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Abstract
Identifying the correct stochastic model in GNSS time series is essential to study geophysical parameters such as site veloci-
ties, and hence enhancing their accuracy. The rate uncertainty is a critical aspect in GNSS time series analysis. The variance 
component estimation (VCE) methods commonly utilize unconstrained estimation principles. Simulating 1000-time series 
for 4 different noise combinations with 10 years’ time span, we have investigated the performance of non-negative least 
squares VCE (NNLS-VCE) method for identifying an appropriate noise model. Our results are provided for both univariate 
and multivariate analysis. As the noise model's complexity increases, the significance of employing multivariate analysis 
is prominent in contrast to univariate analysis. After thorough analysis, we have determined that treating the false-positive 
model as a stochastic model in time series yields significant insights. Specifically, if the accumulative spectral index is lower 
than the true value, it results in an underestimation of the rate uncertainty. Conversely, if the index is higher than the actual 
value, it leads to an overestimation. Additionally, we observed that as the noise model complexity increases, the number of 
false-positive models also increases. However, the implementation of multivariate analysis mitigates this increase, offering a 
more realistic and reliable approach. In case of four distinct noise models, the detection power percentages of 98.5%, 90.5%, 
69.5%, 29.3% of univariate analysis increased to 99.5%, 99.8%, 88.4% and 83.7% for multivariate analysis.

Keywords  NNLS-VCE · Rate uncertainty · Model identification · Multivariate analysis

Introduction

Over the last three decades, global navigation satellite sys-
tem (GNSS) has provided a tremendous opportunity for 
researchers working on the geodynamics and geophysics 
fields through the analysis of daily GNSS position time 

series (Wang et al. 2021; Broerse et al. 2023; Roberts et al. 
2020). Many researchers have implemented GNSS obser-
vations to study geophysical phenomena including Earth’s 
surface motion due to the plate tectonics (Chousianitis et al 
2021; Chen et al 2020), pre-, co- and post-seismic defor-
mations (Montillet et al. 2015), tectonic strain and glacial 
isostatic balancing (Stefen and Wu 2011), volcanic deforma-
tions (Cervelli et al. 2006) and vertical land motion to study 
the sea level changes (Bos et al. 2013).

Appropriate analysis of GNSS time series plays a crucial 
role in investigating the key parameters associated with geo-
physical phenomena. This involves the identification of both 
functional and stochastic models. The former helps discern 
deterministic signals like trends, offsets, and seasonality, 
while the latter focuses on understanding the noise char-
acteristics of GNSS time series. There is ongoing research 
showing the presence of time-dependent noise structure in 
geodetic time series in general and in GNSS position time 
series in particular (Williams et al. 2003; Amiri-Simkooei 
et al. 2007). It is therefore crucial to determine the realistic 
noise of model of GNSS time series (Gobron et al. 2021; 
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Santamaría-Gómez and Ray 2021), aiming to improve the 
estimation of uncertainty for the desired parameters, such as 
site velocities (Benoist et al. 2020).

Various researchers have identified different noise models 
for the aforementioned time series. For example, at medium 
frequencies, the noise model is often expressed as flicker 
noise, while at high frequencies, it is commonly described as 
white noise (Williams et al. 2008). Therefore, the composite 
characteristic can be effectively captured by the linear com-
bination of white noise and flicker noise, denoted as "W + F". 
There are two main alternatives to the usual "W + F" model, 
each modeling power gain or stabilization at low frequencies 
(He et al 2019, 2021; Santamaría-Gómez and Ray 2021). 
The first alternative is labeled "W + F + R", which aims to 
account for the presence of random walk noise in GNSS time 
series, caused by small movements of the antenna due to the 
instability of station building (Tehranchi, et al. 2021). The 
second alternative considers only the combination of white 
and power-law noise like before comment insert references, 
denoted as "W + P". Both the "W + F" and "W + P" models 
describe most of the stochastic properties of geodetic time 
series. Ongoing research has also identified the presence of 
fractal power-law noise in GNSS time series analysis, which 
is referred to as power-law (P) noise model in this contri-
bution (He et al. 2019). There are also other noise compo-
nents in GNSS time series like Generalized Gauss–Markov 
(GGM) noise model introduced by Langbein (2004), which 
is outside the scope of the present contribution. This contri-
bution will thus consider combinations of four variants of 
power-law noise models resulting in "W + P + F + R".

In GNSS time series analysis, the accurate identification 
of the noise model is important. Various methods have been 
employed for this purpose. One commonly used approach 
is the log-likelihood (LLL) criterion, where different sto-
chastic models are estimated and compared to determine 
the most suitable one. Alternative criteria such as Akaike 
information criterion (AIC) and Schwarz’s Bayesian infor-
mation criterion (BIC) utilize penalty terms to account for 
additional parameters and to avoid overfitting in stochastic 
models. Smaller AIC/BIC values indicate superior stochastic 
model performance. The above criteria require a few noise 
components ("W", "P", "F", and/or "R") be estimated using 
variance component estimation (VCE) methods. In GNSS 
time series, two commonly used methods are the maximum 
likelihood estimation (MLE) and least squares variance com-
ponent estimation (LS-VCE).

The VCE methods typically rely on unconstrained estima-
tion principles, which can lead to the possibility of estimating 
negative variance components. Negative estimates of VCs 
result in (co)variance matrices that are not positive definite, 
lacking physical justification. This occurrence may be attrib-
uted to factors such as insufficient degrees of freedom in the 
functional model, inappropriate initial values for variance 

components, or inadequate stochastic modeling (Amiri-
Simkooei 2007). Additionally, there can be other causes for 
negative variance component estimates. In GNSS time series 
analysis, negative variance component estimates can also 
arise from factors such as an over parametrized stochastic 
model, particularly when there is a large number of noise 
components included (Amiri-Simkooei 2016). The over-
parameterization can lead to high correlations and less preci-
sion among estimates of different noise components, thereby 
increasing the likelihood of negative variance estimates. This 
study focuses on the utilization of non-negative LS-VCE 
(NNLS-VCE), developed by Amiri-Simkooei (2016), as an 
important tool for estimating non-negative variance compo-
nents. The goal of incorporating NNLS-VCE in this research 
is to facilitate stochastic model identification.

