconstruction method are changed by varying the value for ’tropospheric pollution’ (ILOAD). Aerosol
transmittance is changed by changing the values of Ångström’s wavelength exponent, before and af-
ter 500nm (ALPHA1, ALPHA2 respectively), Aerosol single scattering albedo (OMEGL) and Aerosol
asymmetry (GG). Each of these values have a range of ’normal’ values, and the method for this analy-
sis is to reconstruct the spectrum for every combination of Trace gas and Aerosol Transmittance values.

Each of the Aerosol Transmittance parameters is tested at the minimum, median and maximum of its
’normal’ range whilst the trace gas is tested for each value from 1 to 4 where 1 is the least pollution, and
4 is the most. Therefore, to perform this analysis, for one clear-sky measurement on the 14th Febru-
ary 2023 at 13:20, 324 reconstructions are performed. The results can be found in figure 3.6 where
the absolute error is shown for every possible combination of Trace gas and Aerosol transmittance
parameter. The graph also shows the normal value of the SMARTS reconstruction in band 1 when
the parameters are kept as default in the red dotted line. The graph shows that the only parameter
which significantly reduces the error of reconstructions is the tropospheric pollution parameter, ILOAD,
indicated as the green circles in figure 3.6. The least error occurs when ILOAD = 4, this is equivalent
to ’Severe Pollution’, very unlikely for the city of Delft.

3.1.4. Discussion
The results shown in table 3.1, indicate that, relative to the results of the previous thesis, the recalibra-
tion of the albedometer has helped in reducing the range of errors in first and last wavelength bands,
including the full wavelength range. The range of errors has increased slightly in the 590-850nm band.
The mean values however, have shifted upwards in the first and last wavelength bands whilst the mid-
dle wavelength band has shifted downwards.
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Figure 3.4: Relative Error of all reconstructions, split into Skyclass categories. Boxplots indicate median value, 25th and 75th
percentiles, the range of data excluding outliers and the outlier points marked as red crosses.

(a) (b)

Figure 3.5: Boxplots of relative errors of reconstructions with changing Cloud Cover and Clear Sky Index respectively.



3.1. Spectral Irradiance Reconstruction 26

Figure 3.6: Plot showing the average absolute error in Band 1 (320-290nm) for every combination of Trace gas and Aerosol
transmittance parameter in the SMARTS model. The x-axis indicates the value of each individual parameter

The reason for this shift may be tied to the results shown in table 3.2 in which significant shifts in the
mean errors of the first and last EKO ranges can be observed whilst the error ranges have decreased.
As explained in section 3.1.1, the first and last wavelength ranges, 350-450nm and 900-1050nm coin-
cide with the regions in which the atmospheric parameters of Trace gas transmittance, ozone transmit-
tance and water vapor are most affecting the spectrum. Improving the accuracy of these parameters
may help to improve the model’s mean error in these ranges. Specifically in the 900-1050nm range,
the SMARTS model does not always reconstruct the dip, ususally caused by water vapor in the atmo-
sphere, see figure 3.1b.

The ozone transmittance parameter ’Ozone reduced pathlength’ and water vapor parameter ’Total pre-
cipitable water’ are determined by the PSO algorithm, as explained in section 1.4. The previous thesis
has shown that the algorithm can be improved by changing the weights of the PSO algorithm so that
the parameters converge to more accurate values.

Therefore, to answer the first part of the first research question: the recalibration of the albedometer
device from the recalibrated EKO device helped to reduce the range of errors, but the mean value
of error lay outside of the required uncertainty bounds. Changing the weights of the PSO algorithm
should help to remedy this shift by estimating more accurate values of the three atmospheric param-
eters. Furthermore, the algorithm should be adapted to ensure that the water vapor transmittance
between 800-900nm is modelled consistently in every reconstruction.

Section 3.1.3 helps to answer the second part of the first research question. According to the results
in figure 3.6, there exists no ’logical’ combination of parameters which compose aerosol transmittance
or trace gas transmittance which lead to a lower absolute error than the default conditions. The only
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reconstruction which performed better was when the tropospheric pollution parameter ’ILOAD’ was set
to ’Severe Pollution’, which is highly unlikely, given that default value of tropospheric pollution was of
’light pollution’.

The findings demonstrate that the aerosol parameters has little effect on the reconstructed error and
that the trace gas parameter, whilst having a larger effect, does not make logical sense to change in
this case. This analysis was completed for one specific clear-sky time. More comprehensive solutions
could be drawn through repetition of the analysis for other date and time combinations, however this
was not possible within the time constraints of the research.

Finally, based on these results, it must be decided whether an additional sensor should be installed to
improve the error reconstruction in the first wavelength band. The first reconstruction analysis showed
that the range of results was decreased significantly after the device was recalibrated, these reconstruc-
tions however, were shifted outside of acceptable bounds. The trace gas and aerosol transmittance
investigation indicates that changing these parameters does not greatly effect the error, however the
adjustment of the PSO algorithm may be able to shift the errors back to acceptable levels. In this
case, an additional sensor is not required. The additional purpose of adjusting the PSO algorithm, is
to correctly simulate the water vapor transmittance between 800-900nm. If this does not work, it may
also be possible to install the sensor in the same range, helping to measure the value for water vapor
transmission in the same was as the Spectrafy device [32].

The results of the error analysis based on changing sky conditions, section 3.1.2, were useful in help-
ing to select relevant parameters for the spectral albedo reconstruction and sky-condition inputs for
the Albedometer App. It was demonstrated that sun elevation and GHI has a noticeable effect on the
reconstructions. Skyclasses 1, 2 and 3 are also the most accurate reconstructions and that low cloud
cover and high Kc are desired for accurate reconstructions.

