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Abstract

Undiscovered underground cavities might exist in the subsurface. A catastrophic ground failure event
follows when such a cavity starts to migrate upwards and finally intersects with the surface, resulting
in a sinkhole. Catastrophic collapse events are usually preceded by precursory subsidence. An upward
migrating cavity causes the development of a (subsidence) trough at the surface. The trough deepens
as the cavity nears the surface, changing its surface expression. With the technique called InSAR,
displacements over a large area can be measured. Literature shows that precursory subsidence is
measurable using InSAR. However, automatically detecting impending sinkholes from InSAR displace­
ments has not yet been researched in depth. This study shows that the developed novel arc­based
temporal strategy can early detect an impending sinkhole. The kinematic model is adequate to model
the surface expression of an impending sinkhole. The results are used to implement an artificial sink­
hole based on the kinematic model into a subset to test the developed strategies. The first strategy
was based on spatio­temporal characteristics of a sinkhole. This strategy can locate the subsiding
area and indicate a surface expression size range. However, during this study, a second strategy was
developed to identify anomalous behavior quicker and more reliable than the spatio­temporal strategy.
The second strategy is arc­based and marks point measurements behaving anomalously. The result
demonstrates a potential automated early warning system based on the InSAR displacement time se­
ries. The developed strategies harbor the potential of monitoring for impending sinkholes on a large
scale. This study is anticipated to be a starting point for more development in early warning systems
for impending sinkholes. Future research could entail verifying the strategies in regions with collapsed
sinkholes.
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1
Introduction

1.1. Motivation
Detecting impending sinkholes is proved to work using InSAR in a retrospective fashion, but detecting
sinkholes a priori is still complicated. This study focuses on new methodologies built upon existing
InSAR measurements to detect sinkholes before the catastrophic collapse event.

1.2. Introduction
The Netherlands has experienced a few cases where a sudden sinkhole collapse occurred and caused
significant damage. A notorious example is the sinkhole occurrence at shopping mall ’t Loon in Heerlen.
In an underground parking lot, a subsidence sinkhole appeared in December 2011 (Chang & Hanssen,
2014). More recently, in July 2020, a sudden collapse sinkhole formed in the city of Kerkrade. Here, a
collapse sinkhole of a few meters appeared in the middle of the street. The area is infamous to host
abandoned and forgotten mining shafts, and this particular sinkhole has been attributed to such an
abandoned and forgotten mining shaft (Redactie Algemeen Nederlands Persbureau, 2020).

Detecting impending sinkholes is rather complex using the methods adopted from other fields of
study. The features involved are usually small for the potential area affected (Intrieri et al., 2015).
Moreover, the number of research papers on sinkholes is limited when compared to other ground
deformation phenomena such as landslides (Gutiérrez et al., 2019).

Gutiérrez et al. (2019) categorize the monitoring methods used on sinkholes in three distinct groups;
(1) subsurface methods, (2) ground­based methods, and (3) remote sensing methods.

Subsurface methods have been widely applied for investigating sinkholes. Successful methods are
seismic reflection, refraction, and ground­penetrating radar (GPR). In recent years, GPR was used the
most since it is favorable in detecting localized subsurface cavities (Intrieri et al., 2015).

Ground­based methods involve Robotic total stations (RTS), GPS, terrestrial laser scanner (TLS),
and more. These methods all produce data with high precision and accuracy. However, for large areas,
the spatial sampling needs to be very dense and is thus not feasible (Gutiérrez et al., 2019; Intrieri
et al., 2015).

Remote sensing methods collect data from airborne or space­borne platforms. A standard method
used is the Interferometric Synthetic Aperture Radar (InSAR) and is used for detecting precursory
subsidence preceding collapse sinkholes (Intrieri et al., 2015; Jones & Blom, 2014; Malinowska et al.,
2019; Nof et al., 2013). The areas containing new impending sinkholes tend to be large (> 1km).
Currently, InSAR is the only suitable method covering large areas (Gutiérrez et al., 2019).

1.3. The rise of geodetic big data
Many new radar satellite missions were launched in recent years, therefore increasing the amount of
data available. The Sentinel­1 missions even provide data free of charge. These developments provide
for an abundant and continuous data source for developing wide­scale deformation time series.

Satellite­based radar measurements provide displacement estimates over a large area. The dis­
placement estimates are based on a technique called Interferometric Synthetic Aperture Radar (In­
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2 1. Introduction

SAR) (Bamler & Hartl, 1998; Hanssen, 2001). The concept of InSAR uses at least two radar images
and looks at the phase differences between those two images. From these phase differences, the
relative displacement can be computed to provide the displacement estimate. Taking a set (or stack)
of images and computing the relative displacements w.r.t. the first image (i.e., master image) gives
a displacement time series. However, not every pixel can be linked to a decent scatterer on Earth
that acts consistently through time. Scatterers who are not consistent enough through time are la­
beled incoherent scatterers. For example, vegetation is infamous for producing incoherent scatterers.
A technique for finding coherent point scatterers in the stack of images is called Persistent Scatterer
Interferometry (PSI) (Ferretti et al., 2001; Hanssen, 2001; Kampes, 2006; van Leijen, 2014).

Post facto studies have shown that precursory sinkhole subsidence is measurable using InSAR (In­
trieri et al., 2015; Jones & Blom, 2014; Kim et al., 2016; Nof et al., 2013). Creating coherent InSAR
images over an extended period can be challenging since individual scatterers can exhibit high phase
variability. PSI is the technique that selects suitable scatterers with low phase variability over an ex­
tended period. Since PSI uses a filtering scheme, some points will get discarded. The resulting suitable
scatterers tend to be heterogeneously distributed, which largely depends on the surface context. In
sparse areas, it is more difficult to a priori detect precursory subsidence. However, Chang & Hanssen
(2014) and Malinowska et al. (2019) show that with the reduction of available scatterers, it is still
possible to detect impending sinkholes.

1.4. Different early warning systems based on InSAR Data
Multiple ex post facto studies have been applied on locations where a catastrophic sinkhole collapse
occurred (Chang & Hanssen, 2014; Intrieri et al., 2015; Jones & Blom, 2014; Malinowska et al., 2019;
Nof et al., 2019). Using InSAR, the deformation history of the area is investigated to identify potential
precursory subsidence. The ultimate goal is to develop an early warning system based on InSAR that
automatically detects and identifies such precursory deformation.

The wider Dead Sea area experiences a lot of catastrophic sinkhole collapse events. Over ∼6000
collapse sinkholes have been mapped along the Dead Sea shores since 1980 (Nof et al., 2019), and
this type of natural hazard affects the local agriculture, industry, tourism, infrastructure, and daily life
in the region. Nof et al. (2019) implements a semi­automatic near­real­time early warning system. The
system immediately creates interferograms when the data is available. Then, a manual inspection is
needed to look for the spatial sinkhole pattern. This spatial early warning system, or spatial method,
appears to be successful in the Dead Sea area. As also stated in Nof et al. (2019), the arid and sparsely
populated Dead Sea area is almost ideal for monitoring impending sinkholes using InSAR. Furthermore,
it suggests that insights from this operation will be beneficial for early warning systems in other, less
ideal locations.

The spatial method becomes harder to implement when using the PSI technique. Chang & Hanssen
(2014) and Malinowska et al. (2019) showed that within the displacement time series of a single point,
an impending sinkhole signal could be detected. This temporal method looks for acceleration events
indicative of an impending sinkhole. Malinowska et al. (2019) states that the results obtained in this
paper should be considered supportive evidence for a potential operational application of PSI as a
future sinkhole warning methodology.

Combining the spatial and temporal methods provide a new approach for a potential early warning
system, the spatio­temporal method. Kratzsch (1983) and Reddish & Whittaker (1989) implement a
functional model that approximates the sinkhole subsidence pattern. With the spatio­temporal method,
a sinkhole pattern is assumed and subsequently searched for in the PSI dataset.

1.4.1. Sinkholes in Limburg
Limburg has a rich history of surface, near­surface, and underground mining. The first mining activities
date back to the 12th century (Denys, 2019). The last mine in Limburg was closed in 1974 (Denys,
2019). However, the last mine in Germany (just across the border) was closed in 1994, keeping the
dewatering measures active in the Limburg mines (Bruna, 2020). Since the closure of the last mine in
Germany, the dewatering has stopped. The groundwater has been rising steadily ever since. Ground
heave has been measured in Limburg and it is connected the ongoing rise of mine water.

However, Heitfeld et al. (2016) state that the risks from shafts or near­surface mining exists in­
dependent of the rising mine water. The explanation for the existence of sinkholes is related to the
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presence of abandoned mine shafts which were not backfilled but collapsed. It was common practice
in the past to let the roof collapse into the mined voids. Because most of these collapsed corridors
are from near­surface mining activity, residual voids have to be expected close to the ground surface.
Often, the layers above these voids are not thick enough to establish a stable vault. These are the
situations where sinkholes might develop (Heitfeld et al., 2016).

Due to the increased risk of subsidence or sinkhole formation, the province of Limburg started a
pilot study to gather suggestions for designing and establishing a Monitoring and Risk Signaling System
(MRSS) for surface motion. One of the objectives of this thesis is to design a methodology to provide
monitoring and signaling system for an impending calamity related to surface deformation.

