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Abstract

Identifying the correct stochastic model in GNSS time series is essential to study geophysical parameters such as site veloci-
ties, and hence enhancing their accuracy. The rate uncertainty is a critical aspect in GNSS time series analysis. The variance
component estimation (VCE) methods commonly utilize unconstrained estimation principles. Simulating 1000-time series
for 4 different noise combinations with 10 years’ time span, we have investigated the performance of non-negative least
squares VCE (NNLS-VCE) method for identifying an appropriate noise model. Our results are provided for both univariate
and multivariate analysis. As the noise model's complexity increases, the significance of employing multivariate analysis
is prominent in contrast to univariate analysis. After thorough analysis, we have determined that treating the false-positive
model as a stochastic model in time series yields significant insights. Specifically, if the accumulative spectral index is lower
than the true value, it results in an underestimation of the rate uncertainty. Conversely, if the index is higher than the actual
value, it leads to an overestimation. Additionally, we observed that as the noise model complexity increases, the number of
false-positive models also increases. However, the implementation of multivariate analysis mitigates this increase, offering a
more realistic and reliable approach. In case of four distinct noise models, the detection power percentages of 98.5%, 90.5%,
69.5%, 29.3% of univariate analysis increased to 99.5%, 99.8%, 88.4% and 83.7% for multivariate analysis.

Keywords NNLS-VCE - Rate uncertainty - Model identification - Multivariate analysis

Introduction

Over the last three decades, global navigation satellite sys-
tem (GNSS) has provided a tremendous opportunity for
researchers working on the geodynamics and geophysics
fields through the analysis of daily GNSS position time
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series (Wang et al. 2021; Broerse et al. 2023; Roberts et al.
2020). Many researchers have implemented GNSS obser-
vations to study geophysical phenomena including Earth’s
surface motion due to the plate tectonics (Chousianitis et al
2021; Chen et al 2020), pre-, co- and post-seismic defor-
mations (Montillet et al. 2015), tectonic strain and glacial
isostatic balancing (Stefen and Wu 2011), volcanic deforma-
tions (Cervelli et al. 2006) and vertical land motion to study
the sea level changes (Bos et al. 2013).

Appropriate analysis of GNSS time series plays a crucial
role in investigating the key parameters associated with geo-
physical phenomena. This involves the identification of both
functional and stochastic models. The former helps discern
deterministic signals like trends, offsets, and seasonality,
while the latter focuses on understanding the noise char-
acteristics of GNSS time series. There is ongoing research
showing the presence of time-dependent noise structure in
geodetic time series in general and in GNSS position time
series in particular (Williams et al. 2003; Amiri-Simkooei
et al. 2007). It is therefore crucial to determine the realistic
noise of model of GNSS time series (Gobron et al. 2021;
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Santamaria-Gémez and Ray 2021), aiming to improve the
estimation of uncertainty for the desired parameters, such as
site velocities (Benoist et al. 2020).

Various researchers have identified different noise models
for the aforementioned time series. For example, at medium
frequencies, the noise model is often expressed as flicker
noise, while at high frequencies, it is commonly described as
white noise (Williams et al. 2008). Therefore, the composite
characteristic can be effectively captured by the linear com-
bination of white noise and flicker noise, denoted as "W+ F"'.
There are two main alternatives to the usual "W+ F" model,
each modeling power gain or stabilization at low frequencies
(He et al 2019, 2021; Santamaria-Gémez and Ray 2021).
The first alternative is labeled "W+ F+ R", which aims to
account for the presence of random walk noise in GNSS time
series, caused by small movements of the antenna due to the
instability of station building (Tehranchi, et al. 2021). The
second alternative considers only the combination of white
and power-law noise like before comment insert references,
denoted as "W+ P". Both the "W+ F" and "W+ P" models
describe most of the stochastic properties of geodetic time
series. Ongoing research has also identified the presence of
fractal power-law noise in GNSS time series analysis, which
is referred to as power-law (P) noise model in this contri-
bution (He et al. 2019). There are also other noise compo-
nents in GNSS time series like Generalized Gauss—Markov
(GGM) noise model introduced by Langbein (2004), which
is outside the scope of the present contribution. This contri-
bution will thus consider combinations of four variants of
power-law noise models resulting in "W+ P+ F+R".

In GNSS time series analysis, the accurate identification
of the noise model is important. Various methods have been
employed for this purpose. One commonly used approach
is the log-likelihood (LLL) criterion, where different sto-
chastic models are estimated and compared to determine
the most suitable one. Alternative criteria such as Akaike
information criterion (AIC) and Schwarz’s Bayesian infor-
mation criterion (BIC) utilize penalty terms to account for
additional parameters and to avoid overfitting in stochastic
models. Smaller AIC/BIC values indicate superior stochastic
model performance. The above criteria require a few noise
components ("W", "P", "F", and/or "R") be estimated using
variance component estimation (VCE) methods. In GNSS
time series, two commonly used methods are the maximum
likelihood estimation (MLE) and least squares variance com-
ponent estimation (LS-VCE).

The VCE methods typically rely on unconstrained estima-
tion principles, which can lead to the possibility of estimating
negative variance components. Negative estimates of VCs
result in (co)variance matrices that are not positive definite,
lacking physical justification. This occurrence may be attrib-
uted to factors such as insufficient degrees of freedom in the
functional model, inappropriate initial values for variance
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components, or inadequate stochastic modeling (Amiri-
Simkooei 2007). Additionally, there can be other causes for
negative variance component estimates. In GNSS time series
analysis, negative variance component estimates can also
arise from factors such as an over parametrized stochastic
model, particularly when there is a large number of noise
components included (Amiri-Simkooei 2016). The over-
parameterization can lead to high correlations and less preci-
sion among estimates of different noise components, thereby
increasing the likelihood of negative variance estimates. This
study focuses on the utilization of non-negative LS-VCE
(NNLS-VCE), developed by Amiri-Simkooei (2016), as an
important tool for estimating non-negative variance compo-
nents. The goal of incorporating NNLS-VCE in this research
is to facilitate stochastic model identification.

