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Abstract. We present an approach to safely reduce the communica-
tion required between agents in a Multi-Agent Reinforcement Learning
system by exploiting the inherent robustness of the underlying Markov
Decision Process. We compute robustness certificate functions (off-line),
that give agents a conservative indication of how far their state measure-
ments can deviate before they need to update other agents in the sys-
tem with new measurements. This results in fully distributed decision
functions, enabling agents to decide when it is necessary to communi-
cate state variables. We derive bounds on the optimality of the resulting
systems in terms of the discounted sum of rewards obtained, and show
these bounds are a function of the design parameters. Additionally, we
extend the results for the case where the robustness surrogate functions
are learned from data, and present experimental results demonstrating
a significant reduction in communication events between agents.

Keywords: Multi-Agent Systems * Event-Triggered Communication *
Reinforcement Learning

1 Introduction

In the last two decades we have seen a surge of learning-based techniques applied
to the field of multi agent game theory, enabling the solution of larger and more
complex problems, both model based and model free [3,13,24]. Lately, with the
wide adoption of Deep Learning techniques for compact representations of value
functions and policies in model-free problems [17,23,34], the field of Multi-Agent
Reinforcement Learning (MARL) has seen an explosion in the applications of
such algorithms to solve real-world problems [20]. However, this has naturally
led to a trend where both the amount of data handled in such data driven
approaches and the complexity of the targeted problems grow exponentially.
In a MARL setting where communication between agents is required, this may
inevitably lead to restrictive requirements in the frequency and reliability of the
communication to and from each agents (as it was already pointed out in [25]).
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The effect of asynchronous communication in dynamic programming prob-
lems was studied already in [2]. In particular, one of the first examples of how
communication affects learning and policy performance in MARL is found in
[32], where the author investigates the impact of agents sharing different combi-
nations of state variable subsets or Q values. After that, there have been multi-
ple examples of work studying different types of communication in MARL and
what problems arise from it [1,16,28,30]. In this line, in [37] actor coordina-
tion minimization is addressed and in [10,15] authors allow agents to choose a
communication action and receive a reward when this improves the policies of
other agents. In [6] multi agent policy gradient methods are proposed with con-
vergence guarantees where agents communicate gradients based on some trigger
conditions, and in [19] agents are allowed to communicate a simplified form of
the parameters that determine their value function.

We focus particularly in a centralised training - decentralised execution, where
agents must communicate state measurements to other agents in order to exe-
cute the distributed policies. Such a problem represents most real applications
of MARL systems: It is convenient to train such systems in a simulator, in order
to centrally learn all agents’ value functions and policies. But if the policies are
to be executed in a live (real) setting, agents will have access to different sets
of state variables that need to be communicated with each-other. In this case,
having non-reliable communication leads to severe disruptions in the robust-
ness of the distributed policies’ performance. The authors in [18] demonstrated
experimentally how very small adversarial disruptions in state variable commu-
nications leads to a collapse of the performance of general collaborative MARL
systems. In this regard, [7] proposes learning an “adviser” model to fall back
on when agents have too much uncertainty in their state measurements, and
more recently in [14] the authors enable agents to run simulated copies of the
environment to compensate for a disruption in the communication of state vari-
ables, and in [36] agents are trained using adversarial algorithms to achieve more
robust policies. This lack of robustness in communicative multi-agent learning
presents difficulties when trying to design efficient systems where the goal is to
communicate less often.

With this goal in mind, we can look into event triggered control (ETC) as
a strategy to reduce communication [22,31] in a networked system by trading
off communication for robustness against state measurement deviations. This
has been applied before in linear multi-agent systems [8] and non-linear sys-
tems [9,38]. In [33] and [26] ideas on how to use ETC on model-free linear and
non-linear systems were explored. Additionally in other learning problems such
as [29], where authors show how event triggered rules can be applied to learn
model parameters more efficiently, and in [12] by applying a similar principle to
demonstrate how ETC can be used to compute stochastic gradient descent steps
in a decentralised event-based manner.