1.5. Research Aim
This study investigates the feasibility of an early warning system based on Persistent Scatterer InSAR
for impending sinkholes. In this context, impending refers to the lead time between the moment that
surface subsidence becomes observable and the moment of collapse. The methodology to obtain the
(PSI) estimates is based on satellite­based radar data (Hanssen, 2001; van Leijen, 2014). The early
warning system should have the potential to be fully automated. Ideally, the system should have the
possibility of providing push messages containing critical areas. However, before we can implement
a system for detecting impending sinkholes, we need to take a closer look at the surface expression
of a sinkhole, identify the limitations of the available data and define a working detecting strategy.
Therefore, the main research question is:

How can an early detection of impending sinkholes be enabled using satellite­based SAR measure­
ments?

To answer the main research question, we first investigate the relevant ground movement patterns
and their characteristics. Then, we look at the inherent characteristics of a typical dataset (e.g., spatial
distribution), and finally, we implement two strategies for spotting impending sinkholes. We translate
these steps into the following sub­questions:

• How does a subsurface cavity manifests itself onto the surface, and how can we model the
manifestation?

• How do the spatial and temporal time series characteristics influence impending sinkhole detec­
tion?

• How can a spatio­temporal strategy based on a kinematic model improve early detection of an
impending sinkhole?

• How can an arc­based temporal strategy improve the early detection of an impending sinkhole?

1.6. Limitations
The topic of early sinkhole detection has many facets. In this thesis, we mainly focus on detecting a
small spatial footprint and a limited lead time within the life cycle of a sinkhole.

We obtain the displacement estimates by processing raw data from satellite radar missions. Several
radar missions (i.e., satellites or sensors) are regularly used: Sentinel­1, RADARSAT­2, TerraSAR­X, and
COSMO­SkyMed. For the Limburg case, we had access to Sentinel­1 and RADARSAT­2, and Skygeo
provided the the displacement estimates.

The process of measuring the raw data, downloading and processing to obtain the displacement
estimates, takes up roughly half a day.

Each mission can provide multiple tracks. We can characterize a track by the orbit direction (as­
cending or descending indicated by the heading direction, 𝛼ℎ) and its viewing geometry (e.g., incidence
angle or 𝜃). We keep the tracks as a separate dataset since the orbital direction and viewing geometry
are essential when interpreting the data (Hanssen, 2001; van Leijen, 2014). The two missions provide
a total of five tracks we could use. The specific mission limits the update frequency of the tracks. The
Sentinel­1 mission has a repeat orbit of 6 days, and the RADARSAT­2 mission has a repeat orbit of 24
days. The resolution is higher with the RADARSAT­2 mission. We prefer higher point densities because,

https://skygeo.com


4 1. Introduction

in general, it will help detect smaller sinkholes. In this thesis, we limit ourselves to one track from one
particular mission. We used ascending track 88 from Sentinel­1. The reason for choosing Sentinel­1
data is because ascending track 88 covers the area of interest, and has the shortest repeat time.

We know that displacement estimates contain errors. For example, PSI data generally contains
unwrapping errors. We assumed (and thus limited ourselves) that the errors in the PSI dataset were
absent or insignificant and started to build our warning system on top of it.

The spatial signature we are searching for is relatively small compared to the observed area. To
give an example, Chang & Hanssen (2014) describes a sinkhole with a diameter of 8 meters. The
dataset used for this discovery is roughly 12 km longitude by 11 km latitude. Consequently, we created
a subset. We created the subset around the Franciscanerstraat in Kerkrade as we know it is a sinkhole
prone area (Redactie Algemeen Nederlands Persbureau, 2020) and Heitfeld et al. (2016) indicated that
residual voids are still present in the area. However, no sinkhole was observed during the observation
time. Therefore, we implemented an artificial sinkhole signal into the dataset. The subset spanned
approximately 200 meters left to right and top to bottom. The strategies we are proposing can get
computationally expensive and therefore we prefer to experiment on smaller subset instead of the full
dataset. We also keep in mind how the strategies should be implemented on the whole dataset.

The last limitation is the observation time of an impending sinkhole. We roughly subdivide an
impending sinkhole into three phase. The first stage (starting at 𝑡0) is when the subsurface cavity forms
and migrates upward. The second phase (starting at 𝑡1) is when the subsurface cavity approaches the
surface such that the induced subsidence starts to be observable (i.e., precursory subsidence). This
phase is crucial because we need to detect the impending sinkhole during this phase. Phase three
(starting at 𝑡3) is the catastrophic surface collapse and end of the sinkhole life cycle. Obviously, phase
two is crucial. The difficulty of this phase is that the duration is unknown. The phase can last for a few
hours to a few days or even months (Gutiérrez et al., 2019). Hence, the repeat cycle of the satellite
is limiting us. Sentinel­1 provides a minimum repeat time of 6 days, and it is consequently the best
option.

1.7. Outline
Chapter 2 contains a literature study containing background information on sinkholes, modern de­
tection methods, existing early warning systems, methods for mathematically describing subsidence,
and PSI. Chapter 3 comprises the methodology used in this thesis. Here, we introduce the kinematic
model, a linear least­squares method for estimating kinematic model parameters, the method for im­
plementing an artificial sinkhole, maps indicating key characteristics for sinkhole identification, and the
two detection strategies. Chapter 4 will then first show the results and discussion for the impact of a
subsurface cavity on the surface, the implementation of the artificial sinkhole, maps containing a priori
knowledge of the dataset, and the results for the two detection strategies. Finally, chapter 5 holds the
conclusion and answers to the sub­questions, and recommendations.



2
Sinkhole Mechanics, Models,
Detection, and Early Warning

This chapter will show the literature study. The literature study is setup as follows. First, a geological
based explanation will talk about how sinkholes are classified. For the classification, the formation of
a sinkhole plays a vital role and thus will be addressed. Also, triggers and the surface expression of a
sinkhole will be treated (see Section 2.1). After an in depth description on sinkholes, the next section
will go in depth on the characterization of ground movements (see Section 2.2). Section 2.3 will explain
the different detection methods and Section 2.4 will go in­depth on how the detection InSAR technique
works. This chapter ends with a section on early detection and warning systems (see Section 2.5).

2.1. Sinkhole Formation and Classification
The formation of sinkholes is widespread in karstic landscapes (Gutiérrez et al., 2007). However,
sinkholes are also observed in non­karstic landscapes implicating that the geological setting is relevant
but not binding. Sinkholes are closed circular phenomena that usually cause an increasing surface
subsidence rate from the rim of the depression towards the center. Sinkholes can be described with a
number of different characteristics. The reason for these different characteristics is the cluster of inter­
related processes involved in a developing sinkhole (Waltham et al., 2005). The sinkhole depression
(surface expression) displays a wide range of cylindrical, conical, bowl, or pan­shaped morphologies.
The surface expression can range up to several hundreds of meters in diameter and depths up to tens
of meters (Gutiérrez et al., 2008; Williams, 2003).

The term sinkhole derives from the processes of its evolution. A closed depression forms whereby
water sinks into the ground, transporting sediments alongside inducing erosion (Waltham et al., 2005).
In the past, geomorphologists called this phenomenon a doline. Sinkholes were a sub­category of a
doline. However, American literature has seen a more liberal use of the term sinkhole. For practical
purposes, sinkholes and dolines are the same, and the term sinkhole is further used in this thesis
(Waltham et al., 2005).

From all the different research papers used for this thesis, we inferred that sinkholes are widespread
and pose a hazard to the built environment. This section aims to explain the current state­of­the­art
sinkhole classification and how a sinkhole manifests itself at the surface.

2.1.1. Sinkhole Classification
Waltham et al. (2005) classifies sinkholes into six main categories but also states that many sinkholes
fall in between the categories. Gutiérrez et al. (2008) has slightly altered the classifying scheme. In
following section, the classification mentioned in Gutiérrez et al. (2008) is leading and explained.

The first sinkhole class is solution sinkholes. The primary process of solution sinkhole formation
is governed by differential dissolution lowering of the ground. The surface expression of a solutions
sinkholes usually develops imperceptibly slowly (Gutiérrez et al., 2008). Therefore, the slow solution
process is generally not perceived as hazardous from an engineering perspective and will not be further
elaborated in this thesis (Gutiérrez et al., 2008).

5
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The other classes of sinkholes are mainly based on two principles; the materials affected and the
subsidence mechanisms. The materials affected are cover (cohesive and non­cohesive soil), bedrock,
and caprock, and the subsidence mechanisms are sagging, suffosion, and collapse. Multiple combina­
tions of terms can be used whereby a dominant material or process is followed by a secondary one
(e.g., bedrock sagging and collapse).