The current research aims to achieve four interrelated
objectives. 1) We examine the performance of the non-
negative LS-VCE (NNLS-VCE) method, for identifying
an appropriate stochastic model. All noise components
("W+ P+ F+R") are introduced as potential noise model,
and the algorithm allows them to be estimated within a
non-negative framework. If a noise component is unlikely
to be present, its corresponding variance is expected to
become zero. 2) We aim to investigate how the type and
number of noise components, along with the length of
the time series, can impact the true-positive (TP) results.
This analysis identifies the factors that influence the per-
formance of identifying true noise components. 3) We
examine how the false positives (FP) can potentially lead
to under- or overestimation of rate uncertainties. This is
particularly of interest because it allows to investigate the
effect of incorrectly identified stochastic models on rate
uncertainties. 4) We explore the role of multivariate analy-
sis in stochastic model identification. This investigation
will provide insights into the impact of considering three
coordinate components simultaneously on the effective-
ness of the stochastic model identification.

This contribution is organized as follows. In Sect.
"Functional and stochastic models of GNSS time series"
the functional and stochastic models in GNSS time series
are described. It is hereby shown how the cofactor matri-
ces of different stochastic processes are formed. Sect.
"Remarks on stochastic model identification" reviews
previous works in stochastic model identification. Also,
the NNLS-VCE method as a tool to facilitate the model
identification procedure is introduced in univariate and
multivariate analysis. In Sect. "Applications, results and
discussion", the simulated dataset is described. We con-
sider 4 case studies with different noise combination to
evaluate the role of NNLS-VCE in detecting the existing
noise structure in the simulated time series. Additionally,
we assess the influence of using multivariate analysis in
NNLS-VCE to identify stochastic model.
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Functional and stochastic models of GNSS
time series

GNSS position time series primarily consist of determinis-
tic terms known as trajectory models and stochastic terms
referred to as noise (Bevis and Brown 2014). The determin-
istic terms in time series analysis consist of various compo-
nents that can be identified and modeled. These components
include long-term variations, such as linear trends that show
gradual changes over time. Additionally, offsets account for
sudden shifts or changes in the time series. Seasonal vari-
ations represent patterns that repeat annually or semiannu-
ally. In addition to these deterministic terms, time series also
incorporate noise models. These models account for random
fluctuations or variability in the data. The noise component
can have varying spectral indices, indicating the frequency
characteristics of the fluctuations. In the following sections,
we will delve into these two parts of time series analysis,
discussing how deterministic terms and noise models are
utilized in understanding and modeling time series data.

Functional model

The functional model, which is known as the trajectory
model in the coordinate time series, describes the math-
ematical expectation E(.) of the m X 1 observation vector
y. In the linear observation equations, the functional model
can be expressed as:

E(y) = Ax, (1)

where A represents the m X n design matrix and x is the
unknown 7 X 1 vector in the functional model. The design
matrix A of functional model generally includes the linear
trend, annual and semi-annual signals and offset. Hereafter,
in order to study the stochastic model, the functional part is
assumed to be given and identical for all-time series.

Stochastic model

The stochastic model describes the mathematical dispersion
D(.) of the m X 1observation vector expressed as the covari-
ance matrix Q,. It is usually written as a linear combination
of p stochastic processes with unknown amplitudes.

P
DO) =0, = )’ 6,0, ©)
k=1

where Q, is the cofactor matrix for the kth stochastic process
and o, is the corresponding variance component. The cofac-
tor matrices, functions of the spectral index, can be formed
using the following power-law process:

O, = AT*?UTU, 3)

where AT = 3651 55 year is the sampling rate of the daily time

series, k denotes the spectral index and U is an m X m trans-
formation matrix defined as:

hy O ... O
_ hl ho .'. E

USI i o @)
hm—l hl ho

where £; is obtained using the following recurrence expres-
sion (Bos et al. 2020):

K . hi—l
h,.=<§+z—1)7, hy =1, )

and « is the spectral index. In this contribution, we take
Kk =0, k =0.5,k = 1 and k¥ =2, respectively referring to
white (W), fractal power-law (P), flicker (F) and random
walk (R) noise. The covariance matrix is then:

Q,=ol+ anP + a]%Qf +020,. (©6)

where 1, Q,,, O and Q, are the given cofactor matrices of
white noise (identity matrix), power-law noise, flicker noise
and random walk noise, respectively, and o2, 0[%, o7 and 2
are their corresponding variance components to be
estimated.

Remarks on stochastic model identification
Previous works

One of the primary goals of time series analysis is to create
an optimal stochastic model. The optimal model takes into
account all the inherent noises present in the observations
and realistically models them. Despite the advances in utiliz-
ing statistical concepts and models across various fields of
engineering and science, the challenge lies in developing an
appropriate and optimal model when only limited informa-
tion is available based on finite observations.

