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Mean-Field Stackelberg Game for Mitigating the Strategic Bidding of
Energy Consumers in Congested Distribution Networks

Amirreza Silani, Simon H. Tindemans

Abstract— The sudden proliferation of Electric Vehicles
(EVs), batteries and photovoltaic cells in power networks
can lead to congested distribution networks. A substitute for
upgrading network capacity is a redispatch market that enables
the Distribution System Operators (DSOs) to mitigate congested
networks by requesting the energy consumers to modify their
consumption schedules. However, energy consumers are able to
strategically modify their day-ahead market bids in anticipation
of the redispatch market outcomes. This behaviour, which is
known as increase-decrease gaming, can exacerbate congestion
and give arbitrage opportunities to the energy consumers for
gaining windfall profits from the DSO. In this paper, we propose
an algorithm based on mean-field Stackelberg game to mitigate
the increase-decrease game for large populations of energy
consumers. In this game, the energy consumers (followers)
maximize their individual welfare on the day-ahead market
with anticipation of the redispatch market outcomes while the
leader maximizes the social welfare of all agents and minimizes
the costs of DSO on the redispatch market. We show the
convergence of this algorithm to the mean-field leader-follower
εN -Nash equilibrium.

I. INTRODUCTION

These days, there are increasing distributed energy re-
sources connected to the electrical distribution grid, including
Electric Vehicles (EVs), batteries and photovoltaic cells.
The decarbonization of the energy system is the advantage
of these resources but they provide additional problems
for power networks, namely network congestion. There are
several ways to mitigate the congestion problems: Direct
Load Control (DLC), Local Flexibility Markets (LFMs), and
new forms of distribution tariffs [1], [2]. Among those, we
focus on the LFM proposals aimed at addressing conges-
tion management. After the Day-Ahead (DA) market has
closed, LFM proposals usually take energy consumption
schedules into account. The Distribution System Operator
(DSO) requests the energy consumers to redispatch their
consumption schedules in the LFM, which can be considered
a local Redispatch (RD) market, if the forecast consumption
schedules of flexible demand and other demand cause con-
gestion problems [2]. In order to resolve congestion, the DSO
pays the consumers who reduce their consumption schedules
on the redispatch market [1], [2]. However, the consumers
are able to anticipate the outcome of the redispatch market
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and bid strategically on the day-ahead market in order to
maximize their individual welfare, which leads to increase-
decrease gaming [3]. The increase-decrease game can ex-
acerbate congestion and give arbitrage opportunities to the
energy consumers for gaining windfall profits from the DSO.
Recently, modeling and analysis of the increase-decrease
game in similar electrical energy markets have attracted
increasing research interest (see for instance [3]–[7]). In
[3], it is demonstrated that in an inconsistent power market
design, producers bid strategically on the spot markets and
even in absence of market power, the increase-decrease game
is possible. In [4], a two-stage game is designed to investigate
the effects of imperfect competition among producers in
zonal power markets. A profit decomposition approach is
proposed in [5] to assess how different bidding strategies
affect overall payoffs. In [6], a deterministic mean field game
method is utilized to model the increase-decrease game for
large populations of energy consumers in power networks.
This was extended in [7] to a stochastic setting. These papers
study the increase-decrease game in various electrical energy
markets; however, no existing research addresses an effective
solution for the increase-decrease game under uncertainty, in
particular for the case of congestion in distribution networks.
In other related work, mean field game theory was utilized
for constrained charging control of large populations of EVs
in [8]–[10].

In this paper, we consider a mitigation strategy for
increase-decrease gaming in redispatch markets, for large
populations of energy consumers. Building on the research
in [7], we model this as a mean-field Stackelberg game
where the followers, i.e., consumers, aim to maximize their
personal welfare on the day-ahead market while anticipating
the outcomes of the redispatch market. In the present paper,
the leader balances the social welfare of all agents and the
cost incurred by the DSO on the redispatch, by adding an
offset to the day-ahead price. An iterative algorithm is used
to obtain the consumers’ day-ahead schedules and the day-
ahead price for a number of time steps (e.g., 24 hours). We
show the convergence of the algorithm to the mean-field
leader-follower εN -Nash equilibrium.

Notation: Let 1 be the vector of all ones. IM denotes
the identity matrix of size M . ∥x∥S denotes the weighted
L2 norm of x and diag(x) denotes the diagonal form of
x. Let [z]+ := z if z > 0, 0 otherwise. The mathematical
expectation with respect to (w.r.t.) the random variable ν is
represented by Eν [·].



II. MODELING AND PROBLEM FORMULATION

In this section, we consider the increase-decrease game
for large populations of energy consumers and model the
objective functions for both the leader and the followers.