Robust Event-Driven Interactions in Cooperative Multi-agent Learning 283

1.1 Main Contribution

We consider in this work a general cooperative MARL scenario where agents
have learned distributed policies that must be executed in an on-line scenario,
and that depend on other agent’s measurements. We propose a constructive
approach to synthesise communication strategies that minimise the amount of
communication required and guarantee a minimum performance of the MARL
system in terms of cumulative reward when compared to an optimal policy. We
construct so-called robustness surrogate functions, which quantify the robustness
of the system to disturbances in agent state variable measurements, allowing
for less communication in more robust state regions. Additionally, we consider
the case where these surrogate functions are learned through the scenario app-
roach [4,5], and show how the guarantees are adapted for learned approximated
functions.

2 Preliminaries

2.1 Notation

We use calligraphic letters for sets and regular letters for functions f : R™ — R™.
We say a function f : Ry — Ry is f € K if it is continuous, monotonically
increasing and f(0) = 0, lim,_,o f(a) = 0o. We use F as the o-algebra of events
in a probability space, and P as a probability measure P : F — [0,1]. We use
E[] and Var[-] for the expected value and the variance of a random variable.
We use || - | as the sup-norm, |- | as the absolute value or the cardinality, and
(v,u) as the inner product between two vectors. We say a random process X,,
converges to a random variable X almost surely (a.s.) as t — oo if it does so
with probability one for any event w € F. For a conditional expectation, we
write E[X|Y] = Ey[X].

2.2 MDPs and Multi-agent MDPs
We first present the single agent MDP formulation.

Definition 1 [Markov Decision Process]. A Markov Decision Process (MDP)
is a tuple (X,U, P,r) where X is a set of states, U is a set of actions, P :
U — PIXIXIXI s o probability measure of the transitions between states and
r: X XUXX — R is a reward function, such that r(x,u,x’) is the reward
obtained when action u is performed at state x and leads to state x’.

In general, an agent has a policy m : X — P(U), that maps the states to a
probability vector determining the chance of executing each action. We can
extend the MDP framework to the case where multiple agents take simultaneous
actions on an MDP. For the state transition probabilities we write in-distinctively
Pyx(u) = P(x,x’,u), and for the reward obtained in two consecutive states
X¢, Xp11 we will write ry = 7(X¢, U, Xea1)-
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Definition 2 [Collaborative Multi-Agent MDP]. A Collaborative Multi-Agent
Markov Decision Process (c-MMDP) is a tuple (N, X, U™, P,r) where N is a
set of n agents, X is a cartesian product of metric state spaces X = [[;cn &,
U™ = [],en Ui is a joint set of actions, P : U™ — PY*X s a probability measure
of the transitions between states and v : X x U™ x X — R is a reward function.

Assumption 1. We assume that each agent ¢ has access to a set X; C X, such
that the observed state for agent i is x(i) € X;. That is, the global state at
time t is x; = (x¢(1) %4(2) ...x¢(n))T. Furthermore, we assume that the space
X accepts a sup-norm || - || -

In the c-MMDP case, we can use U € U™ to represent a specific joint action
U :={U(1),U(2),...,U(n)}, and II := {my,7a,...,m,} to represent the joint
policies of all agents such that I : X — U™. We assume in this work that
agents have a common reward function, determined by the joint action. That
is, even if agents do not have knowledge of the actions performed by others,
the reward they observe still depends on everyone’s joint action. Additionally,
we assume in the c-MMDP framework that the control of the agents is fully
distributed, with each agent having its own (deterministic) policy 7; that maps
the global state to the individual action, i.e. m; : X — U;. We define the optimal
policy in an MDP as the policy 7* that maximises the expected discounted
reward sum E[Y ., v'r |7, x0] Vxo € X over an infinite horizon, for a given
discount v € (0,1). The optimal joint (or centralised) policy in a ¢-MMDP is
the joint policy II* that maximises the discounted reward sum in the “centrally
controlled” MDP, and this policy can be decomposed in a set of agent-specific
optimal policies IT* = {n}, 75, ..., 7}

Remark 1. Assumption 1 is satisfied in most MARL problems where the under-
lying MDP represents some real physical system (e.g. robots interacting in a
space, autonomous vehicles sharing roads, dynamical systems where the state
variables are metric...). In the case where X is an abstract discrete set, we can
still assign a trivial bijective map I : X — N and compute distances on the
mapped states [|x1 — Xa||oo = [|[(x1) — I(X2)]|co. However, we may expect the
methods proposed in this work to have worse results when the states are arti-
ficially numbered, since the map I may have no relation with the transition
probabilities (we come back to this further in the work).