Bedrock and caprock sinkholes
Bedrock is the rock layer that is underlying loose deposits. In the case of sinkholes, this layer is usually
hosting the subsurface cavity. The caprock is any rock overlying the bedrock. The caprock drops
into the void below (Waltham et al., 2005). Fig. 2.1 shows the development of different subsidence

Figure 2.1: Overview of various subsidence mechanisms for bedrock and caprock sinkholes. This figure was originally published
in Gutiérrez et al. (2008).

mechanisms in caprock or bedrock sinkholes. In Gutiérrez et al. (2008); Waltham et al. (2005); Williams
(2003), the bedrock is usually an evaporitic layer prone to dissolution. In Fig. 2.1­A, sagging occurs
where small cavities experience continuous flexure of the overlying strata so that the cavities do not
necessarily develop beneath the sagging structures (Gutiérrez et al., 2008). Three factors potentially
govern the development of the collapse structures in bedrock and caprock (Fig. 2.1­B to E): (1) lack of
mechanical strength in the roof (Williams, 2003), (2) void roofs that are too small to initiate sagging,
and (3) a vadose condition whereby the roof experiences a greater effective weight (Gutiérrez et al.,
2008). The collapse of the roof produces a rubble pile on the floor. The size of the blocks depends
on the type of material in the roof. As the cavity migrates upward, the pile grows, creating a collapse
chimney (that is breakdown column, transtratal breccia pipe, or geological organ). These cavities may
act as zones of preferential groundwater flow and accelerate rates of dissolution. The upward migrating
process may cease temporarily or permanently if the cavity roof and the pile meet (Gutiérrez et al.,
2008).

Cover sinkholes
The term cover incorporates both cohesive and non­cohesive soil and is used for the soil layer lying
above a bedrock layer in which cavities can form. The difference between caprock and soil is that soil
is not lithified. Fig. 2.2 shows three different subsidence mechanisms. These subsidence mechanisms
are sagging, suffosion, and collapse. The suffosion subsidence mechanism is new and only present for
cover sinkholes. The sagging mechanism in cover materials (Fig. 2.2­A) does not require the existence
of cavities because continuous accommodation of the overburden material inhibits the creation of
cavities. The flexure of the cover results in the development of a basin structure with centripetal dips
(Gutiérrez et al., 2008). The sinkholes produced by cover sagging are generally shallow and difficult to
distinguish margins; therefore, the sinkhole can be larger than expected. Although they do not form
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Figure 2.2: Overview of the various types of cover sinkholes. This figure was originally published in Gutiérrez et al. (2008).

a direct threat to human lives due to their slow subsidence rates, they may cause severe damage to
buildings and infrastructure (Gutiérrez et al., 2008).

Cover suffosion and collapse sinkholes (Fig. 2.2­B and C) development starts at the discontinuity
interface between the cover deposits and the bedrock (i.e., rockhead). Water circulation tends to
concentrate at this discontinuity plane, creating cavities or pipes (conduits) of high water discharge
(Gutiérrez et al., 2008). In recharge areas under vadose conditions, the enlargement of conduits by
downward flow induces positive feedback. The downward flow leads to the formation of a drawdown
cone around the conduit in the cover deposits affecting the local hydraulic gradient and inducing even
more positive feedback (Gutiérrez et al., 2008). Unconsolidated cover deposits potentially migrate
downward into the conduits by the process termed suffosion or ravelling (Waltham et al., 2005).

A few mechanisms govern the downward transport of sediments: (1) down washing of particles by
percolating water; (2) cohesionless granular flow; (3) viscous gravity flow of clay­rich deposits; and
(4) particle fall from the roof of the cavity (Waltham et al., 2005; Williams, 2003). Depending on the
cohesion of the cover, a distinction between suffosion and collapse sinkhole is made.

Cover suffosion sinkholes generally do not form catastrophically (Fig. 2.2­B and D). The cover is a
ductile or loose granular deposit. The erosional downwash of sediments and subsequently transporting
out of the system undermines the cover and facilitates gradual settlement. The erosion of non­cohesive
granular sand produces a funnel­shaped sinkhole whereby the slopes are governed by the angle of
repose (Waltham et al., 2005). A clay­rich deposit may migrate downwards as a viscoplastic flow
generating sheath folds with concentric structure (Gutiérrez et al., 2008).

Cohesive cover deposits may not be as susceptible to downwash and exhibit brittle rheology (Fig. 2.2­
C and E). Therefore, arched cavities may be able to develop over conduits. The cavity can propagate
progressively upward due to roof (or arch) failures. The fallen materials accumulate on the cavity floor
or (with sufficient water present) get washed away. Two mechanisms can stop the upward movement,
when the pile can support the roof due to bulking or when it reaches a more cohesive layer. The later
mechanism causes a lateral growth whereby eventually the roof collapses (due to large arch span).
This mechanism can penetrate through multiple types of layers. This upward migrating cavity will prop­
agate upwards undetected for most of its lifespan. Depending on the cohesivity of the cover, when the
cavity gets closer to the surface, sagging (subsidence) will increase gradually. The degree of sagging
is dependent on the soil type (Fig. 2.2­E). Eventually, the collapse of the cavity roof may intercept the
ground surface and abruptly creating a (catastrophic) collapse sinkhole (Gutiérrez et al., 2008).

Sinkhole Triggers
Specific events can trigger the creation of a subsurface cavity. Gradual dissolution can trigger sinkholes,
but other factors, including humans, can also induce sinkholes to form. British Geological Survey (2020)
lists a few key triggers, these are:

• Heavy rain or surface flooding can initiate the collapse of normally stable cavities, especially those
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developed within superficial deposits.

• Leaking drainage pipes, burst water mains, irrigation, or even the act of emptying a swimming
pool are all documented examples of sinkhole triggers.

• Construction and development are also potential triggers. Modifying surface drainage or altering
loads imposed on the ground without adequate support can cause sinkholes to develop.

• Drought or groundwater abstraction can cause sinkholes by changing the level of the water table.
A declining water table removes the buoyant support water provides to a cavity. Draining these
cavities can cause them to collapse.

• Mining can cause sinkholes by dewatering and lowering the water table or intercepting clay­filled
voids that subsequently collapse.

• Gypsum, limestone, and salt layers are susceptible to dissolution, which can cause underground
cavities to form.

Knowing the potential triggers for a specific area will make it more insightful what the hazards asso­
ciated with sinkholes are. These hazards can then be mitigated by appropriate planning, good site
investigation, appropriate design and proper maintenance of infrastructure such as drains and ser­
vices (British Geological Survey, 2020). Knowledge of the existence of specific triggers in an area will
also help with identifying surface characteristics or expressions of a sinkhole.

2.1.2. Sinkhole Surface Expression
Collapse sinkholes have devastating consequences and potentially a significant impact when reaching
the surface. An extreme example is a collapse sinkhole in Guatemala. On February 22, 2007, a collapse
sinkhole appeared at the intersection of two streets. The sinkhole was 30 m in diameter and 60 m deep.
The collapse destroyed houses and even costed people their lives (Hermosilla, 2012). The sinkhole in
Guatemala is an extreme example, but many other examples of sinkhole formation showed a significant
hazard to the built environment (Chang & Hanssen, 2014; Gutiérrez et al., 2007; Intrieri et al., 2015;
Malinowska et al., 2019; Nof et al., 2013).

The sinkhole visible at the surface is only a small sign of the extent of the actual cavity underground
(Augarde et al., 2003; Hermosilla, 2012). The surface expression is the (sub)circular shape of the
subsidence bowl visible at the surface due to the influence of an upward migration cavity (impending
sinkhole). The surface expression is usually the best predictor since other methods for detecting
impending sinkholes have a high cost or low spatial resolution. High spatial resolution is important
because sinkhole prone areas tend to be very large relative to the sinkhole expression (Intrieri et al.,
2015).

Some sinkholes have a minimal surface expression since the cover material is very strong (i.e.,
cohesive or caprock/bedrock) and are therefore hard to detect (e.g.,Fig 2.2­C and Fig. 2.1­B). When
looking from an observational perspective, the detected surface expression can describe by two classi­
fications. These are the cover­collapse and cover­subsidence sinkholes (Hanssen et al., 2020). Cover
sagging, suffosion, and collapse sinkholes are classified as subsidence sinkholes in Waltham et al.
(2005). Therefore, from an observational viewpoint, the distinction is made that a sinkhole forms as a
cover­subsidence sinkhole and potentially develops into a cover­collapse sinkhole.

The process of this development can be separated into three phases. The first phase is cavity
creation (trigger) and upward migration. The depth of the cavity is such that deformations at the
surface are negligible. The second phase starts when the cavity approaches the surface, and inter­
actions between the surface and the cavity start to arise. This means that for each cavity position
in the subsurface, the surface will deform accordingly. In the second stage, the cavity migration can
(temporarily) slow down or stop due to geological setting or the phreatic water level. The third and last
phase is the (catastrophic) collapse whereby the cavity intersects with the surface creating a sinkhole
(Hanssen et al., 2020).

The second phase is of most interest to this thesis. During this phase, the cavity exerts influence on
the surface, which we want to detect. These morphological features are mainly controlled by the type
of material the sinkhole is forming in. Weak or soft materials are characterized by a near­surface strain
distributed across many small fractures. A gradually and smoothly developing subsidence bowl at the
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surface widens as it deepens before the collapse (if that happens). Stronger materials tend to show
less subsidence before the collapse. Also, the sinkhole widens as it deepens but more in a step­wise
manner. New marginal fractures form and delimit marginal blocks (Al­Halbouni et al., 2019).

