
Latent Space Modelling of
Unsteady Flow Subdomains
Thesis Report
B. Mulder

Te
ch

ni
sc

he
Un

ive
rs
ite

it
De

lft

Latent Space Modelling of
Unsteady Flow Subdomains

Thesis Report
by

B. Mulder

Student number: 4100794
Supervisor: Prof. dr. S.J. Hulshoff, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Very complex flows can be expensive to compute using current Computational Fluid Dynamics (CFD) tech-
niques. In this thesis, models based on deep learning were used to replace certain parts of the flow domain,
with the objective of replacing well-known regions with simplified models to increase efficiency. To keep the
error produced by the deep learning model bounded, a traditional CFD model and deep learning model were
coupled using a boundary overlap area. In this overlap area, the flow computed by the traditional CFD model
was used by the deep learning model as an input.

It was demonstrated that since traditional CFD model continuously feeds in reliable information into
the deep learning domain, the error remains bounded. Furthermore, it was found that the accuracy of the
deep learning models depends significantly on the random initial weights. Therefore, deep learning models
trained differently must be carefully compared.

iii

Contents

List of Symbols vii
Abbreviations ix
1 Introduction 1
2 Relevant Literature 3

2.1 Deep Learning Networks . 3
2.1.1 Perceptron . 3
2.1.2 Multi-Layered Perceptron . 4
2.1.3 The Exploding and Vanishing Gradient Problem . 4
2.1.4 Convolutional Neural Network. 5
2.1.5 Recurrent Neural Network . 6
2.1.6 Autoencoder . 7

2.2 Applying Deep Learning to CFD . 7

3 ResearchOutline 9
3.1 Gaps In Current Knowledge . 9
3.2 research Questions . 10

4 Method 11
4.1 Model Problem . 11
4.2 Artificial Neural Network Setup . 11

4.2.1 Autoencoder . 11
4.2.2 Recurrent Neural Network . 14

4.3 Data Sets . 15
4.4 Training . 17
4.5 Inference . 18
4.6 Boundary Overlap Areas . 18
4.7 Stochatstics . 20
4.8 Number of training samples . 21
4.9 Loss definitions . 21
4.10 Deep Learning Tools . 23

5 Results andDiscussion 25
5.1 Boundary overlap areas . 25
5.2 Error Development . 25
5.3 Statistics . 27
5.4 Training Samples . 30

6 Conclusion 33
7 Recommendations 35
Bibliography 37

v

List of Symbols

A Amplitude

a Output of a perceptron

b Bias of a perceptron

E Internal Energy

f Frequency

g Activation function

ht Hidden state of time at time t

ms Length of the latent space vector

o Number of inputs for the RNN

ρ Density

τ Time shift at which a wave enters the domain.

u Velocity

Wi Weight applied to perceptrons input i

Whh Weight matrix of of a RNN applied to the hidden state of the previous time step, which results in the
hidden state

Whx Weight matrix of of a RNN applied to the input, which results in the hidden state

Why Weight matrix of of a RNN applied to the hidden state, which results in the output of the RNN layer

xt Input of a neural network at time t

vii

Abbreviations

AE Autoencoder

ANN Artificial Neural Network

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

DL Deep Learning

EIA an Euler code for Internal Aeroacoustics

GRU Gated Recurrent Unit

LSTM Long Short Term Memory

MLP Multilayer Perceptron

MSE Mean squared error

NS Navier-Stokes

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

ROM Reduced Order Model

ix

1
Introduction

Complex flows at high Reynolds numbers often require so much computational effort that they are practically
impossible to compute. As designing many vehicles and tools involves fluid dynamics, improving the CFD
would lead to improvements in design and/or a reduction in design costs.

Currently, CFD techniques often use resources for solving parts of the flow domain where the behaviour is
well known and is not of primary interest, yet exhibit complex behaviour necessary for resolving the complete
flow. In certain cases it may be possible replace these areas with more efficient models to reduce computation
costs. In this thesis, models based on Deep Learning (DL) are developed for this task. DL techniques show
promise in many areas such as self-driving cars, playing a variety of games at a superhuman level, image
recognition, linguistic modelling, etc. In reference Wiewel et al. [24] it was shown that DL can help to lower
the CPU costs of the CFD algorithm. An Autoencoder (AE) was used to reduce the flow dimensionality into
a latent space. A Recurrent Neural Network (RNN) was used to predict the next latent space state, based on
a few previous latent space states. This model, however, needs a short history of the fluid state as a startup,
which might not be feasible in situations where the problem is too complex. The error in their solution also
grows exponentially over time. This was solved by running a traditional algorithm each few time steps, which
leads to higher computation costs and again might not be possible for situations where the problem is too
complex. The question this thesis helps to answer is: Can a DL approach be used to replace a traditional CFD
approach in parts of the domain to do the time evolution of the full state of a fluid?

Chapter 2 discusses the relevant literature this thesis uses to built upon and discusses what can and needs
to be improved to make a functional DL aided CFD model. The research outline is described in Chapter 3.
The method for testing various aspects of the proposed architecture are discussed in Chapter 4. The results
and conclusions are described in Chapter 5. The conclusions are presented in Chapter 6. Finally, recommen-
dations for future work is described in Chapter 7.

1

2
Relevant Literature

This chapter discusses the relevant literature used as inspiration. DL is discussed in Section 2.1. A method of
using DL for fluid flow predictions is discussed in Section 2.2

2.1. Deep Learning Networks
This section will dive into the components and successfully used Artificial Neural Network (ANN) architec-
tures. First the perceptron, the main building block of the ANN, is discussed in Section 2.1.1. The Multilayer
Perceptron (MLP) layer is discussed in Section 2.1.2. The exploding or vanishing gradient problem is de-
scribed in Section 2.1.3. The Convolutional Neural Network (CNN) and RNN layers are discussed in Section
2.1.4 and 2.1.5, respectively. An application of the described layers, the AE, is discussed in Section 2.1.6

2.1.1. Perceptron
The main building block for ANN’s is the perceptron. As described by Rosenblatt [19], the perceptron has
the form depicted in Figure 2.1. A perceptron has a certain number of inputs, x1 up to xn . These inputs are

x1

x2

x3

x4

xn

b

W1

Activation
Function

W2
W3
W4

Wn

Σ
a

Figure 2.1: Schematic overview of a perceptron.

multiplied by their own weight W1 up to Wn and consequently summed. Finally, the bias b is added and
an activation function is applied, which yields a. The output for a perceptron can thus be calculated using
Equations 2.1.

a = g

(
i=n∑
i=0

xi Wi +b

)
(2.1)

Where g usually was a sigmoid or tanh function, but more recently a Rectified Linear Unit (ReLU) has become
more popular as it allows for training deeper networks Nair and Hinton [17]. With a training set mapping
x to a, the weights can be adjusted, with a gradient descent algorithm for example, so a desired output gets
computed by the perceptron.

3

4 2. Relevant Literature

2.1.2. Multi-Layered Perceptron
A single perceptron can only predict linear separable problems. It can’t approximate a XOR function, for
example. It was found that chaining together the perceptron into an MLP solved this issue Rumelhart et al.
[21]. A schematic overview of an MLP is given in Figure 2.2.

x1

x2

x4

x3

xn

Inputs Hidden Layer Output Layer

Figure 2.2: Schematic overview of an MLP.

The MLP consists of perceptrons coupled together. Each individual node in Figure 2.2 is a perceptron as
depicted in Figure 2.1. Furthermore, each perceptron has its own bias, which isn’t indicated in the figure.
The MLP has at least a single so called hidden layer, but there can be many. This layer is not interesting as
an output but is necessary for approximating non linearly separable functions. The hidden layers eventually
feed information to the output layer to give a certain desired output. The desired output can be obtained
by setting the right weights and biases for each individual perceptron. An important feature of this setup is
that the weights and biases can be trained by giving the ANN examples, using backpropagation. A gradient
descent method can be used to set the desired weights for the network. The equation for calculating the
output for any layer is given in Equation 2.1

ai = g (Wiai−1 +bi) (2.2)

Where g is the activation function of the perceptron in layer i , Wi is the weight matrix of layer i and bi is a
bias vector of layer i and ai the output vector of layer i .

2.1.3. The Exploding and Vanishing Gradient Problem
A sidestep from DL is made for the explanation of the exploding and vanishing gradients problem as this has
prevented researchers a long time from successfully training deep networks. Neural networks multiply their
weights by an activation function. For a one hidden layer network, like the one in Figure 2.2 the output would
be,

y = g (Wx+b)

Setting the biases to zero for now and a linear activation function the equation becomes,

y = Wx

When the number of layers increases to an bigger number called l, this equation becomes,

y = W0W1W2 · · ·Wl−2Wl−1Wlx

If the weights would now be bigger than 1, the equation explodes exponentially when increasing the num-
ber of layers. If the weights would be smaller than 1, assuming positive weights, the equation exponentially
decays to 0. The gradients are linked to these weights, which results in very big or small weight updates.