A. Problem formulation

We consider the problem of energy consumption for
consumers with flexible loads. We consider the set of energy
consumers (followers) N := {1, 2, . . . , N} and the time
horizon T := {1, . . . , T}. Each consumer i ∈ N assigns
a utility ui ∈ R>0 to the (optional) consumption of energy.
For each i ∈ N , t ∈ T , let ptb,i be the charging/discharging
schedule of battery, ptg,i be the consumption schedule of other
flexible loads on the day-ahead market, and c be the network
capacity. We consider day-ahead uncertainty in the energy
demand, represented by the random variable Dt.

The day-ahead market schedules are investigated by the
DSO, taking into account the realisation of the uncertain
demand (i.e., with a specific realization dt ← Dt). Then, if
a congestion issue occurs, the DSO requests the consumers
to decrease their consumptions on the redispatch market
and compensates those who do so. However, consumers
can anticipate congestion in the network and adjust their
day-ahead market schedules such that the DSO pays them
to decrease it on the redispatch market. This is known as
increase-decrease gaming [3].

For each t ∈ T , let πt
d be the day-ahead market price and

Πt
r be the stochastic redispatch market price1. Then, define

πd := (π1
d, . . . , π

T
d )

⊤ and Πr := (Π1
r , . . . ,Π

T
r )

⊤. Quadratic
cost functions are commonly used to model power generation
[8]. Equivalently, we use the affine marginal cost function
[9], [11]

πt
d = µt∆t + νt, (1)

where µt and νt are price function parameters and ∆t is
the total demand which is price sensitive [12] as ∆t =∑

i∈N (δti + ptb,i + ptg,i − πt
de

t
i), with other demand δti and

the demand elasticity eti ∈ R>0, for i ∈ N . Now, we define

zt =
1

N

∑
i∈N

(
ptb,i + ptg,i

)
, δt =

1

N

∑
i∈N

δti . (2)

Then, by replacing ∆t in (1), we have

πt
d(z

t, ν̃t) = µ̃t∗(zt + δt) + ν̃t, (3)

where µ̃t∗ = Nµt

1+µt
∑

i∈N eti
is assumed to be constant and

ν̃t = νt

1+µt
∑

i∈N eti
is considered as the leader’s variable in

the following subsections. For each t ∈ τ , we consider the
constraint

ν̃t ∈ [
¯
νt, ν̄t], (4)

where
¯
νt and ν̄t are positive bounds. Practically,

¯
νt can

be considered the uncongested price parameter, and ν̃t −
¯
νt

the price offset applied by the leader. Such a price offset is
analogous to the use of Locational Marginal Pricing (LMP)

1The redispatch price is stochastic due to the demand uncertainty Dt.

in the deterministic case [5]. Moreover, we define z :=
(z1, . . . , zT )⊤, δ := (δ1, . . . , δT )⊤, µ̃∗ := (µ̃1∗, . . . , µ̃T∗)⊤

and ν̃ := (ν̃1, . . . , ν̃T )⊤.

B. Model of Followers

We consider the consumers as the followers of this game.
For each i ∈ N , t ∈ T , let the battery State of Charge (SoC)
be denoted by χt

i ∈ R>0, whose dynamics is given by

χt
i = χt−1

i +
1

βi
ptb,i, (5)

where βi is the battery capacity. We consider the time step
equal to one hour in (5). The set of admissible SoC, the initial
and final SoC and the charging/discharging power constraints
are expressed as

χt
i ∈ [χmin

i , χmax
i ], χ0

i = χT
i , ptb,i ∈ [pmin

b,i , p
max
b,i ], (6)

where χmin
i , χmax

i are allowable minimum and maximum
SoC and pmin

b,i , pmax
b,i are minimum and maximum charg-

ing/discharging rates of follower i, respectively. The battery
degradation cost for the follower i is expressed as [9]

Cb,i(p
t
b,i) = ai

(
ptb,i

)2
+ bi|ptb,i|+ ci, (7)

where ai, bi and ci are constants. Furthermore, we consider
the following constraint for other flexible loads

ptg,i ∈ [0, pmax
g,i ] (8)

where pmax
g,i is the maximum consumption schedules of

other flexible loads. Let define pb,i := (p1b,i, . . . , p
T
b,i)

⊤ and
pg,i := (p1g,i, . . . , p

T
g,i)

⊤. Then, the convex set of admissible
strategies for the follower i is given by

Ψi := {(pb,i, pg,i)| (5), (6), (8) are satisfied}. (9)

