
Effectiveness of using call graphs to detect propagated
vulnerabilities

Jakub Nguyen
Delft University of Technology

The Netherlands

Mehdi Keshani
Delft University of Technology

The Netherlands

Sebastian Proksch
Delft University of Technology

The Netherlands

ABSTRACT
Nowadays software development greatly relies upon using third-
party source code. A logical consequence is that vulnerabilities from
such sources can be propagated to applications making use of those.
Tools like Dependabot can alert developers about packages they
use, which entail vulnerabilities. Such alerts oftentimes turn out to
be false positives because the vulnerable functionality of the pack-
age is not used. Current research by the FASTEN Project revolves
around analysing dependency networks using a finer granularity;
moving from package-level to method-level analysis with the help
of call graphs. Such analysis can theoretically be used to gain better
insights into how vulnerable a dependency for an application is.

This report aims to display the practical effectiveness of using
call graphs to detect propagated vulnerabilities. To evaluate the
effectiveness, results generated through method-level analysis were
studiedwith regards towhether a vulnerability in the corresponding
project is reproducible. Furthermore, possible improvements to call
graphs to detect vulnerabilities more accurately are described in this
study. An experiment, based on call graph analysis, was conducted
to detect propagated vulnerabilities in a set of public software
repositories. The used data about the repositories and vulnerabilities
was provided by the FASTEN Project. Each vulnerability detection
was manually verified and studied on its impact based on public
information about the corresponding vulnerability.

The results of this experiment show that none of the potential
propagated vulnerabilities could be reproduced. This implies that a
greater set of repositories needs to be analysed to draw meaningful
conclusions for the effectiveness of call graphs to detect propagated
vulnerabilities. The proposed improvements to call graphs display a
fraction of the great potential of the precision that could be reached
through such fine-grained analysis.

1 INTRODUCTION
Nowadays build automation tools like Maven or Gradle are often-
times an integral part of software development. They allow the user
to conveniently make use of external libraries hosted on centralised
repositories. However, by reusing others code its flaws are also
adopted which, in terms of security, can pose a great risk. Given
the sheer amount of projects that make use of certain packages, a
severe vulnerability in one of these could be fatal. A recent failure
of such a dependency structure was the Equifax security breach
which leaked over 100.000 credit card records due to an updated
package [3].

The most used GitHub tool to keep dependencies up-to-date is
Dependabot 1. While this tool performs well for many of its pur-
poses, detecting a vulnerable dependency has a major limitation.
Dependabot analyses dependencies only on the package-level. This

1https://dependabot.com/

leads to triggering alerts that dependencies are vulnerable even if
the user’s application does not make use of the vulnerable function-
ality of the dependency. Such alerts are false positives. A project
with dozens of dependencies has a great chance of receiving numer-
ous alerts about vulnerabilities that are not affecting the project.
Repeatedly notifying project maintainers about false vulnerabilities
can reduce the incentive to handle such threats in general.

Recent studies have shown that the use of call graphs increases
the accuracy of such dependency analyses [2][3]. These call graphs
are a manifestation of analysis on method level. This means method
calls are traced either statically or dynamically to generate a graph.
A call graph is a graph in which vertices represent methods of the
program and edges possible calls between them. In theory such
analysis leads to significantly less false positives than package level
analysis when detecting vulnerabilities.

An important milestone for this field of research would be to
prove the value of fine-grained package analysis in practice. How-
ever, no research has yet been conducted showing how well such
fine-grained information is related to the vulnerability. Therefore
this research aims to display how effective call graphs are to detect
propagated vulnerabilities. This is done by investigating how well
method-level data reflect the reproducibility of vulnerabilities. The
outcome of this study can show the great potential of such vulner-
ability detection, fortifying the relevance of further research into
this topic.

The following sections take on related work, the methodology
used, performed experiments, several theoretical improvements for
vulnerability detection through call graphs, responsible research, a
discussion, a conclusion and future work.