The current research aims to achieve four interrelated 
objectives. 1) We examine the performance of the non-
negative LS-VCE (NNLS-VCE) method, for identifying 
an appropriate stochastic model. All noise components 
("W + P + F + R") are introduced as potential noise model, 
and the algorithm allows them to be estimated within a 
non-negative framework. If a noise component is unlikely 
to be present, its corresponding variance is expected to 
become zero. 2) We aim to investigate how the type and 
number of noise components, along with the length of 
the time series, can impact the true-positive (TP) results. 
This analysis identifies the factors that influence the per-
formance of identifying true noise components. 3) We 
examine how the false positives (FP) can potentially lead 
to under- or overestimation of rate uncertainties. This is 
particularly of interest because it allows to investigate the 
effect of incorrectly identified stochastic models on rate 
uncertainties. 4) We explore the role of multivariate analy-
sis in stochastic model identification. This investigation 
will provide insights into the impact of considering three 
coordinate components simultaneously on the effective-
ness of the stochastic model identification.

This contribution is organized as follows. In Sect. 
"Functional and stochastic models of GNSS time series" 
the functional and stochastic models in GNSS time series 
are described. It is hereby shown how the cofactor matri-
ces of different stochastic processes are formed. Sect. 
"Remarks on stochastic model identification" reviews 
previous works in stochastic model identification. Also, 
the NNLS-VCE method as a tool to facilitate the model 
identification procedure is introduced in univariate and 
multivariate analysis. In Sect. "Applications, results and 
discussion", the simulated dataset is described. We con-
sider 4 case studies with different noise combination to 
evaluate the role of NNLS-VCE in detecting the existing 
noise structure in the simulated time series. Additionally, 
we assess the influence of using multivariate analysis in 
NNLS-VCE to identify stochastic model.
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Functional and stochastic models of GNSS 
time series

GNSS position time series primarily consist of determinis-
tic terms known as trajectory models and stochastic terms 
referred to as noise (Bevis and Brown 2014). The determin-
istic terms in time series analysis consist of various compo-
nents that can be identified and modeled. These components 
include long-term variations, such as linear trends that show 
gradual changes over time. Additionally, offsets account for 
sudden shifts or changes in the time series. Seasonal vari-
ations represent patterns that repeat annually or semiannu-
ally. In addition to these deterministic terms, time series also 
incorporate noise models. These models account for random 
fluctuations or variability in the data. The noise component 
can have varying spectral indices, indicating the frequency 
characteristics of the fluctuations. In the following sections, 
we will delve into these two parts of time series analysis, 
discussing how deterministic terms and noise models are 
utilized in understanding and modeling time series data.

Functional model

The functional model, which is known as the trajectory 
model in the coordinate time series, describes the math-
ematical expectation E(.) of the m × 1 observation vector 
y . In the linear observation equations, the functional model 
can be expressed as:

where A represents the m × n design matrix and x is the 
unknown n × 1 vector in the functional model. The design 
matrix A of functional model generally includes the linear 
trend, annual and semi-annual signals and offset. Hereafter, 
in order to study the stochastic model, the functional part is 
assumed to be given and identical for all-time series.

Stochastic model

The stochastic model describes the mathematical dispersion 
D(.) of the m × 1 observation vector  expressed as the covari-
ance matrix Qy . It is usually written as a linear combination 
of p stochastic processes with unknown amplitudes.

where Qk is the cofactor matrix for the kth stochastic process 
and σk is the corresponding variance component. The cofac-
tor matrices, functions of the spectral index, can be formed 
using the following power-law process:

(1)E(y) = Ax,

(2)D(y) = Qy =

p∑
k=1

�kQk,

where ΔT =
1

365.25
 year is the sampling rate of the daily time 

series, � denotes the spectral index and U is an m × m trans-
formation matrix defined as:

where hi is obtained using the following recurrence expres-
sion (Bos et al. 2020):

and � is the spectral index. In this contribution, we take 
� = 0 , � = 0.5,� = 1 and � =2, respectively referring to 
white (W), fractal power-law (P), flicker (F) and random 
walk (R) noise. The covariance matrix is then:

where I , Qp , Qf  and Qr are the given cofactor matrices of 
white noise (identity matrix), power-law noise, flicker noise 
and random walk noise, respectively, and �2

w
 , �2

p
 , �2

f
 and �2

r
 

are their corresponding variance components to be 
estimated.

Remarks on stochastic model identification

Previous works

One of the primary goals of time series analysis is to create 
an optimal stochastic model. The optimal model takes into 
account all the inherent noises present in the observations 
and realistically models them. Despite the advances in utiliz-
ing statistical concepts and models across various fields of 
engineering and science, the challenge lies in developing an 
appropriate and optimal model when only limited informa-
tion is available based on finite observations.

Various methods can be employed to determine the most 
accurate representation of noise model through noise model 
combination selection. Statistical tests, such as the w-test, 
can be utilized to evaluate the null hypothesis and its oppo-
site hypothesis. Amiri-Simkooei et al. (2007) applied the 
w-test to identify the optimal noise model for observations 
from permanent GNSS stations. They determined the opti-
mal noise model separately for three coordinate components. 
In practice, null hypotheses are often approximations that 
differ from reality. Consequently, selecting a model based 
purely on statistical tests of these assumptions can lead to a 

(3)Qk = ΔT�∕2UTU,

(4)U =

⎡
⎢⎢⎢⎣

h0 0 …

h1 h0 ⋱

⋮ ⋱ ⋱

0

⋮

0

h
m−1 … h1 h0

⎤
⎥⎥⎥⎦
,

(5)hi =
(
�

2
+ i − 1

)hi−1
i

, h0 = 1,

(6)Qy = �
2
w
I + �

2
p
Qp + �

2
f
Qf + �

2
r
Qr,
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contradiction between the chosen model and the actual real-
ity. Recognizing that statistical hypothesis tests alone are not 
accurate representations of real-world conditions, there has 
been a growth in the development of practical methods for 
model identification. Nowadays, the criteria based on MLE 
method is vastly applied to detect the existing noise in the 
GNSS time series including log-likelihood (LLL) criterion 
and some information criteria (IC). One can use the log-
likelihood (LLL) criterion to estimate and compare different 
stochastic models to determine the most suitable one. For 
different noise combinations, one computes log-likelihood 
based on its corresponding Qy matrix, estimated by MLE 
method, and the optimal noise model is the one for which 
LLL is maximized. This method has been used by Amiri-
Simkooei (2016) to identify the best noise model. Langbein 
(2012) conducted research to examine the performance of 
the likelihood function with simulated data. Their findings 
indicate that the log-likelihood function, represented as 
LLL, incorrectly selects the W + P noise model instead of 
the W + F + R noise model in 50–70% of cases. This suggests 
that the LLL criterion lacks the capability to distinguish 
between these types of noise models. In the case where the 
spectral index is the same, the criterion described does not 
differentiate between flicker noise and power-law noise due 
to its inability to penalize the additional parameters in the 
noise model. Another disadvantage of the LLL criterion is 
its limited power to detect random walk noise.