Each follower i ∈ N maximizes its individual welfare
J F
i

(
pb,i, pg,i, z, ν̃,Πr

)
by solving the problem

max
(pb,i,pg,i)∈Ψi

J F
i

(
pb,i, pg,i, z, ν̃,Πr

)
(10)

where J F
i

(
pb,i, pg,i, z, ν̃,Πr

)
=

∑
t∈τ p

t
g,iui − (ptb,i +

ptg,i)π
t
d(z

t, ν̃t) + ptg,iEΠt
r

[
[Πt

r − ui]
+
]
− Cb,i(p

t
b,i). If we

assume that z is a fixed reference, then (10) becomes a
linear program in pg,i, and its optimal solution becomes
discontinuous w.r.t. this fixed reference. Hence, inspired by
[8], [10], for each follower i ∈ N , we consider the following
problem

max
(pb,i,pg,i)∈Ψi

J F
σi

(
pb,i, pg,i, z, ν̃,Πr

)
(11)

where J F
σi

(
pb,i, pg,i, z, ν̃,Πr

)
= J F

i

(
pb,i, pg,i, z, ν̃,Πr

)
−

σ(ptg,i − zt)2, with σ ∈ R≥0. The extra term in (11) regu-
larizes the problem and numerical experimentation suggests
that it can be adjusted to arbitrarily small values.



C. Model of Leader

We consider a leader for this game. The convex set of
admissible strategies for the leader is given by

Φ := {ν̃| (4) is satisfied}. (12)

The leader can adjust the day-ahead market price to bal-
ance two objectives: maximizing the social welfare of all
consumers (followers) and minimizing the costs of the DSO
on the redispatch market. Therefore, the leader solves the
following optimization problem, where the balance between
the two is controlled by the constant ρ ≥ 1:

max
ν̃∈Φ
J L

(
z, ν̃,Πr

)
(13)

where J L
(
z, ν̃,Πr

)
=

∑
i∈N J F

i

(
pb,i, pg,i, z, ν̃,Πr

)
−

ρ
∑

t∈τ EΠt
r

[
Πt

r[∆̃
t − c]+

])
, with ∆̃t = ∆t + Dt and Dt

is the demand uncertainty at time t ∈ T .

III. MEAN-FIELD STACKELBERG GAME APPROACH

The leader-follower interaction can be modeled as a two-
level game. In this game, the leader determines the offset
of the day-ahead price function and sends the price function
to the followers and the followers respond optimally to it
via modifying their consumption schedule strategies. Now,
we define the game G as follows: (i) players: followers
N and leader; (ii) strategies: follower i: (pb,i, pg,i) ∈
Ψi, leader: ν̃ ∈ Φ; (iii) objective functions: follower i:
J F
σi

(
pb,i, pg,i, z, ν̃,Πr

)
, leader: J L

(
z, ν̃,Πr

)
. The game G is

a repetitive game with incomplete information (i.e., a game
with incomplete information that is played in multiple rounds
to determine its equilibrium). In this game, the followers
are coupled via z, which is called the mean-field term. The
followers are not aware of strategies or objective functions
of other followers but they know the leader’s strategy and
mean-field term and determine their optimal strategies based
on them. The leader determines its optimal strategy using the
followers’ strategies. As we show below, through exchanging
moves in multiple rounds, the players iteratively arrive at a
desirable solution.

A set of agents’ strategies is called a mean-field Nash
equilibrium if each agent cannot improve its profit by altering
its own strategy whilst the aggregated strategies of the other
agents remain unchanged. Following [9, Definition 1], we
define the mean-field leader-follower ε-Nash equilibrium as
follows.

Definition 1: (Mean-field leader-follower ε-Nash equi-
librium). A set of strategies

(
{(p∗b,i, p∗g,i)}i∈N , ν̃∗

)
is

called a Mean-field leader-follower ε-Nash equilibrium
for the game G if ε > 0 exists such that for
all i ∈ N , (pb,i, pg,i) ∈ Ψi, and ν̃ ∈ Φ,
we have J F

σi

(
p∗b,i, p

∗
g,i,

1
N

∑
j∈N (p∗b,j + p∗g,j), ν̃

∗,Πr

)
+

ε ≥ max(pb,i,pg,i)∈Ψi
J F
σi

(
pb,i, pg,i,

1
N (pb,i + pg,i) +

1
N

∑
j∈N−{i}(p

∗
b,j+p∗g,j), ν̃

∗,Πr

)
and J L

(
1
N

∑
j∈N (p∗b,j+

p∗g,j), ν̃
∗,Πr

)
≥ maxν̃∈Φ J L

(
1
N

∑
j∈N (p∗b,j + p∗g,j), ν̃,Πr

)
.

Algorithm 1: Mean-field Stackelberg game based
Algorithm

Select z1 and ν̃1; set ϵ1 > ε, m = 1 and z• = z1;
while ϵ1 > ε do

set l = 1 and ϵ2 > ε;
while ϵ2 > ε do

set z1 = z•;
the followers solve (11) and obtain pb,i, pg,i;
zl+1 = (1− αl)zl + αlΛ(zl, ν̃m);
ϵ2 = ∥zl+1 − zl∥; l = l + 1;

end
set z• = zl;
the leader solves (13) based on z• and obtain
ν̃m+1;
ϵ1 = ∥z∗(ν̃m+1)− z•∥; m = m+ 1.

end

A. Mean-field game approach for the followers

We use a mean field approach to focus on collective
strategic behaviour without individual market power. In this
subsection, an iterative method converging to the mean-
field leader-follower εN -Nash equilibrium of G, with εN =
O( 1

N ) is used [9]. This method obtains the mean-field game
equilibrium which is a function of the leader’s variable.