When the activation function are not linear but sigmoids, historically often used, this always leads to
vanishing gradient, as the output of each layer is always lower than one. ReLU activation functions are often

2.1. Deep Learning Networks 5

used nowadays as the activation function can be lower and higher than one and therefore tend to have less
problems with exploding or vanishing gradients.

Furthermore, weights initialisation can also help to prevent the exploding and vanishing gradient prob-
lem as suggested by Glorot and Bengio [6]. Many DL toolboxes apply these automatically for convenience.

2.1.4. Convolutional Neural Network
Consider the MLP of Figure 2.2. If one would want this network to classify, for example, if there is a cat or a
dog on a greyscale image of 1000 x 1000 pixels. This would mean there are 1 million inputs for this network
and hence 3 million weights to be trained for the first layer. To make the hidden layer more complicated and
thus the network able to approximate a more complex function, the hidden layer size could be increased to
e.g. a 1000 nodes. This creates 1 billion trainable parameters. Besides the computational burden, using too
much trainable parameters usually leads to overfitting and poor generalisation of neural networks. Therefore
this network is not suitable for image classification or similar problems.

Bottou et al. [2] solved this issue by using CNN’s. These use filters of a certain width and height. The depth
of the filter has to be equal to the depth of the input. Figure 2.3 shows the filters and how they are convolved
over the, in this case, image. The pixels in the filters are the filter specific weights and these are trained using
backpropagation. When convolving over an image, the filter is placed over the image as depicted on the
top left. Each of the pixels of the input image is multiplied by the filter weight it is overlapping with. These
resulting values are summed, a bias is added to this number and finally an activation function is applied to
the resulting number, as is done with a normal perceptron. The final value on the first layer of the output
matrix, as it is the first filter, and is placed in the top left. Now the filter is moved by a number of pixels to
the right, which is called the stride (2 in this case), as can be seen in the top right of Figure 2.3. The process
described above is repeated here resulting in a number which is placed in the output matrix on the first layer,
first row and second column. The filter is moved again 2 pixels to the right and the same process is repeated,
placing the output number on the first layer, first row and third column. Now a problem occurs as the filter
can’t move 2 pixels to the right anymore as the filter would partially fall outside of the input image. Therefore,
the image is moved to the next row using the same stride and moved all the way to the left. The output from
this is placed in the first layer, second row and first column. The same process is repeated until the whole
image is convolved. This is repeated for the number of filters that are chosen as indicated in bottom of Figure
2.3. As can be seen, the output of the convolution process has shrunk in width and height in comparison to
the input. This is partially caused by setting the stride to 2, so if the stride would have been 1 the output width
and height would have been larger. However, padding should be used to keep the output the same size as the
input (if a stride of 1 is used). Padding works as follows, if the filter falls partially outside of the input image,
the image is padded with zeros (zero padding) or with the same pixels as the border (same padding). Now
these areas can also be used for the convolution process resulting in the output width and height being the
same as the input image for a stride of 1. If the stride is bigger than one this would mean the image size would
shrink by the factor of the stride rounded up to an integer.

Filter Width

Filter
Height Filter

Depth

Filter Stride

Figure 2.3: Convolution performed by 3 filters using a stride of 2 and no padding.

Figure 2.4 gives an schematic overview of a deep ANN. The image is an example of an RGB image and thus

6 2. Relevant Literature

has 3 channels. A convolution is applied to this 3 features by several filters. After a convolution step, usually
a max pooling step is used to reduce the width and height of the filters. The convolution and max pooling
steps are repeated a couple of times, after which the filters are flattened and connected to a fully connected
layer (i.e. a MLP layer). This is possible now as the dimensions have greatly been reduced. This layer can, for
example, classify what is on the image.

If this architecture were to be used on a greyscale image (i.e and image with 1 channel) of a 1000 x 1000
pixels with 64 filters with a width and height of 3 (and a depth of 1 as it is a greyscale image) the number
of weights can be calculated. Each filter has 9 filter weights (width * height * depth), which results in 576
weights for all filters. Furthermore each filter has a filter specific bias so 64 has to be added. This results in
640 trainable parameters for this layer. This is significantly lower than a MLP would have. That is why these
network setups are favourable in image classification tasks, but also have many other uses where there is a
input with large dimensionality.

It should be noted that the "Convolution" steps performed in a convolutional neural network aren’t really
convolutions. If a real convolution would have been applied the filters’ layers should first have been flipped
(inverting both the order of the columns and rows). The action applied by the filters is actually called a cross-
correlation. For MLP’s this does not make a difference as the filters are trained anyway, so the weights are
still changing. Due to the similarity, the networks have been called convolutional neural networks while for
correctness they should be called cross-correlation neural networks.

RGB image
Filters

Width

Height

Convolution
Channels

Max
Pooling Flatten

Fully
Connected ClassifyRepeat

Figure 2.4: Schematic overview of a basic MLP.

Many improvements were made since Bottou et al. [2]. Krizhevsky et al. [15] started a new revolution in
DL by using ReLU activation functions for the perceptrons and using dropout to overcome overfitting. Due to
the large number of hyper-parameters in MLP’s (i.e. number of layers, filters per layer, filter window size, filter
stride, pooling size, etc.) it is labour intensive to design the most optimal network architecture. Szegedy et al.
[22] overcomes this problem by stacking different outputs of different layer setups together as the input for the
next layers, which repeats this process. It is shown that this substantially improves the networks performance
and reduces network setup time. They named the network after the movie Inception, as it could achieve
deeper network structure than before. Training very deep MLP’s remained a problem as very deep MLP’s
generally performed worse than MLP’s with less layers. He et al. [7] overcame this problem by introducing
residual networks. In these networks the layers input is added to the output. This way the network only
has to predict the residual in each layer. They show that in this way adding layers doesn’t harm the MLP’s
anymore and might even improve the overall network performance. A combination of the above described
architectures was used in Szegedy et al. [23] using a residual-inception network which outperformed both
of the networks it was based upon. Squeeze-and-excitation units were added to the previously mentioned
network to push the performance even further. These units look at the different channels that each residual-
inception unit outputs. It determines which of these are most relevant for the task at hand and increases their
contribution while lowering the less important channels Hu et al. [10].

2.1.5. Recurrent Neural Network
Some problems might be time dependent or alternatively depend on a previous sequence of words. The
previously described networks lose all information after the network completes executing. These networks
are therefore unsuitable for any sequence prediction tasks. The solution for this are RNN, first described by
Hopfield [9].

The setup for a RNN layer is somewhat different than that from a MLP as can be seen in Figure 2.5. An RNN
layer actually has 2 layers of perceptrons inside. The first perceptron layer gets the inputs at time t, xt, and
also takes in a hidden state of the previous time step, ht−1, which both are vectors. xt and ht−1 get multiplied
by their own weight matrix Whx and Whh respectively. A bias is added to the result and an activation function,

2.2. Applying Deep Learning to CFD 7

g h , is applied to the the final value. The output from this perceptron layer is called the hidden state, ht. This
hidden state is again multiplied by its own weight matrix, Why, a bias is added and an activation function, g y

is performed. The output from this layer is the output from the RNN layer, yt . The hidden state the allows
the network to keep information from previous runs. Using this architecture, the ANN can remember its
previous states and based on the new input, can do something with knowledge of both. The hidden state can
be calculated with Equation 2.3 and the output can then be calculated using 2.4.

ht = gh (Whxxt +Whhht−1 +bh) (2.3)

yt = g y
(
Wyhht +by

)
(2.4)

Training RNN’s was regarded hard because of the problem of vanishing or exploding gradients Lipton
et al. [16]. Looking at the ht , which is used as ht−1 concatenated with xt, to produce a new ht . Remembering
the ht−10 for example is hard for this network due to the vanishing or exploding gradients, as information
from ht−10 had pass though the first node layer 10 times, causing the information to vanish or explode.

圀栀栀

圀栀砀

圀礀栀

Figure 2.5: Schematic overview of a basic RNN.

The Long Short Term Memory (LSTM) cell mitigated the problem of vanishing or exploding gradients and
made it easier to train the RNN Hochreiter and Schmidhuber [8]. Furthermore, a Gated Recurrent Unit (GRU)
RNN type was designed more recently as it performs in most cases as good as the LSTM but has lower running
cost Chung et al. [5]. As the LSTM and GRU layers are quite complex and technical is not described in this
thesis. However, for an overview on how LSTM layers work, it is suggested to look at Olah [18]. For the GRU
layer it is suggested to look at Kostadinov [14].

