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Abstract

One way to prevent collisions and deadlocks between agents on infrastruc-
tures with capacity constraints is to use context-aware route planning algo-
rithms. In context-aware route planning, there is a set of agents each planning
a conflict-free route from a start location to a destination location on a common
infrastructure. If a sequential approach is used for route planning, finding an
optimal conflict-free route for a single agent can be done in polynomial time by
allowing agents to place reservations on infrastructure resources for the intended
periods of occupation.

In the multi -stage variant of the context-aware route planning problem,
there is a sequence of locations to be visited by an agent instead of just a start
and destination location as in single-stage route planning. A straightforward
approach to the multi-stage route planning problem would be concatenating
subsequent routes found by a single-stage algorithm. However, this solution is
incomplete and sub-optimal in case of context-aware route planning. Therefore,
we developed three multi-stage route planning algorithms that always return
an optimal route for a single agent, given a set of reservations made by pre-
vious agents. The results of our experiments show that one of the multi-stage
algorithms is suitable for use in practice, since the cpu-time needed to make a
route is at most a few tenths of a second.
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Chapter 1

Introduction

When a set of agents have to travel on a common infrastructure consisting of re-
sources with a limited capacity, collisions and deadlocks between the agents can
occur. An example of a collision is when two agents travel on a resource in opposite
directions (see figure 1.1). If there is not enough room for the agents to pass each
other, they will run into each other. However, if the agents are for example equipped
with sensors, then the example results in a deadlock situation. The agents are forced
to stop in front of each other, and no further transport is possible.

 

A1 A2

Figure 1.1: Two agents travel towards each other.

One way to prevent collisions and deadlocks on infrastructures with capacity
constraints is to use context-aware route planning algorithms. In context-aware
route planning [8, 14], there is a set of agents each planning a conflict-free route
from a start location to a destination location on a common infrastructure. A
route, also called a plan, consists of a path and a corresponding schedule. A path
is a sequence of resources, which have to be visited by the agent, and a schedule
gives arrival and departure times for the resources of the path. Context-awareness
means that an agent that is computing a plan has to take into account the plans
of other agents that also want to use the infrastructure. As such, context-aware
route planning is an attempt to resolve possible conflicts between agents before the
execution of the agent plans. Other approaches to handle the problem of collisions
and deadlocks are described in [15].

An example of an application where context-aware route planning plays a role is
an automated guided vehicle system (AGVS). An AGVS is a driverless vehicle-based
transportation system. Traditionally, they are used in manufacturing plants [17] and
warehouses [10, 16] to transport materials betweens locations of the facility. Cur-
rently, automated guided vehicles (AGVs) are also used for transportation tasks in
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1. Introduction

other areas, such as container terminals (e.g. in Singapore, Rotterdam, or Ham-
burg), where AGVs carry containers to and from ships [9, 11].

Another application domain is taxi route planning for airplanes at airports [14].
In taxi route planning, conflict-free routes have to be found for airplanes on the
infrastructure of the airport. This infrastructure consists of runways, taxiways,
aprons, gates, etc. For example, when an airplane is about to land to pick up
or drop off some passengers, a route needs to be found from a runway, where the
airplane can land, to a gate, where passengers can leave and enter the airplane,
and then from the gate to a runway to take off. It is obviously important that the
airplane never comes into contact with other airplanes on his route.

1.1 Problem Statement

In single-stage route planning an agent has a start location and a destination loca-
tion. A route has to be found for this agent in such a way that this agent doesn’t
interfere with other agents on the infrastructure. In multi -stage route planning
there is a sequence of locations to be visited by an agent instead of just a start and
destination location as in single-stage route planning. The multi-stage route plan-
ning problem can occur in all of the aforementioned problem domains, since agents
frequently have more than one task to perform. At airports, for example, wintry
conditions sometimes require snow and ice to be removed from wings and fuselage
shortly before take off. This means that an airplane cannot taxi directly from the
gate to the runway, because it must first make a stop at a de-icing station, which
may be located elsewhere at the airport. In manufacturing, an automated guided
vehicle (AGV) may have a sequence of transportation tasks to perform, and it must
also make the occasional trip to the battery charging station in between orders.

As far as we know, the multi-stage route planning problem hasn’t been studied
previously in the literature. The reason might be that often, the shortest route
along a sequence of resources is simply the concatenation of shortest routes between
successive resources. However, in context-aware route planning, this concatenation
approach might return a non-optimal route, or even no route at all (even when
a route does exist). Therefore, finding a complete and optimal algorithm for the
multi-stage route planning problem becomes the subject of our research.

Note that a related, but more general, problem that has been studied exten-
sively is the Traveling Salesperson Problem (TSP) [2], in which there is a set (i.e.,
unordered) of locations that must be visited with minimum total cost. However,
the generality afforded by the TSP is not required in our intended applications; for
instance, in the airport de-icing scenario, an agent need not consider route plans
where the airplane takes off prior to de-icing.
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Overview and Contributions

1.2 Overview and Contributions

Having briefly introduced the multi-stage route planning problem, the remainder of
this introduction presents a brief overview of its treatment, and a description of our
most important contributions.

The first contribution of this master’s thesis is the identification of the multi-stage
route planning problem. When concatenation of shortest routes between successive
resources is sufficient to find a multi-stage route, the multi-stage problem is trivial.
However, we found out that this concatenation approach is incomplete and non-
optimal in case of context-aware route planning. The second and main contribution
of this thesis is the formulation of three complete and optimal multi-stage route
planning algorithms, and the analysis of these algorithms. The third contribution is
an empirical evaluation of the multi-stage route planning algorithms.

In chapter 2 we will describe a framework for context-aware route planning, and
we will explain a single-stage route planning algorithm. The algorithm is based on
the concept of free time windows: time intervals in which an agent can use a resource
without introducing conflicts with other agents. In chapter 3 we will explain the
multi-stage route planning problem. We will demonstrate why the concatenation
of plans found by the single-stage route planning algorithm is an incomplete and
sub-optimal approach to multi-stage route planning. During our research, we have
developed three complete and optimal multi-stage algorithms, which we will present
in chapter 4. For each algorithm a specification is given together with a proof
of correctness and an analysis of its complexity. In chapter 5 we tested the need
for a complete and optimal multi-stage route planning algorithm by empirically
investigating the failure rate and plan quality of the trivial concatenation approach
from chapter 3. Furthermore, we examined the execution times of the complete
and optimal multi-stage algorithms from chapter 4. Finally, chapter 6 will give
a summary and a conclusion. Furthermore, some ideas for future work will be
discussed.
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Chapter 2

Context-Aware Single-Stage
Route Planning

In general, context-aware route planning is about finding a collectively optimal set of
conflict-free plans for agents on a common infrastructure. In [13] is proved that this
problem is NP-hard. However, if a sequential approach is used for route planning,
which means that agents make plans one after the other, finding an optimal conflict-
free route plan for a single agent can be done in polynomial time. Therefore, we will
focus on this sequential approach.

In this chapter a framework for context-aware route planning is presented, and
a single-stage route planning algorithm is discussed. The first section describes the
model that is used for the infrastructure. In section 2.2 a definition is given for
an agent plan. Furthermore, we look at the cost of an agent plan, and several
constraints for agent plans are discussed. Section 2.3 describes the framework that
models the solution method that is based on placing reservations on resources. The
idea for the route planning algorithm is that an agent makes a plan, and then it
places reservations on the resources for the intended periods of occupation. During
planning, an agent is only allowed to use time intervals that do not conflict with the
set of existing reservations on the resources. These time intervals are called free time
windows. The set of free time windows and the reachability between the free time
windows form a graph structure: the free time window graph. In the last section
a single-stage route planning algorithm is explained. This algorithm uses the free
time window graph to find a shortest-time, conflict-free route plan for an agent.

2.1 Infrastructure Model

An infrastructure is a graph G = (V,E), where V is a set of vertices representing
intersections and locations, and E ⊆ V ×V is a set of edges. These edges can be both
directed or undirected, and we will use the term lane to refer to both types of edge.
Because collisions between agents should be avoided on intersections, locations, and
lanes, and not only lanes have non-zero travel time, we treat all elements of the
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2. Context-Aware Single-Stage Route Planning

infrastructure in the same way. Therefore, we transform the infrastructure graph G
to a resource graph GR = (R,ER). The set of vertices of the resource graph is the
set of (infrastructure) resources: R = V ∪ E. We derive the set of arcs ER in the
following manner: for each undirected edge e = {v, w} ∈ E, the set ER contains
the pairs (v, e), (e, w), (w, e), and (e, v); for each arc (directed edge) (v, w) ∈ E,
ER contains the pairs (v, e) and (e, w). See figure 2.1 for a translation of a simple
infrastructure to a resource graph. The set of arcs ER can be interpreted as a
successor relation: if (r, r′) ∈ ER, then an agent can go directly from resource r to
resource r′.

e

v1 v2

 

(a) Infrastructure graph.

 

v1 v2 e 

(b) Resource graph.

Figure 2.1: An infrastructure graph G, and the corresponding resource graph GR.

We associate two attributes with every resource r ∈ R: a capacity and a min-
imum travel time. The function tt : R → T+ gives the minimum travel time of a
resource. The set T is the set of possible time points, and it consists of the set of
non-negative real numbers; the set T+ consists of only positive real numbers. The
capacity is a function cap : R → N+ that specifies the maximum number of agents
that can simultaneously occupy a resource. We will assume that all intersections
and locations (i.e., resources in V ) have a capacity of one.

2.2 Agent Plans

We define a set A of agents that can traverse the infrastructure. Each agent Ai ∈ A
has one start location r ∈ R and one destination location r′ ∈ R. In order to
determine a set of conflict-free plans, agents have to specify exactly for each time
point which resource they will occupy.

Definition 2.2.1 (Agent Plan). Given an agent Ai ∈ A, a start location r ∈ R,
a destination location r′ ∈ R, and a start time t ∈ T , a plan for Ai is a sequence
π = (〈r1, τ1 = [t1, t′1)〉, . . . , 〈rn, τn = [tn, t′n)〉) of n plan steps such that r1 = r,
rn = r′, t1 ≥ t, and ∀j ∈ {1, . . . , n}:

1. interval τj meets interval τj+1 (j < n);

2. |τj | ≥ tt(rj);

3. (rj , rj+1) ∈ ER (j < n).

6



Agent Plans

The first constraint in the above definition makes use of Allen’s interval alge-
bra [1]1, and states that the exit time out of the jth resource in the plan must be
equal to the entry time into resource j + 1. The second constraint requires that the
agent’s occupation time of a resource is at least sufficient to traverse the resource in
the minimum travel time. The third constraint states that if two resources follow
each other in the agent’s plan, then they must be adjacent in the resource graph.

The single objective in route planning that we will consider is to minimize com-
pletion time. Hence, we define the cost of an agent plan as the end time of the
plan. The cost of a set of agent plans is simply the maximum of the individual plan
costs. This is called the makespan of the plans, i.e., the time at which all agents
have completed their plan.

Definition 2.2.2 (Plan Cost). Given an agent plan π = (〈r1, τ1 = [t1, t′1)〉, . . . , 〈rn, τn
= [tn, t′n)〉), the cost of π is defined as c(π) = t′n. The cost of a set Π of agent plans
is defined as c(Π) = maxπi∈Π(c(πi)).

As described above, an agent plan defines for each point in time which resource
the agent occupies. From a set of agent plans, we can now derive the number of
agents that occupy a particular resource at a certain point in time.

Definition 2.2.3 (Resource Load). Given a set Π of agent plans, the resource load
λ is a function λ : R×T → N that returns the number of agents occupying a resource
r at time point t:

λ(r, t) = |{〈r, τ〉 v π | π ∈ Π ∧ t ∈ τ}|

In context-aware route planning it is crucial that the resource load never exceeds
the capacity of a resource, because agents need to find plans that do not interfere
with each other. In other words, to avoid collisions we need to be sure that there
are never more agents on a resource than its capacity allows. This is the resource
load constraint:

∀r∀t : λ(r, t) ≤ cap(r) (2.1)

In many realistic application domains, there are additional constraints that a set
of agent route plans must satisfy. We will now discuss three constraints that may
be considered in addition to the basic resource load constraint.

2.2.1 Additional constraints

The first additional constraint concerns how agents go from one resource to another.
This constraint, which was first considered by Hatzack and Nebel [7], is necessary
in some application domains to rule out head-on conflicts [3]. A head-on conflict

1We make use of the meets predicate, which means that the end of one interval is equal to the
start of the second, and the precedes predicate, which means that the end of one interval is earlier
than the start of the second.
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2. Context-Aware Single-Stage Route Planning

between two agents will occur if they exchange resources at the same point in time,
and there is not enough space at the intersection of the resources involved. The
second constraint specifies that a bidirectional lane resource may only be used in
one direction at the same time, to rule out the possibility of oncoming traffic [8, 13].
This way no head-on conflicts can occur on lane resources. This constraint can be
needed if there is not enough room for the agents to pass each other on the resource.
The third constraint prevents agents from overtaking each other on a lane resource,
so no catching-up conflicts [3] can occur on lane resources [8, 13]. The last two
constraints are commonly relevant when lane resources are long and narrow, and
there is no room for two agents to drive side-by-side.

Simultaneous resource exchanges

The first constraint that we will discuss is a constraint to prevent simultaneous re-
source exchanges between agents. When there is not enough space at the intersection
of two resources, a head-on conflict between two agents can occur if they exchange
resources at the same point in time. Consider figure 2.2 for an example situation.
We have two resources r1 and r2 of unit capacity, and ER = {(r1, r2), (r2, r1)},
i.e., travel is possible in both directions. Furthermore, imagine we have two agents
A1 and A2, with the following respective plans: π1 = (〈r1, [0, 5)〉, 〈r2, [5,∞)〉) and
π2 = (〈r2, [0, 5)〉, 〈r1, [5,∞)〉). Note that the union of these plans does not at any
time exceed the capacity of the resources, and these plans therefore seem conflict-
free.

A1 A2

r1 r2

 

(a) Situation at time t < 5.

 

r2r1 

A2 A1

(b) Situation at time t > 5.

Figure 2.2: Agent A1 and agent A2 exchange resources at time 5.

The problem with these plans is that at time 5, the two agents ‘exchange’ re-
sources. Unless there is enough space to maneuver at the intersection of resources
r1 and r2, this attempted resource exchange will result in a collision. This collision
can be prevented by the following constraint:

∀i∀j : (〈r, [ , t1)〉, 〈r′, [t1, )〉) v πi ∧
(〈r′, [ , t2)〉, 〈r, [t2, )〉) v πj →

t1 6= t2

(2.2)

Note that because locations and intersections are connected by lanes, and lo-
cations and intersections by definition have a capacity of one (see section 2.1), we
do not have to take into account the situation that two connected resources both

8



Agent Plans

have a greater capacity than one. In that case the situation of figure 2.2 would not
necessarily result in a collision, and we would need another constraint that considers
the capacity of the resources involved (cf. [13]).