Various methods can be employed to determine the most
accurate representation of noise model through noise model
combination selection. Statistical tests, such as the w-test,
can be utilized to evaluate the null hypothesis and its oppo-
site hypothesis. Amiri-Simkooei et al. (2007) applied the
w-test to identify the optimal noise model for observations
from permanent GNSS stations. They determined the opti-
mal noise model separately for three coordinate components.
In practice, null hypotheses are often approximations that
differ from reality. Consequently, selecting a model based
purely on statistical tests of these assumptions can lead to a
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contradiction between the chosen model and the actual real-
ity. Recognizing that statistical hypothesis tests alone are not
accurate representations of real-world conditions, there has
been a growth in the development of practical methods for
model identification. Nowadays, the criteria based on MLE
method is vastly applied to detect the existing noise in the
GNSS time series including log-likelihood (LLL) criterion
and some information criteria (IC). One can use the log-
likelihood (LLL) criterion to estimate and compare different
stochastic models to determine the most suitable one. For
different noise combinations, one computes log-likelihood
based on its corresponding Q, matrix, estimated by MLE
method, and the optimal noise model is the one for which
LLL is maximized. This method has been used by Amiri-
Simkooei (2016) to identify the best noise model. Langbein
(2012) conducted research to examine the performance of
the likelihood function with simulated data. Their findings
indicate that the log-likelihood function, represented as
LLL, incorrectly selects the W+ P noise model instead of
the W+ F+ R noise model in 50-70% of cases. This suggests
that the LLL criterion lacks the capability to distinguish
between these types of noise models. In the case where the
spectral index is the same, the criterion described does not
differentiate between flicker noise and power-law noise due
to its inability to penalize the additional parameters in the
noise model. Another disadvantage of the LLL criterion is
its limited power to detect random walk noise.

Alternative criteria such as the Akaike Information Cri-
terion (AIC) and Schwarz’s Bayesian Information Criterion
(BIC) are commonly used in stochastic models (Mazerolle
2020). They incorporate penalty terms to take into account
the number of parameters in the model and aim to prevent
overfitting. These criteria are valuable tools in statistical
modeling as they help in selecting the most appropriate
model by striking a balance between model complexity and
goodness of fit. Smaller AIC/BIC values indicate better per-
formance of a stochastic model. However, as ICs penalizes
different combinations of noise with parallel noise param-
eters (e.g., "W+ P+R" and "W+ F+R" with 3 unknown
components) equivalently, it may not effectively distinguish
between these different noise models. He et al. (2019) used
the BIC-TP criterion to distinguish between flicker noise,
power-law noise and generalized Gauss—Markov (GGM)
noise. BIC-TP demonstrates similar detection power to BIC
when considering the mentioned noises. It has shown the
capability to enhance the detection power of random walk
by almost 50% (He et al. 2019).

Negative variance components
As already mentioned, to select the optimal stochastic model

for several existing noise models, AIC/BIC or LLL criteria
are calculated. These criteria require a few noise components
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("W, "P", "F", and/or "R") to be estimated using variance
component estimation (VCE) methods. The maximum like-
lihood estimation (MLE) method is the most commonly
employed VCE technique in geodetic time series analysis. It
is utilized in various statistical modeling software programs
like CATS and Hector (Bos et al. 2013).

Assume that® = Indet(A) = Inu, where A represents the
design matrix. The first-order derivative of d),@ = ”;’, is
defined as the change of ® with respect to variable x:

dD ddetA  detA tr(A‘ld—A). 7

dx  detA  detA’ dt

In the MLE method, the objective function is the quad-
ratic form of residuals that result the derivative is calculated
as follows:

dod 0

0
=20 e = = -2Tp-' 2o le. (8)
y ax y

v dx

Now, the goal is to estimate unknown parameters by maxi-

mizing the maximum likelihood function. Therefore, the

objective function is considered to be the argument that would
maximize the likelihood function:

y

® = arg max % In27z — %ln det (Qy) - %éTQ_lé. 9)

Therefore, by deriving the objective function and setting it
to zero, the following equation is obtained:

0P 1 - L7 - -1,

5 = ~2u(ere) r5er e e=0. o)
and,

su(er'e) = 30 0,07 1
'u(o'0)) = 170007, (11)

As tr (AA) = tr(A),and Q, can be written as the sum of
covariance matrices, 0, = Zf:l 0;0;
1 1 : 1
ztr(Q;leQ;le) = 5tr<Q;1QkQ;1 ; aiQ[> = 3¢'0;'0.0"%,
_ (12)

Y-

P
(0,00, 0o, = . (13)
i=1

The observation equations for estimating variance compo-
nents (o) using the maximum likelihood estimation (MLE)
method are structured as follows:

P
Y Mo, = b, (14)
i=1

where N and [ are:
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_ 1l 14
L= 50,0072 (15)

P = Etr<Q;1QkQ;1Q,->- (16)

Also, one can uses LS-VCE method to estimate variance
components. In contrast to MLE, which gives biased esti-
mators, LS-VCE provides unbiased and minimum variance
estimators. Also, LS-VCE is much faster than MLE, imple-
mented in the downhill simplex method (Amiri-Simkooei
2009). The above MLE formulation (Eqgs. 14-16) can how-
ever have comparable complexity as LS-VCE and hence a
replacement for downhill simplex method.

One limitation of variance component estimation (VCE)
methods is the possibility of estimating negative values for
variance components (VCs). Negative estimates of VCs
lead to (co)variance matrices that are not positive definite,
which is not acceptable from a statistical standpoint. Nega-
tive VCs can arise in a model due to various factors. These
may include insufficient degrees of freedom in the func-
tional model, inappropriate initial values assigned to the
variance components, or inadequate stochastic modeling. It
is important to address these issues to ensure accurate and
meaningful. In addition, with an over-parameterized sto-
chastic model, which includes many noise models, variance
components tend to be estimated negative. To avoid negative
variance occurrence, one can use non-negative LS-VCE in
which the non-negativity of VCs is guaranteed. This also
provides a useful tool for stochastic model identification in
GNSS time series analysis.

Stochastic model identification using NNLS-VCE
Theory of NNLS-VCE

The least squares variance component estimation method
(LS-VCE) is based on the principle of least squares. This
method was proposed by Teunissen in 1988 and then devel-
oped by Amiri-Simkooei and Teunissen (2008). One draw-
back of LS-VCE is that the estimated variance components
may become negative, which is not acceptable. Amiri-Sim-
kooei (2016) presented the NNLS-VCE method to estimate
non-negative variance components. This approach solves a
convex minimization problem by imposing non-negativeness
constraints. The Karush—Kuhn-Tucker (KKT) conditions are
employed to ensure the non-negative variances. Since the
objective function in this method is convex, it exhibits low
computational complexity compared to general optimization
techniques. We briefly review this theory.