2.3 Value Functions and Q-Learning in c-MMDPs

Consider a ¢-MMDP, and let a value function under a joint policy 11, VT :
X = Rbe VI(x) =", P (II(x))(r(x, I(x),x")+7V(x')). There exists an
optimal value function V* for a centralised controller in a c-MMDP that solves
the Bellman equation:

V*(x):= max Z Py (U)(r(x, U, x") + 4V*(x')).
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Now consider so-called Q functions @ : X x U™ — R on the centrally controlled
¢-MMDP [35], such that the optimal Q function satisfies

Q' (U) 1= 3 P06, UX) 71 @' (<, U)),

and the optimal centralised policy is given by U* := 7*(x) = argmaxy Q* (x, U).
Additionally, maxy Q*(x,U) = V*(x) = E[>_ o, vir(x, IT*(x),x') [x0].

3 Information Sharing Between Collaborative Agents:
Problem Formulation

Consider now the case of a c-MMDP where each agent has learned a distributed
policy m; : X — U,;. We are interested in the scenario where the state variable
x; € X at time ¢ is composed by a set of joint observations from all agents,
and these observations need to be communicated to other agents for them to
compute their policies.

Assumption 2. Agents have a set of optimal policies IT* available for executing
on-line and a global optimal function Q* (learned as a result of e.g. a multi-agent
actor critic algorithm [20]).

Consider the case where at a given time ¢, a subset of agents N; C N does not
share their state measurements with other agents. Let ¢; be the last time agent
1 transmitted its measurement. We define x; € X as

Xt o= (%, (1), %4, (2), ooy X2, (02)) . (1)

That is, x; is the last known state corresponding to the collection of agent states
last transmitted, at time t. Then, the problem considered in this work is as
follows.

Problem 1. Consider a c-MMDP with a set of optimal shared state policies IT*.
Synthesise strategies that minimise the communication events between agents and
construct distributed policies 1T that keep the expected reward within some bounds
of the optimal rewards, these bounds being a function of design parameters.

4 Efficient Communication Strategies

To solve the problem of minimizing communication, we can first consider a sce-
nario where agents can request state measurements from other agents. Consider a
c-MMDP where agents have optimal policies IT*. If agents are allowed to request
state observations from other agents at their discretion, a possible algorithm to
reduce the communication when agents execute their optimal policies is to use
sets of neighbouring states D : X — 2% such that D(x) = {x' : ||x — x'|| < d}
for some maximum distance d. Agents could compute such sets for each point
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Ta(x)

X

Fig. 1. Robustness surrogate representation.

in space, and request information from others only if the optimal action changes
for any state x’ € D(x). This approach, however, is not practical on a large scale
multi agent system. First, it requires agents to request information, which could
already be considered a communication event and therefore not always desir-
able. Additionally, computing the sets “on the fly” has a complexity of O(|X|?)
in the worst case, and it has to be executed at every time-step by all agents.
We therefore propose an approach to reduce communication in a MARL system
where agents do not need to request information, but instead send messages (or
not) to other agents based on some triggering rule.

4.1 Event-Driven Interactions

To construct an efficient communication strategy based on a distributed trigger-
ing approach, let us first define a few useful concepts. In order to allow agents to
decide when is it necessary to transmit their own state measurements, we define
the robustness indicator I' : X — R>¢ as follows.