Based on these findings, it was decided to add the sun elevation, GHI and Skyclass as inputs for the
machine learning model for the reconstruction of spectral albedo.

3.2. Spectral Albedo Reconstruction
In this section, two models are trained to demonstrate the potential for Machine Learning models in
spectral albedo reconstruction, thereby answering the second research question:

Can a model be built to reconstruct spectral albedo using the data available to the device?

The results of the following subsections will demonstrate that spectral albedo prediction using forest
model machine learning can be performed to a high accuracy and comments are outlined on which
input parameters are most important for the reconstructions.

3.2.1. Spectral Albedo Results
The first model, aims to reconstruct the spectral albedo as calculated in equation (2.3) using the all
the features listed in table 2.4 excluding the ground material spectral reflectance. Figure 3.7 shows
one reconstruction of the spectral albedo, where the blue line is the real spectral albedo and the red
dashed line is that of the spectral albedo reconstruction. The lines in figure 3.7 are almost overlapping
and the relative error of the reconstruction is very low at less than 1% uncertainty in the entire wave-
length range. This is a result of an over-trained model given that the spectral albedo is constant in
every reconstruction, meaning that the model is reconstructed perfectly, irrespective of the values of
the model’s features.

3.2.2. Down-facing Spectral Irradiance Results
The model for down-facing spectral irradiance (DFSI) was first trained with only Skyclass 1 data. This
is because the spectral irradiance reconstruction model is made to function in clear sky conditions and
because the reconstruction accuracy in this range was highest according to section 3.1.2. Four exam-
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Figure 3.7: Reconstructed spectral albedo using machine learning model trained using Skyclass 1 data. Spectral albedo on
the y-axis is unitless.

ple ranges of DFSI are shown in figure 3.8. The red dotted lines indicate the reconstructed (predicted)
irradiance whilst the blue solid lines indicate the ’real’ target irradiance calculated using equation (2.2).

The line of predicted irradiance in figure 3.8 approximates the target value well. The measured mean
error and 95% confidence interval range of each band is shown in the first row of table 3.3. Following
the successful reconstruction of the Skyclass 1 data, it was decided to test the Skyclass 1 model with
Skyclass 2 data. As demonstrated in figure 3.9, the reconstruction fails completely, the mean recon-
struction error in each band jumps to over 50% overestimation, showing that the model is extremely
sensitive to the Skyclass of the data being used in the model. This is an important phenomenon, which
needs to be addressed, as it is not possible for the user to know the exact Skyclass at a certain time
without a sky camera at their disposal.

Additional models were trained with data from each one of the 5 Skyclasses. This way, depending on
the sky conditions at the measurement time, the correct model can be used for reconstruction. The re-
construction error for each Skyclass model with corresponding Skyclass data can be found in table 3.3.
The cited measurement uncertainty of the Spectrafy SolarSIM:Alb is 5% [31]. Comparing the recon-
struction uncertainties of the TU Delft albedometer device to that of Spectrafy, Skyclass models 1 and
2 both pass with under 5% uncertainty in each of the wavelength bands.

As explained in section 2.4, the reflectance of the material under the albedometer is estimated and a
sample reflectivity spectrum is used from the ASTER spectral library [2]. In reality, even if the material
type is accurately guessed, the actual material reflectance will be slightly different. The sensitivity of
the model with changing reflectivity is therefore analysed. For this analysis, the average value of the
reflectivity spectrum is calculated (12%), then 1%, 10% and 20% of the average is added to each of
the points in the reflectance spectrum. The resulting reconstruction error using SC 1 data in the SC 1
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Figure 3.8: Four down-facing spectral irradiance reconstructions predicted using Random Forest Modelling.

Figure 3.9: Failure case of three down-facing spectral irradiance reconstructions when using SC 2 data in an SC 1 model. The
reconstruction is the red dotted lines, as compared to the target spectral irradiance in solid blue.
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model is shown in table 3.4. The relative error measurements in band 1 are particularly high as the true
values of down-facing spectral irradiance are near-zero in the start of the spectrum. In the remaining
two bands, the sensitivity analysis proved that the reconstructions are quite resilient and are still within
the acceptable 5% uncertainty bounds until the reflectance spectrum is approximately 20% larger than
expected.

3.2.3. Discussion
The results of the spectral albedo reconstruction model were intended to outline whether the real target
reflectance spectrum is necessary for the reconstruction of spectral albedo. This could enhance the
effectiveness of the device by rendering it more autonomous, reducing the amount of input required
by the end-user. However, due to the real values of spectral albedo not being available, the model
became overtrained on the same constant output and the errors are near-zero.

In the case of the DFSI model, when the correct Skyclass model and data are used together, the recon-
struction error is minimized in skyclasses 1 to 4. Skyclass 1 and 2 are particularly accurate with less
than 5% uncertainty in all wavelength bands. This demonstrates that the machine learning method can
be a very valuable tool for spectral albedo reconstruction. The major downside of the current model is
the Skyclass at the reconstruction time must be extremely accurate, or else the model fails.

Given that the Skyclass of the input data has such a large effect on the reconstruction error. It is a
good idea to replace this user input with something measurable, so that the user can find the required
inputs from a local weather station. Given that GHI and sun elevation are already incorporated, cloud
cover can also be found by using okta, a unit of measurement used to describe the amount of cloud
cover at any given time. This information can also be found from a local weather station. In this case,
Skyclass should replaced completely by GHI, sun elevation and cloud cover in Okta.