Bidirectional lane traversal

The second constraint prevents a bidirectional lane resource being used by multiple
agents in both directions at the same time. This constraint is necessary if there is
not enough room for the agents to pass each other on the resource. If a resource r is
a bidirectional lane connecting intersections v and w (i.e., {v, w} ∈ E), then agents
can travel both from v to w via r, and also from w to v. The constraint states that
if there is an agent that occupies r in the interval [t, t′), and this agent is going from
v to w, then no agent may be going from w to v along the same resource r, between
t and t′. This implies that if two agents have overlapping occupation intervals on r,
then they must enter r from the same intersection:

∀i∀j : (〈v, 〉, 〈r, τ〉, 〈w, 〉) v πi ∧
(〈w, 〉, 〈r, τ ′〉, 〈v, 〉) v πj →

τ ∩ τ ′ = ∅
(2.3)

Note that if intervals τ and τ ′ from equation 2.3 meet, e.g. τ = [0, 3) and
τ ′ = [3, 6), then a simultaneous resource exchange takes place at time 3 between
resources r and w. If simultaneous resource exchanges are not allowed, then τ and
τ ′ cannot meet.

Overtaking

The third constraint prevents agents from overtaking each other on a lane resource.
If overtaking on lane resources is forbidden, then the interval in which an agent may
use the resource is constrained by the agents that already occupy the resource. That
is, an agent that wants to use the resource has to take into account the agent that
enters the resource directly before it, called the leading agent, and the agent that
enters the resource directly after it, called the trailing agent. Consider the following
example.

Suppose we have a resource with a capacity of 3. Agent A1 traverses the resource
during interval [20, 50), and agent A2 traverses the resource during interval [50, 70)
(see figure 2.3). If now a third agent A3 wants to use the resource somewhere during
interval [20, 70), then agent A3 needs to drive in between agents A1 and A2; agent
A1, which enters the resource first, is A3’s leading agent, whereas agent A2, which
enters the resource last, is the trailing agent.

The interval in which agent A3 can make use of the resource is constrained by
agents A1 and A2, despite the fact that the capacity of the resource is never exceeded.
Agent A3 has to enter the resource later than time 20, but earlier than time 50 to
traverse the resource in between agents A1 and A2. Furthermore, agent A3 needs to
exit the resource later than time 50 to avoid a catching-up conflict with agent A1,
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2. Context-Aware Single-Stage Route Planning

A2 A1

[50,70) [20,50) 

 

Figure 2.3: Agent A1 is leading A2.

and agent A3 has to exit the resource earlier than time 70 to avoid a catching-up
conflict with agent A2. Hence, the entry and exit times of agent A3 are governed by
the following equations:

entry(A1) < entry(A3) < entry(A2)
exit(A1) < exit(A3) < exit(A2)

The general overtaking constraint specifies that if two plan steps make use of the
same resource, then the one that starts earlier should also finish earlier:

∀i∀j : 〈r, [t1, t2)〉 v πi ∧ 〈r, [t3, t4)〉 v πj →
(t1 > t3 ∧ t2 > t4) ∨ (t3 > t1 ∧ t4 > t2)

(2.4)

Equation 2.4 ensures that agents exit resources in the order that they entered
them, and as a result it allows agents to execute their plans without overtaking
maneuvers taking place.

2.3 Reservations and Free Time Windows

As said in the introduction of this chapter, we take a sequential approach to route
planning. The idea for route planning is that the first agent makes a plan, and then
it places reservations on the resources for the intended periods of occupation. The
second agent to make a plan has to take into account these reservations to avoid
conflicts with the first agent. In general, agent n (i.e., the nth agent to make a plan)
has to plan ‘around’ the reservations of agents 1, . . . , n − 1 to avoid conflicts with
the first n − 1 agents. Hence, an agent that wants to make a plan is only allowed
to use time intervals that do not conflict with the set of existing reservations on the
resources. These time intervals are called free time windows.

Given a set of agent plans, the resource load of a resource tells us exactly when a
resource is free to be used by other agents. During a time interval when the resource
load is at least one less than the capacity, another agent may enter the resource.
Figure 2.4 depicts the resource load for some resource r in the interval [0, 10). The
capacity of r is 3, and we see that during the intervals [4, 6) and [7, 8) this capacity
is fully utilized. During the intervals τ = [0, 4), τ ′ = [6, 7), and τ ′′ = [8, 10) there is
room for (at least) one more agent. However, if we assume that the minimum travel
time of r is 2, then the interval τ ′ = [6, 7) is too short to be of use to any agent.
Therefore, the only free time windows are τ and τ ′′.
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1 2 3 4 5 6 7 8 90 10

λ(r, t)

cap(r)

t→

Figure 2.4: Resource load for resource r with capacity 3.

Definition 2.3.1 (Free Time Window). Given a resource-load function λ, a free
time window on resource r is a maximal interval f = [t1, t2) such that:

1. ∀t ∈ f : λ(r, t) < cap(r);

2. (t2 − t1) ≥ tt(r).
The above definition states that for an interval to be a free time window, there

should not only be sufficient capacity at any moment during that interval (condition
1), but it should also be long enough for an agent to traverse the resource (condition
2). The set of all free time windows F = (F1, . . . , F|R|) is partitioned into |R| sets:
one set of free time windows Fi for every resource ri ∈ R. Note that the set of free
time windows Fi on resource ri is a vector (fi,1, . . . , fi,m) of disjoint intervals such
that for all j ∈ {1, . . . ,m− 1}, fi,j precedes fi,j+1.

Within a free time window, an agent must enter a resource, traverse it, and exit
the resource. Because of the (non-zero) minimum travel time of a resource, an agent
cannot enter a resource right at the end of a free time window, and it cannot exit
the window at the start of one. We therefore define for every free time window f
an entry window τentry(f) and an exit window τexit(f). The sizes of the entry and
exit windows of a free time window f = [t1, t2) on resource r are constrained by the
minimum travel time of the resource:

τentry(f) = [t1, t2 − tt(r)) (2.5)
τexit(f) = [t1 + tt(r), t2) (2.6)

An agent that wants to go from resource r to resource r′ should find a free time
window for both of these resources. By definition 2.2.1 of an agent plan, the exit
time out of r should be equal to the entry time into r′. Hence, for a free time window
f ′ on r′ to be reachable from free time window f on r, the entry window of f ′ should
overlap with the exit window of f .

Definition 2.3.2 (Free Time Window Reachability). Given a free time window f
on resource r, and a free time window f ′ on resource r′, free time window f ′ is
reachable from f , denoted (f, f ′) ∈ EF , if:

11
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1. (r, r′) ∈ ER;

2. τexit(f) ∩ τentry(f ′) 6= ∅.

The set of free time windows F together with the reachability relation EF form
a graph structure: the free time window graph.

Definition 2.3.3 (Free Time Window Graph). The free time window graph GF =
(F,EF ) is a directed graph where the set of vertices, given by F =

⋃|R|
i=1 Fi, is the set

of free time windows, and the set of edges is given by the reachability relation EF .

The vertices (i.e., the free time windows) of the free time window graph represent
the times at which resources can be entered by an agent without introducing conflicts
with other agents. The edges of the free time window graph specify the reachability
between the free time windows. In section 2.4 we will show how an agent can find
an optimal conflict-free route by performing a search through this free time window
graph.

Definition 2.3.1 of a free time window is only based on the resource load con-
straint: an agent may enter a resource if there is enough capacity left. In section 2.2.1
additional constraints for agent plans were discussed. We will now discuss how the
definition of a free time window can be extended to take these additional constraints
into account.

2.3.1 Additional constraints and free time windows

In this section, we show how each of the additional constraints from section 2.2.1
can be ‘encoded’ into the definition of a free time window.

Simultaneous resource exchanges

The first constraint that we discussed was a constraint that prevented a head-on
conflict when two agents exchange resources at the same point in time. We will
show that under definition 2.3.1 of a free time window, a simultaneous resource
exchange is not possible.

Take a look at figure 2.2 again. Imagine now that agent A1 computed his plan
π1 = (〈r1, [0, 5)〉, 〈r2, [5,∞)〉), and reserved this plan on resources r1 and r2. After
reserving plan π1 there is one free time window on resource r1: f1,1 = [5,∞) that
starts after A1 has left the resource, and one free time window on resource r2:
f2,1 = [0, 5) prior to A1’s traversal.

If agent A2 now computes his plan, and wants to perform a simultaneous resource
exchange with agent A1, it would make the plan π2 = (〈r2, [0, 5)〉, 〈r1, [5,∞)〉). The
free time windows used by this plan are f2,1 and f1,1 respectively. However, f1,1

is not reachable from f2,1 according to definition 2.3.2, since [0, 5) ∩ [5,∞) = ∅.
Hence, if we make use of the free time window graph to find a plan for A2 from r2

to r1, then we cannot find the plan π2 that would perform a simultaneous resource
exchange with A1.
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Bidirectional lane traversal

The second constraint that we discussed ensured that a lane resource is only used
in one direction at the same time to prevent head-on conflicts. We can prevent
bidirectional lane traversal by maintaining one set of free time windows for each
direction of the bidirectional lane resource. We can deduce the direction of an agent
plan step from the preceding plan step. Suppose we have a lane resource r that
is connected to intersections v and w. If an agent plan contains the subsequence
(v, r), then the agent will exit r at w (see figure 2.5). If an agent plan contains the
subsequence (w, r), then the agent travels in the opposite direction, and will exit r
at v.

v 

 
 

A1 r w

Figure 2.5: Agent A1 will enter lane resource r from intersection v, and must there-
fore exit r via intersection w.

We introduce the augmented resource load function λa : R × R × T , such that
λ(r′, r, t) specifies the number of agents that are on resource r at time t, and have
come directly from resource r′.

Definition 2.3.4 (Directed Free Time Window). Given an augmented resource-load
function λa, and two intersection resources v and w connected by lane resource r, a
free time window on resource r is a maximal interval f = [t1, t2) such that:

1. ∀t ∈ f : λa(v, r, t) < cap(r);

2. ∀t ∈ f : λa(w, r, t) = 0;

3. (t2 − t1) ≥ tt(r).

In definition 2.3.4, the free time window f is implicitly defined for the direction
from v to r. To obtain the free time window in the other direction, we can exchange
v and w.

Overtaking

The third constraint that we discussed ensured that agents cannot overtake each
other on a lane resource to prevent catching-up conflicts. The constraint stated
that if an agent enters a resource before another, it should also exit the resource
first. For this constraint, we need to redefine a free time window in terms of the
plan steps of the leading and trailing agents. Let τlead(r, t) be the plan step of the
first agent to enter resource r before time t, and let τtrail(r, t) be the plan step of
the first agent to enter resource r after time t. We will also assume that there is
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a minimum separation time δ between two successive agents. Hence, if an agent
traverses a resource in the interval [t1, t2), then no agent may enter the resource in
(t1 − δ, t1 + δ), and no agent may exit the resource during (t2 − δ, t2 + δ).

Definition 2.3.5 (Free Time Window no Overtaking). Given a resource-load func-
tion λ, an intended entry time t∗, a leading-agent interval τlead(r, t∗) = [t1, t2), a
trailing-agent interval τtrail(r, t∗) = [t3, t4), and a minimum separation time δ, a
free time window on resource r that does not allow overtaking is a maximal interval
f = [t, t′) such that:

1. t = t1 + δ;

2. t′ = t4 − δ;

3. ∀ti ∈ f : λ(r, ti) < cap(r);

4. (t′ − t) ≥ tt(r).

The entry and exit windows of f are specified by

τentry(f) = [t1 + δ, t3 − δ) (2.7)
τexit(f) = [t2 + δ, t4 − δ) (2.8)

In case there is no leading agent, we can set τlead(r, t) = [−δ, tt(r) − δ], and if
there is no trailing agent, we can set τtrail(r, t) = (∞,∞).

2.4 Single-Stage Route Planning

In this section a single-stage route planning algorithm by Ter Mors, Zutt, and Wit-
teveen [14] is explained. They present an algorithm that uses the free time window
graph GF = (F,EF ) to find a shortest-time route plan for a single agent, while re-
specting the reservations of previous agents. The algorithm searches for a shortest-
time path through the free time window graph, and finds an optimal conflict-free
route plan on both unidirectional and bidirectional infrastructures. The algorithm
is based on the A* search algorithm [4, 6, 12]. Therefore, we will start with an
explanation of the A* algorithm.

2.4.1 The A* algorithm

Firstly, we will give a description of the A* algorithm. Then, we will mention some
interesting properties of the A* algorithm, and give a specification. We will conclude
with a simple example.
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Algorithm description

The A* algorithm is a best-first graph search algorithm that finds the least-cost
path from a start node to a destination node. It first searches the nodes that appear
to be most likely to lead to a shortest path to the destination node. To accomplish
this, A* uses an estimated cost function y(v) to determine the order in which the
search visits nodes in the graph. In the traditional A* notation the symbol f is used
for the estimated cost function, but we already use the symbol f for a free time
window, so instead we will use y for the estimated cost function. The function y(v)
is the sum of two functions:

• g(v): The partial cost function that calculates the cost from the start node to
the current node v.

• h(v): A heuristic function that estimates the cost from the current node v to
the destination node.

Hence, the function y(v) is the estimated cost of the cheapest solution through v.
The A* algorithm maintains a list of nodes that can be expanded, known as the

open list2. The open list can be seen as a list of partial paths from the start node
to the destination node. For every node on the open list the g, h, and y values, and
a pointer to its predecessor node are stored. Hence, a node on the open list can be
represented as a 5-tuple 〈v, g, h, y, p〉, where:

• v is the node;

• g is the g value of v;

• h is the h value of v;

• y is the y value of v;

• p is a pointer to the node’s predecessor.

Maintaining pointers is only necessary if you want to construct the actual path from
the start node to the destination node when the algorithm terminates. In each
iteration the most promising node is expanded, i.e., the node v with the lowest
value of y(v). If there are more candidate nodes for expansion, meaning that they
have the same y value, it does not matter which node is chosen. Expanding a node
consists of several steps. Firstly, the node is removed from the open list. Then, for
all successor nodes the g, h, and y values are calculated, and for every successor
node the pointer is set to the node currently being expanded. Finally, if a successor
node is not already on the open list, it is added to the open list. If a successor node
is already on the open list, we need to check if the newly found path to the node is
cheaper than the path to the node already on the open list. In other words, if the
g value for the node on the open list is higher than the newly found g value for the

2The open list is usually implemented as a priority queue.
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node, then the newly found path to the node is better. In that case we replace the
node on the open list. If the g value for the node on the open list is lower or equal
than the newly found g value for the node, then the newly found path to the node is
worse or equal, and nothing is done. The algorithm continues until the destination
node is taken off the open list or until the open list is empty. In the first case a
least-cost path is found, in the latter case there doesn’t exist a path from the start
node to the destination node. The actual path can be constructed by following the
pointer of the destination node to its predecessor node, and from that node working
backwards to the start node.