Definition 3. For a c-MMDP with optimal global Q* : X x U™ — R, we define
the robustness surrogate I, : X — R>o with sensitivity parameter o € R>( as:

Iy (x) == max{d |Vx : |x' — x||oc <d =
S Q" (<, 1°(x)) 2 V*(x') — a}.
The function I, gives a maximum distance (in the sup-norm) such that for
any state x’ which is I, close to x guarantees the action IT*(x) has a @ value
which is « close to the optimal value in x’. A representation can be seen in

Fig. 1. Computing the function I, in practice may be challenging, and we cover
this in detail in following sections.

Proposition 1. Consider a ¢-MMDP communicating and acting according to
Algorithm 1. Let X! be the last known joint state stored by agent i at time t, and
X; be the true state at time t. Then, it holds:

Xt =%, VieN, (2)
H)A(t - XtHoo < Fa(f(t) Vt. (3)
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Algorithm 1. Self-Triggered state sharing
Initialise N agents at xq;
Initialise last-known state vector Xg = xg, i € N

t=0,
while t < t,,,, do
for i € N do
if ||x:(7) — %¢t—1(8)]loo > Ta(X¢—1) then
X (1) — x¢(i)
Send updated %;(i) to all N_;
end if
Execute action U} = 7F(%);
end for
t+ +;
end while

Proof. Properties (2) and (3) hold by construction. First, all agents update their
own X! based on the received communication, therefore all have the same last-
known state. Second, whenever the condition ||x4(¢) —X¢—1(%)||co > o (X) is vio-
lated, agent ¢ transmits the new state measurement to others, and X; is updated.
Therefore ||x; — X¢||oo > I'n(X:) holds for all times. O

Now let us use 7y = 7(x¢, IT*(X¢),X¢+1) as the reward obtained when using the
delayed state x; as input for the optimal policies. We then present the following
result.

Theorem 1. Consider a c-MMDP and let agents apply Algorithm 1 to update
the delayed state vector X;. Then it holds Vxy € X:

Ero[S (0, 1T (R0) %1001)] 2 V7 (%0) — a%.
t=0

Proof. From Proposition 1, ||x: —X¢t|leco < I'n(Xt) Vt, and recalling the expression
for the optimal @ values:

Q" (x¢, IT"(%X¢)) = Ex, [P + 7V (x¢51)] =2 V7 (x¢) — . (4)

Now let V(xg) := Ex, [>-i20 7' 7] be the value of the policy obtained from exe-
cuting the actions IT*(x;). Then:

oo

By, [3 7' = By [0 + 7V (x1)]

t=0
= Ex,[fo + 7V (x1) +7V*(x1) =7V (x1)]
= Bxo[fo + 7V (x1)] +7Ex, [V (x1) = V7 (x1)]-
Then, substituting (4) in (5):

Ex,[Y '] 2V (x0) = a+ 7Ex, [V (x1) = V7 (x1)]. (6)
t=0
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Now, observe we can apply the same principle as in (5) for the last term in (6),

V(x1) — V*(x1) = Bx, [f1 + 7V (x2)] — V*(x1)
= Q" (x1, IT*(X1)) + 7Ex, [V (x2) — V*(x2)] — V*(x1) )
> V*(x1) — o — V*(x1) + 7Ex, [V(x2) — V*(x2)]

= —a+7Ex [V(x2) = V*(x2)]-
Substituting (7) in (6):
Exo[Y 7' 2 V7 (x0) = a —ya +9° By, [By, [V (x2) = Vi (x2)]l. (8)
t=0

Now it is clear that, applying (7) recursively:

o0

Ey,[> A7) > V¥ (x0) —
t=0
o (9)
— Y0+ 77 Exy [ B, [V (x2) = V*(x2)]] > V*(x0) —a Y _~".
k=0
Substituting Yy, 7* = = in (9):
= ta * Y
Exo[;’}’ 7] > V*(x0) — ag —

5 Robustness Surrogate and Its Computation

The computation of the robustness surrogate I, may not be straight forward.
When the state-space of the c-MMDP is metric, we can construct sets of neigh-
bouring states for a given x. Algorithm 2 produces an exact computation of the
robustness surrogate I, for a given c-MMDP and point x. Observe, in the worst
case, Algorithm 2 has a complexity of O(|X]) to compute the function I, (x) for
a single point x. If this needs to be computed across the entire state-space, it
explodes to an operation of worst case complexity O(]X|?). In order to compute
such functions more efficiently while retaining probabilistic guarantees, we can

make use of the Scenario Approach for regression problems [5].