One additional unexpected feature can be observed in the spectral irradiance reconstructions, figure 3.8
and figure 3.9. The dip, due to water vapor absorption of light, in the range of 900-1000nm is present in
every DFSI, ML-based reconstruction, while some of the SMARTS-based upward-facing spectral irra-
diance (UFSI) reconstructions do not accurately represent this ’dip’ phenomenon, see figure 3.1. This
discovery is relevant because it may provide an ML-approach to simulating the total precipitable water
value which the PSO algorithm has trouble consistently predicting, as discussed in section 3.1.4. ’Total
precipitable water’ is the parameter which determines the amount of absorption in the 900-1000nm
range. If ML can be used to estimate this parameter, the reliability of the DFSI reconstruction is im-
proved and reduces effect of one of the systematic errors discussed in section 3.1.4. The PSO algo-
rithm can instead be run with fewer paremeters, reducing the running time of the SMARTS model, or
can be used to optimise the value of another atmospheric parameter such as those investigated in
section 2.3.2.

Table 3.3: Relative errors of spectral irradiance reconstructions using models trained on data from specific Skyclass data.
Mean error and 95% confidence interval is shown.

Wavelength range [nm]
320-590 590-850 850-1100

Skyclass 1 95% confidence interval [%] [-1, 1.69] [-0.91, 1.91] [0.68, 1.7]
Mean error [%] 0.34 0.5 0.51

Skyclass 2 95% confidence interval [%] [-4.15, 4.38] [-1.22, 3.94] [-4.45, 1.62]
Mean error [%] 0.11 1.36 -1.41

Skyclass 3 95% confidence interval [%] [-4.9, 2.18] [-2.88, 6.01] [-6.86, 1.52]
Mean error [%] -1.36 1.57 -2.67

Skyclass 4 95% confidence interval [%] [2.46, 7.74] [1.95, 3.54] [1.88, 6.73]
Mean error [%] 5.1 2.74 4.3

Skyclass 5 95% confidence interval [%] [7.37, 40.84] [5.04, 36.64] [10.39, 46.91]
Mean error [%] 24.11 20.84 28.65
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3.3. Albedometer App
3.3.1. Results
The Albedometer App was first sketched on paper and realised in MATLAB App Designer. It features
all the inputs required for spectral irradiance and spectral albedo reconstruction, see figure 3.10. The
app calls the Windows version of SMARTS and therefore this iteration of the app only functions on
Windows devices.

The app is used as follows:

1. Navigate to ’Albedometer Raw File’ and select the raw albedometer .csv file from anywhere on
the computer.

• The datafile must contain the data from the desired date and time to be processed.
• The albedometer file will be loaded and the file name is displayed below in the grey box as
confirmation.

2. Select the desired date and time for the reconstruction.

• The selected date and time will be displayed in the grey box below it.

3. Select the ground material which best describes the material below the albedometer. (The drop
down list has multiple options but the spectral albedo model is currently only trained for ’sandy
gravel’).

4. Select the sky condition at the selected date and time. (One value for each
5. Enter the coordinate location of the albedometer, latitude, longitude and altitude.
6. Select ’Begin Reconstruction’

• The indicator will turn green to show that the reconstruction is under way. The reconstruction
status and start time is printed alongside it (not pictured in figure 3.10)

• The estimated time for reconstruction is indicated on the right in bold.

When the reconstruction is complete:

• The indicator will turn grey and the elapsed time will be displayed.
• The ’Estimated reconstruction time’ will be updated based on the time for the previous re-
construction.

• The graphs of spectral irradiance and spectral albedo will appear.
• GHI and sun elevation will be shown.

7. Export the .csv data to your computer by clicking the ’Save as...’ button.

Table 3.4: Sensitivity analysis of reflectance spectrum for machine learning model reconstructions. Skyclass 1 model and data
was used.

Wavelength range [nm]
320-590 590-850 850-1100

1% increase 95% confidence interval [%] [0.29, 3.06] [-0.64, 2.2] [-0.23, 2.16]
Mean error [%] 1.67 0.78 0.96

5% increase 95% confidence interval [%] [2.32, 5.18] [-0.32, 2.52] [-0.02, 2.37]
Mean error [%] 3.75 1.1 1.17

10% increase 95% confidence interval [%] [7.59, 10.77] [0.65, 3.50] [1.53, 3.96]
Mean error [%] 9.18 2.07 2.75

20% increase 95% confidence interval [%] [30.01, 34.97] [3.61, 6.54] [7.69, 10.32]
Mean error [%] 32.49 5.08 9
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Figure 3.10: Image of the Albedometer App after having completed the spectral irradiance and spectral albedo reconstructions.

3.3.2. Discussion
The Albedometer App improves the usability of the device by centralising all the code required to run
the UFSI reconstruction and spectral albedo reconstruction. The user is therefore able to pass from
measurement, to tangible reconstruction result with very little time and effort. The design choices and
app inputs are explained in section 2.5.

Opening the app, the user is faced with an input panel, where they are able to enter the required in-
puts for the reconstructions to run. The design is intuitive and well labelled, requiring very few external
inputs, which include: the ground material selection, using a drop-down selection tool which automati-
cally imports the required reflectivity spectrum, the sky condition at the selected date and time, which is
used to determine the type of ML model used in the reconstruction, and the geographical coordinates
of the albedometer device, easily found using online tools.

When the user is ready to run the reconstruction, all the inputs are automatically formatted by app, the
reconstructions are run, after which they can be exported to the user’s computer.