Properties of the A* algorithm

The A* algorithm is complete in the sense that it will always find a solution if there is
one [12]. For A* to be optimal, meaning that it will always find an optimal solution,
the heuristic function h(v) needs to be admissible [6, 12]. A heuristic is admissible
if it never overestimates the cost of reaching the destination node. Additionally, the
heuristic function h(v) can be consistent [6, 12]. A heuristic is consistent if for any
pair of adjacent nodes v and v′, where d(v, v′) denotes the cost of getting from v to
v′, we have:

h(v) ≤ d(v, v′) + h(v′) (2.9)

Note that a consistent heuristic is always admissible, but an admissible heuristic
need not be consistent. In route planning, a consistent heuristic function can be
e.g. the straight-line distance from the current node to the destination node. We
now give a short proof that the straight-line distance is indeed a consistent heuristic
function. By the triangle inequality from mathematics we have:

dSTL(v,destination) ≤ dSTL(v, v′) + dSTL(v′, destination)

The step cost d(v, v′) between two nodes v and v′ is always greater or equal to the
straight-line distance dSTL(v, v′) between v and v′: d(v, v′) ≥ dSTL(v, v′). This leads
to:

dSTL(v,destination) ≤ d(v, v′) + dSTL(v′,destination)⇒
h(v) ≤ d(v, v′) + h(v′).

If a heuristic is consistent, then A* evaluates nodes with non-decreasing y val-
ues [12]. Russell and Norvig give the following short proof:

Suppose that v′ is a successor of v; then g(v′) = g(v) + d(v, v′), and we
have:

y(v′) = g(v′) + h(v′) = g(v) + d(v, v′) + h(v′) ≥ g(v) + h(v) = y(v).

An important property of A* is that, if a consistent heuristic function is used, a node
needs to be expanded at most once [12]. This means that when a node is expanded,
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we have the guarantee that we have found a cheapest path from the start node to
this node. In that case a closed list of nodes that have already been expanded can
be used to make the search more efficient. When a node is expanded, it is put on
the closed list, and for every successor node it is checked if it is on the closed list,
and when it is, that successor node can be ignored. Finally, we mention that A* is
computationally optimal for any heuristic function, meaning that no other algorithm
employing the same heuristic will expand fewer nodes than A* [4].

Specification of the A* algorithm

For the sake of completeness, we will now give a specification of the A* algorithm.
In this thesis we will only treat algorithms that use consistent heuristic functions.
Therefore, we included the use of a closed list in the specification. Furthermore,
note that we use the straight-line distance as the heuristic function, but any other
consistent heuristic could also be used.

Algorithm 1 A*
Require: start node v1, destination node v2; graph G = (V,E).
Ensure: shortest path from v1 to v2.

1: g(v1)← 0
2: h(v1)← dSTL(v1, v2)
3: y(v1)← g(v1) + h(v1)
4: pointer(v1)← nil
5: add(v1, open)
6: while open 6= ∅ do
7: v ← argminv′∈open y(v′)
8: remove(v, open)
9: add(v, closed)

10: if v = v2 then
11: return followPointers(v)
12: for all v′ ∈ {successors(v) \ closed} do
13: g(v′)← g(v) + d(v, v′)
14: h(v′)← dSTL(v′, v2)
15: y(v′)← g(v′) + h(v′)
16: pointer(v′)← v
17: if ∃v′′[v′′ ∈ open | v′′ = v′] then
18: if g(v′′) > g(v′) then
19: replace(v′′, v′, open)
20: else
21: add(v′, open)
22: return nil

In lines 1 to 3 the g, h, and y values are calculated for the start node v1. The
start node needs no pointer, so in line 4 the pointer of v1 is set to nil. Then, in
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line 5 node v1 is added to the open list. Next, as long as the open list is not empty,
in each iteration the most promising node is expanded. In line 7 the node v with
the lowest value of y(v) is selected from the open list. Then, the node is removed
from the open list, and added to the closed list. If the selected node v equals the
destination node v2, a shortest path to v2 has been found. The path is constructed
in line 11 by following a series of pointers from the destination node backwards to
the start node. If v is not the destination node v2, the selected node v is expanded
to all successor nodes that are not on the closed list. In lines 13 to 16 the g, h, and
y values are calculated for successor node v′, and the pointer is set to the selected
node v. In line 17 it is checked if the successor node is already on the open list. If
it is, we check in line 18 if the g value for the node on the open list is higher than
the newly found g value for the node. If the g value for the node on the open list
is higher, the node on the open list is replaced in line 19. If the open list doesn’t
contain the successor node, the node is added to the open list in line 21. Then, the
next node on the open list is expanded in the next iteration. Finally, if the open list
is empty before a path is found, then no path exists, and nil is returned in line 22.

Example of the A* algorithm

Consider figure 2.6 for an example of how A* works. Suppose we want to find a path
from node a to e. We will use the following heuristic function: h(a) = 5, h(b) = 3,
h(c) = 4, h(d) = 1, and h(e) = 0. Note that this heuristic is consistent.

c d e3 2

2 2
55

2 ba

 

Figure 2.6: A graph with five nodes, and the edges have costs as depicted.

We start by calculating the g, h, and y values for the start node a: y(a) =
g(a) + h(a) = 0 + 5 = 5, and we put it on the open list. Because node a is the
start node, no pointer needs to be set. The open list now looks like: (〈a, 0, 5, 5,−〉).
Then, we take node a off the open list, and put it on the closed list. The successors
of node a are nodes b, c, and d. We calculate the g, h, and y values for these nodes:
y(b) = 2 + 3 = 5, y(c) = 2 + 4 = 6, and y(d) = 5 + 1 = 6, and for every node the
pointer is set to node a. Then, we put the successor nodes on the open list. The
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open list now looks like: (〈b, 2, 3, 5, a〉, 〈c, 2, 4, 6, a〉, 〈d, 5, 1, 6, a〉). Node b has the
lowest y value, so we take this node off the open list, and put it on the closed list.
The closed list now contains nodes a and b. The successors of node b are nodes a, d,
and e. Node a is on the closed list, so we can ignore it. We calculate the g, h, and
y values for the other nodes: y(d) = 4 + 1 = 5 and y(e) = 7 + 0 = 7, and for every
node the pointer is set to node b. Node d is already on the open list, and its g value
is higher than the newly found g value, so we need to replace node d, because we
found a shorter path. Node e is not on the open list yet, so it is added. The open
list now looks like: (〈c, 2, 4, 6, a〉, 〈d, 4, 1, 5, b〉, 〈e, 7, 0, 7, b〉). Node d has the lowest y
value, so we take this node off the open list, and put it on the closed list. The closed
list now contains nodes a, b, and d. The successors of node d are nodes a, b, c, and
e. Nodes a and b are on the closed list, so we can ignore them. We calculate the g,
h, and y values for the other nodes: y(c) = 7 + 4 = 11 and y(e) = 6 + 0 = 6, and
for every node the pointer is set to node d. Nodes c and e are both already on the
open list. We replace node e, because the newly found path is shorter than the one
on the open list (6 < 7). The newly found path for node c is longer than the one
on the open list (7 > 2), so nothing is done with the newly found path. The open
list now looks like: (〈c, 2, 4, 6, a〉, 〈e, 6, 0, 6, d〉). Both nodes have the same y value.
It does not matter which node we take off for expansion. We choose to take node
e off the open list. This node is the destination node, so we now found a shortest
path from node a to e, and its cost is 6. By following the pointer of node e back
to the start node, we can construct the actual path. The pointer of node e leads to
node d, node d leads to node b, and node b leads to node a, so the actual path is
a− b− d− e.

2.4.2 A single-stage route planning algorithm

Ter Mors, Zutt, and Witteveen [14] present a single-stage route planning algorithm
that performs a search through the free time window graph GF = (F,EF ). The
route planning algorithm is based on the idea of going from one free time window
on one resource, to another free time window on the next resource. In principle
they apply the A* algorithm on the free time window graph. The algorithm uses an
estimated cost function y(f) to determine the order in which free time windows are
selected for expansion. The function y(f) is the sum of two functions:

• g(f): The partial cost function that calculates the earliest possible exit time
out of free time window f .

• h(f): The heuristic function that estimates the cost from the current resource
associated with free time window f to the destination resource.

The earliest possible exit time out of free time window f is equal to the time an
agent enters free time window f plus the travel time of the resource r associated with
f : g(f) = entryTime(f) + tt(r). The heuristic function h(f) calculates the cost of
the shortest path from the current resource r to the destination resource r′ without
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taking into account the presence of other agents: h(f) = shortestPath(r, r′). Note
that this heuristic function is consistent. To save computation time the heuristic
function h(f) can be precalculated, and the results can be stored in a matrix. This
can be done by performing a search with A* through the resource graph for every
combination of resources or by a specialized algorithm that finds the shortest paths
between all pairs of resources like the Floyd-Warshall algorithm [5]. Hence, the
estimated cost of a route through free time window f with destination resource r′

is:

y(f) = g(f) + h(f) = entryTime(f) + tt(r) + shortestPath(r, r′).

To determine if f ′ is a successor of free time window f , it is not sufficient to check
if f ′ is reachable from f as described in definition 2.3.2. Take a look at figure 2.7.
Free time window f ′ is reachable from free time window f , because the exit window
of f overlaps with the entry window of f ′. However, from the earliest possible exit
time g(f) out of free time window f the entry window of f ′ cannot be reached, so
f ′ is no successor of f . Hence, to determine if f ′ ∈ successors(f) with f = [t1, t2),
we have to check if f ′ is reachable from f from the earliest possible exit time g(f)
out of f : [g(f), t2) ∩ τentry(f ′) 6= ∅.

 

τexit 

τentry 

g( f ) 

r r'

f 
f’ 

time

Figure 2.7: Free time window f ′ is reachable from free time window f , but not from
the earliest possible exit time g(f).

The single-stage route planning algorithm maintains an open list of free time
windows that can be expanded, and in each iteration the free time window that is
most likely to lead to a shortest route to the destination resource is expanded, i.e.,
the free time window f with the lowest value of y(f). The open list can be seen as
a list of partial routes from the start resource to the destination resource. For every
free time window on the open list the entry time t, the g, h, and y values, and a
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pointer to its predecessor free time window are stored. Hence, a free time window
on the open list can be represented as a 6-tuple 〈f, t, g, h, y, p〉, where:

• f is the free time window;

• t is the entry time into f ;

• g is the g value of f ;

• h is the h value of f ;

• y is the y value of f ;

• p is a pointer to the free time window’s predecessor.

Algorithm 2 is a specification of the algorithm. In line 1 it is checked if there
exists a free time window on the start resource r1 that has an entry window that
contains the start time t. If there isn’t such a free time window f , then no plan exists,
and nil is returned in line 25. Otherwise, in line 2 the entry time into f is recorded
as the start time t. Then, in lines 3 to 6 the g, h, and y values are calculated for
the start window f , and the pointer is set to nil. In line 7 the free time window f is
added to the open list. Next, as long as the open list is not empty, in each iteration
the most promising free time window is expanded. In line 9 the free time window
f with the lowest value of y(f) is selected from the open list. Then, the free time
window is removed from the open list, and added to the closed list. If the resource
associated with the selected free time window f equals the destination resource r2,
a shortest route to r2 has been found. The optimal plan is constructed in line 13
by following a series of pointers from the current free time window f backwards to
the start window. Note that the cost of the plan as defined in definition 2.2.2 is
equal to g(f). If the resource associated with f is not the destination resource r2,
the selected free time window f is expanded to all successor free time windows that
are not on the closed list. Recall, as described above, that a free time window f ′

is a successor of the selected free time window f if f ′ is reachable from f from the
earliest possible exit time g(f) out of free time window f . In line 15 the entry time
into successor free time window f ′ is determined by the maximum of the earliest
possible exit time out of f , and the start of free time window f ′. Then, in lines 16
to 19 the g, h, and y values are calculated for successor f ′, and the pointer is set to
the selected free time window f . In line 20 it is checked if the successor free time
window is already on the open list. If it is, we check in line 21 if the entry time into
the free time window on the open list is later than the newly found entry time into
the free time window. Note that this check is equivalent to checking if g(f ′′) > g(f ′)
as is done in the A* algorithm. If the entry time into the free time window on the
open list is later, the free time window on the open list is replaced in line 22. If the
open list doesn’t contain the successor free time window, the free time window is
added in line 24. Then, the next free time window on the open list is expanded in
the next iteration. Finally, if the open list is empty before a route is found, then no
route exists, and nil is returned in line 25.

21



2. Context-Aware Single-Stage Route Planning

Algorithm 2 Single-Stage Route Planning
Require: start resource r1, destination resource r2, start time t; free time window

graph GF = (F,EF ).
Ensure: shortest-time, conflict-free route plan from (r1, t) to r2.

1: if ∃f [f ∈ F | t ∈ τentry(f) ∧ r1 = resource(f)] then
2: entryTime(f)← t
3: g(f)← t+ tt(r1)
4: h(f)← shortestPath(r1, r2)
5: y(f)← g(f) + h(f)
6: pointer(f)← nil
7: add(f, open)
8: while open 6= ∅ do
9: f ← argminf ′∈open y(f ′)

10: remove(f, open)
11: add(f, closed)
12: if resource(f) = r2 then
13: return followPointers(f)
14: for all f ′ ∈ {successors(f) \ closed} do
15: entryTime(f ′)← max(g(f), start(f ′))
16: g(f ′)← entryTime(f ′) + tt(resource(f ′))
17: h(f ′)← shortestPath(resource(f ′), r2)
18: y(f ′)← g(f ′) + h(f ′)
19: pointer(f ′)← f
20: if ∃f ′′[f ′′ ∈ open | f ′′ = f ′] then
21: if entryTime(f ′′) > entryTime(f ′) then
22: replace(f ′′, f ′, open)
23: else
24: add(f ′, open)
25: return nil

Ter Mors et al. prove that the algorithm is guaranteed to return an optimal
solution. The algorithm has a run-time complexity of O((|EF | + |F |) log(|F |)). If
the heuristic function h(f) is set to zero, which is a consistent heuristic, they prove
that the first visit to a free time window is optimal. This means that each free time
window needs to be added to the open list at most once. In that case we can add a
free time window to the closed list directly after it is added to the open list instead
of adding a free time window to the closed list after it is removed from the open list.
Algorithm 3 is a specification of the single-stage route planning algorithm without a
heuristic function. Removing the heuristic function results in a run-time complexity
of O(|F | log(|F |) + |EF |).
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Algorithm 3 Single-Stage Route Planning without Heuristic
Require: start resource r1, destination resource r2, start time t; free time window

graph GF = (F,EF ).
Ensure: shortest-time, conflict-free route plan from (r1, t) to r2.