The geometric relationship between a subsurface cavity and sinkhole’s surface expression is not
straightforward and should be treated with caution (Al­Halbouni et al., 2019). However, in a stronger
material, the sinkhole’s surface expression may relate to subsurface cavity geometry to a variable
degree. It means that the relation between the cavity growth and the surface expression can be
inferred, to a certain extent. This relationship is especially strong for shallow cavities, overlying with
strong material and stable cavity growth up until the catastrophic surface collapse (Al­Halbouni et al.,
2019).

The geological setting and water availability govern the speed by which a sinkhole develops (Gutiérrez
et al., 2008; Luu et al., 2019).

Upward migrating cavities might encounter more cohesive layers, which (temporary) slows down the
upward movement. After traversing these cohesive layers, acceleration events can occur (as observed
in Chang & Hanssen (2014)). However, sometimes the upward migration completely stops due to the
more cohesive layers (Gutiérrez et al., 2008). Sinkholes might also exhibit accelerated subsidence by
cavities migrating to softer soils (Nof et al., 2019). Sinkhole formation also tends to increase with an
increasing water supply (e.g., flooding) (Luu et al., 2019). Higher rates of water will result in a higher
transport rate of sediments. Luu et al. (2019) also concludes that the floodwater level does not seem
to influence sinkhole size substantially.

Modeling Sinkhole Surface Expressions
Understanding the hazard posed by impending sinkholes can be precious information. However, most
of the sinkhole development happens underground, and most of the time, sinkholes are only detected
after their catastrophic collapse event has occurred. Sinkhole models try to relate the surface expression
to the subsurface cavity development. Nonetheless, this linking process should be treated with caution
(see Al­Halbouni et al. (2019)).

The literature describes various methods to model a developing sinkhole. Shalev & Lyakhovsky
(2012) describes the use of a 2­dimensional numerical viscoelastic damage rheology model. Here,
ground failure concerning viscous flow, brittle fractures, or a combination is simulated by step­wise
removing material. Al­Halbouni et al. (2019) describes the use of a 2­dimensional distinct element
method for numerical simulations. It simulates cavity growth and relates that to the surface expression.
Atzori et al. (2015) and Kim et al. (2016) describe the use of the Okada model (Okada, 1985) to compute
surface displacements. The Okada model is calibrated to the local case using InSAR displacement
estimates (Hanssen, 2001; van Leijen, 2014) obtained from space­borne measurements. Kratzsch
(1983) and Ren et al. (1987) describe the development of the surface expression using empirically
derived mathematical models. These are numerous models used to approximate and predict sinkhole
behavior. Every model has its benefits and its limitations. Therefore, each case will have their own
preferred model.

Models can approximate the general behavior of an impending sinkhole. In turn, these models can
be calibrated to fit a specific case using obtained ground samples and ground displacement measure­
ments. However, calibrating a model to fit a specific case might be costly to achieve. Numerical models
of the interaction between cavity growth, material deformation, and overburden collapse is desirable
to understand sinkhole hazard better but is a challenging task due to the involved high strains and
material discontinuities (Al­Halbouni et al., 2019). Perhaps a numerical model is only viable in areas
with a high frequency of sinkhole formation and relatively unified and simple soil makeup. Therefore,
simpler sinkhole surface expressions (i.e., Kratzsch (1983) and Ren et al. (1987)) might be desirable in
new areas, areas with low sinkhole formation frequency, or areas where both conditions are combined.

2.2. Characterization of Ground Movement
When a subsurface void is created, it impacts the stress distribution in the subsurface. The movement
of the strata is often compared to the bending of a beam or slab (Eckardt, 1913). If the void gets
too large, the roof collapses, filling up the void. The upward migrating process can continue until it
intersects with the ground surface and ending in a catastrophic collapse event. When the void gets
closer to the surface, the induced stresses will increasingly be more visible as a surface depression. The
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surface depression commonly looks like a subsidence trough whereby the soil predominantly moves
downward and, to a lesser degree, moves horizontally towards the center of the trough.

This section aims to quantify the effect of a subsurface void on the vertical and horizontal surface
displacements. This quantification for the vertical displacements results in mathematical expressions for
subsidence, slope, and curvature. The horizontal movement is quantified as horizontal displacement,
linear change, and compression or extension.

There are two viewpoints to define and calculate vertical and horizontal displacement. The first
viewpoint is the Eulerian viewpoint. Here, the horizontal location is fixed, and the point elevation
changes at that location. The Lagrangian viewpoint follows a particular point and looks at the various
forces applied to that specific point. The hypothesis is that the Lagrangian viewpoint corresponds better
to a PSI point since it follows a moving reflection point. The reflection point moves in the north, east,
and up direction. The three directions are projected as one vector onto the line of sight direction.

2.2.1. Components of Ground Movement
As already mentioned, the subsurface void induces vertical and horizontal displacements. These dis­
placement directions are referred to as components. The overarching term ground movement is there­
fore split up into two components, vertical and horizontal displacement. The downward vertical dis­
placement is usually referred to as subsidence. Derivative components of the subsidence are the slope
(or tilt) and the curvature (Kratzsch, 1983; Ren et al., 1987). The horizontal displacement acts in all
horizontal directions. The linear change is the change in horizontal distance between two consecutive
and discrete points. The compression or extension is calculated by dividing the linear change by a
particular length (e.g., 1 meter) (Kratzsch, 1983).

The creation of a subsurface void induces stress, and stress is a physical quantity that expresses
internal forces of neighboring particles exert on each other. Strain is a measure of the deformation of
a material—the material breaks or ruptures when the strain gets too large. The breaking or rupturing
of the materials is dependent on the material properties.

A void approaching the surface causes a subsidence trough to arise at the surface. This subsidence
trough has a particular slope and curvature. Also, some horizontal displacement is present during the
formation of the subsidence trough.

Figure 2.3: Terminology and expected displacement for different components of ground movement induced by a subsurface
void. Figure from (Kratzsch, 1983).
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Subsidence
The left­hand side of Fig. 2.3 shows the subsidence component and derivatives of that component. The
first curve is the subsidence curve creating the subsidence trough. At the center of this subsidence
trough, the maximum subsidence (𝑣z,max) is located. Taking the first derivative of the subsidence
trough will give the slope, slant, inclination, or tilt (𝑣′z). The maximum tilt is denoted as 𝑊 in Fig. 2.3.
Taking the derivative of the tilt gives the curvature (𝑣″z ). The curvature is subdivided into two parts,
the convex part and the concave part. The last parameter of interest for the subsidence calculation is
the limit angle (𝛾). The limit angle shows the limit of the influence cone of the subsurface void on the
surface.

Horizontal Displacement
The right hand side of Fig. 2.3 shows the horizontal component and its derivatives. The displacement
curve resembles the curve of the tilt (Kratzsch, 1983) but is not the same. The first curve is the
horizontal displacement with the maximum displacement denoted as 𝑣𝑟,𝑚𝑎𝑥. The horizontal displace­
ment acts radially towards the center of the subsidence trough. Consider that the surface consists of
discrete points, the amount of horizontal displacement on each point depends on its location in the
subsidence trough and results in changing point distances. The changing distance between discrete
points is called the linear change. From the edge of the trough towards maximum horizontal displace­
ment, extension strain (+𝜖) is observed. At the point of maximum extension strain, the angle of break
is defined (Fig. 2.3). The angle of break is the first location where ruptures will arise (Kratzsch, 1983).
Compressive strain (−𝜖) is observed from the maximum horizontal displacement towards the center of
the trough.

2.2.2. Lagrangian and Eulerian Viewpoint
The two viewpoints originate from fluid mechanics. The Langrangian viewpoint of fluid mechanics
extends particle mechanics and focuses on the material particles as it moves through the flow. Each of
these particles is identified by its original position. The Eulerian viewpoint looks at a specific location
in space and observes that location as time proceeds. With the Lagrangian viewpoint, all positions of
interest are moved w.r.t. a common location in space. In contrast, with the Eulerian viewpoint, the
position in space depends on the position affected (Panton, 2006). Adopting the Eulerian viewpoint
loses the ability to track the history of a particle, and the attention is focused on specific points in space
at various times.

Therefore, measuring and modeling techniques either measure from a Lagrangian or Eulerian view­
point; for example, leveling measures from an Eulerian viewpoint since it is only reports vertical move­
ment. Global Navigation Satellite System (GNSS) measures the North, East, and Up direction of a
physical benchmark. Therefore identifying the origin is still possible.

Models can make use of either viewpoint. When the model is only interested in the subsidence
and tries to estimate the new shape of the surface, it is referred to as geometry­driven modeling (e.g.,
kinematic deformation model). In contrast, when a particular physical process estimates the new
surface shape, it is called physics­driven modeling (e.g., Mogi source).

With InSAR, the displacement time series is created relative to the first epoch (Hanssen, 2001; van
Leijen, 2014). Therefore, the origin of a point is automatically defined, and the movement is tracked
by the satellite over time. These characteristics are more in line with the Lagrangian viewpoint than the
Eulerian viewpoint. However, most (geometric) models are based on Eulerian factors. The Mogi model
uses the starting location of a point in space and calculates the displacement a point undergoes in three
directions. Thus, the Mogi model uses the Lagrangian viewpoint to calculate ground displacements.