To evaluate non-negative variance components in GNSS
time series, one can add the inequality constraint ¢ > 0 to
the objective function F(¢) (Amiri-Simkooei 2016).

6 = argmin, F(c) = arg mingz()(%aTNa - lTO'>, 17

where N and [ are defined as follows:

1o §
ma = 3u(0;'P10.0; PEO)). as)
and

L7 10 ol
L, = EeTlengy e, (19)

and Pt =1 — A(ATQ;IA)_IATQ;1 is an orthogonal projector
(Teunissen 2000).

NNLS-VCE in multivariate model

To implement the method in multivariate analysis, we con-
sider the three east, north and up components of a station
together, consequently having an m X 3 observation matrix
as Y = [ENU]. We will use multivariate analysis that leads
to following observation equation:

vee(Y) = (I, ® A)vec(X), (20)

with the covariance matrix of:

D(vec(Y)=2®0=2Q (aj,l + an,, + af?Qf + an,>,
1)

where /; is an identity matrix of size s and X represents the
correlation of noise. For the properties of the vec-operator
and the Kronecker product ®, we refer to Magnus (1988).
For the multivariate linear model, we have (Amiri-Simkooei
2009):

ma =3 w(Q'PrO0'PI0). 22)

If £ matrix is unknown, we have to execute a two-step
procedure estimate the variance components. Firstly, we
should estimate X and then applies the preceding formula-

tion. This will then give the [,k =1, ..., s vector as:

[ =22 ntr(IE"TQ‘lQ,CQ‘lf‘Z(IE"TQ‘lﬁ:)_l > (23)
with

E=Py=[e,0, 2], (24)
where m-vectors ’e\ii =1, -+, s are the least squares residual

estimators for s time series.

The NNLS-VCE method offers several advantages over
the MLE method, which can be highlighted as follows.
The NNLS-VCE method is relatively easy to comprehend
and interpret compared to the MLE method. Estimates of
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negative variance components can result in a covariance
matrix that is not positive definite. This means that the
matrix does not have physically meaningful interpretations.
Large negative variance components generally indicate
potential flaws or issues in the stochastic model. NNLS-
VCE is a straightforward method to implement it, which is
also suitable for both univariate and multivariate analysis.
It stands out for its practical efficiency, primarily due to its
low computational burden. One advantage of NNLS-VCE is
that it utilizes the Newton—Raphson method, which contrasts
with the simplex procedure employed in MLE.

In our study, we applied the NNLS-VCE method to ana-
lyze two comparable VCE methods, where the noise com-
ponents and amplitudes were kept constant. We performed
this analysis on a total of 10 time series. Interestingly, we
found that the time required for estimating the variance com-
ponents using the NNLS-VCE method was approximately 11
times shorter than that with the MLE method. Hence, based
on our findings, it is evident that the NNLS-VCE method
offers a significantly faster alternative to the MLE.

One advantage of NNLS-VCE is that it utilizes smaller
matrices, specifically N, and [, instead of involving
larger matrices like A and Q,. Simultaneous estimation of
different noise components can be challenging with MLE
method as it may result in some estimated amplitudes being
negative. To overcome this issue, NNLS-VCE incorporates a
large penalty to the objective function during the minimiza-
tion problem. This penalty helps prevent negative estimates
of the variance components.

Applications, results and discussion
Simulated GNSS time series

We simulated 1000-time series to check the existing stochas-
tic models in GNSS time series. In these time series, average
value and linear trend are denoted as y, and r, respectively.
Also, the annual and semi-annual periods have been used
as follows:

q
YO =yo+rt+ ) acosoyt + bisinwt + e(?), (25)

i=1

where g = 2, w; = 27 and w, = 4x. As periodic signals con-
tain mostly the annual and semi-annual signals, we merely
consider them (Amiri-Simkooei et al. 2017). The pairs (a;, b;)
can be used to obtain the phase and amplitude of the signals.
Equation (18) will then yield the final time series, consider-
ing e(f) to be the various generated noise including "W+ P",
"W+ F","W+ P+ F" and also "W+ P+ F+ R" noise models.
The noise vector will be generated using Cholesky decom-
position. The simulating parameters are listed in Table 1.
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Table 1 Parameters used to simulate time series contaminated by
colored noise

East North Up

WN amplitude (mm) 5 6 10
FN amplitude (mm/year!/4) 16 18 30
PL amplitude (mm/year!/%) 10 12 20
RW amplitude (mm/year'/?) 8 9.6 16
Phase of annual signal (mm) -2 -2 -2
Amplitude of annual signal (mm) -3 -3 -3
Phase of semi-annual signal (mm) -1 -1 -1
Amplitude of semi-annual signal (mm) -2 -2 -2
Linear trend (r) (mm/ 1 1 1
Initial position (y,)(m) 1.35 1.35 1.35

The values in Table 1 were obtained through pre-analysis
of the time series of the 347 permanent GPS stations pro-
vided by JPL's second reprocessing campaign (Khazraei
and Amiri-Simkooei 2019). Figure 1 depicts a 10-year time
series generated using the values from Table 1. It show-
cases a randomly displayed time series within the figure.
The red line represents the result obtained by fitting the least
squares method to the East component of the three noise
models analyzed in the figure, namely, "W+ F", "W+ P+ F",
and"W+P+F+R"

To conduct a more detailed analysis, we consider three
separate spectral indices in our stochastic model: 0.5, 1
and 2, representing fractional power-law noise, flicker
noise and random walk noise, respectively. For brevity,
we denote this stochastic model as "W+ P+ F+R" where
"W" refers to white noise, and "P," "F" and "R" represent
fractional power-law, flicker noise, and random walk noise,
respectively.