Alternative criteria such as the Akaike Information Cri-
terion (AIC) and Schwarz’s Bayesian Information Criterion 
(BIC) are commonly used in stochastic models (Mazerolle 
2020). They incorporate penalty terms to take into account 
the number of parameters in the model and aim to prevent 
overfitting. These criteria are valuable tools in statistical 
modeling as they help in selecting the most appropriate 
model by striking a balance between model complexity and 
goodness of fit. Smaller AIC/BIC values indicate better per-
formance of a stochastic model. However, as ICs penalizes 
different combinations of noise with parallel noise param-
eters (e.g., "W + P + R" and "W + F + R" with 3 unknown 
components) equivalently, it may not effectively distinguish 
between these different noise models. He et al. (2019) used 
the BIC-TP criterion to distinguish between flicker noise, 
power-law noise and generalized Gauss–Markov (GGM) 
noise. BIC-TP demonstrates similar detection power to BIC 
when considering the mentioned noises. It has shown the 
capability to enhance the detection power of random walk 
by almost 50% (He et al. 2019).

Negative variance components

As already mentioned, to select the optimal stochastic model 
for several existing noise models, AIC/BIC or LLL criteria 
are calculated. These criteria require a few noise components 

("W", "P", "F", and/or "R") to be estimated using variance 
component estimation (VCE) methods. The maximum like-
lihood estimation (MLE) method is the most commonly 
employed VCE technique in geodetic time series analysis. It 
is utilized in various statistical modeling software programs 
like CATS and Hector (Bos et al. 2013).

Assume thatΦ = lndet(A) = lnu , where A represents the 
design matrix. The first-order derivative of Φ,dΦ

dx
=

u�

u
 , is 

defined as the change of Φ with respect to variable x:

In the MLE method, the objective function is the quad-
ratic form of residuals that result the derivative is calculated 
as follows:

Now, the goal is to estimate unknown parameters by maxi-
mizing the maximum likelihood function. Therefore, the 
objective function is considered to be the argument that would 
maximize the likelihood function:

Therefore, by deriving the objective function and setting it 
to zero, the following equation is obtained:

and,

As tr (AA) = tr(A),and Qy can be written as the sum of 
covariance matrices, Qy =

∑P

i=1
�iQi:

The observation equations for estimating variance compo-
nents ( �) using the maximum likelihood estimation (MLE) 
method are structured as follows:

where N and l are:

(7)
dΦ

dx
=

d detA

detA
=

detA

detA
.tr
(
A−1 dA

dt

)
.

(8)Φ = êTQ−1
y
ê⇒

dΦ

dx
= −êTQ−1

y

𝜕Qy

𝜕x
Q−1

y
ê.

(9)Φ = argmax
𝜎

−m

2
ln 2𝜋 −

1

2
ln det

(
Qy

)
−

1

2
êTQ−1

y
ê.

(10)
𝜕Φ

𝜕𝜎k
= −

1

2
tr
(
Q−1

y
Qk

)
+

1

2
êTQ−1

y
QkQ

−1
y
ê = 0,

(11)
1

2
tr
(
Q−1

y
Qk

)
=

1

2
êTQ−1

y
QkQ

−1
y
ê.

(12)

1

2
tr

(
Q−1

y
QkQ

−1
y
Qy

)
=

1

2
tr

(
Q−1

y
QkQ

−1
y

P∑
i=1

𝜎iQi

)
=

1

2
êTQ−1

y
QkQ

−1
y
ê,

(13)1

2

P∑
i=1

(Q−1
y
QkQ

−1
y
Qi)�i = lk.

(14)
P∑
i=1

Nki�i = lk,
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Also, one can uses LS-VCE method to estimate variance 
components. In contrast to MLE, which gives biased esti-
mators, LS-VCE provides unbiased and minimum variance 
estimators. Also, LS-VCE is much faster than MLE, imple-
mented in the downhill simplex method (Amiri-Simkooei 
2009). The above MLE formulation (Eqs. 14–16) can how-
ever have comparable complexity as LS-VCE and hence a 
replacement for downhill simplex method.

One limitation of variance component estimation (VCE) 
methods is the possibility of estimating negative values for 
variance components (VCs). Negative estimates of VCs 
lead to (co)variance matrices that are not positive definite, 
which is not acceptable from a statistical standpoint. Nega-
tive VCs can arise in a model due to various factors. These 
may include insufficient degrees of freedom in the func-
tional model, inappropriate initial values assigned to the 
variance components, or inadequate stochastic modeling. It 
is important to address these issues to ensure accurate and 
meaningful. In addition, with an over-parameterized sto-
chastic model, which includes many noise models, variance 
components tend to be estimated negative. To avoid negative 
variance occurrence, one can use non-negative LS-VCE in 
which the non-negativity of VCs is guaranteed. This also 
provides a useful tool for stochastic model identification in 
GNSS time series analysis.

Stochastic model identification using NNLS‑VCE

Theory of NNLS‑VCE

The least squares variance component estimation method 
(LS-VCE) is based on the principle of least squares. This 
method was proposed by Teunissen in 1988 and then devel-
oped by Amiri-Simkooei and Teunissen (2008). One draw-
back of LS-VCE is that the estimated variance components 
may become negative, which is not acceptable. Amiri-Sim-
kooei (2016) presented the NNLS-VCE method to estimate 
non-negative variance components. This approach solves a 
convex minimization problem by imposing non-negativeness 
constraints. The Karush–Kuhn–Tucker (KKT) conditions are 
employed to ensure the non-negative variances. Since the 
objective function in this method is convex, it exhibits low 
computational complexity compared to general optimization 
techniques. We briefly review this theory.