We assume that the mean-field term z is provided to the
followers. Then, for a given z, each follower can solve the
problem (11) and determine its optimal strategy. Now, at
iteration l, zl is considered as the estimate of mean-field
term z. Then, the Mann iteration algorithm [10] is used as

zl+1 = (1− αl)zl + αlΛ(zl, ν̃), (14)

where Λ(zl, ν̃) = 1
N

∑
i∈N (p∗b,i(zl, ν̃) + p∗g,i(zl, ν̃)) and

αl ∈ (0, 1) is the learning rate that fulfills liml→∞ αl = 0,∑∞
k=0 αl = ∞. The mean-field decentralized method is

composed of two iterative steps: optimization and estimation
step. In the optimization step, each follower solves the
problem (11) for a given mean-field term. In the estimation
step, according to (14), the mean-field term is updated, then
this will be utilized in the next iteration of the optimization
step. These steps continue until the convergence of the mean-
field term is achieved. When the algorithm converged, we
have zl+1 = zl = z∗; following (14), we obtain

z∗ =
1

N

∑
i∈N

(
p∗b,i, (z

∗, ν̃) + p∗g,i(z
∗, ν̃)

)
(15)

Remark 1: (Existence and uniqueness of the solution
to (11)). The followers’ objective function given in (11) is
concave w.r.t. (pb,i, pg,i) over the convex and compact set
Ψi. Hence, for each realization πr ← Πr, a unique solution
to (11) exists in the convex and compact set Ψi [13].

B. Stackelberg game approach for the leader

The leader in the Stackelberg game, takes on the role
of declaring a leader function, mapping the decision space
of followers (Ψi) into the decision space of leader (Φ).



Indeed, the leader sends a mapping of the decision space
of followers into its own decision space [9]. Therefore, the
leader solves the optimization problem (13) based on the
mean-field Nash solution of the followers and sends the day-
ahead price function to the followers for the next round (see
Algorithm 1).

C. Convergence of the proposed method

In this subsection, we study the convergence of Algo-
rithm 1. We prove that this algorithm converges to the mean-
field leader-follower εN -Nash equilibrium for large popula-
tions of consumers. In the following, we first investigate the
problem for the case that the redispatch price πr is known
and is broadcast to all players (the deterministic case), then
we extend the problem for stochastic redispatch price Πr (the
stochastic case).

Lemma 1: (Lipschitz property of the solution
to (11)). Let γ := maxi∈N

(√
λmin(Si)/λmax(Si)

)√(
maxi∈N

(
1/ai

)
∥µ̃∗∥

)2
+ ∥IT − (1/2σ) diag(µ̃∗)∥2 and

γ̄ := maxi∈N
(√

λmin(Si)/λmax(Si)
)(

maxi∈N
(

1
ai

)
+

1
2σ

)
, where Si = diag (aiIT , σIT ). Then, the solution to the

problem (11) for the deterministic case is Lipschitz w.r.t. z
and z∗ is Lipschitz w.r.t. ν̃, i.e., for all z, ẑ, ν̃, ˆ̃ν∥∥(p∗b,i(z, ν̃), p∗g,i(z, ν̃))− (

p∗b,i(ẑ, ν̃), p
∗
g,i(ẑ, ν̃)

)∥∥
≤ γ∥(z, ν̃)− (ẑ, ν̃)∥, (16)

∥z∗(ν̃)− z∗(ˆ̃ν)∥ ≤ γ̄∥ν̃ − ˆ̃ν∥. (17)
Proof: Let p̂b,i, p̂g,i be the solution to

the problem (11) without constraints and for the
deterministic case, i.e.,

(
p̂∗b,i(z, ν̃), p̂

∗
g,i(z, ν̃)

)
=

argmax(p̂b,i,p̂g,i) J
F
σi

(
p̂b,i, p̂g,i, z, ν̃, πr

)
. By getting

derivative, for all t ∈ T , the optimal solution is obtained as

p̂t∗b,i(z
t, ν̃t) =

1

2ai

((
− πt

d(z
t, ν̃t)− bi

)
H
(
− πt

d(z
t, ν̃t)

− bi
)
+
(
− πt

d(z
t, ν̃t) + bi

)
H
(
πt
d(z

t, ν̃t)− bi
))

p̂t∗g,i(z
t, ν̃t) =

1

2σ

(
ui − πt

d(z
t, ν̃t) + [πt

r − ui]
+
)
+ zt,

(18)

where H(·) is the heavy-side function. We have for all z, ẑ

∥p̂∗b,i(z, ν̃)− p̂∗b,i(ẑ, ν̃)∥ ≤
∥∥ 1

ai
(πd(ẑ, ν̃)− πd(z, ν̃))