2.1.6. Autoencoder
Dimensionality reduction is commonly used for boosting the efficiency of algorithms in many different fields.
ANN’s also have a network setup to achieve a dimensionality reduction, called an autoencoder. The autoen-
coder consists of an encoder network and decoder network. The encoder maps the high dimensional data
to a lower dimensional representation, called the latent space. The encoder does this by first taking in the
inputs in the input layer. This layer is as big as the high dimensional dataset. Each subsequent hidden layer
has fewer and fewer nodes until a satisfactory number of nodes is left. This layer is the output layer for the
encoder and the input for the decoder and is also called the "bottleneck". The decoder network transforms
the latent space back into the high dimensional data set by increasing the number of nodes again until the
number of nodes is equal to the number of inputs. Autoencoders on itself don’t have many applications ex-
cept for denoising images Chaitanya et al. [3]. However, the latent space they produce can be used as a lower
the dimensionality of a certain problem, do calculations on, and feed back into the decoder to get the high
dimensional output again. A basic layout of a convolutional autoencoder is given in Figure 2.6.

2.2. Applying Deep Learning to CFD
A successful approach DL aided CFD algorithm was found by Wiewel et al. [24]. The paper uses experiments
in a 3D fluid environment based on the Navier-Stokes (NS) equations, which has the challenge of having a
high dimensionality. Three different data set are used in which two data sets contain fluids with a resolutions
of 643 and 1283. The other data set contains smoker simulation with a 1283 resolution.

8 2. Relevant Literature

RGB image
Filters

Width

Height

Convolution
Channels

Max
Pooling Flatten

Fully
Connected

Latent
SpaceRepeat

Fully
Connected Reshape Deconvolution Repeat Ouput

Image

Encoder Decoder

Figure 2.6: Schematic overview of a convolutional Autoencoder.

The problem for a DL approach is that the state should be evolved over time on this high dimensionality.
The paper therefore suggests to use an autoencoder to encode that data set into a latent space Rumelhart
et al. [20], which compresses the data set by a factor 256. In Wiewel et al. [24] a normal autoencoder was
compared to the a variation autoencoder Kingma and Welling [13] as well as fluid properties were encoded to
see which would result in best predictions.

Now the dimensionality of the problem has been greatly reduced, a time evolution network can be used.
In Wiewel et al. [24] assessment is made for two different time evolution networks. The first is a fully recurrent
setup where three layers of LSTM are used. In LSTM’s each node in the new layer connects to every node in
previous layer. The authors indicate that reducing the amount of weights reduces the chances in overfitting
and training times. Therefore the second setup is used where two layers LSTM are used after which a 1D
convolution layer is used to provide the output. This greatly reduces the amount of weights and thus the
chances of overfitting and training time. These RNN networks use the last few time steps to predict a new
time step. This new time step can be used as new input to the RNN resulting in a loop which can continue
indefinitely. Predictions of the RNN are in latent dimensions and can be decoded user the decoder network.
This results in the time evolution prediction of the fluid state.

Conclusions in this paper are that using the fluid can indeed be predicted using a ANN setup. The best
way to do that was by encoding and predicting the pressure. Trails in which the velocity was encoded and
predicted resulted in a lower accuracy. Furthermore, the normal autoencoder outperformed the variational
autoencoder.

Limitations of this model are that the error increases unbounded over time. To counter this a traditional
CFD update is done every few time steps. This increases the accuracy over longer time periods. This increases
the computation time again and in certain flow conditions traditional CFD cannot be used. Another limit is
that for startup a few time steps of the fluid history are needed. These might also not be available in cer-
tain flow conditions. Lastly, it was noticed that the different encoding methods and RNN architectures were
trained only once and their results compared. The stochastic nature of DL can have had an impact on the
accuracy resulting in an unfair comparison between the different methods and architectures.

3
Research Outline

This chapter defines what current the gaps in knowledge are in Section 3.1 and what research questions follow
from that in Section 3.2.

3.1. Gaps In Current Knowledge
As the method presented by Wiewel et al. [24] needs traditional CFD updates to keep the error bounded and
a small fluid state history for startup, it does not directly address such problems. An alternate approach,
depicted by Figure 3.1, might be able to replace certain regions of the fluid domain complex behaviour is
present, which is well known, not of particular interest and high fidelity CFD is too expensive, models based
on DL might be able to aid the current CFD models. If such a method could be possible, this could also
eliminate the problem of needing a short time history of the fluid state, as a traditional CFD model could
introduce the disturbances through the shared boundaries. Furthermore, in this situation the CFD solution
on the boundaries might have an bounding effect on the error as well, eliminating the need for traditional
update once every few time steps. An overlap area is therefore proposed in which the CFD model makes
predictions. The DL model uses the overlap area as well as DL prediction area as an input to make a prediction
for the next time step in the DL prediction region.

Figure 3.1: Fluid domain containing an interesting flow region and a non interesting flow region.

When developing DL models for an application as described above, it is important to realise that their
accuracy depends on the random initial weights and the training process. Correspondingly, the accuracy
of the models trained using the approaches by Wiewel et al. [24] could be influenced by the random initial
training state, resulting in an unfair comparison. Before continuing with the use of such techniques their
mean and standard deviation should be evaluated as it could give an indication whether the comparisons are
fair.

Furthermore, generating training data for the training of the DL models is expensive as this needs to be
done by the traditional CFD approaches. An analysis of the amount of training data needed for an acceptable
accuracy is therefore necessary.

9

10 3. Research Outline

3.2. research Questions
This thesis work consists of three main research questions. The first research question is:

“Can an AE-RNN flow model be implemented which does not need any traditional updates and
keep the long term prediction error bounded?"

Sub-questions that follow from first main question are:

1. For a case where the flow structures move through the domain and exit the domain within a relative
short time window, can the error be kept bounded without the need for any traditional algorithms?

2. How can the overlap area be included in the latent space by means of altering the encoder setup and
execution scheme?

3. What should be the size of the overlap area w.r.t. the prediction area?

The second research question is:

“Considering the stochastic nature of DL, can the claimed conclusions in Wiewel et al. [24] com-
paring different model setups in terms of accuracy be justified?"

Sub-questions that follow from second main question are:

1. Considering the case where 20 AE’s are trained, what is the mean and the standard deviation of the
reconstruction MSE for the test set?

2. Considering the case where 20 AE’s with each one RNN are trained, what is the mean and the standard
deviation of the long term reconstructed prediction MSE on the test set?

3. Considering the case where 1 AE with on 20 RNN’s are trained, what are the mean and standard devia-
tion of the long term reconstructed prediction error on the test set?

The third research question is:

“What is the sensitivity of the AE-RNN flow model w.r.t. the number of training samples?"

• What is the sensitivity of the AE reconstruction MSE w.r.t. the number of AE training samples?

• What is the sensitivity of the AE-RNN reconstructed prediction MSE w.r.t. AE training samples?

• What is the sensitivity of the AE-RNN reconstructed prediction MSE w.r.t. RNN training samples?

4
Method

This chapter describes the method that was used during this thesis. The model problem used for training the
ANN is described in Section 4.1. The ANN Setup is discussed in Section 4.2. The data sets used for training,
validating and testing are described in Section 4.3. The training process is explained in Section 4.4. Finally,
details about the inference of the AE-RNN flow model is further explained in Section 4.5.

4.1. Model Problem
A model problem was proposed from which sequences can be obtained in a relative short time window, but
contain relatively complex fluid behaviours. Furthermore, the chosen data was one dimensional as training
neural networks on higher dimensional data sets requires significantly higher training times. For this an Euler
code for Internal Aeroacoustics (EIA) Hulshoff [11] was used, which is able to predict fluid behaviours based
on the Euler equations. Here we focused on the one dimensional wave problem in which two waves enter
the domain. One wave enters at the left boundary and the other at the right boundary. Both waves propagate
through the domain in opposite direction, intersect with each other and leave the domain at the boundary
opposing the boundary at which it entered. The waves were specified using their amplitude A, frequency
f and the time delay at which they entered the domain τ. Non-linear behaviour is captured by the Euler
equations and thus shocks can form when the amplitudes of the waves are large enough. The flow domain
was discretised in 1024 points along the x axis. EIA then provides the density ρ, velocity multiplied by the

densityρu and the internal energy multiplied by the densityρE . Only 1
4

th
of these points were saved to reduce

the size of the sequences. This resulted in 256 points along the x axis which contain the 3 flow properties. All 3
properties were normalised by finding the maximum and minimum in all generated sequences. An example
for this is shown in Figure 4.1.

4.2. Artificial Neural Network Setup
For the setup of the ANN inspiration was taken from Wiewel et al. [24]. First the encoder part of an AE was
used to reduce the dimensions of the problem, called the latent space. An RNN was given a few previous
input time steps latent spaces and from that produced a new time step latent space. This latent space could
now be reconstructed to the original dimensions using the decoder part of the autoencoder. This resulted in
a prediction of the fluid state in the future. This method will be referred to as the AE-RNN flow model. The
AE details will be discussed in Section 4.2.1. Finally, the RNN details will be discussed in Section 4.2.2.