The current areas for improvement in future iterations would be to add the ability to reconstruct multiple
reconstructions at a time, which for example, could help the user develop an understanding of how
the spectral irradiance and spectral albedo change over a day. Additionally, a function could be added
which would output the effective albedo of a range of standard bi-facial solar panels.
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Conclusion

The TUDelft spectrally resolved albedometer is a measurement device which aims to accurately recon-
struct spectral irradiance and spectral albedo using reconstruction techniques which enable this device
to be produced at a lower cost than competitor devices. The current device is capable of measuring
the upward-facing and downward-facing irradiance in three wavelength bands and using those inputs
to reconstruct the up-facing spectral irradiance.

The three topics of this thesis are outlined as follows:

• Improving the accuracy of the TU Delft albedometer in reconstructing the spectral irradiance at
the top side of the device through an updated calibration method.

• Improving the functionality of the device by designing a machine learning model for reconstruction
of downward facing spectral irradiance (DFSI) thereby demonstrating the potential for machine
learning models in spectral albedo reconstruction.

• Improving the usability of the TU Delft albedometer, wherein a software is designed which cen-
tralises the functionalities of the device into one intuitive app.

The first of three research questions introduced in section 1.5 is:

1. Can the recalibration of the albedometer improve the error measurements of the device or
is a physical change to the device required?

To answer the first research question, the two recommendations given in the previous thesis on this
topic [23] are investigated and discussed in section 3.1. The first recommendation is to :

• Recalibrate the albedometer using the recently recalibrated EKO device.

The calibration parameters of the albedometer’s upward-facing sensors are calculated according to
ISO 9847 - ”Calibration of pyranometers by comparison to a reference pyranometer” [14] with the recal-
ibrated EKO device used as the reference pyranometer. Once the calibration factors are acquired, a
MATLAB function is written which extracts the relevant irradiance sensor data from the raw albedome-
ter file and applies the calibration factors to the device’s sensor measurements.

To better understand the sky conditions under which the spectral irradiance reconstruction performs
best, a sky classification code is run using Python, as explained in section 2.1.1, which analyses sky
images taken in Delft from September 2022 to May 2023 and classifies them in five Skyclasses, from
clear-sky, to overcast conditions. This sky classification is initially used to identify timeframes related
to clear sky conditions, a necessity for accurate reconstruction of the spectral irradiance. At the iden-
tified timeframes, the measurements of the albedometer’s up-facing sensors are used as inputs to a
spectral irradiance reconstruction model, the results of which, as shown in section 3.1.1. These results
demonstrate that the uncertainty range of the newly calibrated albedometer is reduced in the first and
last measured wavelength bands, as shown in table 3.1. Although overall uncertainty range is reduced
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following recalibration, the mean errors in the new reconstructions deviate from the previous values,
indicating that a systematic error is affecting the results in the first and last wavelength bands: 320-
590nm and 850-1100nm.

It is found that the reconstruction in the first and last wavelength bands is particularly affected by the
reconstruction of the ranges of 320-400nm and 900-1050nm, see table 3.2, where the atmospheric pa-
rameters: trace gas transmittance, ozone reduced pathlength and total precipitable water, contribute
most to the absorption of radiance. The latter two parameters are calculated using the PSO algorithm
which had been adapted to the previous albedometer calibration. It is therefore proposed that adapting
the weights of the parameters in the PSO algorithm to those of the newly calibrated device may elimi-
nate the systematic error.

An additional method to decrease the error in the 900-1000nm range has been identified through the
use of machine learning methods for spectral albedo reconstruction section 3.2. It was observed, that
in every reconstructed spectrum of DFSI using an ML model, the absorption of radiance in the 900-
1000nm range due to total precipitable water in the atmosphere was accurately predicted, see figure 3.8.
Training an ML model using real spectral irradiance data and using similar inputs to those of the ML
model trained in this report, could enable accurate estimation of the value of total precipitable water.
Using this method would ensure that the absorption due to total precipitable water in the 900-1000nm
range is consistently reconstructed in the upward-facing spectral irradiance (UFSI) reconstruction using
SMARTS, which was not seen when solely using the PSO algorithm to estimate this parameter, see
figure 3.1.

The second recommendation is to:

• Investigate whether the trace gas and aerosol transmittance parameters can be optimised to
minimise the reconstructed error in the first wavelength band.

To investigate this, spectral irradiance reconstructions are performed for each possible combination of
trace gas and aerosol transmittance parameter at a certain date and time. The results presented in
section 3.1.3, compare the resulting errors in the first wavelength band, as shown in figure 3.6. The
changing of the four aerosol parameters do not demonstrate any significant reduction in reconstruction
error. The parameter which most reduces the reconstruction error is the value of tropospheric pollution
(Trace gas variable). The level of tropospheric pollution which results in the least error corresponds
to ’severe pollution’, which is highly unlikely for Delft, the Netherlands, the location where the mea-
surements were taken. Therefore, no conclusive evidence was found to support the hypothesis that
changing the trace gas and aerosol parameters will improve the accuracy of the reconstruction in the
first wavelength band. This analysis was completed for one specific date and time, more comprehan-
sive solutions could be drawn through repetition of the analysis for other date and time combinations,
however this was not possible within the time constraints of this research.

The recalibration methods developed and discussed in this report demonstrate that recalibration of the
albedometer has reduced the uncertainty in UFSI reconstruction error. Further research is required to
address the identified systematic error which shifts the reconstruction errors out of the desired error
bounds. Potential solutions to reduce this systematic error in future work are to adjust the weights of
the PSO algorithm to adapt it to the newly calibrated data, and to combine this algorithm with an ML
model potentially capable of predicting the value of total precipitable water in the 900-1000nm range.
If no further errors persist, physical change to the device is not necessary.