To evaluate non-negative variance components in GNSS 
time series, one can add the inequality constraint � ≥ 0 to 
the objective function F(�) (Amiri-Simkooei 2016).

(15)lk =
1

2
êTQ−1

y
QkQ

−1
y
ê,

(16)Nki =
1

2
tr
(
Q−1

y
QkQ

−1
y
Qi

)
.

where N and l are defined as follows:

and

and P⟂

A
= I − A(ATQ−1

y
A)

−1
ATQ−1

y
 is an orthogonal projector 

(Teunissen 2000).

NNLS‑VCE in multivariate model

To implement the method in multivariate analysis, we con-
sider the three east, north and up components of a station 
together, consequently having an m × 3 observation matrix 
as Y = [ENU] . We will use multivariate analysis that leads 
to following observation equation:

with the covariance matrix of:

where Is is an identity matrix of size s and Σ represents the 
correlation of noise. For the properties of the vec-operator 
and the Kronecker product ⊗ , we refer to Magnus (1988). 
For the multivariate linear model, we have (Amiri-Simkooei 
2009):

If Σ matrix is unknown, we have to execute a two-step 
procedure estimate the variance components. Firstly, we 
should estimate Σ and then applies the preceding formula-
tion. This will then give the lk, k = 1,… , s vector as:

with

where m-vectors êii = 1,⋯ , s are the least squares residual 
estimators for s time series.

The NNLS-VCE method offers several advantages over 
the MLE method, which can be highlighted as follows. 
The NNLS-VCE method is relatively easy to comprehend 
and interpret compared to the MLE method. Estimates of 

(17)𝜎̂ = argmin𝜎≥0F(𝜎) = argmin𝜎≥0

(
1

2
𝜎
TN𝜎 − lT𝜎

)
,

(18)nkl =
1

2
tr
(
Q−1

y
P⊥

A
QkQ

−1
y
P⊥

A
Ql

)
,

(19)lk =
1

2
êTQ−1

y
QkQ

−1
y
ê,

(20)vec(Y) =
(
Is ⊗ A

)
vec(X),

(21)
D(vec(Y)) = Σ⊗ Q = Σ⊗

(
𝜎
2
w
I + 𝜎

2
p
Qp + 𝜎

2
f
Qf + 𝜎

2
r
Qr

)
,

(22)nkl =
s

2
tr
(
Q−1P⊥

A
QkQ

−1P⊥

A
Ql

)
.

(23)lk =
m − n

2
tr
(
ÊTQ−1QkQ

−1Ê
(
ÊTQ−1Ê

)−1)
,

(24)Ê = P⊥

A
=
[
ê1, ê2,⋯ , ês

]
,
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negative variance components can result in a covariance 
matrix that is not positive definite. This means that the 
matrix does not have physically meaningful interpretations. 
Large negative variance components generally indicate 
potential flaws or issues in the stochastic model. NNLS-
VCE is a straightforward method to implement it, which is 
also suitable for both univariate and multivariate analysis. 
It stands out for its practical efficiency, primarily due to its 
low computational burden. One advantage of NNLS-VCE is 
that it utilizes the Newton–Raphson method, which contrasts 
with the simplex procedure employed in MLE.

In our study, we applied the NNLS-VCE method to ana-
lyze two comparable VCE methods, where the noise com-
ponents and amplitudes were kept constant. We performed 
this analysis on a total of 10 time series. Interestingly, we 
found that the time required for estimating the variance com-
ponents using the NNLS-VCE method was approximately 11 
times shorter than that with the MLE method. Hence, based 
on our findings, it is evident that the NNLS-VCE method 
offers a significantly faster alternative to the MLE.

One advantage of NNLS-VCE is that it utilizes smaller 
matrices, specifically Np×p and lp×1 , instead of involving 
larger matrices like A and Qy . Simultaneous estimation of 
different noise components can be challenging with MLE 
method as it may result in some estimated amplitudes being 
negative. To overcome this issue, NNLS-VCE incorporates a 
large penalty to the objective function during the minimiza-
tion problem. This penalty helps prevent negative estimates 
of the variance components.

Applications, results and discussion

Simulated GNSS time series

We simulated 1000-time series to check the existing stochas-
tic models in GNSS time series. In these time series, average 
value and linear trend are denoted as y0 and r , respectively. 
Also, the annual and semi-annual periods have been used 
as follows:

where q = 2 , �1 = 2� and �2 = 4� . As periodic signals con-
tain mostly the annual and semi-annual signals, we merely 
consider them (Amiri-Simkooei et al. 2017). The pairs (ai, bi) 
can be used to obtain the phase and amplitude of the signals. 
Equation (18) will then yield the final time series, consider-
ing e(t) to be the various generated noise including "W + P", 
"W + F", "W + P + F" and also "W + P + F + R" noise models. 
The noise vector will be generated using Cholesky decom-
position. The simulating parameters are listed in Table 1. 

(25)y(t) = y0 + rt +

q∑
i=1

aicos�it + bisin�it + e(t),

The values in Table 1 were obtained through pre-analysis 
of the time series of the 347 permanent GPS stations pro-
vided by JPL's second reprocessing campaign (Khazraei 
and Amiri-Simkooei 2019). Figure 1 depicts a 10-year time 
series generated using the values from Table 1. It show-
cases a randomly displayed time series within the figure. 
The red line represents the result obtained by fitting the least 
squares method to the East component of the three noise 
models analyzed in the figure, namely, "W + F", "W + P + F", 
and"W + P + F + R".

To conduct a more detailed analysis, we consider three 
separate spectral indices in our stochastic model: 0.5, 1 
and 2, representing fractional power-law noise, flicker 
noise and random walk noise, respectively. For brevity, 
we denote this stochastic model as "W + P + F + R" where 
"W" refers to white noise, and "P," "F" and "R" represent 
fractional power-law, flicker noise, and random walk noise, 
respectively.

We examine four cases: case I ("W + P"), case 
II ("W + F"), case III ("W + P + F"), and case IV 
("W + P + F + R"). These cases represent progressively 
more complex noise models, with case IV being the most 
complex (refer to Table 2). However, it is noted that our 
algorithm is not limited to any specific noise structure. The 
same analysis can be applied to other noise combinations 
such as "W + F + R" or any other combination of noise types.