4.2.1. Autoencoder
An autoencoder was used to reduce the dimensions of the flow to an array of floating point numbers with
length ms , called the latent space, and then to transform that back to the original dimensions. The part
of the autoencoder that reduces the dimensions to the latent space is called the encoder. The part which
reconstructs the original dimensions using the latent space as input is called the decoder. The length of the
latent ms space can be set to anything desired. However, the latent space should be able to contain enough
information, so the decoder is able to make an accurate reconstruction. The flow diagram found in Figure
4.2 shows the setup of the AE used during training. The autoencoder is trained to output the exact same fluid

11

12 4. Method

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.3

0.4

0.5

rho
rho u
rho E

Figure 4.1: 1D Flow model example which was used during the thesis.

state it receives as an input. The encoder and decoder therefore learn to work together in finding an optimal
latent space which contains as much information as possible for an as accurate as possible reconstruction.

Encoder
Output Shape = (50,)

Input
Shape = (256, 3)

Decoder
Output Shape = (256, 3)

Latent Space
Shape = (ms,)

Output
Shape = (256, 3)

Figure 4.2: Autoencoder setup used during training.

Encoder Block
The encoder block is described by the flow diagram on the left in Figure 4.3. Three layers of convolution
blocks with max pooling were used after which the output is flattened. Two dense blocks were applied after
which a dense layer with ms nodes and sigmoid activation was used. The sigmoid activation was used so that
the variables in the latent space are forced to be between -1 and 1, to avoid large values in the latent space,
which could lead to instabilities during training. The convolution/pooling and dense blocks are explained in
Section 4.2.1 and 4.2.1, respectively.

Decoder Block
The decoder block is described by the flow diagram on the right in Figure 4.3. The decoder used a very similar
setup as the encoder but instead of reducing dimensions, it increased the dimensions back to the original vec-
tor size. It started from the latent space vector and used some dense blocks to increase the dimensions. Next,

4.2. Artificial Neural Network Setup 13

the vector was reshaped to a 2D shape, which in turn was used by 3 convolution and upscaling blocks. The
last layer was a 1D convolution with 3 filters to ensure the (256, 3) output shape. The convolution/upscaling
block is explained in Section 4.2.1.

Convolution/Pooling Block
Output Shape = (128, 16)

Input
Shape = (256, 3)

Filters: 16

Convolution/Pooling Block
Output Shape = (64, 64) Filters: 64

Convolution/Pooling Block
Output Shape = (32, 128) Filters: 128

Flatten
Output Shape = (4096,)

Dense Block
Output Shape = (100,) Nodes: 100

Dense Block
Output Shape = (50,) Nodes: 50

Dense
Output Shape = (ms,)

Nodes: ms
Activation: sigmoid

Output
Shape = (ms,)

Dense Block
Output Shape = (50,)

Input
Shape = (ms,)

Nodes
50

Dense Block
Output Shape = (100,)

Nodes
100

Dense
Output Shape = (4096,)

Reshape
Output Shape = (32, 128)

Convolution/Upscaling
Block

Output Shape = (64, 128)
Filters: 128

Convolution/Upscaling
Block

Output Shape = (128, 64)
Filters: 64

Convolution/Upscaling
Block

Output Shape = (256,16)
Filters: 16

Output
Shape = (256, 3)

Nodes: 4096
Activation: Linear

Convolution
Output Shape = (256,3)

Filters: 3
Kernel Size: 5

Activation: linear
Padding: same

Shape: (32, 128)

Figure 4.3: Left, Flow diagram of the encoder architecture. Right, Flow diagram of the decoder architecture.

Convolution/Pooling Block

The convolution block/pooling block is described by the flow diagram on the left of Figure 4.4. It used two
different inputs, a 2D shape (nx ,ny) and the number of filters n f . The inception block Szegedy et al. [23] used
these two inputs to create an output with shape (nx ,n f). This was used as an input together with a squeeze
ratio for the Squeeze-and-Excitation block Hu et al. [10], which returned the exact same shape. The original
input was added to the output of the Squeeze-and-Excitation block, as suggested by He et al. [7]. Finally,
to reduce dimensionality, a 1D Max Pooling layer was used which reduces the x dimensions by a half. This
resulted in an output with a shape of (nx

2 ,n f).

Convolution/Upscaling Block

The convolution/upscaling block can be seen on the right of Figure 4.4. It had a similar layout to the con-
volution/max pooling block, but instead of 1D max pooling layer at the end, an upscaling layer was used at
start.

14 4. Method

Inception Block
Output Shape = (nx, nf)

Input
Shape = (nx, ny)

Filters: nf

Squeeze-and-Excitation
Block

Output Shape = (nx, nf)
Ratio: 16

Add
Output Shape = (nx, nf)

1D Max Pooling
Output Shape = (nx/2, nf)

Output
Shape = (nx/2, nf)

Pool Size: 2
strides: None

padding: same

Resnet
skip

connection

Inception Block
Output Shape = (2*nx, nf)

Input
Shape = (nx, ny)

Filters: nf

Squeeze-and-Excitation
Block

Output Shape = (2*nx, nf)
Ratio: 16

Add
Output Shape = (2*nx, nf)

Output
Shape = (2*nx, nf)

Resnet
skip

connection

1D Upsampling
Output Shape = (2*nx, nf)

Size: 2

Figure 4.4: Left, flow diagram of the Convolution/Pooling Block. Right, flow diagram of the Convolution/Upscaling Block.

Inception Block
The flow diagram of the inception block Szegedy et al. [23] can be found in Figure 4.5. The diagram looks
rather complicated but in fact its design is quite simple. As convolution layers have many hyper parameters,
the search for an optimal design can be laboursome. The researchers from Szegedy et al. [23] had the idea
to make a single layer in which the ANN can learn which hyperparameters are best suited for the task at
hand. The total amount of required filters was therefore split up in 4. Each of the four branches used a
different variant of convolutions or max pooling layers. The first 3 branches first squeezed the input as a
direct convolution without squeezing requires more computation time. After the squeeze, a convolution with
a kernel size of 3, 5 and 7 was used for the three branches, respectively. The last branch used a max pooling
layer first, after which a convolution layer with a kernel size of 1 was used. From each of the four branches
the outputs were concatenated resulting in the output with a shape of (nx ,n f). Finally, a batch normalization
was used as is suggested by Ioffe and Szegedy [12].

Dense Block
The dense block is shown on the left of Figure 4.6. This is a relative short block as only a dense layer was used
after which a batch normalization layer was applied, as suggested by Ioffe and Szegedy [12].

Squeeze-and-Excitation Block
The Squeeze-and-Excitation block Hu et al. [10] is shown on the right in Figure 4.6. First a 1D global aver-
age pooling layer was used which finds the average value along the first dimension. This resulted in a one
dimensional shape (ny ,). A dense layer was then applied which squeezed the dimensionality for a reduction
in computation costs (the ratio defines the squeeze amount). A second dense layer was used to get the orig-
inal dimensions again. Finally, the input was multiplied by the the output of the second dense layer. This
Squeeze-and-Excitation block allowed the network to amplify the features it determined to be most impor-
tant.

4.2.2. Recurrent Neural Network
Figure 4.7 shows the flow diagram of the RNN. The input for this network was a few time steps o of latent space
arrays with length ms . During the thesis o was set to 5 at all times. An LSTM Hochreiter and Schmidhuber [8]
layer was used as it is able to remember the previous inputs it processed and therefore process the sequence of
latent space arrays. It only outputs the last state after processing each of the input latent spaces and therefore

4.3. Data Sets 15

Input
Shape = (nx, ny)

Output
Shape = (nx, nf)

1D Convolution
Output Shape = (nx, nf/4)

Filters: nf/4
Kernel Size: 1

Activation: Leaky ReLU
padding: same

1D Convolution
Output Shape = (nx, nf/4)

Filters: nf/4
Kernel Size: 3

Activation: Leaky ReLU
padding: same

1D Convolution
Output Shape = (nx, nf/4)

Filters: nf/4
Kernel Size: 1

Activation: Leaky ReLU
padding: same

1D Convolution
Output Shape = (nx, nf/4)

Filters: nf/4
Kernel Size: 5

Activation: Leaky ReLU
padding: same

1D Convolution
Output Shape = (nx, nf/4)

Filters: nf/4
Kernel Size: 1

Activation: Leaky ReLU
padding: same

1D Convolution
Output Shape = (nx, nf/4)

Filters: nf/4
Kernel Size: 7

Activation: Leaky ReLU
padding: same

1D Max Pooling
Output Shape = (nx, nf/4)

Concatenate
Output Shape = (nx, nf)

Pool Size: 3
strides: 1

padding: same

1D Convolution
Output Shape = (nx, nf/4)

Filters: nf/4
Kernel Size: 1

Activation: Leaky ReLU
padding: same

Batch Normalization
Output Shape = (nx, nf)

Figure 4.5: The flow diagram of the Inception Block.

outputs a 1D vector. Next, A dropout layer was used to prevent overfitting. A repeat vector was used to
transform the output back to a 2D shape again. The amount of repeats was 1 as only one time step is desired
to be predicted in advance. This output was processed by another LSTM. This time the state at each iteration
is outputted. As it was only one iteration for this case it returns a 2D shape with the length on first dimensions
being one. Again a dropout layer was used to prevent overfitting. Finally, a convolution layer was used to
return the shape back to (1,ms), which is a prediction for the next time step in latent dimensions. Note
that only one time step predictions were evaluated as Wiewel et al. [24] points out that the one time step
predictions worked best for their case.