The second research question addressed in this project is:

2. Can a model be built to reconstruct spectral albedo using the data available to the device?

Spectral albedo is a per-wavelength measure of how much irradiance is reflected into a down facing
sensor, as a proportion of the irradiation incident at the top. Spectral albedo is a multi-dimensional
reconstruction which involves external parameters which are not measured by the albedometer. To
capture this complex relationship and enable accurate reconstruction of spectral albedo, the Random
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Forest machine learning model is chosen, see section 2.4. The original target variable of the ML model
was the spectral albedo as measured by two back to back EKO spectroradiometers. In the course of
this research, however, availability of spectral albedo data resulted in an alteration of the scope to focus
primarily on the reconstruction of down-facing spectral irradiance (DFSI) which features similar daily
variation and sky condition dependencies in the spectrum as spectral albedo. The research question
will be answered by comparing the error uncertainty of the ML reconstructions to those of a competitor
device, the Spectrafy SolarSIM:ALB with ±5% in its wavelength range.

The inputs (features) of the ML model were informed by the results of the upward-facing spectral irra-
diance (UFSI) reconstruction in changing sky conditions, section 3.1.2. The UFSI results demonstrate
that Sun Elevation and GHI have a noticeable effect on reconstruction error and are therefore used as
additional inputs to inform the ML model, see table 2.4. Skyclass at the time of reconstruction is also
demonstrated to have an effect on reconstruction accuracy and therefore, one ML model is trained for
each Skyclass. Furthermore, one of the features of the ML model is the reflectance spectrum of the
material under the albedometer. All the training data from the albedometer comes from the the same
location, therefore, the ML model is trained for only one material reflectance spectrum, taken from the
ASTER spectral library [2], which best imitates the gravelly material under the albedometer. Further
ground material types should be implemented in future work, as recommended in chapter 5.

The results of the DFSI reconstructions using machine learning, section 3.2, show that the errors in
each wavelength band are successfully maintained below the target error uncertainty of ±5% for sky-
class models 1 and 2. Skyclass 3 and 4 also feature an uncertainty of less than ±8% in all wavelength
bands. Sensitivity analysis is performed on the the ground material reflectance input, due to the fact
that in reality, the reflectance spectrum will vary from the sample spectrum due to differing ground
roughness, ground moisture content or other environmental factors. The sensitivity analysis indicates
that the error value remains inside the desired ±5% uncertainty for an increase in material reflectance
of up to 10%.

The main challenge identified in the model, is the requirement that the correct skyclass model must
be used on albedometer data of that same skyclass. If the measurement data belonging to a certain
Skyclass is reconstructed using an ML model of a different skyclass, the reconstruction is incorrectly
reconstructed, see figure 3.9. In a real life application, this means that the Skyclass prediction selected
by the user is of extremely high importance. To address this, it is proposed that the model is trained
instead with a more measurable sky-condition such as cloud cover, measured in Okta, which can be
gathered accurately from a local weather station. The results shown in figure 3.5a demonstrate how
cloud cover affects reconstruction accuracy of UFSI and therefore can help to identify different sky-
conditions.

To answer the second research question, the ML model developed to reconstruct the DFSI demon-
strates low reconstruction uncertainties. Since the equation for DFSI features many of the same sky
condition and ground reflectance dependencies as the spectral albedo, the success of the ML model
shows that it is possible reconstruct spectral albedo using the same method.

The third and final research question investigated in this project is:

3. How can a user interface be designed which simplifies user experience for spectral irradi-
ance and albedo reconstruction?

The Albedometer App design improves the usability of the device by centralising and automating the
code required to prepare the inputs of the reconstructions, as well as by running the reconstructions
and allowing the user to export the spectra to their computer.

As mentioned in section 2.5, the design requirements were determined by investigating the potential
use-cases of the device and the type of customer that may use the device. It was assumed therefore
that the user is technically knowledgeable in operating and installing measurement instruments. Based
on these design requirements, a concept sketch was made and the app the final Albedometer App was
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realised in MATLAB APP designer, see figure 3.10.

To answer the research question, the app succeeds in simplifying the process of running the reconstruc-
tions, streamlining the process from taking the measurement using the albedometer, to having tangible
reconstructed outputs of spectral irradiance and spectral albedo with no MATLAB coding knowledge
being required.

In conclusion, the project succeeds in answering the three research questions. The reconstruction of
UFSI using the albedometer device’s sensor measurements now demonstrates an improved error un-
certainty of in its wavelength bands and is one step closer to exceeding the error measurements of its
competitor devices. The reconstruction of DFSI using machine learning demonstrates the potential for,
and created the framework for reconstruction of spectral albedo using machine learning. Finally, the
development of the albedometer app streamlines the use of the albedometer’s reconstruction models,
allowing the user to go from measurement to final output with minimal time and effort. The recommen-
dation in chapter 5 will suggest future work to advance the albedometer device to its full potential as a
high accuracy, low cost measurement device.



5
Recommendations

In this chapter, recommendations are made for future work in each of the three results sections dis-
cussed in this report. The recommendations aim to improve the accuracy of the Spectral Irradiance
Reconstruction, to improve the reliability in the Spectral Albedo reconstructions, and finally to add fur-
ther functionality to the Albedometer App.