2 RELATEDWORK
Studies that are closely related to this research are highlighted in
this section.

2.1 Software Ecosystem Call Graph for
Dependency Management (2018)

This study [3] describes the use case of call graphs to span across
entire ecosystems of software. In contrast to how dependency net-
works are analysed currently the aforementioned call graphs would
allow for impact analysis on method-level. The paper outlines the
construction of such call graphs but also a preliminary evalua-
tion of a security issue. Thousands of packages were found to be
package-level vulnerable but only a single package was analysed
on method-level and verified to contain calls to vulnerable methods.
Furthermore an algorithm on call graphs for impact analysis is
outlined.

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



With regards to the aforementioned work this research aims to
expand upon the idea and concept of detecting the impact of vulner-
abilities through dependencies in practice. This is done by analysing
thousands of projects and verifying the results for correctness. An
algorithm with great similarities to the proposed impact analysis
one was implemented for this research. This report does not cover
the feasibility of constructing call graphs on an ecosystem level but
instead shows the potential of such call graph analysis.

2.2 Fine-Grained Network Analysis for Modern
Software Ecosystems (2020)

The research conducted by Boldi and Gousios [2] revolves around
displaying the risks and limitations of how dependency networks
work currently. Furthermore they propose the usage of call graphs
to lift such limitations; envisioning entire ecosystems to move from
package-level to method-level. Potential use cases that are men-
tioned are about analysing ecosystem-wide impacts, more flexible
software licensing and more precisely determining the impact of a
vulnerability on an individual project.

Similarly to the studymentioned in the subsection before, the key
difference to the research conducted for this report is showcasing
the practical usage of call graph analysis. This report brings the
mentioned opportunity of analysing whether an application calls
into vulnerable code or not to the test and further describes more
opportunities to increase precision of such analysis.

3 METHODOLOGY
In order to investigate how well fine-grained dependency analysis
relates to a vulnerability, a set of projects that call vulnerable meth-
ods from dependencies was determined. The following sections
cover the steps taken to find this set.

3.1 Approach overview
Figure 1 depicts the overall process of finding the method-level
vulnerable projects. Starting from the data gathered by the FASTEN
Project, thousands of projects were selected to be analysed on
package-level vulnerabilities. Method-level vulnerability analysis
was conducted on the package-level vulnerable projects. Finally
the method-level vulnerable projects were manually verified and
studied on their possible vulnerabilities.

3.2 Project selection
A preliminary set of 7.638 public java projects was selected based
on data which was gathered during the research conducted in the
FASTEN Project. The FASTEN Project is storing data of thousands
of deployments of public projects including their dependencies
and vulnerabilities. By searching for projects that are hosted on
GitHub, with dependencies that contain vulnerabilities in their
latest recorded deployment the preliminary set of projects was
determined.

3.3 Package level vulnerabilities
To decide which projects from the preliminary set are package
level vulnerable in their current development state the currently
used dependency manifest files (e.g. pom.xml or build.gradle) were

Figure 1: The procedure to determine method-level vulnera-
ble projects

retrieved. To achieve this, a customised script from the Depend-
abot project was used. By searching for certain keywords in the
manifests, depending on the build automation tool, the dependen-
cies and dependency versions for each project were determined.
In total 17.142 Maven dependency manifests were extracted. A set
of 393 vulnerabilities in 211 unique dependencies, from the FAS-
TEN Project 2, containing data about associated methods, was used
to compare to the dependencies of the preliminary projects. 259
package-level vulnerable repositories were found.

3.4 Method level vulnerabilities
Once a package-level vulnerability has been verified in a project,
fine-grained analysis was conducted. By making use of the FASTEN
Project’s call graph generation feature (Rapid Type Analysis algo-
rithm [4]), graphs for the project itself and the vulnerable packages
2https://www.fasten-project.eu/view/Main/



were generated. All call graphs of a project were then merged into
one to allow for the tracing of methods. This merging is imple-
mented in the FASTEN project and attempts to match all calls to
external sources to their corresponding nodes.

Figure 2 depicts an example of how a vulnerable method is traced.
The vulnerability propagates through methods B and C making
method A indirectly vulnerable.