We examine four cases: case I ("W+ P"), case
II "W+ F"), case III ("W+ P+ F"), and case IV
("W+ P+ F+R"). These cases represent progressively
more complex noise models, with case IV being the most
complex (refer to Table 2). However, it is noted that our
algorithm is not limited to any specific noise structure. The
same analysis can be applied to other noise combinations
such as "W+ F+ R" or any other combination of noise types.

Infeasibility of correct noise model detection using
MLE

In the field of GNSS time series analysis, accurately iden-
tifying the noise model is crucial. To achieve this, multiple
methods have been utilized. Nowadays, the criteria based
on the maximum likelihood estimation (MLE) method
are widely used to detect existing noise in GNSS time
series. These criteria include the log-likelihood (LLL) cri-
terion, as well as various information criteria (IC). In this
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Fig. 1 Simulated time series generated by a linear trend, an annual and semi-annual periodic signal contaminated by "W +F" noise (top),

"W +P+F" noise (middle) and "W +P+F+R" noise (bottom)

Table 2 Four cases of noise

. . . Input noise Stochastic model
inputs ranging from simple

stochastic model (I) to complex W P F R
stochastic model (IV)
Case I H N
Case 11 | | |
Case III H B B
Case IV H B EH &

method, variance components can be estimated negative.
Negative estimates of variance components (VCs) lead to
covariance matrices that are not positive definite, which
lacks physical justification. This issue could potentially
be caused by various factors, including limitations in the
functional model's degrees of freedom, incorrect initial
values for variance components, inadequate stochastic
modeling as well as over parametrized stochastic model
(Amiri-Simkooei 2016). Over parameterization refers to
the inclusion of a large number of noise components in a
stochastic model, when not all of these noise components
are present in the data. It can result in heightened cor-
relations and reduced precision among estimates of noise
components. Consequently, this increases the probability
of encountering negative variance estimates.

To address this issue, we will thoroughly examine all pos-
sible combinations of " W", "P", "F" and "R" (15 combina-
tions in total). By doing so, we then determine the variance
components associated with each combination. We intend
to answer the following question: "What percentage of the

variance components, estimated using MLE, exhibits nega-
tive values across various noise combinations?".

To calculate the variance components using MLE, we
use Eq. (14). In this study, we simulated 100-time series for
each cases according to the values provided in Table 1. We
then calculated the number of negative amplitudes for the
15 combinations of existing noise in all cases. If the vari-
ance components become negative, the next step is to exam-
ine whether or not the eigenvalues of the variance—covari-
ance matrix also become negative. If the eigenvalues of the
covariance matrix become negative, the matrix is no longer
positive definite. As a result, Qy cannot be considered a valid
covariance matrix, and its feasibility in the problem is not
justified.

Figure 2 presents the estimated negative noise compo-
nents (blue bars) plotted next to the negative eigenvalues
(red bars) of the covariance matrix for study cases 1-4.
When considering a single noise component, any of "W",
"P","F", or "R", it was determined that no negative noise
amplitude values were mathematically obtained. Also, the
combinations of "W+ F" and "P+ F" exhibited no nega-
tive noise amplitude in all cases. As a result, we exclude
these six combinations and proceed to assess the percent-
age of negative variance components in the remaining noise
combinations.

Figure 2 provides insights into the presence and distribu-
tion of negative components and negative eigenvalues in dif-
ferent models. In all four cases, it demonstrates that to detect
noise in time series using indicators based on MLE, it is
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Fig.2 The frequency of negative noise amplitudes estimated by the
MLE method (represented by blue bars) is compared to the frequency
of negative eigenvalues in the covariance matrix of the observables

essential to estimate the amplitude of the noise components
in every scenario. If the stochastic model is selected cor-
rectly, the occurrence of negative values is lowest compared
to the other cases. Specifically, the percentages of negative
values are 0%, 0%, 1.6% and 26% in cases I, II, III and IV,
respectively. In case IV, however, the "W+ R" stochastic
model exhibits the smallest estimated negative amplitude
at 0.6%. This indicates that when there are more than three
noise components in the stochastic model, this approach
fails to identify the correct model. It can be inferred that
an increase in the number of noise variables leads to the
emergence of negative components in the estimation. In the
MLE, if the model is identified as true positive (TP), the
negative components cannot be estimated with the increase
in noise variables. Consequently, the positive definite condi-
tion of the covariance matrix is not satisfied in this scenario,
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(represented by red bars), expressed as a percentage. This comparison
is done for Case I, Case II, Case III and Case IV

where 4% of the eigenvalues in case IV have a negative value
among the estimated negative values, accounting for 20%.

As depicted in Fig. 2, in case I, when the correct model
is not determined, the estimation of variance components
shows percentages close to 100 as negative, and the eigen-
values of the covariance matrix are observed to be highly
negative. This poses a contradiction considering the posi-
tive definiteness requirement for the covariance matrix.
For case I, the "W+ P+ F", "W+ P+R", "P+ F+R" and
"W+ P+ F+R" models identified negative variance com-
ponents with percentages of 91%, 88.3%, 100% and 100%,
respectively. Similarly, it was found that 52.6%, 74.6%, 20%
and 65% of the eigenvalues of the covariance matrix was
estimated to be negative. Remarkably, this occurred when
the spectral indices of the noises in case I were closely
aligned and both close to zero.
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Based on the results obtained in case II, if the number
of noise components is the same as in case I and there is a
noticeable difference in their spectral index, the percent-
age of negative components in the estimated variances
will decrease. Additionally, the percentage of values with
negative eigenvalues in the covariance matrix will also be
lower compared to case I. In case II, specifically for the
models "W+ F+R","P+F+R" and "W+ P+ F+R", the
estimated negative variance components are 90.6%, 74.6%,
and 90.6% respectively. Among them, 57.6%, 5.6% and
54.6% have negative eigenvalues in the covariance ma.