1: if ∃f [f ∈ F | t ∈ τentry(f) ∧ r1 = resource(f)] then
2: entryTime(f)← t
3: g(f)← t+ tt(r1)
4: pointer(f)← nil
5: add(f, open)
6: add(f, closed)
7: while open 6= ∅ do
8: f ← argminf ′∈open g(f ′)
9: remove(f, open)

10: if resource(f) = r2 then
11: return followPointers(f)
12: for all f ′ ∈ {successors(f) \ closed} do
13: entryTime(f ′)← max(g(f), start(f ′))
14: g(f ′)← entryTime(f ′) + tt(resource(f ′))
15: pointer(f ′)← f
16: add(f ′, open)
17: add(f ′, closed)
18: return nil

2.4.3 Additional constraints and single-stage route planning

In section 2.3.1 we showed how the definition of a free time window could be ex-
tended to take the additional constraints from section 2.2.1 into account. If over-
taking is not allowed, some changes are needed to the single-stage route plan-
ning algorithm. In the previous section the partial cost function was defined as
g(f) = entryTime(f) + tt(r). However, if overtaking is forbidden, then the start
of the exit window τexit(f) may be later than the entry time plus the travel time,
because of the leading agent’s exit time. Hence, the partial cost function has to be
changed to g(f) = max(start(τexit(f)), entryTime(f) + tt(r)).

Furthermore, if the entry time into a successor free time window was earlier than
the entry time into the same free time window that was already on the open list, the
free time window on the open list was replaced in line 22. However, if the earliest
possible exit time out of the free time window on the open list was determined by
the start of the exit window τexit(f), the earlier entry time into the free time window
doesn’t matter, because we can still leave the free time window no earlier than the
start of the exit window τexit(f), even though we enter it earlier than before. Hence,
in line 21 it should be checked whether g(f ′′) > g(f ′) in order to avoid unnecessary
replace operations. Note that the new check is an optimization, and not necessarily
required for the correct operation of the algorithm.
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Chapter 3

The Context-Aware Multi-Stage
Route Planning Problem

In the previous chapter a framework for context-aware route planning was presented.
The idea for the single-stage route planning algorithm was to find a shortest-time
path through the free time window graph, rather than directly through the infras-
tructure graph itself. In the multi-stage variant of the context-aware route planning
problem, each agent has a sequence φ of resources it must visit instead of just a start
and destination resource. This visiting sequence must be visited in a fixed order,
that is, if φ = (r1, r2, . . . , rm), then for any plan π it must hold that φ v resources(π)
(the visiting sequence is a sub-sequence of the resources in the plan).

A straightforward approach to the multi-stage route planning problem is to par-
tition the problem into a sequence of ‘single-stage’ route planning problems, and
then to concatenate the resulting plans. The first section of this chapter describes
this linear1 concatenation approach. Then, in section 3.2, we will show the problem
of this approach. We will discuss an example that not only demonstrates that the
linear concatenation approach is sub-optimal, but also that it is incomplete, i.e., it
can fail to find a route plan even if one exists.

3.1 Linear Concatenation Approach

Algorithm 4 is a specification of the linear concatenation algorithm. In this algorithm
we represent a plan as a tail end X of the plan, and a head consisting of a tuple
〈r, t〉, where:

• r is the last visited resource of the plan;

• t is the entry time into r.

In line 1 we try to find a plan from the start resource r1 to the second resource
of the visiting sequence φ with the single-stage route planning algorithm (planRoute

1We call this approach the linear concatenation approach to clarify the difference with the
optimal and complete concatenation approaches dealt with in the next chapter.
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means a call to the single-stage route planning algorithm (algorithm 2)). If no plan
is found, then no multi-stage plan can be found, and we return π, which is currently
nil, in line 11. Otherwise, we will try, as long as the final stage m hasn’t been
reached, to expand the current partial plan π to the next stage. In line 5 we try
to find a plan from the current stage i to the next stage i+ 1 with the single-stage
route planning algorithm. Note that the earliest possible start time we can use to
find a plan to the next stage is the time t′ at which the current stage is entered. If
no plan is found, then no multi-stage plan can be found, and we return nil in line 9.
Otherwise, the plan that has been expanded in this iteration is concatenated with
the newly found plan in line 7. Then, in line 10 the counter i is updated to the next
stage, and we try to expand the concatenated plan in the next iteration. When we
reach the final stage m in the visiting sequence φ, we return the multi-stage plan in
line 11.

Algorithm 4 Multi-Stage Linear Concatenation
Require: visiting sequence φ = (r1, r2, . . . , rm), start time t; free time window

graph GF = (F,EF ).
1: π = (〈r2, t

′〉, X)← planRoute(r1, r2, t, GF )
2: if π 6= nil then
3: i← 2
4: while i < m do
5: π(i,i+1) ← planRoute(ri, ri+1, t

′, GF )
6: if π(i,i+1) 6= nil then
7: π = (〈ri+1, t

′〉, X)← πyπ(i,i+1)

8: else
9: return nil

10: i← i+ 1
11: return π

3.1.1 Complexity

The computational complexity of algorithm 4 is determined by the number of calls
that are made to the single-stage route planning algorithm.

Proposition 3.1.1. Algorithm 4 has a run-time complexity of O(|φ| · (|EF |+ |F |)
log(|F |)).

Proof. When a multi-stage plan is found, the algorithm uses exactly |φ| − 1 calls
to the single-stage route planning algorithm, so the run-time complexity of the
algorithm is O(|φ|) times the complexity of algorithm 2.
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3.2 Incompleteness and Sub-Optimality of the Linear
Concatenation Approach

In this section we will demonstrate that the linear concatenation approach to the
context-aware multi-stage route planning problem is incomplete (i.e., it does not
always find a solution when there exists one) and sub-optimal. This has the following
reason: if we are looking for a route from resource ra to resource rc, then it does not
hold that the shortest route to an intermediate resource rb (i.e., resource rb is on all
shortest routes from ra to rc) can be expanded to the shortest route to rc2. Instead,
it may be necessary to take a slower route to rb in order to find the shortest route
to rc. This is illustrated in the following example.

Example 3.2.1. In figure 3.1, there are four resources ra, rb, rc, and rd, and there
are some reservations on rb and rd. The travel times of ra, rb, and rd are 2, and the
travel time of rc is 5. Suppose that an agent wants to go from ra to rd. In ra, there
is only a single free time window, and from that free time window it can reach both
free time windows on rb. Obviously, the shortest route to rb makes use of the earlier
free time window. However, since the free time window fb,1 = [0, 4) ends before the
start of the only free time window fd,1 = [5,∞) of resource rd, the shortest route to
rb can only be expanded to rc. Traversing rc requires 5 time units, so rd is entered
at time 9. However, the shortest route to rd enters rb at time 6, the start of the
second free time window fb,2, and then goes directly to resource rd, which it enters
at time 8.

From this example we conclude that the linear concatenation approach to multi-
stage route planning is sub-optimal: for the visiting sequence (ra, rb, rd), the linear
concatenation approach would return the plan that enters resource rd at time 9
which is clearly not optimal. To demonstrate that the linear concatenation ap-
proach is also incomplete, only a small modification to the example is required: if
we remove resource rc altogether, then the shortest route to rb, ending in fb,1, cannot
be expanded at all, so the linear concatenation approach will not find a plan for the
visiting sequence (ra, rb, rd). Hence, as a result of the reservations in the system,
the linear concatenation approach is incomplete and sub-optimal.

3.3 Concluding Remarks

In this chapter we demonstrated that the trivial solution (i.e., concatenating sub-
sequent plans) to the multi-stage route planning problem doesn’t work in case of
context-aware route planning. The question is if there are polynomial algorithms
that can guarantee an optimal multi-stage route plan if one exists. The answer to
this question is yes. In the next chapter we will present three complete and optimal
algorithms for the multi-stage route planning problem. Then, the next question is

2By contrast, in classical shortest path planning, it does hold that the shortest path to an
intermediate node can be expanded to the shortest path to the destination node.
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(a) An infrastructure graph with four intersection resources ra, rb, rc, and rd. For the sake of
simplicity the lane resources (i.e., the edges) have a zero travel time.
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(b) The associated free time window graph. Blacks circles represent reservations, open circles repre-
sent free time windows, and the arrows represent the reachability between the free time windows.

Figure 3.1: Infrastructure graph and free time window graph.

how the execution times of these three multi-stage route planning algorithms re-
late to the execution time of the single-stage route planning algorithm. We know
that the single-stage route planning algorithm can be used in real-time applications,
because the execution time of the algorithm lies in the range of several millisec-
onds [14]. Ideally, the execution time of a new multi-stage algorithm would be in
the same range as that of the single-stage algorithm. This way we can easily extend
existing real-time systems, which make use of the single-stage route planning algo-
rithm, with the new multi-stage algorithm. Take for example the de-icing problem
at an airport as mentioned in the introduction of this thesis, and suppose that the
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making of a multi-stage plan takes several minutes. Now, when plans have to be
generated for a lot of airplanes under wintry conditions, calculations may take up
to hours of time. Then, the multi-stage algorithm is clearly not suitable for use
in a real-time environment. Other interesting questions are how often the linear
concatenation algorithm fails to find a plan, how often it finds a sub-optimal plan,
and when it finds a sub-optimal plan, what is the plan quality. The answers to
these questions actually determine to what extent there is a need for a complete
and optimal multi-stage algorithm. We can assume that the linear concatenation
algorithm is pretty fast, since it only requires |φ| − 1 calls to the single-stage route
planning algorithm. Suppose now that a complete and optimal algorithm is very
slow, and the linear concatenation algorithm quite often finds a plan that also has a
good quality, then it might be interesting to use the linear concatenation algorithm
as multi-stage algorithm. However, if the complete and optimal algorithm is also
fast, then there is no reason to use the linear concatenation algorithm. In chapter 5
we will empirically examine the linear concatenation approach. Furthermore, we will
look into the execution times of the complete and optimal multi-stage algorithms.
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Chapter 4

Context-Aware Multi-Stage
Route Planning Algorithms

During our research on multi-stage route planning, we have developed three complete
and optimal algorithms. The first two algorithms make use of the single-stage route
planning algorithm in order to find partial plans from a certain stage to the next
stage. The first algorithm is the most simple approach. The algorithm explores the
free time windows on the several stages of the visiting sequence in a breadth-first
way, and concatenates subsequent partial plans to find a multi-stage plan. A ‘smart’
administration of visited free time windows is kept to avoid finding useless plans.
This approach is called the breadth-first concatenation approach, and it is explained
in section 4.1. The second algorithm is an optimized version of the first algorithm.
It is a best-first search algorithm, which is similar to the A* algorithm. An optimal
conflict-free multi-stage plan is found by expanding the most promising partial plan
in each iteration. This approach is called the A* concatenation approach, and it is
explained in section 4.2. The third algorithm doesn’t make use of the concatenation
of partial plans found by the single-stage route planning algorithm. The algorithm
uses a separate free time window graph for every stage, and it is similar to the
single-stage route planning algorithm. This approach is called the A* multi-layer
approach, and it is treated in the last section of this chapter.

4.1 Breadth-First Concatenation Approach

As explained in the previous chapter, the problem with the linear concatenation
approach is that only the shortest-time plan between two successive resources of
the visiting sequence is considered for concatenation. Sometimes it is necessary to
take a slower plan for concatenation as shown in example 3.2.1. The breadth-first
concatenation approach simply tries to find all possible plans between two successive
resources of the visiting sequence with the single-stage route planning algorithm,
and then expand these plans to the next stage. It performs a complete breadth-first
search through the free time windows on the stages of the visiting sequence.
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Stage 1 Stage 2 Stage 3 Stage 4 

 
 
 

π1 
π4 f2,1 f3,1 

time 
f1,1 f2,2 

f2,3 f3,3 

f3,2 

π5 f4,1 π2 π9 
π6 

π10 
π7 

π3 
π8 π11 f4,2 

Figure 4.1: Breadth-first concatenation approach with four stages. The long-dashed
arrow (π8) represents a plan that will not be found by the breadth-first concatenation
algorithm. The dashed arrows (π5 and π9) represent plans that will be found, but
are not considered for further expansion.

Consider figure 4.1 for an example of the breadth-first concatenation approach.
We start by making a plan from the start resource to the second stage. This results
in plan π1, which ends in free time window f2,1. Then, we try again to find a plan
from the start resource to the second stage that doesn’t make use of free time window
f2,1. This results in plan π2, which ends in free time window f2,2. We repeat this
process until no more plans to the second stage can be found. This results in all
possible plans from the first stage to the second stage, which are plans π1, π2, and
π3. Next, we take the best (shortest-time) plan to the second stage, which is plan
π1, and try to expand this plan to the third stage. Note that the earliest possible
start time we can use to find a plan to the third stage is the time at which plan π1

enters the second stage. The expansion of plan π1 results in plans π4 and π5. Then,
we take the next plan to the second stage, which is plan π2, and try to expand this
plan to the third stage. This results in plans π6 and π7. Note that plan π6 arrives
earlier within free time window f3,2 than plan π5, which previously visited the free
time window. We repeat this process until each plan to the second stage has been
fully expanded. This results in all possible plans from the second stage to the third
stage, which are plans π4, π5, π6, π7, and π8.

It is not necessary to expand all these plans to the fourth stage. It is sufficient
to take only the best partial plans to each free time window on a certain stage into
consideration for further expansion. This can simply be explained as follows. If a
partial plan π arrives earlier in the same free time window than a partial plan π′,
then expansion of π′ can never lead to a better plan than the expansion of π. Any
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plan π′′ that results from expanding π′ can be simulated using π: the only thing we
have to do is wait in the resource in which plan π (and π′) ends from the start of
the interval of the last plan step of plan π to the start of the interval of the last plan
step of plan π′, and then follow plan π′′. In other words, the set of plans that can
be expanded from π′ is a subset of the plans that can be expanded from π. Hence,
we only need to take plans π4, π6, and π7 into consideration for expansion to the
fourth stage. We repeat the process of expansion for the third stage to the fourth
stage, which results in plans π9, π10, and π11. Plan π10 is the shortest-time plan
to the destination resource. If we now concatenate plans π2, π6, and π10, then an
optimal multi-stage plan has been found.

We just explained that it is sufficient to take only the best partial plans to each
free time window on a certain stage into consideration for further expansion. This
means that, when we make a plan from stage i to stage i+ 1, we only want to find
a plan that:

1. makes use of a ‘non-discovered’ free time window on stage i+ 1, or

2. makes use of a previously-visited free time window, but arrives at an earlier
time within this free time window.