In the Spectral Irradiance Reconstruction results, section 3.1 the uncertainty range of the results was
improved in each wavelength band due to the recalibration of the device. The mean error in each of
the wavelength bands however, is subject to a systematic error in the first and last wavelength band of
the device which pushes the error ranges out of the desired range (as compared to the uncertainties of
the EKO device), see table 3.2. The affected error ranges coincide with the atmospheric parameters of
’trace gas concentration’, ’ozone reduced pathlength’ and ’total precipitable water’. The latter two are
calculated by a PSO algorithm, prior to each reconstruction. The recommendations for this section are
as follows:

The weights of the PSO algorithm, which determine the optimal values of ’aerosol optical depth at
550nm’, ’ozone reduced pathlength’ and ’total precipitable water’ should be determined based on the
new calibration of the albedometer. Additionally, the PSO algorithm sometimes fails to estimate the
value of ’total precipitable water’ in the atmosphere, meaning that the dip in the 800-900nm range is
not reconstructed, see figure 3.1, which directly contributes to the high systematic error in the same
range. It is therefore recommended that machine learning (ML) model be used to predict the value of
this parameter, as observed in section 3.1, where the ’total precipitable water’ dip is consistently well
reconstructed. By doing so, the PSO algorithm can more accurately predict the remaining values or
even help to predict other parameters such as trace gas concentration.

In the Spectral Albedo Reconstruction results, section 3.2, an ML model is created which accurately
reconstructs the down facing spectral irradiance (DFSI), demonstrating that an ML model can be used
for spectral albedo reconstruction. As explained in section 2.4, the spectral albedo could not be re-
constructed as real spectral albedo data, as measured by two EKO spectroradiometers placed back
to back were not installed in time. Assuming that the EKO devices are installed to measure spectral
albedo and that sufficient data has been recorded, the first recommendation is to calibrate the the three
down-facing sensors of the albedometer as done in section 2.2. It is then recommended to change the
target output of the machine learning model to that of the measured spectral albedo.

The ML reconstruction results in this thesis are highly dependant on the user knowing the exact sky
condition (Skyclass) at the time of measurement, see section 3.2. To improve the reliability of the ML
reconstruction results, it is recommended that model avoid using Skyclass data to reconstruct the re-
sults as the value of Skyclass is not easily determined by the end-user. Instead, a measured parameter
(from a local weather station) such as cloud cover, measured in Okta, should be tested as an ML model
feature to determine whether it can help to determine the sky conditions instead of Skyclass.
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In the Albedometer App results section 3.3, an app is designed which improves the usability of the
device by streamlining the process of gathering and processing data for the reconstruction of up-facing
spectral irradiance (UFSI) and spectral albedo. Some recommendations for future work include the abil-
ity to reconstruct effective albedo for a range of standard Bifacial PV cells. This would allow bifacial PV
system planners to more easily find relevant information for their projects. Finally, it is recommended
that a function is added to the Albedometer App which allows the user to reconstruct the UFSI and
spectral albedo for multiple times in one go: for example, at multiple times over the course of the day,
which would help the user to understand the daily variation of spectral irradiance and albedo over the
course of the day.
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A
Raw Sample Data

Cloud Dataframe / Sky classification files

Figure A.1: Sample data from the sky classifier code explained in section 2.1.1
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Raw Albedometer data file

Figure A.2: Raw Albedometer file. Time is in UNIX time format. ’Irr’ columns refer to Irradiance measurements of each sensor
range for top and bottom of the device. Temp refers to internal operating temperatures on top and bottom of device.
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EKO device files

Figure A.3: File of specoverview, originating from the EKO device, which references the start (Spec_start) and end (Spec_stop)
indices for the time and day of the desired spectral irradiance. Exposure time is measured in (ms), PAR is Photosynthetically
Active radiation, measured in (W/m2), Photon is photon intensity measured in (µmol/m2/s), Lux indicates the illuminance (lx)

Figure A.4: File of specdata which shows the spectral irradiance (W/m2/nm) at each wavelength (nm), between the two ID
values that identify a date and time in specoverview figure A.3.
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Ground material reflectivity file as imported from ASTER spectral library [2]

Figure A.5: File of ground material reflectivity per wavelength. Left column is x and indicates wavelength (µm), right column is
Y and indicates the reflectivity (%) at the corresponding wavelength.



B
PVMDalbedometer.m code - New

methods

This appendix is used to show the the new methods added to the PVMDalbedometer.m Class file to
streamline the process of preparing SMARTS and spectral irradiance reconstructions and the method
called to run the spectral albedo reconstruction.

Initialisation function, called using obj = PVMDalbedometer(). Loads the default values of geographical
location, alitude, predominant alebdo and time zone required for the SMARTS reconstruction. Defines
the values of temperature coefficients the updated calibration factors. At this point in the project, the
calibration factors for the top sensors are assumed to be same for the bottom sensors.

1 function obj= PVMDalbedometer() %TODO:
2 %PVMDalbedometer creates an object of class PVMDalbedometer.
3

4 obj.latitude = 52.011902;
5 obj.longitude = 4.36026;
6 obj.altitude = 1;
7 obj.PredominantAlbedo = 0.18; % Annata thesis page 75
8 obj.TimeZone = 1;
9

10 %Ananta Thesis page 60
11 obj.TemperatureCoefficientTOP320_1100 = -0.013;
12 obj.TemperatureCoefficientTOP590_1100 = -0.108;
13 obj.TemperatureCoefficientTOP850_1100 = 0.054;
14

15 %Anants Thesis assumed same temp dependency page 60
16 obj.TemperatureCoefficientBTM320_1100 = -0.013;
17 obj.TemperatureCoefficientBTM590_1100 = -0.108;
18 obj.TemperatureCoefficientBTM850_1100 = 0.054;
19

20 %Calibration factors of the top side sensors
21 obj.CalibrationFactorTOP320_1100 = 1.5872;
22 obj.CalibrationFactorTOP590_1100 = 1.2886;
23 obj.CalibrationFactorTOP850_1100 = 0.8025;
24

25 %Calibration factors of the bottom side sensors
26 %Temporarily assumed to be the same as the top side.
27 obj.CalibrationFactorBTM320_1100 = 1.5872;
28 obj.CalibrationFactorBTM590_1100 = 1.2886;
29 obj.CalibrationFactorBTM850_1100 = 0.8025;
30

31 end
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Class method which imports the object, the desired date and time ’Time’ for reconstruction in datetime
format and ’albFile’ the filepath for the raw albedometer file which contains the desired information.
Outputs albSensorValues, needed for the ML modelling of the spectral albedo, and GHI, required as
an input for SMARTS reconstruction.