Figure 2: Minimal example of vulnerability tracing.
Through tracing the methods Method A is identified as
vulnerable.

For each package-level vulnerability detected in a project, the as-
sociated vulnerability methods were used to perform an algorithm
similar to breadth first search. Starting from the vertices represent-
ing all vulnerable methods (in a dependency), the methods calling
the vulnerable ones were considered vulnerable as well. This re-
peats for each vulnerable method until either a method that is part
of the project is encountered or there are no methods making use
of the current one. If a method that is part of the project is en-
countered during this analysis it means that in the current project
a method call to a vulnerable method from a dependency exists,
in other words a method-level vulnerability has been detected. 78
projects were analysed to be method-level vulnerable.

3.5 Relation to the actual vulnerability
Once the set of method-level vulnerable projects is determined, the
relation to the actual vulnerability can be investigated. To filter
out the actual vulnerabilities the supposedly vulnerable depen-
dency versions were manually verified to match for each project;
46 method-level projects remained. The corresponding deployment
of the vulnerable dependency was retrieved from Maven Central 3
and checked to contain the analysed method calls.

Furthermore, the description and other publicly available in-
formation of the corresponding vulnerability were considered to
3https://mvnrepository.com/repos/central

determine how vulnerable the propagated vulnerabilities are. The
exact procedure for each considered vulnerability can be found in
the experimental setup and results section.

4 EXPERIMENTAL SETUP AND RESULTS
The following sections cover the experimental setup and gathered
results.

4.1 Experimental setup
7638 projects were retrieved from the database of the FASTEN
Project. From these projects 6717 remained which were hosted on
GitHub 4 and had functioning links to the corresponding repository
associated. For 5201 projects the dependencymanifests (build.gradle,
pom.xml) could be retrieved. Data about 393 different vulnerabilities
gathered by the FASTEN Project was used to filter out 259 package-
level vulnerable projects. For each of these projects fine-grained
analysis was performed resulting in 78 method-level vulnerable
projects.

4.2 Evaluation setup
Due to the nature of the Rapid Type Analysis algorithm and merg-
ing of call graphs, used for call graph generation, some unreach-
able method calls were followed to determine these vulnerabilities.
Therefore several method traces for each vulnerability were man-
ually verified. Furthermore vulnerable dependency versions were
verified to be matching (due to partially incorrect vulnerability
data). This procedure resulted in 46 remaining projects that were
further investigated on the corresponding vulnerabilities.

4.3 HTTPCLIENT-1803
Twenty-five projects are potentially affected by the HTTPCLIENT-
1803 vulnerability in Apache’s HttpComponents package 5. It re-
volves around passing a malformed URL argument to the construc-
tor of the URIBuilder which resulted in not being able to change
the host of this client with the setHost(host) method. Out of the
25 projects only nine projects made use of the URIBuilder. Out of
the 9 projects 6 made use of the vulnerable constructor. None of
the projects exposed the URIBuilder to the user which leads to the
result that the vulnerability cannot be reproduced with any of these
projects.

4.4 CVE-2019-14379
Sixteen projects are potentially affected by the CVE-2019-14379
vulnerability in the FasterXML jackson-databind package 6 7. It
allows for remote code execution through deserialisation from
external sources given that settings like default typing that allow
for the instantiation of objects from unsafe sources, are enabled. To
filter out actually vulnerable projects it was searched for usage of
the following settings: The method enableDefaultTyping() or the
annotation @JsonTypeInfo using id.CLASS or id.MINIMAL_CLASS.
None of the 16 projects made use of either setting.

4https://github.com/
5https://issues.apache.org/jira/browse/HTTPCLIENT-1803
6https://access.redhat.com/security/cve/CVE-2019-14379
7https://bugzilla.redhat.com/show_bug.cgi?id=1752962



4.5 Other vulnerabilities
The remaining five projects covered vulnerabilities by three unique
CVEs. Two projects were checked on the reproducibility of CVE-
2019-20445 8 and CVE-2019-20444 9 related to the Netty package.
No usages ofHttpObjectDecoder.javawere found and one project did
not even make use of any functionality from the Netty dependency.
Both projects did not use the package’s HTTP feature rendering
them not vulnerable to the aforementioned CVEs.