∥∥
≤ max

i∈N

( 1

ai

)
∥µ̃∗∥∥(z, ν̃)− (ẑ, ν̃)∥ (19)

∥p̂∗g,i(z, ν̃)− p̂∗g,i(ẑ, ν̃)∥ ≤
∥∥ 1

2σ
(πd(ẑ, ν̃)− πd(z, ν̃))

+ (z − ẑ)
∥∥ ≤ ∥∥IT − 1

2σ
diag(µ̃∗)

∥∥∥(z, ν̃)− (ẑ, ν̃)∥. (20)

Hence, we have

∥(p̂∗b,i(z, ν̃), p̂∗g,i(z, ν̃))− (p̂∗b,i(ẑ, ν̃), p̂
∗
g,i(ẑ, ν̃))∥

≤
√(

max
i∈N

(
1/ai

)
∥µ̃∗∥

)2
+ ∥IT − 1/2σ diag(µ̃∗)∥2∥(z, ν̃)

− (ẑ, ν̃)∥. (21)

Consequently, the solution to the problem (11) without
constraints is Lipschitz w.r.t. to z. Now, let the projec-
tion of the solution without constraints on the convex
and compact set Ψi be ProjSi

Ψi

(
(p̂∗b,i(z, ν̃), p̂

∗
g,i(z, ν̃))

)
=

argmin(pb,i,pg,i)∈Ψi

∥∥((pb,i(z, ν̃), pg,i(z, ν̃)))−((p̂∗b,i(z, ν̃),
p̂∗g,i(z, ν̃))

)∥∥2
Si

=
(
p∗b,i(z, ν̃), p

∗
g,i(z, ν̃)

)
. Using the non-

expansive property of projection [13], λmin(Si)∥ · ∥2 ≤
∥ · ∥2Si

≤ λmax(Si)∥ · ∥2 and (21), we obtain

∥(p∗b,i(z, ν̃), p∗g,i(z, ν̃))− (p∗b,i(ẑ, ν̃), p
∗
g,i(ẑ, ν̃))∥

≤
√

λmin(Si)/λmax(Si)∥(p̂∗b,i(z, ν̃), p̂∗g,i(z, ν̃))
− (p̂∗b,i(ẑ, ν̃), p̂

∗
g,i(ẑ, ν̃))∥ ≤ γ∥(z, ν̃)− (ẑ, ν̃)∥. (22)

Now, according to (15) and (18), for the large populations
of followers, we have for all ν̃, ˆ̃ν

∥p̂∗b,i(z∗, ν̃)− p̂∗b,i(z
∗, ˆ̃ν)∥ ≤

∥∥ 1

ai
(πd(z

∗,
ˆ̃
h)− πd(z

∗, h̃))
∥∥

≤ max
i∈N

( 1

ai

)
∥ν̃ − ˆ̃ν∥ (23)

∥p̂∗g,i(z∗, ν̃)− p̂∗g,i(z
∗, ˆ̃ν)∥ =

∥∥ 1

2σ
(πd(z

∗, ˆ̃ν)− πd(z
∗, ν̃))

∥∥
≤ 1

2σ
∥ν̃ − ˆ̃ν∥. (24)

By the same procedure and following (15), we
have ∥z∗(ν̃) − z∗(ˆ̃ν)∥ =

∥∥ 1
N

(∑
i∈N (p∗b,i(z

∗, ν̃) +

p∗g,i(z
∗, ν̃)) −

∑
i∈N (p∗b,i(z

∗, ˆ̃ν) + p∗g,i(z
∗, ˆ̃ν))

)∥∥ ≤
1
N

∑
i∈N

√
λmin(Si)/λmax(Si)

(
∥p̂∗b,i(z∗, ν̃) −

p̂∗b,i(z
∗, ˆ̃ν)∥ + ∥p̂∗g,i(z∗, ν̃) − p̂∗g,i(z

∗, ˆ̃ν)∥
)

≤
1
N

∑
i∈N

√
λmin(Si)/λmax(Si)

(
maxi∈N

(
1
ai

)
+ 1

2σ

)
∥ν̃ −

ˆ̃ν∥ ≤ γ̄∥ν̃ − ˆ̃ν∥. Thus, the solution to (11) for the
deterministic case is Lipschitz w.r.t. z and z∗ is Lipschitz
w.r.t. ν̃.

Theorem 1: (Convergence analysis). The convergence of
Algorithm 1 to the solution of G is ensured for any initial
condition z1 and the deterministic case if γ ∈ (0, 1).