Infeasibility of correct noise model detection using 
MLE

In the field of GNSS time series analysis, accurately iden-
tifying the noise model is crucial. To achieve this, multiple 
methods have been utilized. Nowadays, the criteria based 
on the maximum likelihood estimation (MLE) method 
are widely used to detect existing noise in GNSS time 
series. These criteria include the log-likelihood (LLL) cri-
terion, as well as various information criteria (IC). In this 

Table 1   Parameters used to simulate time series contaminated by 
colored noise

East North Up

WN amplitude ( mm) 5 6 10
FN amplitude ( mm∕year1∕4) 16 18 30

PL amplitude ( mm∕year1∕8) 10 12 20

RW amplitude ( mm∕year1∕2) 8 9.6 16
Phase of annual signal (mm) − 2 − 2 − 2
Amplitude of annual signal (mm) − 3 − 3 − 3
Phase of semi-annual signal (mm) − 1 − 1 − 1
Amplitude of semi-annual signal (mm) − 2 − 2 − 2
Linear trend (r) ( mm∕ 1 1 1
Initial position ( y0)(m) 1.35 1.35 1.35
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method, variance components can be estimated negative. 
Negative estimates of variance components (VCs) lead to 
covariance matrices that are not positive definite, which 
lacks physical justification. This issue could potentially 
be caused by various factors, including limitations in the 
functional model's degrees of freedom, incorrect initial 
values for variance components, inadequate stochastic 
modeling as well as over parametrized stochastic model 
(Amiri-Simkooei 2016). Over parameterization refers to 
the inclusion of a large number of noise components in a 
stochastic model, when not all of these noise components 
are present in the data. It can result in heightened cor-
relations and reduced precision among estimates of noise 
components. Consequently, this increases the probability 
of encountering negative variance estimates.

To address this issue, we will thoroughly examine all pos-
sible combinations of " W", "P", "F" and "R" (15 combina-
tions in total). By doing so, we then determine the variance 
components associated with each combination. We intend 
to answer the following question: "What percentage of the 

variance components, estimated using MLE, exhibits nega-
tive values across various noise combinations?".

To calculate the variance components using MLE, we 
use Eq. (14). In this study, we simulated 100-time series for 
each cases according to the values provided in Table 1. We 
then calculated the number of negative amplitudes for the 
15 combinations of existing noise in all cases. If the vari-
ance components become negative, the next step is to exam-
ine whether or not the eigenvalues of the variance–covari-
ance matrix also become negative. If the eigenvalues of the 
covariance matrix become negative, the matrix is no longer 
positive definite. As a result, Qy cannot be considered a valid 
covariance matrix, and its feasibility in the problem is not 
justified.

Figure 2 presents the estimated negative noise compo-
nents (blue bars) plotted next to the negative eigenvalues 
(red bars) of the covariance matrix for study cases 1–4. 
When considering a single noise component, any of "W", 
"P", "F", or "R", it was determined that no negative noise 
amplitude values were mathematically obtained. Also, the 
combinations of "W + F" and "P + F" exhibited no nega-
tive noise amplitude in all cases. As a result, we exclude 
these six combinations and proceed to assess the percent-
age of negative variance components in the remaining noise 
combinations.

Figure 2 provides insights into the presence and distribu-
tion of negative components and negative eigenvalues in dif-
ferent models. In all four cases, it demonstrates that to detect 
noise in time series using indicators based on MLE, it is 

Fig. 1   Simulated time series generated by a linear trend, an annual and semi-annual periodic signal contaminated by "W + F" noise (top), 
"W + P + F" noise (middle) and "W + P + F + R" noise (bottom)

Table 2   Four cases of noise 
inputs ranging from simple 
stochastic model (I) to complex 
stochastic model (IV)

Input noise Stochastic model

W P F R

Case I ■ ■
Case II ■ ■
Case III ■ ■ ■
Case IV ■ ■ ■ ■
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essential to estimate the amplitude of the noise components 
in every scenario. If the stochastic model is selected cor-
rectly, the occurrence of negative values is lowest compared 
to the other cases. Specifically, the percentages of negative 
values are 0%, 0%, 1.6% and 26% in cases I, II, III and IV, 
respectively. In case IV, however, the "W + R" stochastic 
model exhibits the smallest estimated negative amplitude 
at 0.6%. This indicates that when there are more than three 
noise components in the stochastic model, this approach 
fails to identify the correct model. It can be inferred that 
an increase in the number of noise variables leads to the 
emergence of negative components in the estimation. In the 
MLE, if the model is identified as true positive (TP), the 
negative components cannot be estimated with the increase 
in noise variables. Consequently, the positive definite condi-
tion of the covariance matrix is not satisfied in this scenario, 

where 4% of the eigenvalues in case IV have a negative value 
among the estimated negative values, accounting for 20%.

As depicted in Fig. 2, in case I, when the correct model 
is not determined, the estimation of variance components 
shows percentages close to 100 as negative, and the eigen-
values of the covariance matrix are observed to be highly 
negative. This poses a contradiction considering the posi-
tive definiteness requirement for the covariance matrix. 
For case I, the "W + P + F", "W + P + R", "P + F + R" and 
"W + P + F + R" models identified negative variance com-
ponents with percentages of 91%, 88.3%, 100% and 100%, 
respectively. Similarly, it was found that 52.6%, 74.6%, 20% 
and 65% of the eigenvalues of the covariance matrix was 
estimated to be negative. Remarkably, this occurred when 
the spectral indices of the noises in case I were closely 
aligned and both close to zero.

Fig. 2   The frequency of negative noise amplitudes estimated by the 
MLE method (represented by blue bars) is compared to the frequency 
of negative eigenvalues in the covariance matrix of the observables 

(represented by red bars), expressed as a percentage. This comparison 
is done for Case I, Case II, Case III and Case IV
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Based on the results obtained in case II, if the number 
of noise components is the same as in case I and there is a 
noticeable difference in their spectral index, the percent-
age of negative components in the estimated variances 
will decrease. Additionally, the percentage of values with 
negative eigenvalues in the covariance matrix will also be 
lower compared to case I. In case II, specifically for the 
models "W + F + R", "P + F + R" and "W + P + F + R", the 
estimated negative variance components are 90.6%, 74.6%, 
and 90.6% respectively. Among them, 57.6%, 5.6% and 
54.6% have negative eigenvalues in the covariance ma.