5.1 Learning the Robustness Surrogate with the Scenario Approach

The data driven computation of the function I, can be proposed in the terms of
the following optimization program. Assume we only have access to a uniformly
sampled set Xs C X of size |Xs| = S. Let 1Y be an approximation of the
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Algorithm 2. Computation of Robustness Indicator

Initialise x.
Initialise d = 1.
Done = False
while Not Done do
Compute Set X9 := {x' : ||x — x'|| = d};
if Ix' € X4: Q*(x/, II*(x)) < V*(x') — a then
Done = True

else d + +

end if
end while
I,(x)=d-1

real robustness surrogate parametrised by 6. To apply the scenario approach
optimization, we need I ¥ to be convex with respect to @. For this we can use a
Support Vector Regression (SVR) model, and embed the state vector in a higher
dimensional space trough a feature non-linear map ¢(-) such that ¢(x) is a feature
vector, and we use the kernel k(x1,x2) = (¢(x1), #(x2)). Let us consider sampled
pairs {(xs,¥s)}s, with ys = I',(xs) computed through Algorithm 2. Then, we
propose solving the following optimization problem with parameters 7, p > O:

S
. 2
e, (s TIO) + 06
£;,>0,i=1,2,..., S =1

st |y —k(0,x;)—b| -k <&, i=1,...,5.

(10)

The solution to the optimization problem (10) yields a trade-off between how
many points are outside the prediction tube |y — k(6*,%;) — b*| < x* and how
large the tube is (the value of k*). Additionally, the parameter p enables us to
tune how much we want to penalise sample points being out of the prediction
tube. Now take (6%, x*,b*, &) as the solution to the optimization problem (10).
Then, the learned robustness surrogate function will be:
I = k(0" x;) + b*.

From Theorem 3 [5], it then holds for a sample of points Xg and a number of
outliers s* := [{(x,y) € Xs : |y — k(0*,x) — b*| > k*}|:

Pgr {g(s*) <Pr {X :

Fa(x)—f’g*(x)‘>f~@*}§€(s*)}21—ﬁ (11)

where €(s*) := max{0,1 — £(s*)}, €(s*) := 1 — £(s*), and #(s*),t(s*) are the
solutions to the polynomial

S—1 , . s, .
S S—s* ﬁ ¢ i—k ﬁ t i—s* _
(s*)t 25 ; <s*>t 6S . o)t T 0

i=S+1
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Now observe, in our case we would like I, (x) > I'?" (x) to make sure we are
never over-estimating the robustness values. Then, with probability larger than

1-0:

€(s*) >Pr {x:

Ty(x)—1° (x)‘ >/£*} zPr{X:Fa(X)—fg*(x) < —/f*}

=Pr {x (Ta(x) < I (x) — /i*} .

(12)
Therefore, taking ||x;(i) —%;_1(i)||oo > %" (%;_1) — k* as the condition to trans-
mit state measurements for each agent, we know that the probability of using an
over-estimation of the true value I, (x:) is at most € (s*) with confidence 1 — 3.
Then, let {U;} be the sequence of joint actions taken by the system. The
probability of U; violating the condition Q*(x¢, U) > V*(x¢) — a for any x; € X
is at most € (s*). Then, we can extend the results from Theorem 1 for the case
where we use a SVR approximation as a robustness surrogate. Define the worst

possible suboptimality gap ¢ := maxx y |[V*(x) — Q*(x,U)]|.