Proof: Following Lemma 1, Λ(zl, ν̃) is Lipschitz and
continuous w.r.t. zl and relates to a convex and compact set.
Hence, according to the Brouwer fixed point theorem [14],
z 7→ Λ(z) is contractive and has a fixed point if γ ∈ (0, 1).
Then, in analogy with the contraction mapping theorem [15,
Theorem 1.2.2], the convergence of algorithm (14) to a
unique fixed point z∗(ν̃) is ensured. Moreover, following
Lemma 1, z∗ is Lipschitz w.r.t. ν̃; thus, the convergence of
Algorithm 1 to the solution of G is guaranteed.

Theorem 2: (Convergence to the mean-field leader-
follower εN -Nash equilibrium). For the finite population
of consumers and the deterministic case, the convergence of
the strategies of the leader and followers via Algorithm 1
to the mean-field leader-follower εN -Nash equilibrium of G,
with εN = O( 1

N ) is ensured if γ ∈ (0, 1).
Proof: Since the objective function J F

σi

(
pb,i, pg,i, z, ν̃,

πr

)
is quadratic and belongs to a compact set, it is Lipschitz



w.r.t. (pb,i, pg,i) and z. Thus, a L > 0 exists such that∣∣J F
σi

(
p∗b,i, p

∗
g,i, z

∗, ν̃, πr

)
− J F

σi

(
p̄∗b,i, p̄

∗
g,i, z̄

∗, ν̃, πr

)∣∣
≤ L

∥∥(p∗b,i(z∗, ν̃), p∗g,i(z∗, ν̃))− (
p̄∗b,i(z̄

∗, ν̃), p̄∗g,i(z̄
∗, ν̃)

)∥∥
+ L∥z∗(ν̃)− z̄∗(ν̃)∥. (25)

For follower i ∈ N , the Nash optimal welfare
function is given by J̃ F

σi

(
p̃∗b,i, p̃

∗
g,i, z̃

∗, ν̃, πr

)
:=

J F
σi

(
p̃∗b,i, p̃

∗
g,i,

1
N (p̃∗b,i + p̃∗g,i) + 1

N

∑
j∈N−{i}(p

∗
b,j +

p∗g,j), ν̃, πr

)
= max(pb,i,pg,i)∈Ψi

J F
σi

(
pb,i, pg,i,

1
N (pb,i +

pg,i) + 1
N

∑
j∈N−{i}(p

∗
b,j + p∗g,j), ν̃,Πr

)
, where

z̃∗ = 1
N (p̃∗b,i + p̃∗g,i) + 1

N

∑
j∈N−{i}(p

∗
b,j + p∗g,j) and

(p̃∗b,j , p̃
∗
g,j) is the optimal strategy of jth follower with

j ∈ N − {i}. Moreover, the optimal mean-field welfare
function is expressed as J̄ F

σi

(
p̄∗b,i, p̄

∗
g,i, z

∗, ν̃, πr

)
:=

J F
σi

(
p̄∗b,i, p̄

∗
g,i,

1
N

∑
j∈N (p∗b,j + p∗g,j), ν̃, πr

)
=

max(pb,i,pg,i)∈Ψi
J F
σi

(
pb,i, pg,i,

1
N

∑
j∈N (p∗b,j + p∗g,j), ν̃,

Πr

)
. Now, we show that a follower can increase

its welfare from mean-field optimal solution
by εN . We define Ĵ F

σi

(
p̂∗b,i, p̂

∗
g,i, z̃

∗, ν̃, πr

)
:=

J F
σi

(
p̂∗b,i, p̂

∗
g,i,

1
N (p̃∗b,i + p̃∗g,i) + 1

N

∑
j∈N−{i}(p

∗
b,j +

p∗g,j), ν̃, πr

)
= max(pb,i,pg,i)∈Ψi

J F
σi

(
pb,i, pg,i,

1
N (p̃∗b,i +

p̃∗g,i) +
1
N

∑
j∈N−{i}(p

∗
b,j + p∗g,j), ν̃,Πr

)
. Due to the fact

J̄ F
σi ≤ J̃ F

σi ≤ Ĵ F
σi, we obtain

0 ≤J̃ F
σi

(
p̃∗b,i, p̃

∗
g,i, z̃

∗, ν̃, πr

)
− J̄ F

σi

(
p̄∗b,i, p̄

∗
g,i, z

∗, ν̃, πr

)
≤Ĵ F

σi

(
p̂∗b,i, p̂

∗
g,i, z̃

∗, ν̃, πr

)
− J̄ F

σi

(
p̄∗b,i, p̄

∗
g,i, z

∗, ν̃, πr

)
≤
∣∣J F

σi

(
p̂∗b,i, p̂

∗
g,i, z̃

∗, ν̃, πr

)
− J F

σi

(
p̄∗b,i, p̄

∗
g,i, z

∗, ν̃, πr

)∣∣.
(26)