1 function [albSensorValues,GHI]=calibrateSensorsGetGHI(obj,Time,albFile)
2 %Calibrate top and bottom sensors based on the calibration
3 %factors. Then calculate GHI
4

5 %albFile = '230201_white_morning.csv'
6 %Time = datetime(2023,02,03,11,00,00)
7

8 alb_data = albFile;
9

10 % Check if albFile is a table and has the required variable names
11 if ~ istable(alb_data)
12

13 % Fetch Albedometer data file
14 alb_data = readtable(alb_data); %220907-WHITE-morning
15

16 end
17

18 %Renaming Variable names in alb_data
19 new_names = {'Time','DateAndTime','TempTop','IrrHMtop','IrrLPtop',...
20 'IrrNFtop','TempBTM','IrrHMBTM','IrrLPBTM','IrrNFBTM'};
21 alb_data.Properties.VariableNames = new_names;
22

23 % Find albedometer time value closest to the EKO measurement time.
24 [time_check, index] = min(abs(alb_data.DateAndTime - Time));
25

26 if Time - abs(time_check) <= Time - seconds(2)
27 error('Error:␣Required␣time:␣%s␣is␣not␣within␣the␣data␣range', datestr(Time))
28 end
29

30 %% TOP Calibration
31 % Apply temperature calibration
32 NF = alb_data.IrrNFtop(index) + obj.TemperatureCoefficientTOP320_1100 * (alb_data.TempTop

(index) - 25); %320-1100nm
33 HM = alb_data.IrrHMtop(index) + obj.TemperatureCoefficientTOP590_1100 * (alb_data.TempTop

(index) - 25); %590-1100nm
34 LP = alb_data.IrrLPtop(index) + obj.TemperatureCoefficientTOP850_1100 * (alb_data.TempTop

(index) - 25); %850-1100nm
35

36 %Apply Calibration factors
37 NF = NF * obj.CalibrationFactorTOP320_1100;
38 HM = HM * obj.CalibrationFactorTOP590_1100;
39 LP = LP * obj.CalibrationFactorTOP850_1100;
40

41 albSensorsTop = [NF,HM,LP];
42

43 %% BOTTOM Calibration
44 %Apply temperature calibration
45 NFbtm = alb_data.IrrNFBTM(index) + obj.TemperatureCoefficientBTM320_1100 * (alb_data.

TempBTM(index) - 25); %320-1100nm
46 HMbtm = alb_data.IrrHMBTM(index) + obj.TemperatureCoefficientBTM590_1100 * (alb_data.

TempBTM(index) - 25); %590-1100nm
47 LPbtm = alb_data.IrrLPBTM(index) + obj.TemperatureCoefficientBTM850_1100 * (alb_data.

TempBTM(index) - 25); %850-1100nm
48

49 %Apply Calibration factors
50 NFbtm = NFbtm * obj.CalibrationFactorBTM320_1100;
51 HMbtm = HMbtm * obj.CalibrationFactorBTM590_1100;
52 LPbtm = LPbtm * obj.CalibrationFactorBTM850_1100;
53

54 albSensorsBtm = [NFbtm,HMbtm,LPbtm];
55

56 albSensorValues = [albSensorsTop;albSensorsBtm];
57

58 GHI = [];
59 GHI(1)= albSensorsTop(1); %320-1100 nm
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60 GHI(2)= albSensorsTop(1)-albSensorsTop(2); %320-590 nm
61 GHI(3)= albSensorsTop(2)-albSensorsTop(3); %590-850 nm
62 GHI(4)= albSensorsTop(3); %850-1100 nm
63

64 end

Class Method which runs the machine learning model for spectral reconstruction. The inputs are the
object, the ’Time’ is the date and time of the reconstruction desire in ’datetime’ format, SmartsSpectrum
is the output of the SMARTS reconstruction, albSensorValues and GHI are the outputs prepared in the
’calibrateSensorsGetGHI method, reflectivityFilePath is the filepath of the desired material reflectivity
file, see appendix A and MLModel is the Machine learning model used for the prediction in .mat format.
The outputs are the specAlbSpectrum, the spectrum of the reconstructed spectral albedo and sunEl,
the calculated sun elevation at that time.