Corollary 1. Let fg obtained from (10) from collection of samples Xs. Then,
a c-MMDP communicating according to Algorithm 1 using as trigger condition
% (1) = %¢—1(3)||oo > T (%¢_1) — K* yields, with probability higher than 1 — j3:

oo

Eyo[Y '] = V*(x0) =6,

t=0

with 6 := (a+€(s*) (1t — ) =

1—v"

Proof. Take expression (12), and consider the action sequence executed by the c-
MMDP to be {Ut},f'io. We can bound the total expectation of the sum of rewards
by considering {Ut}gﬁo to be a sequence of random variables that produce
Q* (x¢,Uy) > V*(x¢) — o with probability 1 — € (s*), and Q*(x¢, Uy) > V*(x¢) — ¢
with probability € (s*). Then,

oo o0

Ex,[Y_7'71] = BlEx,[Y_ 7' #{U}]] = ElEx,[fo + 7V (x1) [ {U}]
=0 =0 (13)

= BBy, lfo + 7V (x0) {U}] + 7B [V (1) = V7 (x0) {U:}]]-
Observe now, for the first term in (13):

E[Ex,[fo +7V* (x1) {U] = (

1—€(s"))(V*(x0) — @)
+ €(s) (V*(x0) — t) = V*(x¢) —

a—€e(s%) (Lt —a). (14)

Take the second term in (13), and ¥x; € X given actions {U,} it holds:

E[V(x1) = V*(x1)[{U}] = E[f1 +7V" (x2) +7(V(x2)) = V*(x2))
— V' (x)HU] = —a —(s") (. — @) + 7BV (x2) = V7 (x2)]-
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Therefore, we can write
VE[Exy [V (1) = V* (1) {U}]] = 7 Exo [E[V (1) = V* (x1) {U+}]
> (o= (%) (0 = @) 4 B [BV (x2) = V* (x2)]))

At last, substituting (14) and (15) in (13):

B[ 71#1] 2 V7 0x0) = (o €(s) (e = ) (16)
t=0

We can interpret the results of Corollary 1 in the following way. When using the
exact function I, the sequence of actions produced ensures that, at all times,
an action is picked such that the expected sum of rewards is always larger than
some bound close to the optimal. When using the approximated fg*, however,
we obtain from the scenario approach a maximum probability of a real point
not satisfying the design condition: |x — x'|| < I'?" — k* A Q*(X/, I[T*(x)) <
V*(x') — a. When this happens during the execution of the c-MMDP policies
it means that the agents are using delayed state information for which they do
not have guarantees of performance, and the one-step-ahead value function can
deviate by the worst sub-optimality gap ¢.

6 Experiments

We set out now to quantify experimentally the impact of Algorithm 1 on the
performance and communication requirements of a benchmark c-MMDP sys-
tem. First of all, it is worth mentioning that the comparison of the proposed
algorithm with existing work is not possible since, to the best of our knowledge,
no previous work has dealt with the problem of reducing communication when
executing learned policies in a c-MMDP system. For this reason, the results are
presented such that the performance of different scenarios (in terms of differ-
ent I, functions) is compared with the performance of an optimal policy with
continuous communication.

6.1 Benchmark: Collaborative Particle-Tag

We evaluate the proposed solution in a typical particle tag problem (or predator-
prey) [20]. We consider a simple form of the problem with 2 predators and 1 prey.
The environment is a 10 x 10 arena with discrete states, and the predators have
the actions U; = {up, down, left, right, wait} available at each time step and can
only move one position at a time. The environment has no obstacles, and the prey
can move to any of the 8 adjacent states after each time step. The predators get
areward of 1 when, being in adjacent states to the prey, both choose to move into
the prey’s position (tagging the prey). They get a reward of —1 when they move
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Fig. 2. Particle Tag, Predators in orange, Prey in blue. (Color figure online)

into the same position (colliding), and a reward of 0 in all other situations. A
representation of the environment is presented in Fig. 2. The global state is then
a vector x; € {0,1,2,...,9}%, concatenating the x,y position of both predators
and prey. For the communication problem, we assume each agent is only able to
measure its own position and the prey’s. Therefore, in order to use a joint state
based policy 7; : {0,1,2,...,9}% — U, at each time-step predators are required
to send its own position measurement to each other.