To accomplish that the single-stage route planning algorithm only finds plans that
meet the two requirements mentioned above, we use a copy of the free time windows
F copy
i for every stage i ∈ {2, . . . ,m} in the visiting sequence. In the set F copy

i we
record the entry time of a visited free time window on stage i. Initially, we set the
entry times into all free time windows of F copy

i to infinity. When we make a call to
the single-stage route planning algorithm to find a plan from stage i to the next stage
i+1, we pass the set F ′ = F⊕F copy

i+1 as an argument. The expression F ′ = F⊕F copy
i+1

indicates that a set F ′ of free time windows is created in which the entry times of
F copy
i+1 are added to the corresponding free time windows in F . Note that when

making a plan from stage i to stage i+ 1, the single-stage route planning algorithm
only takes into account the entry times on stage i+1, not the entry times on any other
stage j, even if stages i + 1 and j correspond to the same resource. Furthermore,
we add a line of code to the single-stage route planning algorithm: after line 15
of algorithm 2 we check if the entry time into a successor free time window f ′ is
earlier than the recorded entry time into f ′: entryTime(f ′) < entryTime(F copy

i+1 , f ′).
If the entry time into the free time window is earlier, we continue. Otherwise, we
discard the free time window, and we continue with the next successor free time
window. This way, it is ensured that a plan is found that will not make use of a
previously-visited free time window, unless it can reach it at an earlier time.

Take a look at figure 4.1 again. Now, when the breadth-first concatenation
algorithm is executed, the single-stage route planning algorithm will not find plan π8,
because plan π7 already visited free time window f3,3 at an earlier time. However, the
rest of the plans are found, because they enter a ‘non-discovered’ free time window
(plans π1, π2, π3, π4, π5, π7, π9, and π11), or arrive earlier within a previously-visited
free time window (plans π6 and π10). Furthermore, plans π5 and π9 are discarded,
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because these plans are not the best plans possible to free time windows f3,2 and
f4,1 respectively.

The breadth-first concatenation algorithm maintains for every stage i ∈ {2, . . . ,m}
in the visiting sequence a list of best partial plans Πi to this stage i, and in each
iteration all plans on the list of partial plans Πi are expanded to the next stage.
Only the best partial plans to each reachable free time window on the next stage
are stored, and we continue with the next iteration until we reach the final stage.

Algorithm 5 is a specification of the breadth-first concatenation algorithm. In
this algorithm we represent a plan as a tail end X of the plan, and a head consisting
of a tuple 〈f, t〉, where:

• f is the free time window associated with the last visited resource of the plan;

• t is the entry time into f .

In line 2 we make a copy of the free time windows associated with every stage
(except for the first stage) in the visiting sequence φ. In line 3 we try to find a plan
from the start resource r1 to the second resource of the visiting sequence φ with the
single-stage route planning algorithm. If no plan is found, then no multi-stage plan
exists, and we return nil in line 24. Otherwise, we record the entry time t′ into free
time window f reached by the found plan in the set F copy

2 in line 5. In line 6 we
add the found plan to the list of partial plans Π2 to stage 2. Then, in line 7 we try
to find another plan to stage 2. We keep repeating this process until all plans to
stage 2 have been found. Then, we will try, as long as the final stage m hasn’t been
reached, to expand all the partial plans to the current stage to the next stage. In
line 11 we select the partial plan with the smallest cost from the list of partial plans
Πi to stage i. Then, the partial plan is removed from the list of partial plans. In
line 13 we try to find a plan from the current stage i to the next stage i + 1 with
the single-stage route planning algorithm. Note that the earliest possible start time
we can use to find a plan to the next stage is the time t′ at which the current stage
is entered. If no plan is found, we try to expand the next partial plan on the list
of partial plans Πi. Otherwise, the plan that has been expanded in this iteration is
concatenated with the newly found plan in line 15. Then, in line 16 we record the
entry time t′′ into free time window f ′ reached by the concatenated plan in the set
F copy
i+1 . In line 17 we check whether a plan π′′ already exists on the list of partial

plans Πi+1 to stage i+ 1 that visits the same free time window as the concatenated
plan. Recall that the single-stage route planning algorithm only finds plans that
are better than any previously found plans to stage i + 1, because of the set with
recorded entry times F copy

i+1 into the free time windows on stage i + 1. Hence, if
such a plan π′′ exists, we know that the concatenated plan π′ is a plan that arrives
earlier within a previously-visited free time window, and we replace plan π′′ with
the concatenated plan π′ on the list of partial plans Πi+1 to stage i + 1 in line 18.
If the list of partial plans Πi+1 to stage i+ 1 doesn’t yet contain a plan to free time
window f ′, we add the concatenated plan π′ to Πi+1 in line 20. Then, in line 21
we try to find a another plan to stage i + 1. We keep repeating this process until
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the current partial plan has been fully expanded to stage i + 1. Then, we try to
expand the next partial plan on the list of partial plans Πi. We keep repeating this
process until all plans to stage i+ 1 have been found. Then, in line 22 the counter i
is updated, and we continue with the next stage in the visiting sequence. When the
counter becomes equal to m, the final stage has been reached. The list of partial
plans Πm contains all multi-stage plans to the final stage m. If the list of partial
plans Πm is empty, then no multi-stage plan exists, and nil is returned in line 24.
Otherwise, the plan in Πm with the smallest cost is returned in line 27.

Algorithm 5 Multi-Stage Breadth-First Concatenation
Require: visiting sequence φ = (r1, r2, . . . , rm), start time t; free time window

graph GF = (F,EF ).
Ensure: shortest-time, conflict-free route plan π, such that φ v resources(π).

1: for all ri ∈ {φ \ {r1}} do
2: F copy

i ← Fi

3: π = (〈f, t′〉, X)← planRoute(r1, r2, t, (F ⊕ F copy
2 , EF ))

4: while π 6= nil do
5: entryTime(F copy

2 , f)← t′

6: add(π,Π2)
7: π = (〈f, t′〉, X)← planRoute(r1, r2, t, (F ⊕ F copy

2 , EF ))

8: i← 2
9: while i < m do

10: while Πi 6= ∅ do
11: π = (〈f, t′〉, X)← argminπ′∈Πi

c(π′)
12: remove(π,Πi)
13: π(i,i+1) ← planRoute(ri, ri+1, t

′, (F ⊕ F copy
i+1 , EF ))

14: while π(i,i+1) 6= nil do
15: π′ = (〈f ′, t′′〉, X)← πyπ(i,i+1)

16: entryTime(F copy
i+1 , f ′)← t′′

17: if ∃π′′ = (〈f ′, 〉, ) ∈ Πi+1 then
18: replace(π′′, π′,Πi+1)
19: else
20: add(π′,Πi+1)
21: π(i,i+1) ← planRoute(ri, ri+1, t

′, (F ⊕ F copy
i+1 , EF ))

22: i← i+ 1
23: if Πm = ∅ then
24: return nil
25: else
26: π ← argminπ′∈Πm

c(π′)
27: return π
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4.1.1 Correctness

We must prove that if a solution to the multi-stage route planning problem exists,
then algorithm 5 finds an optimal solution.

Proposition 4.1.1. Algorithm 5 returns an optimal solution.

Proof. The algorithm is complete, because it considers all possible shortest-time
partial plans between the free time windows of two successive stages in the visiting
sequence. Previously, we explained that it is sufficient to take only the best partial
plans to each free time window on a certain stage into consideration for further
expansion, because the expansion of a worse partial plan can be simulated using
the best plan by simply waiting in the resource. What remains to be proven is the
correctness of the replacement of a partial plan on the list of partial plans Πi+1 to
stage i + 1 in line 18. In line 17 we check if there is already a plan to free time
window f ′ on the list of partial plans Πi+1 to stage i + 1. If such a plan π′′ exists,
then it must be that this plan has a later entry time into f ′ than the newly found
plan π′: the contrary would imply that the entry time of plan π′′ into stage i + 1
(and therefore into free time window f ′) were earlier than the entry time of plan π′

into stage i+1. But the single-stage route planning algorithm can only find the plan
π′ that makes use of free time window f ′ if the entry time of plan π′ into free time
window f ′ is earlier than any previously recorded entry time. Hence, the entry time
of plan π′′ into free time window f ′ must be later, and we can safely replace plan
π′′ with π′, since the set of plans that can be expanded from plan π′′ is a subset of
the plans that can be expanded from plan π′. This way only the best partial plans
to the next stage are found, and therefore algorithm 5 is optimal.

4.1.2 Complexity

The computational complexity of algorithm 5 is determined by the number of calls
that are made to the single-stage route planning algorithm.

Proposition 4.1.2. Algorithm 5 has a run-time complexity of O(|φ||F |2·(|EF |+|F |)
log(|F |)).
Proof. The list of partial plans Πi to stage i can contain at most |Fi| plans: one
partial plan to each free time window on stage i. Every partial plan in Πi can be
expanded, in the worst case, to every free time window on the next stage i + 1,
which results in |Fi+1| calls to the single-stage route planning algorithm. Hence, for
every stage at most |Fi| × |Fi+1| calls are made to the single-stage route planning
algorithm. There are |φ| stages, so the run-time complexity of the algorithm is
O(|φ||F |2) times the complexity of algorithm 2.

4.1.3 Additional constraints and breadth-first concatenation

If overtaking is forbidden, an earlier entry time into a free time window doesn’t
necessarily mean an earlier possible exit time out of the free time window, because
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of the leading agent’s exit time as we have seen in section 2.4.3. To avoid that
plans are found that arrive in a free time window at an earlier time than before,
but cannot leave it earlier, and thereby avoiding unnecessary replace operations in
line 18 of algorithm 5, we check if the partial cost of a successor free time window
f ′ is smaller than the partial cost resulting from the recorded entry time into f ′:
g(f ′) < max(start(τexit(f ′)), entryTime(F copy

i+1 , f ′) + tt(resource(f ′))) after line 16
of algorithm 2 instead of checking if entryTime(f ′) < entryTime(F copy

i+1 , f ′) after
line 15. This way, it is ensured that plans are found that will not make use of a
previously-visited free time window, unless they can leave it at an earlier time. Note
that the new check is an optimization, and not necessarily required for the correct
operation of algorithm 5.

4.2 A* Concatenation Approach

The breadth-first concatenation approach finds a lot of partial plans that are not
interesting, i.e., plans that arrive in a free time window at a time that exceeds the
cost of the eventually found multi-stage plan. The second complete and optimal
multi-stage route planning algorithm we present tries to improve on the breadth-
first concatenation algorithm by finding an optimal solution using fewer calls to the
single-stage route planning algorithm. The A* concatenation algorithm is based on
the A* search algorithm. It uses an estimated cost function y(π) to determine the
order in which partial plans are selected for expansion. The function y(π) is the
sum of two functions:

• g(π): The partial cost function that calculates the minimal plan cost of partial
plan π.

• h(π): The heuristic function that estimates the cost of completing π to the
final stage in the visiting sequence.

The partial cost g(π) for a partial plan π is initially equal to the plan cost of plan π:
g(π) = c(π). The heuristic cost h(π) for π is initially equal to the cost of the shortest
path from the current stage i to the final stage m along the stages in the visiting
sequence φ that have yet to be visited without taking into account the presence of
other agents: h(π) =

∑m−1
k=i shortestPath(rk, rk+1). Note that this heuristic function

is consistent.
The A* concatenation algorithm only maintains one list of partial plans Π that

can be expanded as opposed to the breadth-first concatenation algorithm that main-
tains a list of partial plans for every stage in the visiting sequence. In each iteration
the partial plan that is most likely to lead to a shortest multi-stage route to the
final stage is expanded to the next stage, i.e., the partial plan π with the lowest
value of y(π). However, a partial plan π is only expanded with one new plan, in-
stead of making plans to all reachable free time windows on the next stage as in
the breadth-first concatenation algorithm. This means that a partial plan is only
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partially expanded, and needs to be put back on the list of partial plans to guaran-
tee completeness. For every partial plan on the list of partial plans the g, h, and y
values, and a stage number are stored. Hence, a partial plan on the list of partial
plans can be represented as a 5-tuple 〈π, g, h, y, i〉, where:

• π is the partial plan;

• g is the g value of π;

• h is the h value of π;

• y is the y value of π;

• i is the stage number of π.

Maintaining stage numbers is necessary to keep track of the stage reached by a
partial plan (a partial plan to stage i has stage number i). Again, we use the set
F copy
i to ensure that the single-stage route planning algorithm only finds plans that

will not make use of a previously-visited free time window, unless they can reach it
at an earlier time.

Algorithm 6 is a specification of the A* concatenation algorithm. In line 2 we
make a copy of the free time windows associated with every stage (except for the
first stage) in the visiting sequence φ. In line 3 we try to find a start plan that only
contains the start resource r1 of the visiting sequence φ with the single-stage route
planning algorithm. If no plan is found, then no multi-stage plan exists, and we
return nil in line 34. Otherwise, in lines 5 to 8 the g, h, and y values are calculated
for the start plan π, and the stage number for π is set to 1. In line 9 the start plan π
is added to the list of partial plans Π. Next, we will try, as long as the list of partial
plans is not empty, to expand the most promising partial plan in each iteration. In
line 11 the partial plan π with the lowest value of y(π) is selected from the list of
partial plans. Then, the partial plan is removed from the list of partial plans. If the
stage number of the selected plan π equals the final stage m, an optimal multi-stage
plan has been found, and it is returned in line 15. If the stage number of the selected
plan π is not equal to m, we try to find a plan from the current stage i to the next
stage i+ 1 with the single-stage route planning algorithm in line 16. Note that the
earliest possible start time we can use to find a plan to the next stage is the time t′

at which the current stage is entered. If no plan is found, we try to expand the next
partial plan on the list of partial plans. Otherwise, the plan that has been expanded
in this iteration is concatenated with the newly found plan in line 18. In line 19
we record the entry time t′′ into free time window f ′ reached by the concatenated
plan in the set F copy

i+1 . Then, in lines 20 to 23 the g, h, and y values are calculated
for the concatenated plan π′, and the stage number for π′ is set to i+ 1. In line 24
we check whether a plan already exists on the list of partial plans Π that visits the
same free time window and has the same stage number as the concatenated plan.
If such a plan π′′ exists, we replace the plan with the concatenated plan π′ on the
list of partial plans Π in line 25. If the list of partial plans Π doesn’t yet contain
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Algorithm 6 Multi-Stage A* Concatenation
Require: visiting sequence φ = (r1, r2, . . . , rm), start time t; free time window

graph GF = (F,EF ).
Ensure: shortest-time, conflict-free route plan π, such that φ v resources(π).