Application of NNLS-VCE to stochastic model
identification

In this section, we aim to demonstrate the effectiveness
of the NNLS-VCE method in identifying noise models in
two modes: univariate analysis and multivariate analy-
sis. Unlike methods that penalize the objective function,
NNLS-VCE utilizes an inequality constraint on the objec-
tive function. This constraint inherently guarantees that the
variance components remain non-negative.

One crucial component in GNSS time series analysis is
the uncertainty of trend (o,)). It plays a significant role in
determining the confidence level in the obtained results.
Consequently, we have also examined the sensitivity of the
noise model identified through NNLS-VCE by assessing
the level of estimated rate uncertainties.

To comprehensively study the noise structure of GNSS
time series, we simulate the coordinate components (east,
north and up), separately. Each time series has its own
noise structure with variable amplitudes, as shown in
Table 1. Our results are provided for both univariate and
multivariate analysis. In the univariate analysis, we ana-
lyze each time series separately. Using the NNLS-VCE
method, we obtain the optimal noise model for each indi-
vidual series. In the multivariate analysis, we process the
east, north, and up coordinate components together. This
approach also allows to account for the potential correla-
tions between the time series and provides a more realistic
estimation of the noise structure.

The noise amplitudes in the stochastic model (Eq. 6)
are computed for the desired noise inputs. In univariate
analysis, we employ Eqs. (18) and (19) through an iterative
process. In multivariate estimation, we consider coordinate
time series simultaneously, and the noise amplitudes are
estimated using Eqs. (22) and (23). If a particular noise is
not present in the time series, its amplitude should be esti-
mated zero using NNLS-VCE. To investigate this matter,
1000-time series are generated for each noise input, and
their amplitudes are estimated using NNLS-VCE.

Effective parameters on TP results

When identifying the stochastic model of a time series, there
are key factors to consider, which includes the number of
noise components, their spectral indices, univariate versus
multivariate analysis and the length of the time series. These
factors play a significant role to effectively analyze the sto-
chastic noises within the time series. In this section, each
of these factors will be examined. The spectral index is a
crucial parameter in identifying stochastic noises effectively.
When the spectral index is higher, the noise detection power
becomes lower. Additionally, if the time series contains a
larger number of noises, their identification ability will be
diminished. Utilizing time series with a high data count is
one of the effective approaches for accurately identifying
stochastic noises in time series. The significance of hav-
ing a large number of data points in a time series is that
it allows for a more comprehensive analysis and accurate
predictions. Ideally, the time series should be relatively
uninterrupted or gap-free, ensuring continuity and consist-
ency in the data. Additionally, a time series length of more
than 10 years provides a broader historical context, enabling
better trend identification and capturing long-term patterns.
In the following, we explore the aforementioned factors to
demonstrate the effectiveness of NNLS-VCE for stochastic
model identification.

Type of noise is a critical factor that influences the ability
of NNLS-VCE to accurately identify the appropriate stochas-
tic model. We generated a time series simulation that con-
sisted of white noise. Through the utilization of NNLS-VCE
in both univariate and multivariate analysis, we successfully
detected and characterized the underlying noise components.
Considering case I and case II, we investigated the effect of
spectral index in noise identification. Table 3 displays the
noise detection power utilizing the NNLS-VCE method in
both univariate and multivariate analysis, showcasing results
for four distinct case studies. According to Table 3, the uni-
variate analysis shows that case I has an average noise identi-
fication power of 98.5% for all three coordinate components.
On the other hand, case II has an average noise identification
power of 90.5% for the same components. Additionally, the
average spectral index for case I is 0.25, while for case II, it

Table 3 Mean detection power of NNLS-VCE in univariate analysis
and multivariate analysis for different case studies

Case study Univariate Multivariate
case [ 98.5 99.5
case II 90.5 99.8
case III 69.5 88.4
case IV 293 83.7
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is 0.5. Generally, as the spectral index increases, identifica-
tion power tends to decrease.

To study the impact of number of noise components on
the detection power of the proposed method, we focus on
case III as the input for our simulations. Table 3 indicates
that the average detection power for the three coordinate
components decreases to 69.5%. In a study conducted by
He et al. (2019), it was found that the LLL index incorrectly
identifies fractal power-law noise as flicker noise in approxi-
mately 66% of cases.

After incorporating random walk ("case IV"), the identi-
fication power even decreases to 29.3%. This indicates that,
as the number of noises in the GNSS time series increases,
the detection power of NNLS-VCE to identify and sepa-
rate colored noise with different spectral indices dimin-
ishes. Although the multivariate analysis outperforms the

univariate analysis, we also observe a decrease in the multi-
variate identification power when using complex noise mod-
els (e.g., case IV) compared to the simpler models (cases I
and II).

Using longer time series is expected to result in a higher
likelihood of detecting the correct noise model of the series.
In their study, He et al. (2019) explored the effectiveness
of information criteria derived from MLE in time series
data spanning 10, 15 and 25 years. Their results indicated
that the identification of random walk noise becomes easier
as the time span increases. To assess the impact of time
series length on the NNLS-VCE performance, we gener-
ated data for a duration of 20 years for case II. The NNLS-
VCE method was then used to identify and estimate the
noise components. Figure 3 displays the results for three
coordinate components in both univariate and multivariate
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Fig.3 The 20-year time series boxplot of East, North, UP and Multivariate components of case II are shown in (a), (b), (c) and (d), respectively.

The green dashed line indicates the uncertainty of the rate
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analysis. When the length of the time series is doubled, there
is on average 8% increase in the identification power across
three coordinate components in univariate analysis, though
the detection power (99.8%) did not change in multivari-
ate analysis. Time series length is therefore a crucial factor
impacting result accuracy. Longer time series can facilitate
the identification of colored noise in GNSS time series.