Lagrangian Mogi Point Source Model
The Mogi model is a physics­driven model based on the principle of an inflating or deflating magma
chamber, which induces surface displacements (Delaney & McTigue, 1994; Dzurisin, 2006; Kiyoo, 1958).
An analytical solution is obtained by introducing a spherical cavity that inflates or deflates due to
hydrostatic pressure change in an elastic half­space. The equation is:

[
𝑢
𝑣
𝑤
] = 𝑎3Δ𝑃(1 − 𝜈)𝜇 [

𝑥
𝑅3𝑦
𝑅3𝑑
𝑅3

] , (2.1)
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where 𝑢,𝑣,𝑤 are displacements of the point (𝑥, 𝑦, 𝑧), 𝑎 is the radius of the hydrostatic sphere, Δ𝑃 is
the change in hydrostatic pressure in the sphere, 𝜇 is the shear modulus, the center of the cavity is at
(0, 0, −𝑑), and 𝑅 = √𝑥2 + 𝑦2 + 𝑑2 is the radial distance from the center of the cavity to a point on the
surface. 𝜈 is Poisson’s ratio of the half­space. Three assumptions are critical when using Eq. (2.1):

1. the subsurface is assumed to behave as an isotropic elastic half space (Poisson’s ratio 𝜈, Shear
modulus 𝜇),

2. the sphere’s radius, 𝑎, is much smaller than the depth of the point source, 𝑑. (i.e., 𝑎 << 𝑑).

Delaney & McTigue (1994) found a relationship between the hydrostatic pressure and the volume
change of a point source. The relation is

Δ𝑉 ≈ Δ𝑃
𝜇 𝜋𝑎

3. (2.2)

Implementing Eq. (2.2) into Eq. (2.1) gives

[
𝑢
𝑣
𝑤
] = Δ𝑉1 − 𝜈𝜋 [

𝑥
𝑅3𝑦
𝑅3𝑧
𝑅3

] , (2.3)

where the cavity radius 𝑎, shear modulus 𝜇 and the hydrostatic pressure Δ𝑃 are substituted by 𝜋 and
Δ𝑉 (Delaney & McTigue, 1994; Dzurisin, 2006; Kiyoo, 1958).

Eulerian­based Geometric Models
Analyzing the movement of points in a trough area shows that the points move in the direction of a
focal point in the subsurface (Kratzsch, 1983). In the case of an impending sinkhole, the focal point
can also be referred to as the subsurface void or cavity. Therefore, the subsurface void at depth 𝐻
creates at the surface a subsidence trough with a specific shape. The deepest point of this trough lies
directly vertically above the void. The margin of the surface trough is determined by the limit angle 𝛾
(Kratzsch, 1983; Reddish & Whittaker, 1989; Ren & Li, 2008). Fig. 2.4 shows the different angles of

Figure 2.4: Simplified sinkhole model showing the different angles of interest. Θ is the angle of draw, 𝜁 is the zone angle and 𝛾
is the limit angle.

interest in determining trough parameters. 𝜁 is the zone angle that lies within the range 0 ≤ 𝜁 ≤ Θ.
The radius of influence (𝑅) is then computed using

𝑅 = 𝐻
tan(𝛾) (2.4)

and shows the extent to which the subsurface void exhibits its influence onto the surface. The limit
angle is a critical parameter in subsidence analysis and prediction according to Ren & Li (2008). The
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limit angle defines the extent of the effect a subsurface cavity has on the surface. Beyond this limit,
the impact of subsidence is insignificant and negligible. Also, the angle depends on the strength and
the composition of the overburden (Ren & Li, 2008). Therefore, taking local geological aspects into
account. A consequence is that the 𝑅 is the size of the surface expression and beyond this distance
the subsidence is expected to be insignificant and negligible.

Selected geometric models (influence functions)
The influence function (i.e., geometric model) determines the shape of the trough. An influence func­
tion can either be derived analytically from empirical evidence or is based on assumptions. Several
influence functions have been proposed this way. A benefit of influence functions is their ability to pre­
dict subsidence movements at any point above a subsurface void of any practical shape (depending on
the function used). Since the influence functions rely mainly upon the radius of influence (𝑅), they can
be readily adapted to take different geological conditions into account (Reddish & Whittaker, 1989).

The most well­known and common influence function is the stochastic (Gaussian) influence function
(Reddish & Whittaker, 1989; Ren et al., 1987). The function is given by

𝑘𝑧 =
1
𝑅2 exp(−𝜋

𝑟2
𝑅2) . (2.5)

However, other selected functions are also proposed, such as

𝑘𝑧 =
3
𝜋𝑅2 [1 − (

𝑟
𝑅)

2
]
2
, (2.6)

and

𝑘𝑧 =
2

𝜋√𝜋𝑅
1
𝑟 exp(−4 (

𝑟
𝑅)

2
) . (2.7)

Other influence functions are described in Ren et al. (1987),

𝑘𝑧 = cos2𝜁, (2.8)

and

𝑘𝑧 = 2.256
1
𝑟 exp(−4𝑟

2), (2.9)

and
𝑘𝑧 = 0.1392 exp(−0.5𝑟2). (2.10)

Eq. (2.8) makes use of the 𝜁 angle, the zone angle. The zone angle is in the range of 0 ≤ 𝜁 ≤ 𝜃,
whereby 𝜃 is the angle of draw. These angles are not to be confused with the limit angle 𝛾. Fig. 2.4
shows an overview of the different angles.

2.2.3. Mathematical Definition of Ground Movement Components
The subsidence is calculated using an influence function discussed in the previous section. A multitude
of influence functions were proposed by researchers (Kratzsch, 1983; Reddish & Whittaker, 1989; Ren
et al., 1987). However, the stochastic (Gaussian) influence function is the most popular function for
subsidence modeling (Ren & Li, 2008) and will be implemented in this thesis. The Gaussian influence
function is shown in Eq. (2.5). For deriving the different ground movement components, Eq. (2.5) is
adjusted to

𝑘𝑧 = exp(−𝜋 𝑟
2

𝑅2 ). (2.11)

The adjusted version of the equation is further used in this thesis and is further expanded on in Chapter
3. The influence function can be scaled by multiplying it with a scaling factor, denoted as 𝑆. Combining
both the influence function and the scaling factor provides

𝑣𝑧 = 𝑆 ⋅ 𝑘𝑧 (2.12)
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where 𝑣𝑧 is the experienced subsidence at an arbitrary location within the trough. The equation be­
comes

𝑣𝑧 = 𝑆 exp(−𝜋
𝑟2
𝑅2 ). (2.13)

Eq. (2.13) is the equation that is scaled to provide the approximate subsidence at every position within
the trough. The 𝑣𝑧 is not the subsidence velocity. It is the subsidence and the same terminology is
adopted from Kratzsch (1983).

Subsidence
The scaled influence function gives the subsidence. The tilt and curvature can be derived from the
subsidence curve. There are two approaches identified to calculate the tilt and the curvature based
on the subsidence curve. The first analytical approach takes the first and second­order derivatives
of Eq. (2.13) to calculate the tilt and the curvature of the subsidence profile. The second approach
is the numerical approximation, whereby numerical techniques are used to calculate the tilt and the
curvature.

The first approach is to use Eq. (2.11) and taking the first­order derivative. The equation becomes

𝑘′𝑧 =
2𝜋𝑟
𝑅2 exp(−𝜋 𝑟

2

𝑅2 ). (2.14)

The second derivative of the Gaussian influence function is

𝑘″𝑧 = 2𝜋
𝑅2 − 2𝜋𝑟2

𝑅4 exp(−𝜋 𝑟
2

𝑅2 ), (2.15)

and is used to determine the curvature of the profile. Taking the inverse of the curvature produces the
Radius of Curvature 𝜌𝑧,

𝜌𝑧 =
1
𝑘″𝑧
, (2.16)

and is the radius of a circle that intersects the curve at a specific point. The curvature is convex in the
area of the trough margin and concave in its inner zone. At the transition zone (location of maximum
tilt) the curvature goes from convex to concave (Kratzsch, 1983).

The second approach is the numerical approximation, which uses numerical techniques to derive
the subsidence curve’s tilt and curvature. The first derivative numerical equation is written as

𝑘′𝑧 =
𝑘𝑖−1𝑧 − 𝑘𝑖𝑧

𝑠 , (2.17)

and is the backward difference equation for the first derivative whereby 𝑘𝑖𝑧 is a point on the subsidence
curve, and 𝑠 is the distance between two consecutive points. Kratzsch (1983) provides numerical
equations to calculate the concave and convex parts of the subsidence curve. The equation for the
concave part of the subsidence curve is

𝑘″𝑧 =
2𝑘𝑖𝑧 − 𝑘𝑖−1𝑧 − 𝑘𝑖+1𝑧

𝑠2 , (2.18)

whereby points from three locations are used. The equation for the convex part is

𝑘″𝑧 =
𝑘𝑖−1𝑧 − 2𝑘𝑖𝑧 + 𝑘𝑖+1𝑧

𝑠2 . (2.19)

These equations are based on the central difference of the second derivative (Heath, 2018). As stated
earlier and in Kratzsch (1983), the curvature is convex in the area of the trough margin and concave
in its inner zone.
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Horizontal Displacement
One technique to directly measure subsidence is through leveling. Horizontal displacement can be
determined trigonometrically with a total station, using angles and distances measured from a known
point (Kratzsch, 1983). Therefore, measuring the horizontal movement is not always available. Kratzsch
(1983) states that the movement of points in a trough area displays movement in the direction of a
focal point in the subsurface. In this section, the horizontal displacement is calculated using the focal
point method.