Application of NNLS‑VCE to stochastic model 
identification

In this section, we aim to demonstrate the effectiveness 
of the NNLS-VCE method in identifying noise models in 
two modes: univariate analysis and multivariate analy-
sis. Unlike methods that penalize the objective function, 
NNLS-VCE utilizes an inequality constraint on the objec-
tive function. This constraint inherently guarantees that the 
variance components remain non-negative.

One crucial component in GNSS time series analysis is 
the uncertainty of trend ( �r) ). It plays a significant role in 
determining the confidence level in the obtained results. 
Consequently, we have also examined the sensitivity of the 
noise model identified through NNLS-VCE by assessing 
the level of estimated rate uncertainties.

To comprehensively study the noise structure of GNSS 
time series, we simulate the coordinate components (east, 
north and up), separately. Each time series has its own 
noise structure with variable amplitudes, as shown in 
Table 1. Our results are provided for both univariate and 
multivariate analysis. In the univariate analysis, we ana-
lyze each time series separately. Using the NNLS-VCE 
method, we obtain the optimal noise model for each indi-
vidual series. In the multivariate analysis, we process the 
east, north, and up coordinate components together. This 
approach also allows to account for the potential correla-
tions between the time series and provides a more realistic 
estimation of the noise structure.

The noise amplitudes in the stochastic model (Eq. 6) 
are computed for the desired noise inputs. In univariate 
analysis, we employ Eqs. (18) and (19) through an iterative 
process. In multivariate estimation, we consider coordinate 
time series simultaneously, and the noise amplitudes are 
estimated using Eqs. (22) and (23). If a particular noise is 
not present in the time series, its amplitude should be esti-
mated zero using NNLS-VCE. To investigate this matter, 
1000-time series are generated for each noise input, and 
their amplitudes are estimated using NNLS-VCE.

Effective parameters on TP results

When identifying the stochastic model of a time series, there 
are key factors to consider, which includes the number of 
noise components, their spectral indices, univariate versus 
multivariate analysis and the length of the time series. These 
factors play a significant role to effectively analyze the sto-
chastic noises within the time series. In this section, each 
of these factors will be examined. The spectral index is a 
crucial parameter in identifying stochastic noises effectively. 
When the spectral index is higher, the noise detection power 
becomes lower. Additionally, if the time series contains a 
larger number of noises, their identification ability will be 
diminished. Utilizing time series with a high data count is 
one of the effective approaches for accurately identifying 
stochastic noises in time series. The significance of hav-
ing a large number of data points in a time series is that 
it allows for a more comprehensive analysis and accurate 
predictions. Ideally, the time series should be relatively 
uninterrupted or gap-free, ensuring continuity and consist-
ency in the data. Additionally, a time series length of more 
than 10 years provides a broader historical context, enabling 
better trend identification and capturing long-term patterns. 
In the following, we explore the aforementioned factors to 
demonstrate the effectiveness of NNLS-VCE for stochastic 
model identification.

Type of noise is a critical factor that influences the ability 
of NNLS-VCE to accurately identify the appropriate stochas-
tic model. We generated a time series simulation that con-
sisted of white noise. Through the utilization of NNLS-VCE 
in both univariate and multivariate analysis, we successfully 
detected and characterized the underlying noise components. 
Considering case I and case II, we investigated the effect of 
spectral index in noise identification. Table 3 displays the 
noise detection power utilizing the NNLS-VCE method in 
both univariate and multivariate analysis, showcasing results 
for four distinct case studies. According to Table 3, the uni-
variate analysis shows that case I has an average noise identi-
fication power of 98.5% for all three coordinate components. 
On the other hand, case II has an average noise identification 
power of 90.5% for the same components. Additionally, the 
average spectral index for case I is 0.25, while for case II, it 

Table 3   Mean detection power of NNLS-VCE in univariate analysis 
and multivariate analysis for different case studies

Case study Univariate Multivariate

case I 98.5 99.5
case II 90.5 99.8
case III 69.5 88.4
case IV 29.3 83.7
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is 0.5. Generally, as the spectral index increases, identifica-
tion power tends to decrease.

To study the impact of number of noise components on 
the detection power of the proposed method, we focus on 
case III as the input for our simulations. Table 3 indicates 
that the average detection power for the three coordinate 
components decreases to 69.5%. In a study conducted by 
He et al. (2019), it was found that the LLL index incorrectly 
identifies fractal power-law noise as flicker noise in approxi-
mately 66% of cases.

After incorporating random walk ("case IV"), the identi-
fication power even decreases to 29.3%. This indicates that, 
as the number of noises in the GNSS time series increases, 
the detection power of NNLS-VCE to identify and sepa-
rate colored noise with different spectral indices dimin-
ishes. Although the multivariate analysis outperforms the 

univariate analysis, we also observe a decrease in the multi-
variate identification power when using complex noise mod-
els (e.g., case IV) compared to the simpler models (cases I 
and II).

Using longer time series is expected to result in a higher 
likelihood of detecting the correct noise model of the series. 
In their study, He et al. (2019) explored the effectiveness 
of information criteria derived from MLE in time series 
data spanning 10, 15 and 25 years. Their results indicated 
that the identification of random walk noise becomes easier 
as the time span increases. To assess the impact of time 
series length on the NNLS-VCE performance, we gener-
ated data for a duration of 20 years for case II. The NNLS-
VCE method was then used to identify and estimate the 
noise components. Figure 3 displays the results for three 
coordinate components in both univariate and multivariate 

Fig. 3   The 20-year time series boxplot of East, North, UP and Multivariate components of case II are shown in (a), (b), (c) and (d), respectively. 
The green dashed line indicates the uncertainty of the rate
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analysis. When the length of the time series is doubled, there 
is on average 8% increase in the identification power across 
three coordinate components in univariate analysis, though 
the detection power (99.8%) did not change in multivari-
ate analysis. Time series length is therefore a crucial factor 
impacting result accuracy. Longer time series can facilitate 
the identification of colored noise in GNSS time series.