4.3. Data Sets
To train, validate and evaluate the ANN, three different data sets were used:

• A training data set, which was used during training only and referred to as the training set. The AE and
RNN have a separate training set as they have to perform another task. This set was generated from a
general sequences data set.

• A validation data set, which was used during training to evaluate how well the ANN’s were doing on a
set which it isn’t trained on. This is referred to as the validation set. The AE and RNN had a separate
validation set as they had to perform another task. This set was also generated from a general sequences
data set.

• An evaluation set of sequences, which was used at inference to evaluate how well the full AE-RNN flow
model is doing on long term predictions. This sequences were generated randomly from EIA so it were
completely new sequences which the AE-RNN flow model never had seen before.

16 4. Method

Batch Normalization
Output Shape = (nd,)

Input
Shape = (nx,)

Output
Shape = (nd,)

Dense
Output Shape = (nd,)

Activation: Leaky ReLU
Nodes: nd

Dense
Output Shape = (ny/r,)

Input
Shape = (nx, ny)

Output
Shape = (nd,)

1D Global Average Pooling
Output Shape = (ny,)

Squeeze

Ratio: r
Nodes: ny/r

Activation: ReLU

Dense
Output Shape = (ny,)

Nodes: ny
Activation: Sigmoid

Multiply
Output Shape = (nx, ny)

Excite

Figure 4.6: Left, flow diagram of the Dense Block. Right, flow diagram of the Squeeze-and-Excitation Block.

Dropout
Output Shape = (500,)

Input
Shape = (o, ms)

Output
Shape = (1, ms)

LSTM
Output Shape = (500,)

rate: 0.05

Repeat Vector
Output Shape = (1, 500) nrepeat: 1

LSTM
Output Shape = (1, 500)

units: 500
return sequences: False

Dropout
Output Shape = (1, 500) rate: 0.05

units: 500
return sequences: True

1D Convolution
Output Shape = (1, ms)

Filters: 1
Kernel Size: 1

Activation: Linear
padding: same

Figure 4.7: Flow diagram of the RNN.

4.4. Training 17

General sequences data set
To generate both the AE as well as the RNN training and validation data, first EIA was used to generate 41000
sequences of intersecting waves. These sequences were generated by using uniformly chosen random pa-
rameters for the A, f and τ for the waves as described by table 4.1. In EIA the simulation time step was
chosen to be 2.5·10−4 seconds. The sequence was saved every 2.5·10−2 seconds until the 2 seconds time limit
was reached. This resulted in sequences with a length of 80 time steps. This data set was sufficiently varying
and therefore contains enough cases for the ANN to generalise to all cases within these bounds.

Minimum Maximum
a -0.5 0.5
f 20 200
τ 0.5 1

Table 4.1: Bounds for the random variables for each of the properties of the waves.

Training and validation data sets
The general sequences data set was used to generate both the training as well as the validation set. As the
training set was desired to be as diverse as possible, training samples were chosen as far from each other as
possible. Meaning that if a certain sequence at a certain time step is chosen as a training sample, a time step
close to this time step should not be sample, as it is similar to the other. Therefore, depending on the number
of desired training samples, the training samples were selected as far as possible from each other as possible,
with random intervals between them. This also eliminated duplicate training samples as each samples was
considered only once.

For the AE the training samples were selected as described above. Each training samples had a shape
of (256,3), which was the fluid state at a certain time step. The training input was exactly the same as the
output, as the AE should be trained to reconstruct the input. This set was finally split up in the training and
the validation set.

The selection of training samples for the RNN was slightly different to that of the AE. The number input
time steps for the RNN (o) was chosen to be 5, which means that the total length of the training sets should
be 6, containing 5 inputs time steps and 1 desired output time step. The selection process described above
still holds, but the selected time step was now the first input for the network. The 5 other time steps that
come after this time step were also collected. This resulted in input training samples of shape (5,256,3) and
output training samples of shape (1,256,3). However, the RNN should be trained on the latent spaces of
these samples generated by a trained AE. Therefore all these samples were encoded by the encoder part of
a trained AE. This resulted in input training samples with shape (5,ms) and output training samples with
(1,ms). Finally, these were also split up in a training and validation set. Note that the RNN was trained to
predict one time step in advance given a completely correct input sequence.

Evaluation data set
As the AE-RNN flow model was used to predict a complete sequence of a flow, a completely new data set of
5000 sequences was generated, using the same random intervals for the wave properties shown by 4.1. For
this set, however, the only difference is that maximum simulation time was set to 4, to be sure that all waves
structures have left the domain.

4.4. Training
The flow diagram for the training process can be seen in Figure 4.8. The training process of the AE-RNN flow
model was done in two phases. The AE training phase (top flow diagram) and the RNN training phase (bot-
tom flow diagram). Both used a training and validation data set. The training set is only used for optimising
the weights in the ANN. During each training epoch samples were shown once to the ANN. The training pro-
cess usually has more than one epoch as the networks can become more accurate after the training samples
have been shown multiple times. After each epoch the ANN was validated, which means that it is shown the
validation samples. The weights of the ANN were not optimised during this phase, but only the accuracy was
determined. If the best validation accuracy was obtained, the ANN weights were saved. This ensures that the
best ANN was saved and not the last, which could possibly perform worse than the ANN during a previous
epoch. Due to instabilities in the training process, the accuracy might suddenly rise rapidly. If this happened
the best saved state of the network was loaded and the training process continued.

18 4. Method

Latent Space
Latent SpaceLatent Space at
time t - o

Latent Space
Latent SpaceLatent Space at
time t - o

Untrained RNN
Predicted Latent
Space at time

t + 1

Untrained Encoder
Network

Fluid State at
time t

Latent Space at
time t

 Time Prediction
Loss

 Time Loss
 Function

Untrained Decoder
Network

Trained Encoder
NetworkFluid State at

time t - o

Reconstruction
Loss

 Function
 Reconstruction

Loss

o
o

Reconstructed
Fluid State at

time t

Backpropagation

Backpropagation

Trained Encoder
Network

Latent Space at
time t + 1

Fluid State at
time t + 1

Figure 4.8: Flow diagram for training the AE-RNN flow model.

AE training phase
Using the generated AE training and validation data sets as described in Section 4.3, the AE was trained. A
the fluid state of certain time step of a certain sequence is shown to the AE one by one. It was encoded by
the encoder to the latent space and then decoded back to the original dimensions using the decoder. Its
output was expected to be exactly the same as the input but, especially at the begin of the training process,
was not. An Mean squared error (MSE) function was used between the input and output, which results in
the reconstruction loss. This allows the AE to be optimised to reconstruct the input given a low dimensional
latent space.

RNN training phase
Using the generated RNN training and validation data as described in Section 4.3, the RNN was trained. The
RNN was given subsequent time steps encoded to the latent space as an input. The expected output is the
next subsequent time step as an output (i.e. a temporal prediction of the latent space). An MSE loss function
was used between the actual output and the expected output, which resulted in the time prediction loss. This
allows for optimising the RNN weights for predicting the next time step in latent dimensions.

4.5. Inference
The flow diagram for the inference phase can be found in Figure 4.9. The initial 5 time steps were given as
an input and encoded to the latent space by the encoder part of the AE. The RNN made a prediction for the
latent space in next time step. This latent prediction was decoded by the decoder part of the AE. The latent
prediction was also used to as a new input to predict a new next time step. The oldest latent time step was
removed and the newest predicted latent time step was added to the inputs for the RNN. This loop could
continue as long as desired.

4.6. Boundary Overlap Areas
As described in Chapter 3.1 and by Wiewel et al. [24], the solution for the AE-RNN flow model diverges from
the ground truth. A strategy to overcome this was to add boundary overlap areas to the prediction region of
the AE-RNN flow model. An example is given in Figure 4.10. The AE-RNN flow model used this overlap area
to make predictions of the future state in the DL prediction area. The traditional algorithm (EIA in this case)
used the DL prediction area as well as the other flow domain which is not included in the plot to make its
prediction of the future state of the overlap areas. The hope was that the error remains bounded due to these
overlap areas. The overlap areas required the encoder to be different from the original encoder depicted in
Figure 4.3. Figure 4.11 shows the encoder in which each area has its own sub-encoder. The input was split
in the overlap regions and the prediction region and fed to the individual encoders. During this thesis the

overlap area size was 1
8

th
of the total environment area and thus the overlap areas had a shape of (32,3) and

the prediction area had a shape of (196,3).