Focal Point Method
The focal point method assumes that there is a known depth for the cavity. The depth of the cavity

is challenging to determine from just the surface subsidence pattern. However, using the relation
shown in Eq. (2.4) an estimate of the depth of the cavity can be made. Also, as will be shown in the
following chapters, the shape of the curve will tend to be independent of the cavity depth, and the
cavity depth only has an influence on the magnitude of the horizontal displacement and its subsequent
components.

Then, the equation for the focal point method becomes

𝑣𝑟 = 𝑣𝑧
𝑟
𝐻 , (2.20)

where 𝑟 is the radial distance from the center, 𝐻 is the cavity depth, and 𝑣𝑧 the subsidence at radial
distance 𝑟. The geometry is shown in Fig. 2.5. Here, we see the parameters from Eq. (2.20). The

Figure 2.5: Simple cross section on the calculation of the horizontal displacement using the known subsidence based on the
focal point method.

figure also shows the 𝛾 parameter which is the limit angle and used in Eq. (2.4).
The horizontal displacement is calculated using Eq. (2.20) with the parameters subsidence (𝑣𝑧),

radial distance (𝑟) and the depth (𝐻) of the cavity. Since the radial distance is taken, it will result in a
figure which is (concentric) symmetric w.r.t. the center of the impending sinkhole.

Linear Change
The magnitude of the horizontal displacement differs with the radial distance towards the center. The
non­uniform horizontal displacement will lead to changes in point spacing. The term for changes in
point spacing is dubbed linear change, or mathematically written as Δ𝑠. Linear change is expressed as

± Δ𝑠 = 𝑣𝑥2 − 𝑣𝑥1, (2.21)
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which is the difference in the horizontal position of two consecutive points. When the linear change is
negative, shortening is happening. When the linear change is positive, lengthening is taking place.

Compression and Extension
When relating the linear change to a fixed distance (𝑠), usually 1 meter, the compressive and extensive
strain (±𝜖) is calculated:

𝜖 = ±Δ𝑠𝑠 = ±𝑣𝑥2 − 𝑣𝑥1𝑠 . (2.22)

Compressive strain is negative, and extension strain is positive. The angle of break is calculated from
the maximum value of the extension strain. The angle of break is shown in Fig. 2.3 and explained in
Section 2.2.1. Table 2.1 summarizes the different ground movement components and its derivatives.

Table 2.1: Table from Kratzsch (1983) showing the different ground movement components together with their symbol and
units.

Vertical Components Horizontal Components
Designation Symbol Unit Designation Symbol Unit
Subsidence 𝑣𝑧 m Displacement 𝑣𝑥,𝑣𝑦,𝑣𝑟 m
Tilt 𝑣′𝑧 m/m Linear Change ±Δ𝑠 m
Curvature 𝑣″𝑧 1/m Extension +𝜖 m/m
Radius of influence 𝜌𝑧 m Compression −𝜖 m/m

2.3. Detection Methods and Conditions
The easiest way of searching for impending sinkholes is by direct inspections in the field. Subtle cues
might reveal the presence of impending sinkholes in the area, e.g., direct observation of cracks in
buildings (Buchignani et al., 2007).

Other detection techniques rely on two characteristics of a sinkhole; the existence of a subsurface
cavity or the detection of precursory motion .

The detection of subsurface cavities can be measured using various geophysical measurement tech­
niques. The five most common geophysical techniques are electrical resistivity, electromagnetic con­
ductivity (EM), ground­penetrating radar (GPR), microgravimetry, and cross­hole tomography (Gutiérrez
et al., 2007). The technique that is most frequently used in recent years is GPR. GPR has a rapid acqui­
sition of data and can identify and localize subsurface geometries and cavities (Gutiérrez et al., 2007;
Intrieri et al., 2015). The disadvantage of using GPR is its limited depth, and penetration is greatly
reduced by conductive materials such as clay and water.

Detection of precursory motion can be measured using geodetic techniques. Relevant geodetic
(monitoring) techniques to measure surface motion are robotic total stations (RTS), global positioning
systems (GPS), and terrestrial laser scanning (TLS). The monitoring technique RTS measures distances
and angles with an accuracy at the millimeter level. The limitation in using this technique is that the
targets should not be placed further apart than the sinkhole’s diameter (Intrieri et al., 2015). RTS would
be increasingly impractical for smaller sinkholes or larger areas. GPS is better suited for monitoring
sinkholes. It has a high acquisition frequency and in certain configurations it can even obtain millimeter
precision (Elnabwy et al., 2013; Intrieri et al., 2015; Wang et al., 2011; Zhu et al., 2014). However, the
limitation of GPS is that it will only measure a small area. Covering large areas can only be achieved by
placing many antennas (Intrieri et al., 2015). The TLS has been primarily used to study well­developed
sinkholes. The limitations are that the presence of vegetation will influence the measurements, and
in order to measure subsidence, the angle should be high between the laser scanner and the ground
(Intrieri et al., 2015).

Remote sensing methods collect data from airborne or spaceborne platforms. A standard method
used is Interferometric Synthetic Aperture Radar (InSAR) which can be used for detecting precursory
subsidence preceding collapse sinkholes (Jones & Blom, 2014; Kim et al., 2016; Nof et al., 2013).
The areas containing new impending sinkholes tend to be extensive (> 1km). Currently, InSAR and
PS­InSAR (Nof et al., 2019) are the only suitable methods covering large areas (Gutiérrez et al., 2019).

To successfully detect impending sinkholes, Hanssen et al. (2020) has composed four detection
conditions necessary to detect impending sinkholes. Each item is necessary to observe changes in the
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surface geometry. These conditions are:

1. sufficient spatial sampling (at least two measurement points close enough to the center)

2. sufficient temporal sampling (at least two measurement points within the precursory subsidence
interval)

3. sufficient precision (to detect precursory subsidence)

4. sufficient representativity, where the measurements are representative of the deformation signal
of interest.

These conditions were proposed in Hanssen et al. (2020) and act as guidelines for detecting impending
sinkholes.

2.4. Persistent Scatterer Interferometric Synthetic Aperture Radar
Large­scale surface monitoring has had a massive influx of new applications due to the increasing avail­
ability of satellite­based data. Such a new application is the surface deformation measurements using
satellite­based radar data. With radar surface deformation measurements, mm­scale deformations can
be observed and, ideally, coupled with different phenomena such as sinkholes. In this chapter, the
steps from satellite radar measurements to PSI displacement estimates is explained,

since this study needs to detect precursory subsidence precisely.

2.4.1. Radar
Radar stands for ’Radio Detection and Ranging’ and is both a technique and a method. With radar,
electromagnetic (EM) pulses are transmitted and received with either the same antenna (monostatic)
or a different antenna (bistatic). By timing the time­of­flight of the radar pulse, the distance can be
computed. Radar is an active system, meaning it sends out signals and does not rely on external
sources (Hanssen, 2001). It can be used in all weather conditions and during day and night (Skolnik
et al., 1962).

2.4.2. SAR
A (satellite) coherent radar sends out a pulse, or chirp, and waits for the response. It measures
the received phase and amplitude of the signal. Synthetic Aperture Radar (SAR) is a technique that
looks at stable phase behavior within the period of sending and receiving of the pulse. In this way, the
azimuth resolution (the direction, heading of the satellite) will increase about three orders of magnitude
(Hanssen, 2001). The obtained signal is in the format of a Single Look Complex (𝑎 + 𝑏𝑖) imaginary
number, but can also be denoted as a complex phasor, 𝑃 = 𝐴 exp(𝑖Φ) whereby 𝐴 is the amplitude of
the signal and Φ the fractional phase (Hanssen, 2001; van Leijen, 2014).

2.4.3. InSAR
An interference pattern can be created by taking two SAR images from the same position in space
but at separate points in time. In practice, two SAR images are taken and the measured phases are
subtracted. The interference pattern, or fringes, is an indication of the phase difference between these
two images. The distance between the two acquisition locations is called the baseline and should be
small since, otherwise, geometric decorrelation will occur. The goal is to use the interference pattern
to estimate the deformation in a particular area that happened within the period between the two
acquisition moments. However, it is not possible to immediately use the obtained phase differences and
compute the deformation. The measured signal has many contributing sources or phase contributors.

Interferometric phase contributors
The computed InSAR image contains phases composed of multiple phase contributors. The following
equation shows the different phase contributors:

𝜙𝑚𝑠 = Φ𝑚 −Φ𝑠 = −2𝜋𝑎 +𝜙flat +𝜙topography +𝜙deformation +𝜙atmosphere +𝜙scattering +𝜙noise. (2.23)

The equation shows the subtraction between the first image (Φ𝑚, master) and the second image
(Φ𝑠, slave). Eq. (2.23) shows the seven phase contributors. The first contributor is 𝑎. 𝑎 is the
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integer number of cycles for the two­way distance. The next contriubutor is the Flat Earth Phase
(𝜙flat). The flat Earth phase describes the contribution due to a reference surface, e.g., an ellipsoid
(?). The topographic phase (𝜙topography) describes the influence of the topography above the reference
surface. The deformation phase (𝜙deformation) consists of the displacements of the surface and is the
phase contributor of interest in this thesis. The atmospheric contributor (𝜙atmosphere) incorporates the
delay the atmosphere introduces. The scattering contributor (𝜙scattering) and the noise contributor
(𝜙noise) are effectively the same, but the scattering contributor describes the changing backscatter
characteristics of a pixel. The noise term consists of the processing noise introduced (van Leijen,
2014).