The last three projects revolved aroundCVE-2018-17196 10 which
allows to bypass Kafka’s Access Control Lists (ACL)11 checks. Out
of various security advisories and sources 12 13 14 it was not possi-
ble to infer what exact structure a manually crafted request needs
to have to reproduce the vulnerability. Only one of the projects
made use of a Kafka Producer. That producer’s configuration was
provided only serialisation formats and adhered to a default pro-
ducer otherwise. There were no projects to be found vulnerable by
CVE-2018-17196.

5 IMPROVEMENTS TO STATIC CALL GRAPH
GENERATION

This section covers proposals of theoretical improvements to static
call graph generation with the aim to increase the accuracy of
propagated vulnerability detection.

5.1 Simple parameter constraints
The vast majority of vulnerabilities considered in this research, are
only triggered by very specific inputs to functions in certain states.
In general, parameters can fundamentally lead to a very different
execution of a method. The OPAL and FASTEN Projects initial
objectives were not revolving around vulnerability detection such
that the current implementations do not take method parameters
into consideration.

It is a given that statically analysing code to identify constraints
on how arguments are passed to a method is an unsolvable prob-
lem. Nevertheless some basic cases can be ruled out and simple
statements could be evaluated. Naturally also the vulnerability in-
formation must entail data about argument constraints to make use
of this improvement.

There already exists research and software suited for this prob-
lem. For example the Julia Static Analyzer [8] is capable of con-
verting Java byte code into set-constraints. By making use of the
constraints of variables in the scope of a method it is possible to
specify outgoing method calls more accurately. Consider figure 3
for an example code snippet for the HTTPCLIENT-1803 vulnerabil-
ity.

Optimally, during call graph generation a constraint for the
baseURL constant would be identified, namely that the baseURL is

8https://access.redhat.com/security/cve/cve-2019-20445
9https://access.redhat.com/security/cve/cve-2019-20444
10https://access.redhat.com/security/cve/cve-2018-17196
11https://docs.confluent.io/platform/current/kafka/authorization.html
12https://www.mail-archive.com/dev@kafka.apache.org/msg99277.html
13https://security-tracker.debian.org/tracker/CVE-2018-17196
14https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17196

Figure 3: An example code snippet to demonstrate possible
variable constraints.

private static final baseURL = "somebaseURL.com";

public URIBuilder generateURIBuilder(String path) {
return new URIBuilder(baseURL + "/" + path);

}

equal to the string "somebaseURL.com". When analysing the gener-
ateURIBuilder method this information can be applied to improve
the precision of the definition of the method call by not only storing
that there exists a call to the constructor of URIBuilder but also that
the argument passed begins with "somebaseURL.com/".

With regards to the HTTPCLIENT-1803 vulnerability, by making
use of current implementations the code snippet would be flagged as
method-level vulnerable. With the improvement of tracking simple
variable constraints it can be seen that a syntactically correct URL
is passed to the constructor, resulting in no vulnerability detection
which is correct.

In terms of practicality it would be possible to make use of ex-
isting call graph generation algorithms and augment the resulting
graph’s edges with parameter constraints. This could be imple-
mented by iterating through all vertices and re-evaluating the cor-
responding method’s source code. For each method call detected
the corresponding parameter constraints would be added to the
edge in the call graph.

5.2 Certainty of method calls
The rapid type analysis algorithm and merging of graphs used to
generate the call graphs over-approximate some types of method
calls. For example, a call to several methods is detected if an Object
type is calling a not unique method name (within the scope of
the call graph) like toString. The majority of such calls turn out
to not exist in practice rendering the potential vulnerability false.
To improve vulnerability detection it would be beneficial to mark
such edges as a possible over-approximation when generating a
call graph.