1: for all ri ∈ {φ \ {r1}} do
2: F copy

i ← Fi

3: π ← planRoute(r1, r1, t, GF )
4: if π 6= nil then
5: g(π)← c(π)
6: h(π)←∑m−1

k=1 shortestPath(rk, rk+1)
7: y(π)← g(π) + h(π)
8: stage(π)← 1
9: add(π,Π)

10: while Π 6= ∅ do
11: π = (〈f, t′〉, X)← argminπ′∈Π y(π′)
12: remove(π,Π)
13: i← stage(π)
14: if i = m then
15: return π
16: π(i,i+1) ← planRoute(ri, ri+1, t

′, (F ⊕ F copy
i+1 , EF ))

17: if π(i,i+1) 6= nil then
18: π′ = (〈f ′, t′′〉, X)← πyπ(i,i+1)

19: entryTime(F copy
i+1 , f ′)← t′′

20: g(π′)← c(π′)
21: h(π′)←∑m−1

k=i+1 shortestPath(rk, rk+1)
22: y(π′)← g(π′) + h(π′)
23: stage(π′)← i+ 1
24: if ∃π′′[π′′ ∈ Π | π′′ = (〈f ′, 〉, ) ∧ stage(π′′) = stage(π′)] then
25: replace(π′′, π′,Π)
26: else
27: add(π′,Π)
28: f ′′ ← nextFreeTimeWindow(f ′)
29: if f ′′ 6= nil then
30: g(π)← start(τexit(f ′′))
31: h(π)← h(π′)
32: y(π)← g(π) + h(π)
33: add(π,Π)
34: return nil

a plan to free time window f ′, we add the concatenated plan π′ to Π in line 27.
Then, in line 28 we get the free time window succeeding the free time window f ′

that is reached by the concatenated plan π′. If there isn’t such a window f ′′, then
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plan π has been fully expanded, and we don’t need to put plan π back on the list of
partial plans. Otherwise, the g value for the plan π that has been expanded in this
iteration is set to the start of the exit window of f ′′, the h value for π is set to the
h value of π′, and the y value for π is updated accordingly. In line 33 plan π is put
back on the list of partial plans. Then, we try to expand the next partial plan on
the list of partial plans Π in the next iteration. Finally, if the list of partial plans Π
is empty before a multi-stage plan is found, then no multi-stage plan exists, and nil
is returned in line 34.

Finally, note that if overtaking is forbidden, the check for the single-stage route
planning algorithm described in section 4.1.3 can also be applied when using the A*
concatenation algorithm.

4.2.1 Correctness

We must prove that if a solution to the multi-stage route planning problem exists,
then algorithm 6 finds an optimal solution.

Proposition 4.2.1. Algorithm 6 returns an optimal solution.

Proof. Algorithm 6 is complete and optimal for the same reason that a standard
A* algorithm is: in each iteration the most promising plan is expanded, and it is
not possible that expansion of a plan π results in a plan π′ such that y(π′) < y(π).
What remains to be proven is the correctness of:

1. the replacement of a partial plan on the list of partial plans in line 25;

2. putting back a partial plan that has been partially expanded on the list of
partial plans, and the associated calculation of the new g, h, and y values in
lines 30 to 33.

Ad 1: In the proof of correctness of the breadth-first concatenation algorithm,
we proved the correctness of the replacement of a partial plan on the list of partial
plans to a certain stage. The same proof applies to line 25 of algorithm 6.

Ad 2: In each iteration a partial plan π is only partially expanded. To guarantee
completeness a partial plan needs to be put back on the list of partial plans after
it has been expanded. In line 28 we determine the free time window that succeeds
the free time window f ′ reached by the concatenated plan π′. If such a window f ′′

exists, we first update the g, h, and y values for plan π before we put the plan back
on the list of partial plans to avoid expanding the same plan in the next iteration.
The next time we expand π, we only can find a plan π′′ that is more expensive than
π′, because no expansion of plan π can make use of a free time window earlier than
f ′, or f ′ itself, because π′ is an optimal plan from π to the next stage i + 1. The
plan cost of plan π′′ becomes at least equal to the start of the exit window of free
time window f ′′, because π cannot reach the next stage earlier than the start of
the next free time window f ′′, and therefore π′′ cannot leave the next stage earlier
than the start of the exit window of the next free time window f ′′. Therefore, we
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set the minimal plan cost g(π) to the start of the exit window of f ′′ in line 30. In
line 31 the heuristic cost h(π) is set to h(π′), because the minimal plan cost g(π) is
determined in such a way that it is like plan π has already been expanded again to
the next stage. This way the new value of y(π) does not overestimate the cost of
completing π to the final stage, which is required for optimality. If there isn’t a free
time window that succeeds the free time window f ′ reached by the concatenated
plan π′, then plan π has been fully expanded, and we don’t need to put plan π back
on the list of partial plans.

We conclude that algorithm 6 is correct, and because of the ‘A* property’, it is
optimal.

4.2.2 Complexity

The computational complexity of algorithm 6 is determined by the number of calls
that are made to the single-stage route planning algorithm.

Proposition 4.2.2. Algorithm 6 has a run-time complexity of O(|φ||F |2·(|EF |+|F |)
log(|F |)).

Proof. The list of partial plans Π can contain at most |Fi| plans to stage i: one
partial plan to each free time window on stage i. Every partial plan that ends in
some free time window on stage i can be expanded, in the worst case, to every free
time window on the next stage i+ 1, which results in |Fi+1| calls to the single-stage
route planning algorithm. Hence, for every stage at most |Fi|× |Fi+1| calls are made
to the single-stage route planning algorithm. There are |φ| stages, so the run-time
complexity of the algorithm is O(|φ||F |2) times the complexity of algorithm 2.

Note that, although the A* concatenation algorithm is an improvement of the
breadth-first concatenation algorithm, they have the same worst-case run-time com-
plexity. Finally, we have to make a side note that concerns both the breadth-first
concatenation algorithm and the A* concatenation algorithm. The complexity factor
of O(|F |2) is caused by the fact that, sometimes, a plan π to stage i that is expanded
later than a plan π′ to stage i leads to a shorter plan to stage i + 1. However, to
actually use O(|F |2) calls to the single-stage route planning algorithm, it must occur
O(|F |) times that such a plan π results in an earlier plan to stage i+ 1, which seems
unlikely. It is therefore an open question whether a better complexity bound for
both the breadth-first concatenation algorithm and the A* concatenation algorithm
can be found, or whether indeed pathological examples exist where O(|F |2) calls to
algorithm 2 are required.

4.3 A* Multi-Layer Approach

In this section we will explain an algorithm that doesn’t make use of the concate-
nation of plans found by the single-stage route planning algorithm like the previous
two algorithms explained in this chapter. When the concatenation approaches make
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a plan from a certain stage to the next stage, they probably find a plan that is
similar to some of the previously found plans, i.e., many of the visited resources and
their free time windows will be the same. The problem with the concatenation ap-
proaches is that a plan is calculated from scratch every time a call to the single-stage
route planning algorithm is made. The only information that is used from previ-
ously found plans are the entry times in the free time windows on the next stage.
The rest of the information from previous plans isn’t used in the planning process.
The A* multi-layer algorithm tries to overcome this problem by expanding free time
windows the same way as is done in the single-stage route planning algorithm.

In the single-stage route planning algorithm, a partial plan is completely char-
acterized by the last free time window and the associated entry time: together they
determine how the partial plan can be expanded. In multi-stage route planning, we
should also know which resources of the visiting sequence have been reached yet.
For example, if a partial plan ends in the final resource of the sequence, but not
all other stages have been visited yet, then we should continue expanding the plan.
This also means that we may have to visit a free time window more than once.
Take a look at the infrastructure in figure 4.2(a), where we have a visiting sequence
φ = (rb, rd, ra). Any valid multi-stage plan will have to pass intersection rc at least
twice. In case there are no reservations in the system yet, then each resource has a
single free time window, and we need to allow more than one visit to the free time
window on resource rc. However, as we have seen in chapter 2, the single-stage route
planning algorithm only expands a free time window at most once, which results in
a plan that visits a free time window at most once.

The solution we present in this section is to create an augmented free time
window graph GαF = (Fα, EαF ) that consists of multiple layers. We construct the
augmented free time window graph using the original free time window graph GF
and the visiting sequence φ. For every stage in the visiting sequence we make a
separate free time window subgraph, and these subgraphs are connected to each
other. The vertices (i.e., the augmented free time windows) of subgraph GiF for
stage i ∈ {1, . . . ,m − 1} consist of all free time windows in the original free time
window graph GF , except for the free time windows of the next stage i + 1. The
vertices of subgraph GmF for the last stage m only consist of the free time windows
of stage m. The edges of subgraph GiF for stage i ∈ {1, . . . ,m − 1} are the same
as in the original free time window graph GF , except for the augmented free time
windows in GiF corresponding to the free time windows in GF that can reach the free
time windows on stage i+ 1. Those augmented free time windows are connected to
the augmented free time windows on stage i+ 1 in subgraph Gi+1

F . We connect the
subgraph for stage i to the subgraph for stage i+ 1 in only one direction, meaning
that once we reach subgraph Gi+1

F , we cannot reach the subgraphs for stages i or
smaller anymore.

Consider figure 4.2 for an example of the creation of the augmented free time
window graph. There is an infrastructure with five intersection resources, and a
visiting sequence consisting of three stages, which are marked 1, 2, and 3. We
can see that subgraph G1

F doesn’t contain any free time windows of stage 2, G2
F
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(a) An infrastructure graph with five intersection resources. For the sake of simplicity the lane
resources (i.e., the edges) have a zero travel time. The visiting sequence is set to (rb, rd, ra).
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(b) The associated augmented free time window graph. Ovals represent augmented free time windows
on the corresponding resources of the infrastructure graph. Dashed arrows represent the reachability
between the free time window subgraphs.

Figure 4.2: A visiting sequence of size three results in a free time window graph
with three layers.
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doesn’t contain any free time windows of stage 3, and G3
F only contains the free time

windows of stage 3. Furthermore, we can see how the free time window subgraphs
are connected to each other.

The A* multi-layer algorithm, which is similar to the single-stage route planning
algorithm, performs a search through the augmented free time window graph GαF to
find an optimal multi-stage plan. If we expand the augmented free time windows of
the augmented free time window graph, we always know which stages in the visiting
sequence we have already visited: when we reach a certain subgraph GiF , we know
that we have visited the first i stages in the sequence. Furthermore, it is sufficient to
expand an augmented free time window of a certain subgraph at most once, because
a multi-stage plan needs to visit the corresponding free time window in GF at most
once when going from stage to stage.

Each augmented free time window of the augmented free time window graph GαF
belongs to a certain subgraph GiF as we have seen above. Therefore, we represent
an augmented free time window as a pair 〈f, i〉, where:

• f is the free time window that corresponds to free time window f in the original
free time window graph GF ;

• i is the stage number of f .

The A* multi-layer algorithm uses an estimated cost function y(〈f, i〉) to determine
the order in which augmented free time windows are selected for expansion. The
function y(〈f, i〉) is the sum of two functions:

• g(〈f, i〉): The partial cost function that calculates the earliest possible exit
time out of augmented free time window 〈f, i〉.

• h(〈f, i〉): The heuristic function that estimates the cost from the current re-
source associated with augmented free time window 〈f, i〉 to the final stage in
the visiting sequence.

Note that the partial cost function is the same as in the single-stage route planning
algorithm: g(〈f, i〉) = entryTime(〈f, i〉) + tt(r). The heuristic function h(〈f, i〉) cal-
culates the cost of the shortest path from the current resource r to the next stage
i + 1 plus the cost of the shortest path from the next stage i + 1 to the final stage
m along the stages in the visiting sequence φ that have yet to be visited without
taking into account the presence of other agents:

h(〈f, i〉) = shortestPath(r, ri+1) +
∑m−1

k=i+1 shortestPath(rk, rk+1)

Note that this heuristic function is consistent.
To determine the successors of an augmented free time window 〈f, i〉, we first have

to define the augmented reachability relation EαF . Augmented free time windows
with stage number i can only reach (and be reached from) other augmented free time
windows with stage number i. The exception is for augmented free time windows on
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‘stage’ resources: augmented free time window f with stage number i is connected
to f ′ with stage number i+ 1 if (f, f ′) ∈ EF , and the resource associated with f ′ is
stage i+ 1. Therefore, we define the augmented reachability relation EαF as follows,
given a visiting sequence φ = (r1, r2, . . . , rm):

EαF = {(〈f, i〉, 〈f ′, i〉) | (f, f ′) ∈ EF ∧ resource(f ′) 6= ri+1} ∪
{(〈f, i〉, 〈f ′, i+ 1〉) | (f, f ′) ∈ EF ∧ resource(f ′) = ri+1}

As in the single-stage case, the existence of a pair (〈f, i〉, 〈f ′, i′〉) ∈ EαF does not
guarantee that augmented free time window f with stage number i can be ex-
panded to augmented free time window f ′ with stage number i′. To determine if
〈f ′, i′〉 ∈ successors(〈f, i〉) with 〈f, i〉 = [t1, t2), we have to check if 〈f ′, i′〉 is reachable
from 〈f, i〉 from the earliest possible exit time g(〈f, i〉) out of 〈f, i〉: [g(〈f, i〉), t2) ∩
τentry(〈f ′, i′〉) 6= ∅.

The A* multi-layer algorithm maintains an open list of augmented free time
windows that can be expanded, and in each iteration the augmented free time win-
dow that is most likely to lead to a shortest multi-stage route to the final stage
is expanded, i.e., the augmented free time window 〈f, i〉 with the lowest value of
y(〈f, i〉). For every augmented free time window on the open list the entry time t,
the g, h, and y values, and a pointer to its predecessor window are stored. Hence,
an augmented free time window on the open list can be represented as a 6-tuple
〈〈f, i〉, t, g, h, y, p〉, where:

• 〈f, i〉 is the augmented free time window;

• t is the entry time into 〈f, i〉;

• g is the g value of 〈f, i〉;

• h is the h value of 〈f, i〉;

• y is the y value of 〈f, i〉;

• p is a pointer to the augmented free time window’s predecessor.

Algorithm 7 is a specification of the algorithm. In line 1 the augmented free
time window graph is created on basis of the original free time window graph GF
and the visiting sequence φ. In line 2 we check if there exists an augmented free
time window with stage number 1 on the start resource r1 of the visiting sequence
φ that has an entry window that contains the start time t. If there isn’t such an
augmented free time window 〈f, 1〉, then no plan exists, and nil is returned in line 28.
Otherwise, in line 3 the entry time into 〈f, 1〉 is recorded as the start time t. Then,
in lines 4 to 7 the g, h, and y values are calculated for the start window 〈f, 1〉, and
the pointer is set to nil. In line 8 the augmented free time window 〈f, 1〉 is added
to the open list. Next, as long as the open list is not empty, in each iteration the
most promising augmented free time window is expanded. In line 10 the augmented
free time window 〈f, i〉 with the lowest value of y(〈f, i〉) is selected from the open
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Algorithm 7 Multi-Stage A* Multi-Layer
Require: visiting sequence φ = (r1, r2, . . . , rm), start time t; free time window

graph GF = (F,EF ).
Ensure: shortest-time, conflict-free route plan π, such that φ v resources(π).