4.6. Boundary Overlap Areas 19

Latent Space
Latent SpaceLatent Space at
time t - o

Latent Space
Latent SpaceLatent Space at
time t - o

Trained RNN

Predicted Latent
Space at time

t + 1

Trained Encoder
Network

Fluid State at
time t - o

o

o

Trained Decoder

Add new time step.
Remove oldest time step

Fluid State at
time t + 1

Figure 4.9: Inference of the AE-RNN flow model.

rho
rho u
rho E

Figure 4.10: Example of overlap areas, which are shown in grey. The prediction area is shown in white.

20 4. Method

Input
Shape = (256, 3)

Output
Shape = (ms,)

Left overlap area

Split

Prediction Area
Right Overlap Area

Left Overlap Area
Input

Shape = (32, 3)
Predicition Area Input

Shape = (192, 3)
Right Overlap Area

Input
Shape = (32, 3)

Left Encoder
Output Shape = (ms/8,)

Middle Encoder
Output Shape = (ms - 2ms/8,)

Right Encoder
Output Shape = (ms/8,)

Concatenate
Output Shape = (ms,)

Figure 4.11: Flow diagram of the encoder which supports boundary overlap areas.

Figure 4.12 shows the layout of the sub-encoders. The layout of the sub-encoders were very similar to
the original encoder structure depicted in Figure 4.3. However, the input and output shapes are different and
therefore each layer had different output shapes.

Furthermore, the execution scheme was also modified to enforce the EIA solution. Figure 4.13 shows
this execution scheme. The fluid state history (which could be a steady flow for this case, as disturbances
could be introduced to the prediction domain via the overlap boundaries) was first split up in the left and
right overlap areas as well as the prediction area. These were then encoded by their own sub-encoder. All
these were concatenated to a latent space with length ms . A prediction area latent prediction was produced
with the RNN. This means that the RNN did not produce a prediction for the overlap areas. This output was
concatenated with the latent spaces for the overlap areas and subsequently decoded. With the new fluid
state EIA could now make a prediction for the overlap area, which in turn could again be encoded by the two
overlap sub-encoders. The prediction area latent prediction was also fed back to the prediction area latent
spaces. All latent spaces removed their oldest time step and added the newest time step generated by last
iteration. Next, the latent spaces were again concatenated from which the RNN could again make a new
prediction. This process could keep iterating as long as desired, which allowed for long term predictions.

4.7. Stochatstics
The stochastic properties of the AE-RNN flow model with boundary overlap areas were assessed. This was
done in 2 ways:

• 20 identical AE were trained for 300 epochs using random initial weights and with the exact same train-
ing set of 30000 samples and a validation set of 20000 samples. On each of those AE, 1 RNN was trained
for 600 epochs with a training set of 50000 samples and a validation set of 20000 samples.

• 1 AE was trained for 300 epochs with a training set of 30000 samples and a validation set of 20000
samples. On that AE, 20 identical RNN were trained for 600 epochs with random initial weights and
with the exact same training set of 50000 samples and a validation set of 20000 samples.

The AE-RNN combinations were tested on the evaluation set described in Section 4.3. This gives an in-
dication by how much the accuracy of the AE-RNN flow model was influenced by random initial weights.
The first case primarily focused on the whole AE-RNN flow model stochastic behaviour, where each AE and
RNN were different trained models. The second case keeps the same trained AE and therefore focused on the

4.8. Number of training samples 21

Convolution/Pooling Block
Output Shape = (96, 16)

Input
Shape = (192, 3)

Filters: 16

Convolution/Pooling Block
Output Shape = (48, 64) Filters: 64

Convolution/Pooling Block
Output Shape = (24, 128) Filters: 128

Flatten
Output Shape = (3072,)

Dense Block
Output Shape = (100,) Nodes: 100

Dense Block
Output Shape = (50,) Nodes: 50

Dense
Output Shape = (ms - 2ms/8,)

Nodes: ms
Activation: sigmoid

Output
Shape = (ms - 2ms/8,)

Convolution/Pooling Block
Output Shape = (16, 16)

Input
Shape = (32, 3)

Filters: 16

Convolution/Pooling Block
Output Shape = (8, 64) Filters: 64

Convolution/Pooling Block
Output Shape = (4, 128) Filters: 128

Flatten
Output Shape = (512,)

Dense Block
Output Shape = (100,) Nodes: 100

Dense Block
Output Shape = (50,) Nodes: 50

Dense
Output Shape = (ms/8,)

Nodes: ms
Activation: sigmoid

Output
Shape = (ms/8,)

Figure 4.12: Left, flow diagram of the prediction area sub-encoder. Right, flow diagram of the overlap area sub-encoder.

statistics in the trained RNN’s on the same AE. Note that a latent space size ms of 35 was used for all of these
cases.

4.8. Number of training samples
The effect of the number of training samples was assessed. This was done two ways:

• An AE was trained on a varying number training samples. The number of training samples that will be
evaluated are 70.000, 50.000, 30.000, 10.000 and 5000. A single RNN per AE was trained on this with a
constant number of training samples of 50.000.

• An AE was trained on a training set of 30.000 training samples. A few RNN were trained using this AE
with a verying number of training samples. The number of training samples that were evaluated were
100.000, 50.000, 30.000, 10.000 and 5000.

With these trained, the accuracy was evaluated on evaluation set. Note that a latent space size ms of 35
was used for all of these cases.

4.9. Loss definitions
This is a list of loss definition that will be used in the conclusions.

• AE training MSE - The reconstruction MSE of the AE on the training data during a training epoch.

• AE validation MSE - The reconstruction MSE of the AE on the validation data after each epoch.

22 4. Method

Latent Space
Latent SpaceLatent Space at
time t - o

Latent Space
Latent SpacePrediction Area

Latent Space at
time t - o

Trained RNN

Predicted Prediction
Area Latent Space

at time
t + 1

Trained Left Sub-
Encoder Network

Fluid State at
time t - o

o

o

Trained Decoder

Add new time step.
Remove oldest

time step

Fluid State at
time t + 1

Trained Middle Sub-
Encoder Network

Trained Right Sub-
Encoder Network

Split

Latent Space
Latent Space

Left Overlap
Area Latent

Space at time
t - o

o

Latent Space
Latent Space

Right Overlap
Area Latent

Space at time
t - o

o

Wait for all inputs to
update and then

concatenate

EIA

Right Overlap
Area Fluid State

at
time t + 1

Left Overlap
Area Fluid State

at
time t + 1

Encode fluid state and
add new time step.

Remove oldest
time step

Encode fluid state and
add new time step.

Remove oldest
time step

Concatenate

Figure 4.13: Execution scheme where overlap areas are enforced by EIA.

• AE Test MSE - The reconstruction MSE of the AE on the evaluation set.

• Minimum AE Validation MSE - The minimum reconstruction MSE of the AE on the validation set oc-
curred during all epochs.

• RNN training MSE - The latent prediction MSE of the RNN on the training data during a training epoch.

• RNN validation MSE - The latent prediction MSE of the RNN on the validation data after each training
epoch.

• RNN Test MSE - The MSE of the RNN on the long term latent space predictions on the test set.

4.10. Deep Learning Tools 23

• Minimum RNN validation MSE - The minimum latent space prediction MSE of the RNN on the valida-
tion set occurred during all epochs.

• AE-RNN Test MSE - The long term prediction MSE by the AE-RNN flow model of the reconstructed
latent space on the evaluation set.

4.10. Deep Learning Tools
To create the DL models keras 2.1.6 Chollet et al. [4] was used with the tensorflow-gpu 1.12.0 Abadi et al. [1]
as a backend. The GPU that was used to train the models was the Nvidia Geforce GTX 1070.

5
Results and Discussion

This section presents the results and discusses them. In this case ms was always chosen to be 128 as this gave
the best results in a test run. The boundary overlap areas are discussed in Section 5.1. The error development
is discussed in Section 5.2. The influence of the stochastic nature of the models is discussed in Section 5.3.
The effect of the number of training samples is discussed in Section 5.4.

5.1. Boundary overlap areas
Figure 5.1 shows multiple examples of two waves, with random amplitudes and frequencies, entering the
domain, intersecting and exiting. Each plot has the normalised ρ, ρu and ρE plotted in red, green and blue,
respectively. Each column shows a sequence of several predicted time steps. The EIA solution is shown as a
solid line, the autoencoded EIA solution is shown as a striped line and the reconstructed prediction is shown
as a dotted line. The overlap area used to enforce the solution of EIA on the enter/exit domains are shown
in grey. The DL prediction area is shown in white. As can be seen, the method produces almost the same
solution as the EIA solution. Interaction between the opposing waves is captured almost perfectly and shock
formation is clearly is predicted well.

It should be noted that the overlap area should be large enough for the largest scales occurring in the flow.
An example where the overlap area is too small is shown in Figure 5.2. The frequency of the wave entering on
the left is low enough to create a wave which is too wide to be encapsulated by the overlap region, causing
the AE-RNN based solver to make wrong predictions. As these initial predictions are used to build upon the
solution remains faulty for the entire duration the waves are in the prediction domain.