5.3 Order of execution
The order of method calls yields crucial knowledge for vulnerability
detection. The nature of vulnerabilities can be quite intricate and
complex [7] and many require more than a single method call to be
produced. Due to this nature it would be a logical choice to track
the order in which methods are called during call graph generation.

The methods are examined in order already such that keeping
track of a single index would suffice. Similarly to the parameter
constraint improvement the order of execution could also be used
to augment existing call graphs which would require re-analysing
the corresponding source code. In resulting call graphs the directed
edges would contain id’s representing the ordering of calls where
the edge comes from.

Figures 4 and 5 depict an example of adding order of execution
to a call graph for Java source code.



Figure 4: An example method displaying the order of
method calls.

public void a() {
b();
d(c());

}

Figure 5: The partial call graph of example snippet from fig-
ure 2.

5.4 Precise vulnerability information
Building on top of the aforementioned improvement, the order of
method calls, it would be possible to store more accurate method-
level information for a vulnerability. Optionally the order in which
methods can be called to reproduce the vulnerability should be
specified.

6 RESPONSIBLE RESEARCH
This research revolves around finding propagated vulnerabilities
through dependencies in public GitHub repositories. Data about
such vulnerabilities can be sensitive information and is not publicly
available therefore great attention to integrity is paid within the
scope of this research. Furthermore results are only presented in a
manner where it is not possible to trace back to a specific project.

In terms of reproducibility of the results, this research makes
use of non-public data sets about public projects and vulnerabili-
ties from the FASTEN project 15 and detects the vulnerability by
generating call graphs with open source tools. Given access to the
aforementioned data set the applied methods and results can be
reproduced when following the instructions in the methodology.

This research overall aims to display the relevance of fine-grained
dependency analysis to detect propagated vulnerabilities. Raising
awareness of this topic may lead some developers to pay more at-
tention to vulnerability alerts and deal with them. Furthermore this
research can support the decision to develop a tool that is feasible
to be used in industry and capable of fine-grained analysis. Even-
tually this can lead to reducing many false positive vulnerability
alerts stemming from the current state of the art, package-level
analysis. Contrary to the aforementioned points, with an increasing
15https://www.fasten-project.eu/view/Main/

accuracy of vulnerability alerts developers might be more inclined
to consciously decide to not update a dependency. Not updating
software in general is considered a risk and waste of opportunities
as bugs might get fixed or additional features can be added [9].

7 DISCUSSION
7.1 Suitability of call graphs to detect

vulnerabilities
In general, identifying software vulnerabilities is a complex enough
task to require some degree of human labour [10]. But considering
that the task is to detect propagated vulnerabilities originating from
existing vulnerabilities in dependencies the actual detection process
is less complex.

Boldi and Gousios [2] argue that through call graphs, analysing
security alerts on function level, it is possible to obtain more precise
information about the impact of a vulnerability on an application.
But even with this more accurate information it is expected that a
developer needs to manually estimate how vulnerable the affected
methods, which were generated by the call graph analysis, are.
Depending on the kind of analysis performed, even these results
can yield false positives.

As shown in this research, detecting a call to a vulnerable method
from a dependency alone oftentimes does not mean that the vulner-
ability can actually be reproduced. In the projects analysed during
this research the vast majority of vulnerabilities required some kind
of setup in order to make use of the vulnerability.

A human procedure of determining whether a project is affected
by a vulnerability would be triggered by a security alert. Relevant
keywords and understanding need to be extracted out of the vulner-
ability description. By searching for those keywords in the source
code, code snippets that can be related to the vulnerability will
be found. Such analysis can yield similar results as a simple call
graph analysis because in essence statically created call graphs
depict the method names similarly to source code. To retrieve the
understanding and relevant keywords out of a not standardised
vulnerability description is a task rather suited for a human but the
main advantage of call graph analysis is the impact the graph can
display.

Given that this field of research is in its early stages and that this
report only shows a glimpse of the possibilities call graphs open,
it becomes clear that it can be worth to use call graphs to detect
vulnerabilities. The highlighted improvements in this research also
hint at the great potential of call graph analysis.