1: GαF = (Fα, EαF )← generateFTWG(GF , φ)
2: if ∃〈f, 1〉 [〈f, 1〉 ∈ Fα | t ∈ τentry(〈f, 1〉) ∧ r1 = resource(〈f, 1〉)] then
3: entryTime(〈f, 1〉)← t
4: g(〈f, 1〉)← t+ tt(r1)
5: h(〈f, 1〉)←∑m−1

k=1 shortestPath(rk, rk+1)
6: y(〈f, 1〉)← g(〈f, 1〉) + h(〈f, 1〉)
7: pointer(〈f, 1〉)← nil
8: add(〈f, 1〉, open)
9: while open 6= ∅ do

10: 〈f, i〉 ← argmin〈f ′,i′〉∈open y(〈f ′, i′〉)
11: remove(〈f, i〉, open)
12: add(〈f, i〉, closed)
13: if i = m then
14: return followPointers(〈f, i〉)
15: for all 〈f ′, i′〉 ∈ {successors(〈f, i〉) \ closed} do
16: entryTime(〈f ′, i′〉)← max(g(〈f, i〉), start(〈f ′, i′〉))
17: g(〈f ′, i′〉)← entryTime(〈f ′, i′〉) + tt(resource(〈f ′, i′〉))
18: h1(〈f ′, i′〉)← shortestPath(resource(〈f ′, i′〉), ri+1)
19: h2(〈f ′, i′〉)←∑m−1

k=i+1 shortestPath(rk, rk+1)
20: h(〈f ′, i′〉)← h1(〈f ′, i′〉) + h2(〈f ′, i′〉)
21: y(〈f ′, i′〉)← g(〈f ′, i′〉) + h(〈f ′, i′〉)
22: pointer(〈f ′, i′〉)← 〈f, i〉
23: if ∃〈f ′′, i′′〉[〈f ′′, i′′〉 ∈ open | f ′′ = f ′ ∧ i′′ = i′] then
24: if entryTime(〈f ′′, i′′〉) > entryTime(〈f ′, i′〉) then
25: replace(〈f ′′, i′′〉, 〈f ′, i′〉, open)
26: else
27: add(〈f ′, i′〉, open)
28: return nil

list. Then, the augmented free time window is removed from the open list, and
added to the closed list. If the stage number i of the selected augmented free time
window equals the final stage m, an optimal multi-stage plan has been found. The
optimal plan is constructed in line 14. Following the series of pointers from the
current augmented free time window 〈f, i〉 backwards to the start window results in
a sequence of augmented free time windows in GαF . This sequence can be translated
into a sequence of free time windows in the original free time window graph GF to
give the optimal plan. Note that the cost of the plan as defined in definition 2.2.2 is
equal to g(〈f, i〉). If the stage number of the selected augmented free time window
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is not equal to m, the selected window 〈f, i〉 is expanded to all successor windows
that are not on the closed list. Recall, as described above, that an augmented free
time window 〈f ′, i′〉 is a successor of the selected window 〈f, i〉 if 〈f ′, i′〉 is reachable
from 〈f, i〉 from the earliest possible exit time g(〈f, i〉) out of window 〈f, i〉. In
line 16 the entry time into successor window 〈f ′, i′〉 is determined by the maximum
of the earliest possible exit time out of 〈f, i〉, and the start of window 〈f ′, i′〉. Then,
in lines 17 to 22 the g, h, and y values are calculated for successor 〈f ′, i′〉, and the
pointer is set to the selected window 〈f, i〉. Note that the first part h1 of the heuristic
function h is equal to zero when i′ = i + 1. In line 23 it is checked if the successor
window is already on the open list. If it is, we check in line 24 if the entry time into
the augmented free time window on the open list is later than the newly found entry
time into the window. If the entry time into the augmented free time window on the
open list is later, the window on the open list is replaced in line 25. If the open list
doesn’t contain the successor window, the augmented free time window is added in
line 27. Then, the next augmented free time window on the open list is expanded
in the next iteration. Finally, if the open list is empty before a multi-stage plan is
found, then no multi-stage plan exists, and nil is returned in line 28.

Finally, note that if overtaking is forbidden, we need to change the partial cost
function as described in section 2.4.3.

4.3.1 Correctness

We must prove that if a solution to the multi-stage route planning problem exists,
then algorithm 7 finds an optimal solution. We begin with a lemma.

Lemma 4.3.1. For any 1 ≤ i ≤ m it holds that when subgraph GiF is reached, the
first i resources of the visiting sequence φ have been visited.

Proof. We will prove this by induction. We start the path on the first stage in
subgraph G1

F , so the proposition holds for i = 1. Suppose now that for some i ≥ 1,
we have visited the first i stages, when we reach subgraph GiF . The only way to
reach the next subgraph Gi+1

F is via subgraph GiF by the structure of the augmented
free time window graph: we reach the next subgraph when we visit the next stage
i+ 1. Hence, when we reach subgraph Gi+1

F , we know that we have visited the first
i + 1 stages. We now have proved by induction that for any 1 ≤ i ≤ m it holds
that when we reach subgraph GiF , we have visited the first i resources of the visiting
sequence φ.

Proposition 4.3.2. Algorithm 7 returns an optimal solution.

Proof. Algorithm 7 searches for a path through the augmented free time window
graph GαF , starting on the first stage in subgraph G1

F and ending in subgraph GmF .
In order to prove the correctness of algorithm 7 we have to prove that:

1. such a path through the augmented free time window graph GαF is indeed a
multi-stage plan;

47



4. Context-Aware Multi-Stage Route Planning Algorithms

2. such a path is a shortest path through the augmented free time window graph
GαF .

Ad 1: Two conditions have to be satisfied for a path through the augmented
free time window graph GαF , starting on the first stage in subgraph G1

F and ending
in subgraph GmF , to be a multi-stage plan:

1. The path should visit all stages in the visiting sequence
Lemma 4.3.1 implies that when we reach subgraph GmF , we have visited all
resources of the visiting sequence φ. Hence, a path starting on the first stage
in subgraph G1

F and ending in subgraph GmF visits all stages in the visiting
sequence.

2. It should be possible to translate the path through GαF into a path through GF
Each augmented free time window corresponds to a certain free time window
in the original free time window graph GF , so a sequence of augmented free
time windows can be translated into a sequence of free time windows in the
original free time window graph GF .

Hence, we can conclude that a path through the augmented free time window graph
GαF , starting on the first stage in subgraph G1

F and ending in subgraph GmF , is a
multi-stage plan.

Ad 2: We will prove that algorithm 7 always returns an optimal path through
the augmented free time window graph GαF (if one exists) by showing that prior to
termination, there is always an augmented free time window on the open list that is
on an optimal path. Because any sub-optimal (partial or full) path has a higher y-
value than a (partial or full) optimal path, the optimal augmented free time window
on the open list will be expanded before a sub-optimal solution can be returned.
Expansion of an optimal partial path will result in another optimal (partial or full)
path.

1. Path p∗ is an optimal path through GαF
Let p∗ be an optimal path through the augmented free time window graph GαF ,
starting from time t on the first stage in subgraph G1

F and ending in subgraph
GmF . We can characterize p∗ as a sequence of n augmented free time windows
with optimal entry times: p∗ = (〈〈f1, 1〉, t∗1〉, . . . , 〈〈fn,m〉, t∗n〉), where 〈f1, 1〉
is an augmented free time window on the first stage, t∗1 equals the start time
t, and 〈fn,m〉 is an augmented free time window on the last stage m. Note
that the stage numbers of the augmented free time windows in the sequence
are non-decreasing. We will show that, prior to termination of the algorithm,
there exists an augmented free time window on the open list 〈fw, j〉 ∈ p∗ with
optimal entry time t∗w

1.
1Showing the existence of an augmented free time window on the open list that is on an optimal

path is similar to lemma 1 in Hart et al. [6].

48



A* Multi-Layer Approach

2. There exist optimal windows on the closed list
Let ∆ be the set of all augmented free time windows from the optimal path p∗

that are on the closed list, such that for all 〈fv, iv〉 ∈ ∆, tv = entryTime(〈fv, iv〉)
is optimal. Note that ∆ is non-empty, since after the first iteration it contains
the start window 〈f1, 1〉 with entry time t.

3. Optimal window 〈fw−1, i〉 on the closed list has been expanded to window 〈fw, j〉
on the open list that is on optimal path p∗

Let 〈fw−1, i〉 be the augmented free time window from ∆ with the highest
index. Since 〈fw−1, i〉 is on the closed list, it must have been expanded to
〈fw, j〉, unless 〈fw, j〉 were already on the closed list. Because we use a con-
sistent heuristic function h, prior expansion of 〈fw, j〉 is impossible, which we
will now demonstrate. If 〈fw, j〉 were on the closed list, it would, by definition
of ∆, have a sub-optimal entry time t′ > t∗w. Although j can be either equal
to i or i+ 1, in both cases we have:

y(〈fw−1, i〉) = t∗w−1 + tt(resource(〈fw−1, i〉)) + h(〈fw−1, i〉)
≤ t∗w + tt(resource(〈fw, j〉)) + h(〈fw, j〉) (consistency)
< t′ + tt(resource(〈fw, j〉)) + h(〈fw, j〉)

Hence, 〈fw−1, i〉 would be expanded before 〈fw, j〉, so 〈fw, j〉 cannot be on the
closed list.

4. Window 〈fw, j〉 on optimal path p∗ has been entered with optimal entry time
t∗w
We will now show that the expansion of 〈fw−1, i〉 to 〈fw, j〉 has resulted in the
optimal entry time t∗w into 〈fw, j〉. The entry time of an augmented free time
window is determined in line 16 of algorithm 7; there are two cases to consider:

case a: entryTime(〈fw, j〉) equals the start of the augmented free time win-
dow 〈fw, j〉. Since a window cannot be entered earlier than its start time,
entryTime(〈fw, j〉) equals the optimal entry time t∗w.

case b: entryTime(〈fw, j〉) = t∗w−1 + tt(resource(〈fw−1, i〉)). Since t∗w−1 is
optimal, so is entryTime(〈fw, j〉).

Having shown that there exists an augmented free time window on the open list
with the optimal entry time, it is easy to show that algorithm 7 can never return
a sub-optimal solution. As explained in section 2.4.1, a consistent heuristic is also
admissible, i.e., it never overestimates the cost of reaching the destination. This
implies that at the final stage, we have h = 0. A sub-optimal path to the final stage
therefore has a larger y-value than any (partial or full) optimal path; an optimal
path will thus be retrieved from the open list first.

Finally, note that algorithm 7 always terminates: there is only a finite number
of augmented free time windows, and in each iteration, one augmented free time
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window is added to the closed list (i.e., it can never be expanded again). Hence, if
a solution exists, algorithm 7 always returns an optimal solution.

4.3.2 Complexity

Proposition 4.3.3. Algorithm 7 has a run-time complexity of O(|φ| · (|EF |+ |F |)
log(|F |)).

Proof. First of all, note that we need to expand each augmented free time window
at most once, because we use a consistent heuristic function (see section 2.4.1).
Therefore, an augmented free time window 〈f, i〉 ∈ Fα can be retrieved from the
open list at most once, so the while loop runs for at most |Fα| iterations. If we
implement the open list as a priority queue, removing the cheapest element from
the list takes O(log(|Fα|)) time.

The for loop in line 15 could inspect every connection between two augmented
free time windows exactly once, so lines 16 to 27 can run at most |EαF | times. Within
the for loop, line 23 checks whether the successor augmented free time window is
already on the open list. If it is, and its entry time is later, we replace the window in
line 25. Otherwise, the window is added in line 27. Replacing or adding a window
on the open list takes O(log(|Fα|)) time. This results in a run-time complexity of
O((|EαF |+ |Fα|) log(|Fα|)).

Furthermore, there are |φ|·|F | augmented free time windows, i.e., |Fα| = |φ|·|F |,
and the augmented reachability relation EαF is around |φ| times as large as the
reachability relation EF , i.e., |EαF | = |φ| · |EF |. Hence, the run-time complexity of
algorithm 7 becomes O(|φ| · (|EF |+ |F |) log(|F |)).

4.4 Concluding Remarks

In this chapter we presented three complete and optimal multi-stage route planning
algorithms. The breadth-first concatenation algorithm and the A* concatenation
algorithm both make use of the single-stage route planning algorithm. They con-
catenate plans between stages of the visiting sequence to find an optimal multi-stage
plan. Although the A* concatenation algorithm is an improvement of the breadth-
first concatenation algorithm, they both have a worst-case run-time complexity of
O(|φ||F |2 · (|EF | + |F |) log(|F |)). The A* multi-layer algorithm doesn’t make use
of the single-stage route planning algorithm. A new free time window graph is cre-
ated on basis of the original free time window graph and the visiting sequence. The
algorithm searches for a path through this new free time window graph to find an
optimal multi-stage plan the same way as the single-stage route planning algorithm
searches for a path through the free time window graph. The A* multi-layer algo-
rithm is the algorithm with the best run-time complexity. It has a complexity of
O(|φ| ·(|EF |+ |F |) log(|F |)). Note that this is the same complexity as the complexity
of the incomplete and sub-optimal linear concatenation algorithm from chapter 3.
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In the next chapter we will empirically investigate the algorithms presented in
this chapter. We will examine the required CPU-time, and how this CPU-time
depends on the size of the visiting sequence. Additionally, we will compare the
CPU-time of the multi-stage algorithms with the CPU-time of the single-stage route
planning algorithm. We expect that the A* multi-layer algorithm will be the fastest
algorithm among the three complete and optimal multi-stage route planning algo-
rithms. Furthermore, we expect the A* concatenation algorithm to be faster than
the breadth-first concatenation algorithm.
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Chapter 5

Experiments

In chapter 3 we explained that the linear concatenation approach is incomplete and
sub-optimal. The need for a complete and optimal multi-stage route planning algo-
rithm is determined by the failure rate and plan quality of the linear concatenation
approach. Therefore, in this chapter we will empirically investigate (i) how often
the linear concatenation algorithm fails to find a solution, (ii) how often it finds a
sub-optimal solution, and (iii) when it finds a sub-optimal solution, what is the plan
quality, i.e., how much more expensive is the sub-optimal solution than an optimal
plan, found by one of the optimal algorithms. We will also investigate the CPU-time
required by the three complete and optimal multi-stage route planning algorithms
from the previous chapter, and how the CPU-time depends on the length of the
visiting sequence. We will start by describing our test setup for the experiments in
section 5.1. Then, in section 5.2, we will describe the results.

5.1 Test Procedure

We tested the algorithms on two different infrastructures. The first infrastructure is
a random graph consisting of 180 lanes and 100 intersections (i.e., 280 resources)1.
For each agent a randomly generated visiting sequence φ was determined. The size
of the visiting sequence |φ| was set to 4, 6, and 8.

To investigate how multi-stage route planning performs in a real-life application,
we looked at the de-icing problem at an airport as mentioned in the introduction
of this thesis. Our infrastructure is a model of Amsterdam Airport Schiphol, which
consists of 1219 resources. For each airplane (agent), the visiting sequence consisted
of (i) one of six available runways, (ii) one of 187 gates, (iii) one of two de-icing
stations, located at the center of the airport, and (iv) one of five remaining runways
(i.e., different from the arrival runway).