To examine the implications of using the false noise 
model (FP) in the context of time series analysis, we assess 
the estimated rate uncertainty for the specific cases using a 
box plot. Additionally, we evaluate the impact of FP noise 
model on the rate uncertainty values. The box plots shown 
in Figs. 3, 4 and 5 represent the uncertainty rate for cases 
I, II, III and IV, respectively. In a noise model, if the red 
line is positioned above the index line in the box diagram, 

the trend uncertainty has been overestimated. Conversely, 
if the red line is below the index line, underestimation has 
occurred. Neither scenario provides a realistic estimate of 
trend uncertainty. However, in both scenarios, the trend 
estimates will remain unbiased even for FP noise models. 
Nevertheless, the uncertainty values assigned to the esti-
mates are expected to be either higher or lower than the 
actual value.

To assess the performance of NNLS-VCE in identifying 
random walk noise, an investigation was conducted on a 
10-year time series (referred to as "case IV"). In this case, 
the identification percentage of true chosen noise model 
(TP) in univariate mode averaged around 30% for both 
the horizontal and vertical components, while He et al. 
(2019) identified 11% of random walk noise by analyzing 
a 15-year time series.

Fig. 4   Effect of identified noise models on rate uncertainties for case I in univariate analysis for East (a), North (b) and Up (c) components and 
multivariate analysis (d); multivariate plot is presented for east component
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Influence of false positive (FP) on rate uncertainty

The rate uncertainty is influenced by the accuracy of the 
stochastic model used for detecting noise in the data. The 
closer the stochastic model resembles the actual noise of 
the data, the more reliable the rate uncertainty estimation 
becomes. If the stochastic model closely resembles reality, 
the estimated rate uncertainty is likely to be very close to 
the actual value. To calculate the standard deviation of the 
estimated unknown vector x̂ , we can obtain the covariance 
matrix Qx̂ of unknown parameters as:

(26)Qx̂ =
(
ATQ−1

y
A
)−1

,

where Qy refers to the identified stochastic model. The rate 
uncertainty estimate is then obtained from Qx̂ . We use box-
plot diagrams to display both the central tendency and dis-
persion of a data set simultaneously. Boxplots are useful 
tools for comparing the range and distribution of average 
data to identify the level of dispersion in different noise 
models and detect outliers. In this diagram, the boxes rep-
resenting each noise model can be compared based on their 
proximity and distance from the real value of the trend's 
standard deviation. This provides an easy way to assess the 
variability and identify any unusual data points. In a boxplot, 
50% of the data is contained within the box. Additionally, 
25% of the data is scattered below the box, while another 
25% lies above the box. The entire length of the graph rep-
resents a probability distribution of 99.3% for the results of 

Fig. 5   Rate uncertainty value for case II in univariate analysis for East, North and Up directions for the identified noise models vs. multivariate 
analysis: East (a), North (b), Up (c) and Multivariate for East component is (d)
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the analysis. Any data points outside the box plot that are 
marked with a red mark are considered outliers.

The spectral index is a factor that plays a significant role 
on the rate uncertainty to be estimated biased. Figures 4 and 
5 represent the box plots for case I and II, respectively. In 
case I, the accumulative spectral index is reported to be 0. 
5, obtained from white noise ( � = 0 ) and a partial power-
law noise ( � = 0.5 ). In case II, the accumulative index is 1 
(from "W + F" model), is positioned above the green line in 
all three coordinate components. When the accumulative 
spectral index increases, the rate uncertainty value rises.

The purpose was to estimate the noise characteristics and 
determine if the NNLS-VCE method could accurately iden-
tify it as a stochastic model. Both univariate and multivari-
ate estimation techniques were employed in the NNLS-VCE 
method to accomplish this task. The results display if we do 
not consider white noise, it can lead to an underestimation 
of the rate uncertainty. To assess the effectiveness of the 

NNLS-VCE method in detecting white noise, for example, in 
Fig. 6, the "P + F" noise model with average spectral index 
of 0.75, which is higher than the reference spectral index of 
0.5 for case III. However, despite this higher value, the �r  
value estimated using this F + P noise model falls below the 
index line. Both the "P + F + R" and "P + R" noise models 
also lack white noise, but the presence of random walk noise 
affects the estimated �r.

If a stochastic process is not present in a time series but 
is still considered, it can lead to under/overestimation of the 
rate uncertainty value. For example, in case II where ran-
dom walk noise is not present, the rate uncertainty estimated 
using the (identified) "W + F + R" model may be higher than 
the actual value. According to Fig. 6, it is observed that case 
III does not have random walk noise. On the other hand, the 
estimated rate uncertainty is affected when including random 
walk noise in certain FP models, such as "W + P + F + R", 
"W + F + R", "W + P + R", "P + R" and "P + F + R". In the 

Fig. 6   Rate uncertainty value for case III in univariate analysis for East, North and Up directions for the identified noise models vs. multivariate 
analysis: East (a), North (b), Up (c) and Multivariate for East component is (d)
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opposite scenario, if there is noise present in the time series 
data but it is not considered in the stochastic model, it leads 
to a bias in the uncertainty of the rate estimation. For exam-
ple, all-time series mainly include white noise.

Advantages of multivariate analysis

GNSS time series analysis using multivariate model has 
been shown to have significant impact on functional model 
identification. For example, the reader refers to signal detec-
tion (Amiri-Simkooei 2009) and offset detection (Amiri-
Simkooei et al. 2019). The fact that different time series can 
be correlated suggests that estimating these series individu-
ally may not be realistic. In NNLS-VCE, we employ multi-
variate analysis to estimate rate uncertainties. This involves 
analyzing three coordinate time series simultaneously for 
various cases of study.

In Fig. 4, multivariate analysis was conducted to consider 
all three components (east, north and up) simultaneously as 
the observation matrix. The results showed that the identi-
fication power for all three components was 99.5%. As the 
noise structure detected is consistent for all three coordinate 
components in every case of study, the results presented as 
multivariate are specifically related to the east component 
in all cases.