6.2 Computation of Robustness Surrogates

With the described framework, we first compute the optimal @Q* function using a
fully cooperative vanilla @Q-learning algorithm [3], by considering the joint state
and action space, such that @ : {0,1,2,...,9}° x 4?2 — R. The function was
computed using v = 0.97. We then take the joint optimal policy as IT*(x) =
argmaxy Q*(x,U), and load in each predator the corresponding projection 7.
To evaluate the trade-off between expected rewards and communication events,
we compute the function I, by solving an SVR problem as described in (10)
for different values of sensitivity «. Then, the triggering condition for agents to
communicate their measurements is ||x;(7) — %;_1(i)[|oo > 17" (x) — K*.

The hyper-parameters for the learning of the SVR models are picked through
heuristics, using a sample of size S = 10* to obtain reasonable values of mis-
predicted samples s* and regression mean-squared error scores. Note that S =
651X |- To estimate the values €(s*), a coefficient of # = 1073 was taken, and the
values were computed using the code in [11]. For more details on the computation
of p-SVR models (or u—SVR) [27] see the project code!.

Figure3 shows a representation of the obtained SVR models for different
values of «, plotted over a 2D embedding of a subset of state points using a t-SNE
[21] embedding. It can be seen how for larger « values, more “robust” regions
appear, and with higher values of I,. This illustrates how, when increasing the
sensitivity, the obtained approximated I 0 " take higher values almost everywhere
in the state space, and form clusters of highly robust points.

! https://github.com/danieljarne/Event-Driven-MARL.
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Fig. 3. Obtained I’ models on a 2D embedding.
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6.3 Results

The results are presented in Table 1. We simulated in each case 1000 independent
runs of 100 particle tag games, and computed the cumulative reward, number
of communication events and average length of games. For the experiments,
E[] is the expected value approximation (mean) of the cumulative reward over
the 1000 trajectories, and in every entry we indicate the standard deviation of
the samples (after £). We use 7, as the generated trajectories (games) for a
corresponding parameter «, h(7,) as the total sum of communication events per
game for a collection of games, and g := > geTn % as the average length of a
game measured over the collected 7,. For the obtained Q* function, the worst
optimality gap is computed to be + = 1.57.

Table 1. Simulation results

h(Ta)

a | B[y q'r] 9

ery

g

2.72 1+ 0.50

10.72 £ 0.44

21.49 £0.89

2.00

0.4

2.72+£0.53

10.77 + 0.44

19.13 £0.87

1.78

16.33

0.5

1.62+0.92

12.45 +0.58

16.75 £ 0.85

1.35

22.39

0.6

0.99 +1.09

13.71 +£0.71

14.49 +0.87

1.06

26.61

0.7

0.93 +1.08

13.74 £ 0.69

14.09 £ 0.85

1.03

26.85

0.8

0.74 £1.10

14.65 £ 0.80

14.11 £0.87

0.96

28.10

0.9

0.64 +£1.08

14.82 +0.83

14.33 £0.88

0.96

31.69
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Let us remark the difference between the 4th and 5th column in Table 1. The
metric h(7,) is a direct measure of amount of messages for a given value of «.
However, note that we are simulating a fixed number of games, and the average
number of steps per game increases with «: the lack of communication causes
the agents to take longer to solve the game. For this reason we add the metric
h(7.)/g, which is a measure of total amount of messages sent versus amount of
simulation steps for a fixed « (i.e. total amount of steps where a message could
be sent). Broadly speaking, h(7,) compares raw amount of information shared
to solve a fixed amount of games, and h(7,)/g compares amount of messages
per time-step (information transmission rate). Note at last that there are two
collaborative players in the game, therefore a continuous communication scheme
would yield h(7,)/g = 2.

From the experimental results we can get an qualitative image of the trade-
off between communication and performance. Larger a values yield a decrease
in expected cumulative reward, and a decrease in state measurements shared
between agents. Note finally that in the given c-MMDP problem, the minimum
reward every time step is min r(x;, U, X¢+1) = —1, therefore a lower bound for the
cumulative reward is E[Y ;2 v'r] > —1%5 = —32.333. Then, the performance
(even for the case with & = 0.9 remains relatively close to the optimum computed
with continuous communication.