Deformation Phase
The deformation phase is the contributor of most interest, because it consists of the displacements
on the surface. However, the phase measurement is the projection of the actual three­dimensional
deformation vector onto the line of sight vector. The actual three­dimensional deformation vector is

𝑑𝑔𝑒𝑜 = [𝑑𝑒 , 𝑑𝑛 , 𝑑𝑢]𝑇 . (2.24)

The vector consists of the deformation in the East­ (𝑑𝑒), North­ (𝑑𝑛), and Up­direction (𝑑𝑢). The
relationship between the line of sight measurement and the three­dimensional vector is given by

𝑑𝑙𝑜𝑠 = 𝑝𝑇𝑑𝑔𝑒𝑜 = [− sin𝜃 cos𝛼ℎ , sin𝜃 sin𝛼ℎ , cos𝜃]𝑑𝑔𝑒𝑜 . (2.25)

Eq. (2.25) makes use of the heading (𝛼ℎ) of the satellite (the direction the satellite is flying w.r.t.
north direction) and the incidence angle, 𝜃 (Chang et al., 2014; Hanssen, 2001). The incidence angle
is inclined and therefore the satellite is sensitive to horizontal and vertical displacements. However,
depending on the heading angle (𝛼ℎ), the satellite is insensitive parallel to the heading angle and most
sensitive perpendicular to the heading angle (Hanssen, 2001; van Leijen, 2014).

Furthermore, the phase contributor is still in cycles and displacements are preferably shown with
a distance unit such as meters. The equation converting from cycles to meters, as described in van
Leijen (2014), is given by

𝜙𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 =
−4𝜋
𝜆 𝐷𝑙𝑜𝑠 . (2.26)

𝐷𝑙𝑜𝑠 in Eq. (2.26) is the displacement in the line of sight. 𝜆 is the wavelength used by the radar, and
𝜙𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 is the displacement in cycles. The whole process of creating InSAR images is commonly
automatized and described in the next section.

InSAR processing
In practice, the InSAR image creation is automatized, and a few extra steps are added to improve
the quality of the data. These steps are visualized in the flowchart in Fig. 2.6. This thesis will not go
further into the details of InSAR processing. For a more in­depth explanation of the various steps in
the processing scheme, see Hanssen (2001); van Leijen (2014). With the InSAR processing scheme
set­up, a stack of interferometric images can be created. These images contain temporal changes of
scatterers. However, not every scatterer behaves consistently over time and tends to become inco­
herent or decorrelated. In order to solve this problem, an algorithm is designed to look for persistent
scatterers in an interferometric data stack.

2.4.4. Persistent Scatterer Interferometry
Making multiple interferograms from the same position in space but at multiple moments (epochs) in
time generates an interferometric data stack. The decorrelation of a scatterer in time is a problem
when creating these InSAR time series. The Persistent Scatterer Interferometry (PSI) algorithm selects
pixels in the time series that constantly behave over time. These pixels are stable scatterers. Two types
of scatterers can be distinguished in an InSAR time series. The first type is the Point Scatterer (PS)
which looks at one strong and stable reflection of an object over time. The second type of scatterer is
the Distributed Scatterer (DS), where the distributed scattering mechanism is constructed by the sum
of many independent small scatterers within a predefined resolution cell (Goel & Adam, 2013).

The PSI algorithm is constructed out of three steps. The first step in the Persistent Scatterer
algorithm is the selection of Persistent Scatterer Candidates (PSC). This step is implemented to reduce



2.5. Early Detection and Warning System 19

Figure 2.6: InSAR processing flowchart from López Dekker et al. (2018).

the amount of processed data and to apply a filter for the quality of the reflection points. The selection
is based on the normalized amplitude dispersion 𝐷𝑎

𝐷𝑎 =
𝜎𝑎
𝑚𝑎
. (2.27)

Here, 𝜎𝑎 is the standard deviation of the amplitude, and 𝑚𝑎 is the mean amplitude. The pixel selection
threshold which is commonly used is 𝐷𝑎 < 0.25 (Bruna, 2020), but it can be adjusted to the user’s
preference.

The second step is the ’First­order network estimation.’ This step takes the most coherent scatterers
and estimates displacement parameters and DEM errors. The obtained phase residuals enables the
estimation of the atmospheric signal delay.

The third step is the ’Second­order network integration.’ Here, the parameters at the selected point
locations are obtained through a least­squares (LS) integration w.r.t. a reference point. From the
second­order network, it is possible to derive an entire deformation velocity field.

2.5. Early Detection and Warning System
Impending sinkhole risk prediction and assessment requires identifying existing sinkholes as the first
step and then making predictive statements where new impending sinkholes are likely to exist. The
critical characteristics, which should be taken into account, are size, frequency, subsidence mecha­
nisms, and rates (Gutiérrez et al., 2007). However, sinkholes are frequently masked by anthropogenic
activities. Sinkholes commonly have a subtle surface expression, or the underground cavity is not close
enough to the surface (Gutiérrez et al., 2007). The prediction of sinkhole occurrence can be subdivided
into a temporal and a spatial prediction.

The temporal prediction has two different methods to predict future sinkholes (Gutiérrez et al.,
2007). The first prediction method is based on an exact time in the future with a specific time interval
(range). The second prediction method predicts the frequency or the probability of a sinkhole occur­
rence. Both methods heavily rely on the historical data that is available for a specific area. Areas with
short or limited data tend to produce worse predictions. Also, when using historical data, a bias is
introduced. The bias is produced by the time the surveys were undertaken, and there is a bias towards
larger­sized sinkholes since they are much more often noticed and recorded (Gutiérrez et al., 2007).

The spatial prediction methods create susceptibility maps by looking at the locations of known
sinkholes. Within the susceptibility maps, zones are defined with each their own level of importance.
Zones with a higher level of susceptibility are close to or between the sinkhole occurrences (Gutiérrez
et al., 2007). Another indication of increased sinkhole risk is identifying the overall direction of the newly
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occurring sinkholes (Gutiérrez et al., 2007). These different levels of susceptibility and the dominant
direction are indications of where to apply the monitoring and to what degree.

Jones & Blom (2014) suggests that for hazard monitoring, InSAR is an economically viable tech­
nique. The reason being that InSAR is the most feasible solution when monitoring a large area. InSAR
produces wide imaging swaths and consistent repeat intervals. Therefore, an early warning system
for impending sinkholes should be centered around the usage of InSAR data. With InSAR, a generic
subsidence pattern can be discovered. By quantifying the surface strains, predictions can be made on
the size and growth rate of the sinkhole.

Currently, at the Dead Sea, a new early warning system is in development. Baer et al. (2018)
and Nof et al. (2019) describe an early warning system whereby the processing steps (i.e., satellite
image acquisition to processed interferogram) are automatized. When the processing is finished, a
specialist will inspect and compare the image to look for significant subsidence. The next step to
further automatize this system is to apply machine learning to automatically detect newly forming
sinkholes. Intrieri et al. (2015) used a ground­based SAR (GB­InSAR) device to monitor the area.
Here, the paper predicted the location of an impending sinkhole before it could reach the surface.
Significant subsidence was detected from the precursory subsidence. The sinkhole was predicted in
advance with sufficient time to dispatch a warning and thus showed the feasibility of the early warning
system.

Nof et al. (2019) states that the arid and sparsely populated Dead Sea is ideal when monitoring
for sinkholes using interferograms. Less ideal areas are more inclined to use Persistent Scatterer
Interferometry (Section 2.4.4). Malinowska et al. (2019) used PSI time series to detect and monitor
ground movements potentially associated with the existence of an impending sinkhole. It was found
that using PSI, it was still possible to identify zones where sinkhole would potentially occur, given
adequate spatio­temporal sampling. The identification of these zones was achieved by looking at
accelerated ground deformation. Accelerated ground deformation was detected within a radius of 100
meters of the impending sinkhole. Chang & Hanssen (2014) also discovered two acceleration events
before the catastrophic sinkhole collapse in shopping mall ’t Loon. The shopping mall is located in the
Netherlands. The collapse occurred on December 3, 2011.

Using InSAR for early detection has its advantages but also has its limitations. Intrieri et al. (2015)
identified two major limitations in using InSAR:

• The small size of a sinkhole with respect to the susceptible area to be monitored;

• The short time between the detection of precursors (if any) and the collapse.

These limitations are inline with the conditions mention in Section 2.3. The resolution determines the
minimum detectable sinkhole size. The PSI technique looks for coherent scatterers. Coherent scatterers
are obtained based on the surface cover type. Areas containing less ideal scattering surface covers
provide less coherent scatterers. The result is that displacement estimates are not homogeneously
distributed over the areas. A consequence is that the detection of a sinkhole is limited to the vicinity or
the spacing between coherent scatterers. Impending sinkholes closer to a measurement point will show
a larger displacement signal. More measurement points are important for determining the sinkhole size.