7.2 Better information about vulnerabilities
The preciseness of the results from vulnerability detection through
call graphs is highly correlated to the correctness and value of the
vulnerabilities that are searched for. For instance in this research
oftentimes many methods that are considered internal calls were
associated to a vulnerability whereas only a handful of methods are
the actual triggers of the vulnerability such that many ’vulnerable
method calls’ were found to not be related to the actual vulnerability,
based on information available from several security advisories.

The methods associated to a vulnerability were obtained by the
FASTEN Project in the following manner: In the changes of the
patch which fixed the corresponding vulnerability were analysed



and every method encountered was associated to the vulnerability.
Through this procedure the actually related methods are captured
but there is a chance of including others that are not related. Nat-
urally, given the current standard of information provided about
vulnerabilities, e.g. description, affected products, mitigation, this
is a very good first step but obviously not perfect.

As the considered vulnerabilities of dependencies are already dis-
covered, a challenge for detecting propagated vulnerabilities more
accurately becomes obtaining precise and meaningful information
about the existing vulnerabilities. While Hejderup, Deursen and
Gousios envision the concept of ecosystem-level call graphs [3],
allowing for a vast majority method-level analyses, the information
provided about software vulnerabilities should also include more
detailed and standardised data about associated methods. In the
optimal scenario developers that discover a vulnerability should
additionally to the current information provide the methods with
argument constraints needed to reproduce the vulnerability and the
order in which they can be executed. With such information prop-
agated vulnerability detection through call graphs could become
very precise.

7.3 Dependency updating
Dependency updating is a logical way to avoid becoming vulner-
able to security issues from third-party libraries. Unfortunately
it turns out that the mindset of regularly updating dependencies
among developers is rather uncommon. A study showed that 69% of
interviewed developers were uninformed about vulnerable depen-
dencies that affected them [5]. Furthermore 81.5% of the systems
that were studied make use of outdated dependencies [5]. Another
study shows that even if developers make use of tools that support
updating dependencies, e.g. Dependabot, still 34.58% of security
pull requests are not merged [1]. A different study displays that
two thirds of studied pull requests were not merged and that the
fear of breaking changes is a great concern to developers [6].

With regards to all of the aforementioned research it becomes
clear that software development is still far away from a good sys-
tem and mindset to keep dependencies up-to-date. An interesting
question would be, given that the envisioned ecosystem-level call
graphs [3] would be in place, how developers would react to more
precise updating information. It offers many opportunities like fil-
tering out the most important changes of a dependency based on
the current usage in the application.

8 CONCLUSION AND FUTUREWORK
This report aimed to display the effectiveness of using call graphs
to detect propagated vulnerabilities in practice. The results of this
study could fortify other research in this field.

An experiment, making use of call graphs, was conducted in
which dozens of projects were found to be method-level vulnerable.
For each of these projects, a manual verification was performed
on how threatening the corresponding vulnerabilities actually are.
Originating from working on this study, several theoretical im-
provements to call graphs were developed. These improvements
mainly focus on the potential precision call graphs could reach
when detecting propagated vulnerabilities.

The results of this study have shown that none of the potentially
propagated vulnerabilities could be reproduced. This implies that a
greater set of repositories needs to be analysed to draw meaningful
conclusions for the effectiveness and precision of call graphs to
detect propagated vulnerabilities. The proposed improvements for
vulnerability detection hint towards the immense potential call
graphs yield.

There are several directions for future work. An experiment on a
greater scale could be conducted, possibly with hand picked method
to vulnerability associations. If such experiment would yield any
results in which the vulnerability is reproducible it would showcase
a great success for call graph analysis. Another option would be
to consider implementing a proposed improvement to call graph
analysis and show its potential in practice.

Eventually, once research in this topic has advanced further a
tool, that possibly builds on top of Dependabot, could be devel-
oped. It would conduct method-level analysis for every security
alert Dependabot generates and provide its own, more precise, rec-
ommendation. Obviously the aforementioned tool should only be
developed if the results of future research suggest that call graphs
are indeed a good way to detect vulnerabilities more precisely.