In case I, when using multivariate analysis instead of 
univariate analysis, we observed a significant improve-
ment. The percentage of FP models has been reduced to 
only 0.5%, indicating a higher accuracy. Additionally, both 
the number and dispersion of these incorrect models have 
also been reduced. Specifically, in the "W + P + F" as FP 
noise model, the �r amount is estimated to be higher than 
the actual value (Fig. 4(d)). According to the information 
provided in Fig. 5, when utilizing multivariate analysis, the 
identification power achieves a high level of accuracy, reach-
ing 99.8%. Only a small portion, specifically 0.2% of the 
model, was incorrectly identified (specifically the "W" and 
"W + P + F" models).

After comparing the results of multivariate and univariate 
analysis in Figs. 5 and 6, it becomes evident that multivari-
ate analysis is the more preferable option. This preference 
can be attributed to several factors. Firstly, it is observed 
that the east, north and up time series exhibit noises with 
a similar structure, indicating a common underlying cause. 
The synergistic nature of these noise components further 
strengthens the case for multivariate analysis. By employing 
multivariate analysis, the probability of detecting noise is 
heightened, leading to increased �r accuracy as the results. 
This improved accuracy is particularly notable when deal-
ing with more complex noise models that entail larger mean 
spectral indices. In summary, the effectiveness of mul-
tivariate analysis surpasses that of univariate analysis, as 
observed in Figs. 5 and 6. Its ability to identify and account 

for common noise structures and its superiority in handling 
complex noise models make it the preferred choice.

As the complexity of the noise model increases, the appli-
cation of multivariate analysis becomes more remarkable 
compared to univariate analysis. In Fig. 6, the input noise 
model undergoes further complexity as it includes three 
distinct noises, referred to as case III. In this case, the aver-
age power detection of the correct noise model for the three 
coordinate components is 67%. When comparing Fig. 6 to 5, 
despite both figures having an average spectral index of 0.5 
for the true noise model, the presence of three distinct noises 
simultaneously has resulted in a decrease of approximately 
23% in the detection power during univariate analysis.

According to Fig. 6(d), in the case III, it was found 
that the use of multivariate analysis greatly enhances the 
detection power, reaching an impressive 88.5%. This high-
lights the significant impact of multivariate analysis in 
dealing with complex noise models. Additionally, through 
this analysis, it was determined that the FP noise models 
consisted of combinations of variables, namely, "W + F" 
and "W + P + F + R", with probabilities of 1.9% and 9.7%, 
respectively. The "W + P + F + R" noise model, with an aver-
age spectral index of 0.87, is positioned above the index line. 
On the other hand, the "W + F" noise model, with an aver-
age spectral index of 0.5, is situated closer to the index line. 
Despite the fact that the average spectral index of "W + F" 
and "W + P + F + R" noise models is both 0.5, the box plot 
in the multivariate analysis shows that, in the case of the 
"W + P + F + R" noise model, the index line has been inter-
sected at the most probable position.

Based on the information provided in Fig. 7, it can be 
observed that in case IV, the power detection of univari-
ate analysis in three components has significantly decreased 
to an average of 29.3%. Additionally, the index line has 
been predominantly affected by not only the correct model 
("W + P + F + R") but also the wrongly identified models of 
"W + F + R" and "P + F + R", which were mistakenly con-
sidered as the FP models. With the utilization of multivari-
ate analysis method, the identification power has improved 
to 83.7% (Fig. 7(d)). Additionally, the number of incorrect 
models has been reduced to only three. Among these mod-
els, the noise model stands out as it intersects the index line 
with the highest probability.

Conclusions

Researchers have been paying significant attention to iden-
tifying and estimating the presence of white and colored 
noises in integrated GNSS time series. The most well-known 
noise model for GNSS time series horizontal components 
is "W + F," which is commonly used as the default stochas-
tic model in most analyses. Additionally, some researchers 
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have utilized the noise model "W + P" for processing GPS 
time series of horizontal components. The presence of noise 
in GNSS time series was examined through simulations 
(Table 1). Using the NNLS-VCE method, the study iden-
tified and estimated the existing noise in the time series. 
Comparing Figs. 4 and 5, it was observed that when the 
stochastic model is "W + P" but the time series includes 
flicker noise, the estimated accuracy rate is lower than the 
actual value. Taking into account the "W + F" noise model, 
if the spectral noise index in a time series is less than 1, 
the rate accuracy will be overestimated. There is more RW 
noise in the vertical time series of GNSS compared to the 
horizontal coordinate. By using multivariate analysis in the 
NNLS-VCE method, if RW noise exists, it can be identified 
alongside other noises by processing a 10-year time series 
with a probability close to 85%. The analysis considered 
"W + P + F + R" as the potential noise model, where the 

NNLS-VCE method expects the corresponding variance of 
an unlikely noise component to become zero.

In the NNLS-VCE method, in addition to univariate anal-
ysis, the possibility of multivariate analysis exists. When the 
noise model is complex, the percentage of estimation for 
multivariable analysis increases. The percentage of correct 
model identification for univariate and multivariate scenar-
ios in case I, II, III and IV are as follows: 98.5% vs. 99.5%, 
90.5% vs. 99.8%, 69.5% vs. 88.4% and 29.3% vs. 98.5%, 
respectively. In all cases, the probability of identifying a 
noise model in multivariate analysis significantly increases 
due to the co-addition of coordinate time series in an obser-
vational station. Among the influential parameters on iden-
tifying the stochastic noise model in time series analysis are 
the type of noise present in the time series, the number of 
noises present in the time series, and the length of the pro-
cessed time series. As the number of noises increases and 

Fig. 7   Rate uncertainty value for case IV in univariate analysis for East, North and Up directions for the identified noise models vs. multivariate 
analysis: East (a), North (b), Up (c) and Multivariate for East component is (d)
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the accumulative spectral indices of colored noises surpass 
the spectral index of white noise, it becomes more challeng-
ing to accurately identify the noise model. In the context of 
multivariate analysis, the NNLS-VCE method has a higher 
likelihood of identifying a significant number of noises with 
complex structures.

Selecting a stochastic model erroneously as a noise model 
impacts the rate uncertainty values and leads to overestima-
tion or underestimation of the actual rate uncertainty val-
ues. In the NNLS-VCE method, if there is no noise present 
in the time series, its amplitude is estimated as zero and it 
is removed from the stochastic model. This leads to a sig-
nificant reduction in the number of false-positive models in 
multivariate analysis.
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