To examine the implications of using the false noise
model (FP) in the context of time series analysis, we assess
the estimated rate uncertainty for the specific cases using a
box plot. Additionally, we evaluate the impact of FP noise
model on the rate uncertainty values. The box plots shown
in Figs. 3, 4 and 5 represent the uncertainty rate for cases
I, II, III and IV, respectively. In a noise model, if the red
line is positioned above the index line in the box diagram,

the trend uncertainty has been overestimated. Conversely,
if the red line is below the index line, underestimation has
occurred. Neither scenario provides a realistic estimate of
trend uncertainty. However, in both scenarios, the trend
estimates will remain unbiased even for FP noise models.
Nevertheless, the uncertainty values assigned to the esti-
mates are expected to be either higher or lower than the
actual value.

To assess the performance of NNLS-VCE in identifying
random walk noise, an investigation was conducted on a
10-year time series (referred to as "case IV"). In this case,
the identification percentage of true chosen noise model
(TP) in univariate mode averaged around 30% for both
the horizontal and vertical components, while He et al.
(2019) identified 11% of random walk noise by analyzing
a 15-year time series.
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Fig.5 Rate uncertainty value for case II in univariate analysis for East, North and Up directions for the identified noise models vs. multivariate
analysis: East (a), North (b), Up (¢) and Multivariate for East component is (d)

Influence of false positive (FP) on rate uncertainty

The rate uncertainty is influenced by the accuracy of the
stochastic model used for detecting noise in the data. The
closer the stochastic model resembles the actual noise of
the data, the more reliable the rate uncertainty estimation
becomes. If the stochastic model closely resembles reality,
the estimated rate uncertainty is likely to be very close to
the actual value. To calculate the standard deviation of the
estimated unknown vector X, we can obtain the covariance
matrix Q; of unknown parameters as:

0:=(47g;'a) 6)
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where Q, refers to the identified stochastic model. The rate
uncertainty estimate is then obtained from Q5. We use box-
plot diagrams to display both the central tendency and dis-
persion of a data set simultaneously. Boxplots are useful
tools for comparing the range and distribution of average
data to identify the level of dispersion in different noise
models and detect outliers. In this diagram, the boxes rep-
resenting each noise model can be compared based on their
proximity and distance from the real value of the trend's
standard deviation. This provides an easy way to assess the
variability and identify any unusual data points. In a boxplot,
50% of the data is contained within the box. Additionally,
25% of the data is scattered below the box, while another
25% lies above the box. The entire length of the graph rep-
resents a probability distribution of 99.3% for the results of
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the analysis. Any data points outside the box plot that are
marked with a red mark are considered outliers.

The spectral index is a factor that plays a significant role
on the rate uncertainty to be estimated biased. Figures 4 and
5 represent the box plots for case I and II, respectively. In
case I, the accumulative spectral index is reported to be 0.
5, obtained from white noise (x = 0) and a partial power-
law noise (k = 0.5). In case II, the accumulative index is 1
(from "W+ F" model), is positioned above the green line in
all three coordinate components. When the accumulative
spectral index increases, the rate uncertainty value rises.

The purpose was to estimate the noise characteristics and
determine if the NNLS-VCE method could accurately iden-
tify it as a stochastic model. Both univariate and multivari-
ate estimation techniques were employed in the NNLS-VCE
method to accomplish this task. The results display if we do
not consider white noise, it can lead to an underestimation
of the rate uncertainty. To assess the effectiveness of the

NNLS-VCE method in detecting white noise, for example, in
Fig. 6, the "P + F" noise model with average spectral index
of 0.75, which is higher than the reference spectral index of
0.5 for case III. However, despite this higher value, the o,
value estimated using this '+ P noise model falls below the
index line. Both the "P+ F+R" and "P + R" noise models
also lack white noise, but the presence of random walk noise
affects the estimated o,.

If a stochastic process is not present in a time series but
is still considered, it can lead to under/overestimation of the
rate uncertainty value. For example, in case II where ran-
dom walk noise is not present, the rate uncertainty estimated
using the (identified) "W+ F 4+ R" model may be higher than
the actual value. According to Fig. 6, it is observed that case
IIT does not have random walk noise. On the other hand, the
estimated rate uncertainty is affected when including random
walk noise in certain FP models, such as "W+ P+ F+R",
"W+F+R","W+P+R","P+R" and "P+ F+R". In the
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opposite scenario, if there is noise present in the time series
data but it is not considered in the stochastic model, it leads
to a bias in the uncertainty of the rate estimation. For exam-
ple, all-time series mainly include white noise.

Advantages of multivariate analysis

GNSS time series analysis using multivariate model has
been shown to have significant impact on functional model
identification. For example, the reader refers to signal detec-
tion (Amiri-Simkooei 2009) and offset detection (Amiri-
Simkooei et al. 2019). The fact that different time series can
be correlated suggests that estimating these series individu-
ally may not be realistic. In NNLS-VCE, we employ multi-
variate analysis to estimate rate uncertainties. This involves
analyzing three coordinate time series simultaneously for
various cases of study.

In Fig. 4, multivariate analysis was conducted to consider
all three components (east, north and up) simultaneously as
the observation matrix. The results showed that the identi-
fication power for all three components was 99.5%. As the
noise structure detected is consistent for all three coordinate
components in every case of study, the results presented as
multivariate are specifically related to the east component
in all cases.

In case I, when using multivariate analysis instead of
univariate analysis, we observed a significant improve-
ment. The percentage of FP models has been reduced to
only 0.5%, indicating a higher accuracy. Additionally, both
the number and dispersion of these incorrect models have
also been reduced. Specifically, in the "W+ P+ F" as FP
noise model, the ¢, amount is estimated to be higher than
the actual value (Fig. 4(d)). According to the information
provided in Fig. 5, when utilizing multivariate analysis, the
identification power achieves a high level of accuracy, reach-
ing 99.8%. Only a small portion, specifically 0.2% of the
model, was incorrectly identified (specifically the "W" and
"W+ P+ F" models).