Together with the three other students that conducted the same
experiment, namely, Tudor Popovici, Niels Mook and Christophe
Cosse, it is planned to co-write a paper summarising the accu-
mulated work. This collaborative study will cover various aspects
surrounding the use of call graphs to detect propagated vulnerabil-
ities.

REFERENCES
[1] Mahmoud Alfadel, Diego Elias Costa, Emad Shihab, and Mouafak Mkhallalati.

[n.d.]. On the Use of Dependabot Security Pull Requests. ([n. d.]).
[2] P. Boldi and G. Gousios. 2020. Fine-Grained Network Analysis for Modern

Software Ecosystems. ACM Transactions on Internet Technology 21, 1 (Dec. 2020),
1:1–1:14. https://doi.org/10.1145/3418209

[3] J. Hejderup, A. v Deursen, and G. Gousios. 2018. Software Ecosystem Call Graph
for Dependency Management. In 2018 IEEE/ACM 40th International Conference on
Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER).
101–104.

[4] B. Holland. [n.d.]. Call Graph Construction Algorithms Explained. https://ben-
holland.com/call-graph-construction-algorithms-explained/

[5] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2017. Do developers update their library dependencies? Empirical Software
Engineering 23, 1 (May 2017), 384–417. https://doi.org/10.1007/s10664-017-9521-
5

[6] Samim Mirhosseini and Chris Parnin. 2017. Can automated pull requests en-
courage software developers to upgrade out-of-date dependencies?. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
84–94. https://doi.org/10.1109/ASE.2017.8115621

[7] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne. 2011. Evaluating Com-
plexity, Code Churn, and Developer Activity Metrics as Indicators of Software
Vulnerabilities. IEEE Transactions on Software Engineering 37, 6 (2011), 772–787.
https://doi.org/10.1109/TSE.2010.81

[8] F. Spoto. 2016. The Julia Static Analyzer for Java. In Static Analysis (Lecture
Notes in Computer Science), Xavier Rival (Ed.). Springer, Berlin, Heidelberg, 39–57.
https://doi.org/10.1007/978-3-662-53413-7_3

[9] K. Vaniea and Y. Rashidi. 2016. Tales of Software Updates: The process of updating
software. 3215–3226. https://doi.org/10.1145/2858036.2858303

[10] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M. Mazurek. 2018. Hackers vs.
Testers: A Comparison of Software Vulnerability Discovery Processes. In 2018
IEEE Symposium on Security and Privacy (SP). 374–391. https://doi.org/10.1109/
SP.2018.00003

https://doi.org/10.1145/3418209
https://ben-holland.com/call-graph-construction-algorithms-explained/
https://ben-holland.com/call-graph-construction-algorithms-explained/
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1007/978-3-662-53413-7_3
https://doi.org/10.1145/2858036.2858303
https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1109/SP.2018.00003

	Abstract
	1 Introduction
	2 Related work
	2.1 Software Ecosystem Call Graph for Dependency Management (2018)
	2.2 Fine-Grained Network Analysis for Modern Software Ecosystems (2020)

	3 Methodology
	3.1 Approach overview
	3.2 Project selection
	3.3 Package level vulnerabilities
	3.4 Method level vulnerabilities
	3.5 Relation to the actual vulnerability

	4 Experimental setup and results
	4.1 Experimental setup
	4.2 Evaluation setup
	4.3 HTTPCLIENT-1803
	4.4 CVE-2019-14379
	4.5 Other vulnerabilities

	5 Improvements to static call graph generation
	5.1 Simple parameter constraints
	5.2 Certainty of method calls
	5.3 Order of execution
	5.4 Precise vulnerability information

	6 Responsible Research
	7 Discussion
	7.1 Suitability of call graphs to detect vulnerabilities
	7.2 Better information about vulnerabilities
	7.3 Dependency updating

	8 Conclusion and future work
	References