Hence, according to Lemma 1 and (25), we have∣∣J F
σi

(
p̂∗b,i, p̂

∗
g,i, z̃

∗, ν̃, πr

)
− J F

σi

(
p̄∗b,i, p̄

∗
g,i, z

∗, ν̃, πr

)∣∣
≤ L(γ + 1)

∥∥z̃∗(ν̃)− z∗(ν̃)
∥∥ ≤ L(γ + 1)

N

(∥∥p̃∗b,i(z̃∗, ν̃)
− p̄∗b,i(z

∗, ν̃)
∥∥+

∥∥p̃∗g,i(z̃∗, ν̃)− p̄∗g,i(z
∗, ν̃)

∥∥)
≤ L(γ + 1)(β1 + β2)

N
, (27)

where β1 = maxp̃b,p̄b
∥p̃b − p̄b∥ and β2 = maxp̃g,p̄g

∥p̃g −
p̄g∥. By considering the optimal solution of the leader (i.e.,
the solution to (13)), the leader–follower mean-field εN -Nash
equilibrium of this game is obtained via Algorithm 1.

Following Theorem 2, εN approaches to zero and Algo-
rithm 1 converges to the leader-follower mean-field Nash
equilibrium of this game when the population size tends to
infinity. Now, we investigate the problem for the stochastic
case. The DSO collects the day-ahead market schedules and
according to the realization of D := (D1, . . . , DT )⊤, if a
congestion issue occurs, the DSO requests offers for demand
reduction on the redispatch market and the redispatch price
is determined based on the total realized flexible and other
demand. Thus, stochastic redispatch price Πr depends on D
and z. Now, consider the following assumption.

Assumption 1: (Condition on Πr). There exists M > 0
such that for all z, ẑ, we have

∥∥EΠr

[
[Πr(z,D)−ui1T ]

+
]
−

EΠr

[
[Πr(ẑ, D)− ui1T ]

+
]∥∥ ≤M∥z − ẑ∥.

Theorem 3: (Convergence analysis for the stochastic
case). Let Assumption 1 hold. The convergence of Al-
gorithm 1 to the solution of G is guaranteed for any
initial condition z1 and the stochastic case if γ̃ ∈
(0, 1), where γ̃ = maxi∈N

(√
λmin(Si)/λmax(Si)

)(∥∥IT −
1
2σ diag(µ̃∗)

∥∥+ maxi∈N
(

1
ai

)
∥µ̃∗∥ + 1

2σM
)
. Moreover, if

γ̃ ∈ (0, 1), for the finite population of consumers and the
stochastic case, the convergence of the strategies of the leader
and followers via Algorithm 1 to the mean-field leader-
follower εN -Nash equilibrium of G is ensured.

Proof: Let p̂b,i, p̂g,i be the solution to the prob-
lem (11) without constraints and for the stochastic case,
i.e.,

(
p̂∗b,i(z, ν̃), p̂

∗
g,i(z, ν̃)

)
= argmax(p̂b,i,p̂g,i) J

F
σi

(
p̂b,i,

p̂g,i, z, ν̃,Πr(z,D)
)
. By getting derivative, for all t ∈ T ,

the optimal solution is obtained as follows:

p̂t∗b,i(z
t, ν̃t) =

1

2ai

((
− πt

d(z
t, ν̃t)− bi

)
H
(
− πt

d(z
t, ν̃t)

− bi
)
+
(
− πt

d(z
t, ν̃t) + bi

)
H
(
πt
d(z

t, ν̃t)− bi
))

p̂t∗g,i(z
t, ν̃t) =

1

2σ

(
ui − πt

d(z
t, ν̃t) + EΠt

r

[
[Πt

r(z
t, Dt)

− ui]
+
])

+ zt. (28)

Therefore, for all z, ẑ, we have ∥p̂∗b,i(z, ν̃) − p̂∗b,i(ẑ, ν̃)∥ ≤
maxi∈N

(
1
ai

)
∥µ̃∗∥∥(z, ν̃) − (ẑ, ν̃)∥ and ∥p̂∗g,i(z, ν̃) −

p̂∗g,i(ẑ, ν̃)∥ ≤
∥∥IT − 1

2σ diag(µ̃∗)
∥∥∥(z, ν̃) − (ẑ, ν̃)∥ +

1
2σ

∥∥EΠr

[
[Πr(z,D)−ui1T ]

+
]
−EΠr

[
[Πr(ẑ, D)−ui1T ]

+
]∥∥.

Hence, according to Assumption 1, we have
∥(p̂∗b,i(z, ν̃), p̂∗g,i(z, ν̃)) − (p̂∗b,i(ẑ, ν̃), p̂

∗
g,i(ẑ, ν̃))∥ ≤

(∥∥IT −
1
2σ diag(µ̃∗)

∥∥+maxi∈N
(

1
ai

)
∥µ̃∗∥+ 1

2σM
)
∥(z, ν̃)−(ẑ, ν̃)∥.