After comparing the results of multivariate and univariate
analysis in Figs. 5 and 6, it becomes evident that multivari-
ate analysis is the more preferable option. This preference
can be attributed to several factors. Firstly, it is observed
that the east, north and up time series exhibit noises with
a similar structure, indicating a common underlying cause.
The synergistic nature of these noise components further
strengthens the case for multivariate analysis. By employing
multivariate analysis, the probability of detecting noise is
heightened, leading to increased o, accuracy as the results.
This improved accuracy is particularly notable when deal-
ing with more complex noise models that entail larger mean
spectral indices. In summary, the effectiveness of mul-
tivariate analysis surpasses that of univariate analysis, as
observed in Figs. 5 and 6. Its ability to identify and account
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for common noise structures and its superiority in handling
complex noise models make it the preferred choice.

As the complexity of the noise model increases, the appli-
cation of multivariate analysis becomes more remarkable
compared to univariate analysis. In Fig. 6, the input noise
model undergoes further complexity as it includes three
distinct noises, referred to as case III. In this case, the aver-
age power detection of the correct noise model for the three
coordinate components is 67%. When comparing Fig. 6 to 5,
despite both figures having an average spectral index of 0.5
for the true noise model, the presence of three distinct noises
simultaneously has resulted in a decrease of approximately
23% in the detection power during univariate analysis.

According to Fig. 6(d), in the case III, it was found
that the use of multivariate analysis greatly enhances the
detection power, reaching an impressive 88.5%. This high-
lights the significant impact of multivariate analysis in
dealing with complex noise models. Additionally, through
this analysis, it was determined that the FP noise models
consisted of combinations of variables, namely, "W+ F"
and "W+ P+ F+R", with probabilities of 1.9% and 9.7%,
respectively. The "W+ P+ F + R" noise model, with an aver-
age spectral index of 0.87, is positioned above the index line.
On the other hand, the "W+ F" noise model, with an aver-
age spectral index of 0.5, is situated closer to the index line.
Despite the fact that the average spectral index of "W+ F"
and "W+ P+ F+ R" noise models is both 0.5, the box plot
in the multivariate analysis shows that, in the case of the
"W+ P+ F+ R" noise model, the index line has been inter-
sected at the most probable position.

Based on the information provided in Fig. 7, it can be
observed that in case IV, the power detection of univari-
ate analysis in three components has significantly decreased
to an average of 29.3%. Additionally, the index line has
been predominantly affected by not only the correct model
("W+ P+ F+R") but also the wrongly identified models of
"W+ F+R" and "P+ F+R", which were mistakenly con-
sidered as the FP models. With the utilization of multivari-
ate analysis method, the identification power has improved
to 83.7% (Fig. 7(d)). Additionally, the number of incorrect
models has been reduced to only three. Among these mod-
els, the noise model stands out as it intersects the index line
with the highest probability.

Conclusions

Researchers have been paying significant attention to iden-
tifying and estimating the presence of white and colored
noises in integrated GNSS time series. The most well-known
noise model for GNSS time series horizontal components
is "W+ F," which is commonly used as the default stochas-
tic model in most analyses. Additionally, some researchers
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Fig.7 Rate uncertainty value for case IV in univariate analysis for East, North and Up directions for the identified noise models vs. multivariate
analysis: East (a), North (b), Up (c) and Multivariate for East component is (d)

have utilized the noise model "W+ P" for processing GPS
time series of horizontal components. The presence of noise
in GNSS time series was examined through simulations
(Table 1). Using the NNLS-VCE method, the study iden-
tified and estimated the existing noise in the time series.
Comparing Figs. 4 and 5, it was observed that when the
stochastic model is "W+ P" but the time series includes
flicker noise, the estimated accuracy rate is lower than the
actual value. Taking into account the "W+ F" noise model,
if the spectral noise index in a time series is less than 1,
the rate accuracy will be overestimated. There is more RW
noise in the vertical time series of GNSS compared to the
horizontal coordinate. By using multivariate analysis in the
NNLS-VCE method, if RW noise exists, it can be identified
alongside other noises by processing a 10-year time series
with a probability close to 85%. The analysis considered
"W+ P+ F+R" as the potential noise model, where the

NNLS-VCE method expects the corresponding variance of
an unlikely noise component to become zero.

In the NNLS-VCE method, in addition to univariate anal-
ysis, the possibility of multivariate analysis exists. When the
noise model is complex, the percentage of estimation for
multivariable analysis increases. The percentage of correct
model identification for univariate and multivariate scenar-
ios in case I, II, IIT and IV are as follows: 98.5% vs. 99.5%,
90.5% vs. 99.8%, 69.5% vs. 88.4% and 29.3% vs. 98.5%,
respectively. In all cases, the probability of identifying a
noise model in multivariate analysis significantly increases
due to the co-addition of coordinate time series in an obser-
vational station. Among the influential parameters on iden-
tifying the stochastic noise model in time series analysis are
the type of noise present in the time series, the number of
noises present in the time series, and the length of the pro-
cessed time series. As the number of noises increases and
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the accumulative spectral indices of colored noises surpass
the spectral index of white noise, it becomes more challeng-
ing to accurately identify the noise model. In the context of
multivariate analysis, the NNLS-VCE method has a higher
likelihood of identifying a significant number of noises with
complex structures.

Selecting a stochastic model erroneously as a noise model
impacts the rate uncertainty values and leads to overestima-
tion or underestimation of the actual rate uncertainty val-
ues. In the NNLS-VCE method, if there is no noise present
in the time series, its amplitude is estimated as zero and it
is removed from the stochastic model. This leads to a sig-
nificant reduction in the number of false-positive models in
multivariate analysis.
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