1 function [specAlbSpectrum, sunEl]=reconstructSpecAlbedo(obj,Time,SmartsSpectrum,
albSensorValues,GHI,reflectivityFilePath ,MLModel)

2 %This file prepares the input file for the ML model given the
3 % provided variables then executes the spectral albedo
4 % reconstruction.
5

6 %SmartsSpectrum comes directly from reconstructSpectrum
7 %albSensorValues and GHI come directly from calibrateSensorsGetGHI
8 %reflectivityFilePath is the filepath to the ASTER reflectivity
9 %file which is a .txt.
10 %MLModel is the Machine Learning Model in 'TreeBagger' format
11

12 % Get the reflectivity spectrum of the bottom surface
13 reflectivitySpectrum = extractReflectivity(reflectivityFilePath);
14

15 AsterLambda = table2array(reflectivitySpectrum(:,1));
16 AsterSpectrum = table2array(reflectivitySpectrum(:,2));
17

18 % Get the reconstructed SMARTS array
19 % RENAME VARIABLENAME EKO TO SMARTS!!!!!
20 EKOLambda = SmartsSpectrum.Wvlgth;
21 EKOSpectrum = SmartsSpectrum.Global_horizn_irradiance;
22

23 %% Extrapolate SMARTS reconstruction and reflectivity
24 [EKOSpectrum, EKOLambda] = linearExtrapolation(EKOSpectrum, EKOLambda, 10, 300, 1120);
25

26 % Convert negative values to zero
27 EKOSpectrum(EKOSpectrum < 0) = 0;
28

29 %Extrapolate Aster data
30 AsterSpectrum(AsterLambda > 1200) = [];
31 AsterLambda(AsterLambda > 1200) = [];
32

33 % Combine AsterLambda and AsterSpectrum into a matrix
34 AsterData = [AsterSpectrum, AsterLambda];
35

36 % Sort the matrix based on the first column (AsterLambda)
37 AsterData = sortrows(AsterData, 2);
38

39 [AsterSpectrum,AsterLambda] = linearExtrapolation(AsterData(:,1), AsterData(:,2), 2, 300,
[]);

40

41 %% Resample datasets to have same x values
42

43 % Select min and max points for resampling
44 minLambda = 320; %Min and Max value measured by Albedometer
45 maxLambda = 1100;
46

47 % Create a common set of x-points
48 % Number of desired x-points - minimum sample size of EKO or Aster
49 numPoints = 500;
50 commonLambda = linspace(minLambda, maxLambda, numPoints)';
51

52 % Interpolate the data series
53 smartsResample = interp1(EKOLambda, EKOSpectrum, commonLambda, 'linear');
54 reflectionResample = interp1(AsterLambda, AsterSpectrum, commonLambda, 'linear');
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55

56 %% Sun Elevation Calculation
57

58 LocationStruct.latitude = obj.latitude;
59 LocationStruct.longitude = obj.longitude;
60 LocationStruct.altitude = obj.altitude;
61

62 TimeStruct.year = Time.Year;
63 TimeStruct.month = Time.Month;
64 TimeStruct.day = Time.Day;
65 TimeStruct.hour = Time.Hour;
66 TimeStruct.minute = Time.Minute;
67 TimeStruct.second = Time.Second;
68

69 % This is the lazy way to do this, in reality, the time changes
70 % on the last weekend of March and October.
71 if TimeStruct.month > 3 && month < 11
72 TimeStruct.UTCOffset = 2;
73 else
74 TimeStruct.UTCOffset = 1;
75 end
76

77 % obj is passed into the function to provide location coords.
78 [~, sunEl] = pvl_spa(TimeStruct, LocationStruct);
79

80 %% Albdeo band values
81

82 %Calculate measured albedo values
83 albSensorsBtm = albSensorValues(2,:);
84 GHItop = GHI(1,:);
85

86 GHIbtm = [];
87 GHIbtm(1)= albSensorsBtm(1); %320-1100 nm
88 GHIbtm(2)= albSensorsBtm(1)-albSensorsBtm(2); %320-590 nm
89 GHIbtm(3)= albSensorsBtm(2)-albSensorsBtm(3); %590-850 nm
90 GHIbtm(4)= albSensorsBtm(3); %850-1100 nm
91

92 %Calculate measured albedo values
93 measuredAlbedo = GHIbtm ./ GHItop;
94

95 % Calculate band widths
96 band1 = sum(commonLambda >= min(commonLambda) & commonLambda < 590);
97 band2 = sum(commonLambda >= 590 & commonLambda < 850);
98 band3 = sum(commonLambda >= 850 & commonLambda <= 1100);
99

100 % Measured Albedo value from Albedometer and change length to sensor ranges
101 band1Top = repmat(GHItop(2),band1,1);
102 band2Top = repmat(GHItop(3),band2,1);
103 band3Top = repmat(GHItop(4),band3,1);
104

105 % Measured Albedo value from Albedometer and change length to sensor ranges
106 band1Btm = repmat(GHIbtm(2),band1,1);
107 band2Btm = repmat(GHIbtm(3),band2,1);
108 band3Btm = repmat(GHIbtm(4),band3,1);
109

110 % Measured Albedo value from Albedometer and change length to sensor ranges
111 band1Alb = repmat(measuredAlbedo(2),band1,1);
112 band2Alb = repmat(measuredAlbedo(3),band2,1);
113 band3Alb = repmat(measuredAlbedo(4),band3,1);
114

115 %% Update Final Variables
116

117 bandAlbedo = [band1Alb;band2Alb;band3Alb];
118 wavelength = commonLambda;
119 sunElevation = repmat(sunEl(1),length(commonLambda),1); % Constant in one wavelength

range
120 bandTop = [band1Top;band2Top;band3Top];
121 bandBottom = [band1Btm;band2Btm;band3Btm];
122 smartsArray = smartsResample;
123 reflectionArray = reflectionResample;
124
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125 specAlbInput = [bandAlbedo,wavelength,sunElevation,bandTop ,...
126 bandBottom,smartsArray,reflectionArray];
127

128 % Reconstruct Specreal Albedo using ML Model
129 predictedSpectralAlbedo = predict(MLModel, specAlbInput);
130

131 specAlbSpectrum = [wavelength,predictedSpectralAlbedo];
132

133 end
134 end
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