We used a total of 900 agents to perform the experiments. The first agent to
make a plan has no reservations to take into account, whereas agent 900 has to

1We have actually performed the experiments on several random graphs both smaller and larger,
which showed similar results.
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respect the reservations of the previous 899 agents (we chose a random order in
which to let the agents plan). For each agent, we ran four algorithms: the linear
concatenation algorithm (algorithm 4), the breadth-first concatenation algorithm
(algorithm 5), the A* concatenation algorithm (algorithm 6), and the A* multi-
layer algorithm (algorithm 7). We reserved the plan that was found by the A*
multi-layer algorithm. All of the following experiments have been repeated 100
times with different (randomly chosen) visiting sequences, and were performed on
an AMD Opteron 250 2.4 Ghz with 4 GB of memory.

5.2 Results

In the first part of this section we will discuss the results regarding the linear con-
catenation approach. The second part discusses the results concerning the execution
times of the three complete and optimal multi-stage route planning algorithms from
chapter 4.

5.2.1 The linear concatenation algorithm and its plan quality

Figures 5.1 through 5.4 show the percentage of plans produced by the linear con-
catenation algorithm that are optimal (line with circles), sub-optimal (line with
triangles), and the percentage of null plans (i.e., the percentage of runs that the
linear concatenation algorithm finds no plan — line with squares). Note that to
obtain the percentage of runs in which the complete and optimal multi-stage route
planning algorithms outperform the linear concatenation algorithm, we need to add
the percentage of sub-optimal plans to the percentage of null plans.

The first conclusion we can draw from figures 5.1 through 5.4 is that the percent-
age of null plans not only increases with the number of reservations in the system,
but also with the length of the visiting sequence. Although it is true that 200 agents
produce more reservations when they have a plan along 8 resources rather than 4,
we also see that 80% or more null plans is never reached when |φ| ≤ 6, even for
900 agents, whereas it is already reached for around 200 agents when |φ| = 8. Also,
for all sizes of visiting sequence we see that the percentage of null plans increases
quickly at first, but then it starts to level out. The exception is the Schiphol infras-
tructure, where the levelling of the percentage of null plans was not (yet?) observed
for 900 agents. The behaviour of the null-plan lines leads us to believe that there is
a small probability of failure at each intermediate resource of the visiting sequence,
and that this probability increases with the number of reservations in the system,
up to a point where no more reservations can be made for a certain time period.

For all sizes of visiting sequence, and for both Schiphol and the random graph, we
see that the percentage of sub-optimal plans stays relatively constant. For |φ| ≥ 6,
the percentage is higher when the percentage of null plans is still small. The quality
of the sub-optimal plans is quite high, however, as shown in table 5.1. The differences
in plan cost between the sub-optimal plans and the optimal plans are small indeed
for the Schiphol infrastructure, and we suspect there are two reasons for this. First

54



Results

number of agents

pe
rc

en
ta

ge
 o

f p
la

ns

0 200 400 600 800

0
20

40
60

80
10

0

Null plans
Optimal plans
Sub−optimal plans

Figure 5.1: Type of plans found by the linear concatenation algorithm with visiting
sequence size 4 for an increasing number of agents on the random graph.
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Figure 5.2: Type of plans found by the linear concatenation algorithm with visiting
sequence size 6 for an increasing number of agents on the random graph.
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Figure 5.3: Type of plans found by the linear concatenation algorithm with visiting
sequence size 8 for an increasing number of agents on the random graph.
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Figure 5.4: Type of plans found by the linear concatenation algorithm with visiting
sequence size 4 for an increasing number of agents on the Schiphol infrastructure.
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of all, the distances between stages on the Schiphol infrastructure are larger, so the
loss of quality is divided by a greater total plan cost. Second, and perhaps more
importantly, the final stage in any plan (a departure runway) is shared by many
agents, and will therefore become a bottleneck resource. Hence, any time lost after
the penultimate stage (the de-icing station) can be made up because the agent has
to wait for entry into the runway. A final conclusion is that the linear concatenation
approach suffers more from incompleteness than from sub-optimality.

Table 5.1: Plan cost of sub-optimal plans found by the linear concatenation algo-
rithm.

infrastructure |φ| plan cost compared to optimum
random graph 4 102.83%
random graph 6 102.35%
random graph 8 102.11%
Schiphol 4 100.14%

5.2.2 CPU-time analysis of the multi-stage route planning
algorithms

We expect that the A* multi-layer algorithm will be the fastest multi-stage algo-
rithm, because this algorithm has the best computational complexity as we have
seen in the previous chapter. The breadth-first concatenation algorithm and the A*
concatenation algorithm have the same complexity, but since the A* concatenation
algorithm is an improvement of the breadth-first concatenation algorithm, we expect
that the A* concatenation algorithm is faster than the breadth-first concatenation
algorithm.

We started with testing the single-stage route planning algorithm to see how this
algorithm performs. This way we will be able to compare the execution times of the
multi-stage algorithms with the execution time of the single-stage route planning
algorithm. Figure 5.5 shows the average CPU-time required by the single-stage
route planning algorithm along with 95% confidence intervals. Note that the CPU-
time is measured in milliseconds. We see that the single-stage algorithm is very
fast. Computing a plan only takes a couple of milliseconds. The required CPU-time
increases slowly with the number of agents in the system; when almost all agents
have reserved their plans, the time to make a plan is almost three times as large as
the time it takes to find a plan for one of the first agents. However, the confidence
intervals are very large, which means that there is a lot of variation in execution
times. Note that this experiment has been performed on the random graph, but we
can report that the same test on the Schiphol infrastructure showed similar results.

Figure 5.6 through 5.8 show the average CPU-time for each algorithm along
with 95% confidence intervals for the several sizes of the visiting sequence on the
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Figure 5.5: Average CPU-time for the single-stage route planning algorithm for an
increasing number of agents on the random graph.

random graph. We didn’t plot the CPU-time required by the linear concatenation
algorithm, but we can report that, when a plan was found, the linear concatenation
algorithm required the same amount of CPU-time as the A* multi-layer algorithm.
Note that the CPU-time of the breadth-first concatenation algorithm and the A*
concatenation algorithm is measured in seconds, but the CPU-time of the A* multi-
layer algorithm in milliseconds. The confidence intervals grow both with the number
of agents, but also with the size of the visiting sequence. This means that for larger
|φ| there is more variation in execution times. We can see that the relation between
the CPU-time and the number of agents is more or less linear for all algorithms. Note
that the worst-case complexity of algorithm 5 and algorithm 6, which would require
O(|F |2) calls to algorithm 2 (for a total complexity that is at least quadratic), is
not observed. This means that in practice it is rare that O(|F |2) calls to the single-
stage route planning algorithm are required. Furthermore, we see that the relation
between the CPU-time and the length of the visiting sequence is more than linear
for all algorithms; doubling the size of the visiting sequence causes the execution
time to increase more than twice. This can be explained by the factor |F | log(|F |)
present in the complexity of each algorithm combined with the fact that with a
longer visiting sequence an agent produces more reservations, and thus there are
more free time windows.

Figure 5.9 shows the average CPU-time for the multi-stage algorithms for visiting
sequence size 6 on the random graph. In this figure we can see how the three multi-
stage algorithms perform relative to each other. It demonstrates that the A* multi-
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Figure 5.6: Average CPU-time for the breadth-first concatenation algorithm for
several visiting sequence sizes for an increasing number of agents on the random
graph.
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Figure 5.7: Average CPU-time for the A* concatenation algorithm for several visit-
ing sequence sizes for an increasing number of agents on the random graph.
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Figure 5.8: Average CPU-time for the A* multi-layer algorithm for several visiting
sequence sizes for an increasing number of agents on the random graph.
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Figure 5.9: Average CPU-time for the multi-stage algorithms with visiting sequence
size 6 for an increasing number of agents on the random graph.
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layer algorithm is by far the fastest algorithm; the A* concatenation algorithm is
about three times faster than the breadth-first concatenation algorithm.

Figure 5.10 shows the average CPU-time for the multi-stage algorithms on the
Schiphol infrastructure. Figure 5.10 looks the same as figure 5.9, although the exe-
cution times of the A* concatenation algorithm and the breadth-first concatenation
algorithm are closer to each other than on the random graph. We also see that each
algorithm considerably takes more time to find a plan on the Schiphol infrastructure
than on the random graph with visiting sequence size 6, even though the visiting
sequence size on the Schiphol infrastructure is just 4. The reason for this is that
the Schiphol infrastructure consists of many more resources than the random graph.
Hence, a lot more possible route plans need to be considered by the multi-stage al-
gorithms. In figure 5.10 we cannot clearly see the performance of the A* multi-layer
algorithm. Therefore, we included figure 5.11 that only shows the average CPU-time
for the A* multi-layer algorithm on the Schiphol infrastructure.

5.3 Concluding Remarks

In this chapter we have seen that the linear concatenation algorithm really is no
option to use for multi-stage route planning, because its failure rate is too high. As
expected, the A* multi-layer algorithm is the fastest multi-stage algorithm among
the three complete and optimal multi-stage route planning algorithms from the
previous chapter, followed by the A* concatenation algorithm, and then the breadth-
first concatenation algorithm. The difference in execution time between the A*
multi-layer algorithm and the other two algorithms is quite large. The CPU-time
required by the A* multi-layer algorithm is at most a few tenths of a second, while the
other two algorithms sometimes need several seconds to find a plan depending on the
size of the visiting sequence and the number of agents that already reserved a plan.
We conclude by stating that the execution time of the A* multi-layer algorithm is a
factor larger than the execution time of the single-stage route planning algorithm,
but it still lies in the range of milliseconds.
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Figure 5.10: Average CPU-time for the multi-stage algorithms with visiting sequence
size 4 for an increasing number of agents on the Schiphol infrastructure.
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Figure 5.11: Average CPU-time for the A* multi-layer algorithm with visiting se-
quence size 4 for an increasing number of agents on the Schiphol infrastructure.
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Chapter 6

Conclusions and Future Work

This final chapter gives a summary of the matter discussed in the previous chapters.
Then, some interesting ideas for future research will be discussed.

6.1 Conclusions

In this thesis we did research on context-aware multi-stage route planning. In gen-
eral, context-aware route planning is about finding a collectively optimal set of
conflict-free plans for agents on a common infrastructure. However, this problem is
NP-hard as proved in [13], but if a sequential approach is used, which means that
agents make plans one after the other, finding an optimal conflict-free route plan
for a single agent can be done in polynomial time. Therefore, we focused on this
sequential approach. The idea for route planning is that an agent makes a plan, and
then it places reservations on the resources for the intended periods of occupation.
During planning, an agent is only allowed to use time intervals that do not conflict
with the set of existing reservations on the resources: the free time windows. In the
multi-stage variant of the context-aware route planning problem, a shortest route
has to be found along a sequence of resources instead of just from a start resource
to a destination resource as in single-stage route planning.

First of all, we identified the multi-stage route planning problem. It appeared
that the solution to the problem is not as trivial as it first seems; concatenating
subsequent plans found by the single-stage route planning algorithm turned out
to be an incomplete and sub-optimal approach as a result of the reservations in
the system. Therefore, our main goal was to find a complete and optimal multi-
stage route planning algorithm. We developed three multi-stage route planning
algorithms that always return an optimal route for a single agent, given a set of
reservations made by previous agents. The A* multi-layer algorithm is the algorithm
with the best run-time complexity. In fact, it has the same complexity as the
trivial linear concatenation algorithm, which is incomplete and sub-optimal. The
experiments concerning the execution times of the algorithms showed that the A*
multi-layer algorithm really outperforms the other two complete and optimal multi-
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stage algorithms. The CPU-time required by the A* multi-layer algorithm is at most
a few tenths of a second as opposed to the other two multi-stage algorithms, which
sometimes require several seconds to find a plan depending on the size of the visiting
sequence and the number of agents that already reserved a plan. The CPU-time of
the A* multi-layer algorithm turns out to be a factor larger than the CPU-time of the
single-stage route planning algorithm, but it is still in the range of milliseconds. The
experiments regarding the linear concatenation algorithm showed that this algorithm
is no option to use for multi-stage route planning, because its failure rate is too
high. Furthermore, it appeared that the A* multi-layer algorithm is as fast as the
linear concatenation algorithm in case the linear concatenation algorithm does find
a multi-stage plan. We conclude that our research has been successful, because
we developed an efficient complete and optimal multi-stage algorithm that has the
same complexity and requires the same amount of CPU-time as the trivial approach,
which is incomplete and sub-optimal.

6.2 Future work

In this section we briefly mention some promising topics for future research.
In chapter 2 we discussed several plan constraints in addition to the basic resource

load constraint that a set of agent plans may also be required to satisfy. For example,
we may require that agents are not allowed to overtake each other on a resource; or, a
lane resource that allows bidirectional traffic may only be traversed in one direction
at the same time. It might be interesting to examine other plan constraints that are
required by certain problems. Take for example the de-icing problem at airports.
We didn’t take into account the constraint that an airplane must take off within a
certain time limit of de-icing (called the holdover time, which is typically 15 minutes),
to prevent ice from re-forming. If a plan is found that exceeds the holdover time,
then the plan is basically worthless. To solve this problem effectively, we first have
to examine the reason for exceeding the holdover time. The reason could be that
agents wait too long in some ‘bottleneck’ resources and thereby block the road for
other agents. Another reason can be e.g. that some parts of the infrastructure are
simply too congested. In the first case, a possible solution might be to identify the
bottleneck resources. Then, in the planning phase we can make sure that an agent
only makes use of a bottleneck resource for a limited time by e.g. shortening the
duration of the free time windows on that resource. In the second case, a possible
solution might be to plan with a heuristic that distributes agents more uniformly
over the infrastructure, so that the infrastructure becomes less congested. In both
these cases the individual plan quality of the agents may deteriorate slightly in favor
of meeting the holdover time. There could be even other reasons to consider, and
maybe there are other types of solutions possible, so this is an interesting direction
for future research.

In this thesis we used a sequential approach to route planning, meaning that
agents make plans one after the other. This means that the set of reservations on
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the resources is fully known to a planning agent. However, this sequential approach
is restrictive for two reasons: (i) in a multi-agent system each agent has its own
thread of control, and (ii) agents have always to respect the reservations of other
agents completely, which limits their autonomy. An algorithm that allows agents
to make plans simultaneously, takes the first objection directly away, and paves the
way for a solution to the objection of autonomy. We can think of a scenario in which
agents have preferences about which agent uses a resource, and when, and that both
making and revising reservations is subject to negotiation between the agents. This
can be an interesting topic for future work.

As explained in chapter 2, the sequential approach to route planning finds an
optimal plan for each individual agent, but it does not guarantee a globally optimal
solution for all route planning agents together. The total performance of the result-
ing route plans will be dependent on the exact sequence in which the agents will plan
their individual route. In [13] there has been investigated what the effect of different
sequences of planning agents is on the total performance of the set of route plans.
They found that the impact of the order in which the agents plan is influenced by
a number of factors, such as the density of the infrastructure. An interesting sub-
ject for future research is to find heuristic functions to determine efficient planning
sequences. Their experiments showed that agents lose much time waiting for agents
traveling in the opposite direction, so a heuristic function could be aimed at creating
flows of agents traveling in the same direction. Note that planning sequences might
also be interesting to the de-icing problem with holdover constraint discussed above.
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