0 10 20 30 50 60 7040Timestep

Figure 5.2: Faulty prediction by the AE-RNN flow model, caused by a too wide wave to be encapsulated in the overlap region. A larger
overlap region is necessary to get the right prediction.

5.2. Error Development
To evaluate whether the AE-RNN flow model error remains bounded in the 1D environment, a trained AE-
RNN was evaluated on the test set of 2000 sequences. The EIA solution was compared with the AE-RNN
reconstructed prediction for each time step. Figure 5.3 shows the mean MSE per time step. As can be seen,
after a certain time period, the error first quickly rises, which is caused by the waves being imposed in the
prediction region. At a certain point the error reaches its peak which at which waves are fully in the prediction
domain. After that the error decreases to nearly zero again as the waves move outside the prediction domain.
It should be noted that for simplification reasons, the EIA solution is computed and saved for the overlap for
all time steps. This means that EIA and the coupling of EIA and the AE-RNN flow model was one way. The

25

26 5. Results and Discussion

0

0 1 2 3 4 5 6 7

10
20

30
40

50
60

70
80

Sequence

T
im

es
te

p

Figure 5.1: Each column is a sequence of two waves, with random frequencies and amplitudes, entering at one of the boundaries,
colliding and exiting at the opposing boundaries. The overlap region indicated in grey is enforced by EIA’s solution, while the white
region is predicted by the AE-RNN flow model. Each figure contains of ρ, plotted in red, ρu, plotted in green and ρE plotted in blue
and are all normalised. Solid lines are the EIA solution, striped lines are the autoencoded EIA solution and the dotted line are the
reconstructed prediction.

5.3. Statistics 27

0 20 40 60 80 100 120 140 160
Time Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
M

SE

1e 4

Figure 5.3: Mean reconstructed prediction MSE of 2000 predicted sequences by the AE-RNN flow model.

solution at the overlap areas is therefore always the correct EIA solution and not the solution propagated by
the AE-RNN flow model into the overlap domain. Full coupling is anticipated to have similar performance
to the one way coupling as the solution in the DL prediction area propagated by the AE-RNN flow model
remains very close to the exact counterpart. Another interesting observation is that that if no waves enter the
domain the solution remains steady. The errors it makes for these steady solutions apparently do not blow
up over time but remain constant.

5.3. Statistics
Figure 5.4 shows the AE validation MSE of the networks after each training epoch and the minimum AE vali-
dation MSE encountered during all epochs. It can be noticed the best network is more than twice as accurate
on the validation set than the worst performing network, although they all have an absolute error of less then
10e−3. Table 5.1 shows the mean and standard deviation of these networks evaluated on the test set, on the
first row. It can be seen that for the AE’s the standard deviation is 14.3 % of the mean.

0 40 80 120 160 200 240 280
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

AE
 V

al
id

at
io

n
M

SE

1e 3

0 3 6 9 12 15 18
Run number

0

1

2

3

4

5

M
in

im
um

 A
E

Va
lid

at
io

n
M

SE

1e 5

Figure 5.4: Left, AE validation MSE for each of the 20 autoencoders vs epoch number. Right, Minimum AE validation MSE over all epochs,
for each of the 20 autoencoders.

When training one RNN to make the time predictions per AE it was expected to see large deviations per
training run, as the latent space of each of the autoencoders can be completely different and the magnitude
of the latent space variables can also vary in any way. Figure 5.5 shows the validation loss per epoch for each
of the 20 RNN’s as well as the minimum validation loss per training run. It can be seen that the RNN’s perform
completely differently per training run on validation set. The RNN’s performing worse on the validation set
might provide better reconstructed predictions due to the difference in latent space variable magnitudes.

28 5. Results and Discussion

Table 5.1 shows the mean and standard deviation for the RNN’s evaluated on the long term test set. It can be
seen that the standard deviation is about 50%.

0 80 160 240 320 400 480 560
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

RN
N

Va
lid

at
io

n
M

SE

1e 3

0 3 6 9 12 15 18
Run number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
in

im
um

 R
NN

 V
al

id
at

io
n

M
SE

1e 4

Figure 5.5: Left, RNN Validation MSE for each of the 20 RNN’s trained on one of the AE’s shown in Figure 5.4 vs epoch number. Right,
Minimum RNN Validation MSE for all epochs of each of the RNN’s trained per AE.

The mean AE-RNN test MSE over all time steps per trained AE-RNN is plotted in Figure 5.6. It can be seen
that the best performs twice as good on the validation set as the worst network. Table 5.1 shows this trend
as well for the long term prediction task. The standard deviation is about 15 % of the mean error. It should
be noted that the latent spaces are generated by different AE. These all produce latent spaces in which the
magnitudes of the variables might differ. This means that the actual reconstructed error might completely
different than the error in latent dimensions. In all cases however, the magnitude of the error is relatively low.

It is also interesting to see the stochastic behaviour of training multiple RNN’s with the same layout on
a single trained AE. 20 RNN’s are therefore trained on the same AE to see whether this will result in a more
consistent performance. Figure 5.7 shows the validation loss history as well as the lowest validation loss per
RNN that was obtained over the whole training process. It can be seen that when using a single AE the RNN’s
perform more consistently on the validation data than training each RNN on a separate trained AE. Table
5.1 also shows this trend as the standard deviation is only 9% of the mean rather than the 50% observed by
training 20 RNN’s on different AE.

The mean reconstructed prediction MSE over all time steps per trained network is again plotted in Figure
5.8, to see whether they also perform the similarly in the reconstructed predictions. The figure visually looks
similar to the case where 20 different AE’s were used. Table 5.1 shows the mean and standard deviation for
this case as well. It can be seen the standard deviation is 9% for this case, which is lower than the 20 AE case.

0 3 6 9 12 15 18
Run number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
AE

-R
NN

 T
es

t M
SE

1e 4

Figure 5.6: AE-RNN long term prediction MSE on the test set.

5.3. Statistics 29

0 80 160 240 320 400 480 560
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

RN
N

Va
lid

at
io

n
M

SE

1e 3

0 3 6 9 12 15 18
Run number

0

1

2

3

4

5

6

M
in

im
um

 R
NN

 V
al

id
at

io
n

M
SE

1e 5

Figure 5.7: Left, Validation loss for each of the 20 RNN’s trained on the first of the AE’s shown in Figure 5.4 vs epoch number. Right,
Minimum validation loss, for each of the 20 RNN’s trained the first AE shown in Figure 5.4, occurred during all epochs

0 3 6 9 12 15 18
Run number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n
AE

-R
NN

 T
es

t M
SE

1e 4

Figure 5.8: AE-RNN long term prediction MSE on the test set.

Mean MSE STD (% mean) Minimum MSE Maximum MSE
AE Test MSE (20 AE) 5.26 ·10−5 14.3% 4.17 ·10−5 6.90 ·10−5

RNN Test MSE (20 AE, 1 RNN per AE) 3.65 ·10−4 51.8% 1.76 ·10−4 1.06 ·10−3

AE-RNN Test MSE (20 AE, 1 RNN per AE) 1.49 ·10−4 14.6% 1.24 ·10−4 2.04 ·10−4

RNN Test MSE (1 AE, 20 RNN’s) 3.83 ·10−4 9.03% 3.12 ·10−4 4.82 ·10−4

AE-RNN Test MSE (1 AE, 20 RNN’s) 1.28 ·10−4 8.59% 1.05 ·10−4 1.47 ·10−4

Table 5.1: Stochastic properties of the AE-RNN flow model evaluated on the long term prediction test set.

From this can be concluded that the stochasticity of an AE-RNN combination is high. Two separate
trained AE-RNN combinations can have a large accuracy differences (the one could have an accuracy twice
the accuracy of the another). Considering these findings, the claims made by Wiewel et al. [24] about the
comparison between different AE-RNN setups and methods which differ slightly in accuracy may have been
happenstance and not because the one is actually better than the other. To get a better view on the real dif-
ferences in model accuracy, multiple AE’s should be trained, with on each of using multipe RNN’s. The mean
and standard deviation could give a better indication about the actual accuracy of the model. Furthermore,
the models trained by Wiewel et al. [24] could potentially be improved by training multiple AE-RNN combi-
nations. The best performing model could be selected for an optimal performance.

30 5. Results and Discussion

5.4. Training Samples

Figure 5.9 shows the validation loss per epoch as well as the best validation loss obtained per number of
samples. As expected it can be seen the number of training samples has a clear impact on the models perfor-
mance. The more training samples it has, the better it can reconstruct the validation samples.