At last, let us comment on the general trend observed regarding the values
of a. Recall the bound obtained in Corollary 1, and observe that for « = 0.5 =
§ = 22.39. On average, E[V*(x¢)] ~ 2.72 when initialising x¢ at random (as
seen on Table1). This yields a quite conservative bound of E[V*(xq)] — 6 =
—19.67 on the expected sum of rewards, while the communication events are
reduced by around 22% due to the conservative computation of I',. One first
source of conservativeness is in Algorithm 1. When computing the exact value
I, (x) = d, it requires every point X’ : |[|x — X'||oc < d to satisfy the condition in
Definition 3. The number of states to be checked grows exponentially with d, and
many of those states may not even be reachable from x by following the MDP
transitions. Therefore we are effectively introducing conservativeness in cases
where probably, for many points x, we could obtain much larger values I, (x) if
we could check the transitions in the MDP. Another source of conservativeness
comes from the SVR learning process and in particular, the values of x*. Since
the states are discretised, ||x:(i) — Xt—1(i)]|co € {0,1,2,3,...,10}. Therefore, the
triggering condition is effectively constrained to ||x; (i) —X¢—1(i)|loc > |17 (x) —
k* ], which makes it very prone to under-estimate even further the true values
of I',(x). Additionally, for most SVR models we obtained predictions 1" (x) —
k* that are extremely close to the real value, so small deviations in k* can
have a significant impact in the number of communications that are triggered
“unnecessarily”.

7 Discussion

We have presented an approach to reduce the communication required in a col-
laborative reinforcement learning system when executing optimal policies in real
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time, while guaranteeing the discounted sum of rewards to stay within some
bounds that can be adjusted through the parameters o and €(s*) (this last
one indirectly controlled by the learning of data driven approximations fg)
The guarantees were first derived for the case where we have access to exact
robustness surrogates I, and extended to allow for surrogate functions learned
through a scenario approach based SVR optimization. In the proposed exper-
iments for a 2-player particle tag game the total communication was reduced
between 10%—44% and the communication rate by 12%-52%, while keeping
the expected reward sum E[3 ;% ~'r] € [0.68,2.76]. The conclusion to draw
from this is that, in general, agents are able to solve the c-MMDP problem
with delayed state information introduced through robustness surrogate trig-
gers, resulting in a significant reduction in communication requirements. When
extending these methods to larger number of agents, the main bottleneck is the
computation of I',. For many ¢-MMDPs the SVR representation may still be
an efficient approach to compute them, but otherwise more efficient approaches
(perhaps decentralised) could be devised.

The computation of the values I',(x) and the learning of the SVR models
for I'" (x) introduced significant conservativeness with respect to the theoret-
ical bounds. A possible improvement for future work could be to compute the
true values I, (x) through a Monte-Carlo based approach by sampling MDP
trajectories. This would yield a much more accurate representation of how “far”
agents can deviate without communicating, and the guarantees could be modi-
fied to include the possibility that the values I, (x) are correct up to a certain
probability. At last, we can come back now to the statements in Remark 1. It is
now evident how having a certain physical structure in the MDP (i.e. transition
probabilities being larger for states closer in space) would help mitigate the con-
servativeness. An MDP with large transition jumps with respect to the sup-norm
will result in more conservative and less meaningful robustness surrogates.

Other problems that branch out of this work are the implications of learn-
ing robustness surrogate functions. These functions could be used to modify the
agent policies, to sacrifice performance in favour of robustness versus communi-
cation faults or attacks. Finally, it would be insightful to compare the approaches
presented in this work with ideas in the line of [10], where we can incorporate
the communication as a binary action (to communicate or not) into the learning
algorithm, to optimise simultaneously with the sum of rewards.

Acknowledgements. The authors want to thank Gabriel Gleizer, Giannis Delimpal-
tadakis and Andrea Peruffo for the useful and insightful discussions related to this
work.
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