Consequently, the solution to the problem (11) without
constraints is Lipschitz w.r.t. z. Now, let us define the
projection of the solution without constraints on the convex
and compact set Ψi as ProjSi

Ψi

(
(p̂∗b,i(z, ν̃), p̂

∗
g,i(z, ν̃))

)
=

argmin(pb,i,pg,i)∈Ψi

∥∥((pb,i(z, ν̃), pg,i(z, ν̃))) −(
(p̂∗b,i(z, ν̃), p̂

∗
g,i(z, ν̃))

)∥∥2
Si

=
(
p∗b,i(z, ν̃), p

∗
g,i(z, ν̃)

)
.

Now, using the non-expansive property of the projection
[13] and λmin(Si)∥ · ∥2 ≤ ∥ · ∥2Si

≤ λmax(Si)∥ · ∥2, we
obtain ∥(p∗b,i(z, ν̃), p∗g,i(z, ν̃)) − (p∗b,i(ẑ, ν̃), p

∗
g,i(ẑ, ν̃))∥ ≤√

λmin(Si)/λmax(Si)∥(p̂∗b,i(z, ν̃), p̂∗g,i(z, ν̃)) − (p̂∗b,i(ẑ, ν̃),
p̂∗g,i(ẑ, ν̃))∥ ≤ γ̃∥(z, ν̃) − (ẑ, ν̃)∥. By the same procedure
and according to (15) and (28), for the large populations
of followers and the stochastic case, (17) holds. Thus,
the solution to the problem (11) for the stochastic case
is Lipschitz w.r.t. z and z∗ is Lipschitz w.r.t. ν̃. Now,
with analogous analysis in the proof of Theorem 1, if
γ̃ ∈ (0, 1) and Assumption 1 hold, the convergence of
Algorithm 1 to the solution of G is guaranteed for any
initial condition z1 and the stochastic case. Moreover, with
similar analysis in the proof of Theorem 2, if γ̃ ∈ (0, 1) and
Assumption 1 hold, for the finite population of consumers
and the stochastic case, the convergence of the strategies of
the leader and followers via Algorithm 1 to the mean-field
leader-follower εN -Nash equilibrium of G is ensured.

Following Theorem 3, εN approaches to zero and Algo-
rithm 1 converges to the leader-follower mean-field Nash
equilibrium when the population size tends to infinity.



Fig. 1. Total expected demand on the day-ahead market with and without
considering the price offsets; and the price offsets.

Fig. 2. Total consumers’ expected utility, redispatch revenue, day-ahead
cost and welfare at time t = 2: (a) the price offset is not considered and
(b) the price offset is considered.

IV. SIMULATION RESULTS

This section demonstrates the effectiveness of the sug-
gested approach through computational simulations. The util-
ity is randomly selected from the uniform distributions over
the interval [0.01, 0.3] $/kWh. We consider c = 100 MW,
N = 2000, ρ = 1.5, χmin

i = 0.15, χmax
i = 0.95 and

αl = (0.9/l). Normal distributions with (mean, sd) were
used for the battery capacity β (20 kWh, 2 kWh), initial
value of SoC (0.5, 0.2), pmax

g,i (9 kW, 1 kW), pmin
b,i (-8 kW,

1 kW) and pmax
b,i (8 kW, 1 kW). For the anticipated other

demand, we utilize the load profile given in [8, Fig. 1] and the
demand uncertainties are selected randomly from the normal
distribution with the standard deviation 10 MW. The price
function parameters are the same as those employed in [9].

We will now apply Algorithm 1 to this simulation scenario.
Fig. 1 demonstrates that the congestion occurs at times
t = 1, 2, 3, 4 when the price offsets are not considered
(i.e., we force ν̃t =

¯
νt). More precisely, consumers submit

high consumption bids on the day-ahead market at times
when they anticipate congestion, aiming to profit from the
redispatch market. Fig. 1 indicates that the increase-decrease
game is mitigated by applying Algorithm 1. Specifically, we
can observe from Fig. 2 that flexible consumers earn less
redispatch revenue from the DSO at time t = 2 when the

price offset is considered.
Across the 24-hour period, the DSO redispatch cost is

reduced from $7, 975 to $3, 487. Although the welfare of
flexible consumers is reduced at t = 2 when the price
offset is imposed (Fig. 2), across the 24-hour period, their
welfare improves from $10, 914 to $11, 017. Thus, exploiting
Algorithm 1, the leader is able to balance the welfare of
consumers and the costs made by the DSO.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a mean-field Stackelberg
game-based algorithm to mitigate the increase-decrease game
for large populations of energy consumers. We have shown
the convergence of this algorithm to the mean-field leader-
follower εN -Nash equilibrium. Future research will focus on
analyzing the increase-decrease game through reinforcement
learning techniques.
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