0 40 80 120 160 200 240 280
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

AE
 V

al
id

at
io

n
M

SE

1e 3
70000 Validation Loss
50000 Validation Loss
30000 Validation Loss
10000 Validation Loss
5000 Validation Loss

5000 10000 30000 50000 70000
Number of Training Samples

0.0

0.5

1.0

1.5

2.0

2.5

M
in

im
um

 A
E

Va
lid

at
io

n
M

SE

1e 4

Figure 5.9: Left, AE Validation MSE for each number of training samples settings vs epoch number. Right, Minimum AE validation MSE,
for each number of training samples settings, occurred during all epochs

Figure 5.10 shows the AE validation MSE per epoch of the RNN trained with constant samples but on the
AE models that with a different number training samples, as well as the minimum AE validation MSE during
each run. Interestingly, the number of AE training samples has impact on the AE as well as the RNN even
though the number of training samples of the RNN is remained constant. Although a trend can be extracted
from these plots, the stochastic nature of this plot shown in Section 5.3 should be taken in mind. This trend
could be random.

0 80 160 240 320 400 480 560
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

RN
N

Va
lid

at
io

n
M

SE

1e 3
70000 Validation Loss
50000 Validation Loss
30000 Validation Loss
10000 Validation Loss
5000 Validation Loss

5000 10000 30000 50000 70000
Number of Training Samples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

im
um

 R
NN

 V
al

id
at

io
n

M
SE

1e 4

Figure 5.10: Left, RNN Validation loss for each number of AE training samples settings vs epoch number. Right, Minimum RNN validation
loss, for each number of AE training samples settings, occurred during all epochs

The reconstructed prediction loss is plotted in Figure 5.11. The number of AE training samples is here also
of relative large influence, as the reconstruction accuracy is influenced by the number of training samples.

5.4. Training Samples 31

5000 10000 30000 50000 70000
Number of Training Samples

0.0

0.5

1.0

1.5

2.0

Re
co

ns
tru

ct
io

n
M

SE
 O

n
Te

st
 S

et

1e 4

Figure 5.11: Reconstructed long term prediction MSE over 5000 sequences with 153 time steps vs the number of AE training samples

A single AE is now trained with constant training samples and on this different RNN’s are trained with
a varying number of training samples. Figure 5.12 shows the minimum RNN validation MSE achieved dur-
ing the whole training process. This also has the expected downward trend if more samples are fed during
training.

5e0 1e1 2e1 5e1 1e2 2e2 5e2 1e3 2e3 5e3 1e4 3e4 5e4 1e5
Number of Training Samples

0

1

2

3

4

5

6

7

8

9

M
in

im
um

 R
NN

 V
al

id
at

io
n

M
SE

1e 3

Figure 5.12: Minimum RNN validation loss, for each number of RNN training samples settings, occurred during all epochs

The AE-RNN Test MSE for each of the RNN’s shown is shown in Figure 5.13. Interestingly the number
of training samples doesn’t seem to have much effect on the long term prediction accuracy of the network
if more than 5000 training samples are used, even though the validation accuracies for these networks show
large differences.

32 5. Results and Discussion

5e0 1e1 2e1 5e1 1e2 2e2 5e2 1e3 2e3 5e3 1e4 3e4 5e4 1e5
Number of Training Samples

0

1

2

3

4

5

AE
-R

NN
 T

es
t M

SE

1e 3

Figure 5.13: Reconstructed long term prediction MSE over 5000 sequences with 153 time steps vs the number of AE training samples

6
Conclusion

First of all it can be concluded that boundary overlap areas can be appears to be an effective way to introduce
new flow data into the method presented by Wiewel et al. [24] when using the presented algorithm. The
boundary overlap areas do keep the error bounded for the case where fluid structures pass though the domain
relatively quickly. The training routine can remain the same but the layout of the encoder part of the AE
should be modified. The size of the overlap area should be big enough to contain the largest scales flowing
into the DL subdomain. This has potential for the 3D fluid cases as the traditional steps CFD could potentially
be avoided in the prediction domain, leading to significant speed ups for the DL prediction area. This is
desired for problems where parts of the domain are well known but are necessary to solve the full domain.

The stochastic nature of DL does have an impact on the accuracy of the network. The accuracy for each of
the trained network was in the order of 10−3, which is barely noticeable for the naked eye. When training the
same setup for 20 times the maximum standard deviation in accuracy was found to be 14%. To do a fair com-
parison, ideally the models should be trained multiple times to see what the mean and standard deviation
of the model are. These should be compared by means of a T-test, for example, to find the probability that
two different setups actually differ in accuracy. If the accuracy improves by a much larger margin standard
deviation of 14% this is of course less of a necessity. Methods presented by Wiewel et al. [24] should ideally
be rerun for several times to get a clearer picture of the underlying statistics. From that a fair comparison
between the suggested methods could be made.

It was found that the training data should primarily be generated for training the AE. The AE found a max-
imum accuracy when trained on 50.000 training samples. The RNN on the other finds a maximum accuracy
when trained with 5000 samples only. It should be noted that when generating training samples for the AE,
the samples can be reused for the RNN.

33

7
Recommendations

The AE-RNN flow model with the added overlap areas works well for the 1D case but it is interesting to see
how this scales to 2D and 3D problems. How do the minimum required number of training samples scale
in 2D and 3D? It is also interesting to see if the current (relatively simple) ANN setup would perform in a 2D
case.

It is also recommended to evaluate how well the model performs if flow structures enter the domain con-
stantly, rather than one wave at a time. Can the model make accurate prediction if a waves enters via the
overlap domain while another one exits via that overlap domain at the same time?

Furthermore, a sensitivity analysis should be performed to see how well the model performs using other
AE and RNN architectures and if it can be optimised further. This could best be done for the 1D case as
training times are relatively short for the 1D models.

It would also be a good idea to investigate how the latent space influences the ability for the RNN to make
long term prediction. The latent space is currently a black box so this should be investigated further by means
of a (partly) supervised latent space. A Reduced Order Model (ROM) could for example be used to make the
supervised latent space. An encoder can learn to add specifics which are not captured well by the ROM to
create a unsupervised latent space. The supervised and unsupervised latent spaces can be concatenated and
be used by the decoder as an input. This would allow for a study in how the RNN makes predictions for future
states.

35

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Ge-
offrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL
http://tensorflow.org/. Software available from tensorflow.org.

[2] Léon Bottou, Corinna Cortes, John S Denker, Harris Drucker, Isabelle Guyon, Lawrence D Jackel, Yann
LeCun, Urs A Muller, Edward Sackinger, Patrice Simard, et al. Comparison of classifier methods: a case
study in handwritten digit recognition. In Pattern Recognition, 1994. Vol. 2-Conference B: Computer
Vision & Image Processing., Proceedings of the 12th IAPR International. Conference on, volume 2, pages
77–82. IEEE, 1994.

[3] Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek
Nowrouzezahrai, and Timo Aila. Interactive reconstruction of monte carlo image sequences using a
recurrent denoising autoencoder. ACM Transactions on Graphics (TOG), 36(4):98, 2017.

[4] François Chollet et al. Keras. https://keras.io, 2015.

[5] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[6] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pages 249–256, 2010.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[9] John J Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[10] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. arXiv preprint arXiv:1709.01507, 7,
2017.

[11] SJ Hulshoff. Eia an euler code for internal aeroacoustics: method description and user’s guide. delft, the
netherlands: Faculty of aerospace engineering. Delft University of Technology.(p. xiii, xiv, 69, 70, 72, 139,
187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199), 2016.

[12] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reduc-
ing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[14] Simeon Kostadinov. Understanding gru networks. https://towardsdatascience.com/
understanding-gru-networks-2ef37df6c9be, 2017. Accessed: 2019-06-07.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

37

http://tensorflow.org/
https://keras.io
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be

38 Bibliography

[16] Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent neural networks for
sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[17] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–814, 2010.

[18] Christopher Olah. Understanding lstm networks. https://colah.github.io/posts/
2015-08-Understanding-LSTMs/, 2015. Accessed: 2019-06-07.

[19] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the
brain. Psychological review, 65(6):386, 1958.

[20] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by
error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[21] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533, 1986.

[22] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[23] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In AAAI, volume 4, page 12, 2017.

[24] Steffen Wiewel, Moritz Becher, and Nils Thuerey. Latent-space physics: Towards learning the temporal
evolution of fluid flow. arXiv preprint arXiv:1802.10123, 2018.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

	List of Symbols
	Abbreviations
	Introduction
	Relevant Literature
	Deep Learning Networks
	Perceptron
	Multi-Layered Perceptron
	The Exploding and Vanishing Gradient Problem
	Convolutional Neural Network
	Recurrent Neural Network
	Autoencoder

	Applying Deep Learning to CFD

	Research Outline
	Gaps In Current Knowledge
	research Questions

	Method
	Model Problem
	Artificial Neural Network Setup
	Autoencoder
	Recurrent Neural Network

	Data Sets
	Training
	Inference
	Boundary Overlap Areas
	Stochatstics
	Number of training samples
	Loss definitions
	Deep Learning Tools

	Results and Discussion
	Boundary overlap areas
	Error Development
	Statistics
	Training Samples

	Conclusion
	Recommendations
	Bibliography