Another limitation is the acquisition time. Depending on the used satellite mission, the sinkhole
must have a subsidence period longer than the acquisition time interval (Nof et al., 2019). However,
with the advent of more frequent­repeat SAR missions, the possibility of detecting impending sinkholes
will increase.



3
Methodology

In this chapter we discuss the detection methodology developed in this study. We begin by explaining
the methodology developed for describing the surface expression. We can base the surface expression
on the geometric model, which is Eulerian­based. A Lagrangian­based model is the Mogi Point Source
Model and we will explain how we implemented this model. Adding a temporal aspect to the geometric
model will create the kinematic model. With the kinematic model we can use displacement estimates
to calculate unknowns. Section 3.2 will talk about the methodology for time series characteristics
determination. We discuss the method to superimpose a sinkhole signal on top of a real dataset,
and methods to create maps showing the minimum detectable size, minimum detectable deformation
and detectability power. Section 3.3 describes the methodology for implementing the spatio­temporal
strategy. The last section, Section 3.4, describes the implementation of the temporal strategy based
on arcs.

3.1. Sinkhole Surface Expression
In this section, we look at the surface signature of an impending sinkhole, using models gathered from
literature.

3.1.1. Scaling Factor
In Section 2.2.2, we introduced the geometric model based on influence functions found in the lit­
erature. The geometric model based on the inverse Gaussian curve is the most popular model for
subsidence modeling (Ren & Li, 2008):

𝑘𝑧 =
1
𝑅2 exp(−𝜋

𝑟2
𝑅2) , (3.1)

where 𝑅 is the radius of influence, which governs the surface extent of the sinkhole. The literature
stated that the subsidence beyond 𝑅 can be neglected (Ren & Li, 2008). The influence function is
based on the normal distribution. The normal distribution is given by

𝑔(𝑥) = 1
𝜎√2𝜋

exp(−(𝑥 − 𝜇)
2

2𝜎2 ) . (3.2)

In Eq. (3.1) 𝑅2 is similar to the 𝜎2 in Eq. (3.2). One 𝜎 around the mean is equivalent to 68% of the
curve and therefore one might think that it is also the case for the 𝑅2 in Eq. (3.1). Fig. 3.1 shows
that the comparison between the Gaussian influence function and the normal distribution is not valid.
Therefore we conclude that the assumption that beyond the distance 𝑅 the subsidence is insignificant,
is valid.

The radial distance 𝑟 from the center towards an arbitrary location within the subsidence trough, is
defined as:

𝑟 = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2, (3.3)

21
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Figure 3.1: Comparison between the Gaussian influence function and the normal distribution. Both curves are normalized.

where 𝑥0 and 𝑦0 are the center coordinates of the depression of the impending sinkhole.
In Eq. (3.1) there is factor 1

𝑅2 that is unnecessary and can be removed, i.e.,

𝑘𝑧 = exp(−𝜋 𝑟
2

𝑅2) . (3.4)

We can scale the geometric model to actual displacement values by multiplying the model of Eq. (3.4)
with a scaling factor. We define the scaling factor as the maximum subsidence present at the center
of the trough. Thus Eq. (3.1) with the scaling factor becomes:

𝑣𝑧 = 𝑆max exp(−𝜋
𝑟2
𝑅2) , (3.5)

where 𝑆max is the maximum subsidence and 𝑣𝑧 becomes the vertical displacement.
In mining subsidence engineering (Kratzsch, 1983; Reddish & Whittaker, 1989) the maximum sub­

sidence is related to the seam thickness, 𝑀, and the subsidence factor, 𝑎, with 𝑆max = 𝑎𝑀. The
subsidence factor is a dimensionless factor that is empirically found for the local overburden. Reddish
& Whittaker (1989) described an empirical relationship used in the USSR as

𝑆max =
2𝑀𝑤
𝑤 +𝑤𝑐

, (3.6)

where 𝑆max is the maximum subsidence, 𝑀 is the seam height, 𝑤 is the seam width and 𝑤𝑐 is the
critical seam width 𝑤𝑐 = 1.15ℎ, where ℎ is the seam depth. The factor 1.15 follows from the limit
angle, 𝛾 (see section 2.2.2), with 𝑤𝑐 =

ℎ
cos(𝛾) (Reddish & Whittaker, 1989).

Hence, we use the scaling factor to tune the generic geometric model to specific cases. An im­
pending sinkhole causes the ground to subside gradually and thus deepen the subsidence trough. The
geometric model does not incorporate the temporal deepening of the trough. Therefore, we modify
the scaling factor to fit our needs. We redefine the scaling factor as a subsidence velocity 𝑣 and a time
parameter 𝑡.

3.1.2. Kinematic Model
Modifying 𝑆max to incorporate the subsidence velocity 𝑣 and the time 𝑡 gives:

𝑆max(𝑡) = 𝑣 ⋅ 𝑡. (3.7)
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Combining Eq. 3.7 and Eq. 3.4 gives:

𝑣𝑧 = 𝑣 ⋅ 𝑡 ⋅ exp(−𝜋
𝑟2
𝑅2) . (3.8)

With Eq. 3.8 we can compute the subsidence (𝑣𝑧).
Sinkholes, however, exhibit not only a linear behavior over time, but the subsidence can also ac­

celerate in time.

𝑣𝑧 = 𝑎 ⋅ 𝑡2 ⋅ exp(−𝜋
𝑟2
𝑅2) (3.9)

whereby 𝑎 is the acceleration and 𝑡 is the time parameter. By making the geometric model time
dependent, we convert the geometric model to a kinematic model.

3.1.3. Eulerian versus Lagrangian Displacement Comparison
We introduced two viewpoints in Section 2.2.2. The difference between the Eulerian and the Lagrangian
viewpoint lies in the assumptions. The Eulerian viewpoint only concerns the elevation changes at a
particular horizontal position, while the Lagrangian viewpoint tracks a point through space and time.
To mimic both viewpoints and their conclusions, we compare two types of models. The first model is
the geometric model, which is Eulerian. The Lagrangian physical model is the Mogi point source model
(see Section 2.2.2) and modeled after a physical process.

The geometric model approximates the shape of the subsidence trough. The model has two param­
eters to adjust the shape: the radius of influence 𝑅 and the maximum subsidence (𝑆max). 𝑅 influences
the width of the trough, and 𝑆max the vertical displacement. The disadvantage of using an Eulerian
geometric model is that it does not compute any horizontal displacement. We know that both vertical
and horizontal displacement is present during the precursory subsidence stage of a sinkhole. We can
compute the horizontal displacement, but we have to base it on the vertical displacement and another
assumptions, see Section 2.2.3.

Eq. (2.3) describes the volume­based Mogi source model. The important parameters are the Pois­
son’s ratio, 𝜈, the location of the source (𝑥0,𝑦0,𝑧0), and the volume change, Δ𝑉. With these parameters,
we compute the forces on each point in 3D space. We set the surface to 𝑧 = 0, and thus the source will
have the coordinates 𝑥0, 𝑦0, and 𝑧0 = −𝑑, where 𝑑 is the depth of the source. This depth is computed
using Eq. (2.4). In this case, 𝑑 is the same as 𝐻. We compute 𝐻 with 𝑅 (defined for the geometric
model) and 𝜃, the angle of draw, which is set to 35∘ (Ren & Li, 2008).

Methodology for Comparing the Models
We described the geometric model and the physical model corresponding to the two Eulerian and
Lagrangian viewpoint. Now, we explain how we compared both models.

We start by comparing the vertical displacement (subsidence) since the geometric model is based
on subsidence calculation. We define a surface consisting of 300 points with the extent going from ­20
meters to 20 meters. The center point is set to 0. We set the Poisson’s ratio (𝜈) to 0.25 as suggested
by Bekendam & Pottgens (1995) for Limburg. We apply for 𝑅 an arbitrary value of 15 meters, and
therefore fixing 𝑑. We compute 𝑑 according to Eq. (2.4) since we know 𝑅 and 𝜃. The volume for the
Mogi point source model is computed as follows

𝑉volume =
4
3𝜋𝑟

3. (3.10)

We compute Δ𝑉 by Eq. (3.10). The parameter 𝑟 in this equation is the radius of the sphere. We set 𝑟
to an arbitrary value of 0.5 meters creating a volume of slightly more than 0.5m3.

We then take the maximum absolute value of the displacement vector 𝑑𝑢 and assume it to be the
maximum subsidence for the kinematic model. In this way, we can scale the geometric model to the
physical model.

Next, we compare the horizontal displacements of the geometric model and physical model. We
compare the horizontal displacement of the physical and the kinematic model. We obtain the horizontal
displacement of the kinematic model with the focal point method (see Section 2.2.3). We already know
the depth of the cavity, since we need that information for the physical model.
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The last comparison we make between the two viewpoints is how they behave temporally. We make
the comparison by consistently subtracting the same amount of volume, i.e., −Δ𝑉, for the physical
model and use its maximum subsidence to scale the kinematic model. We update the 𝑥, 𝑦, and 𝑧
coordinates at each new time step.

3.1.4. Estimating kinematic model parameters using BLUE
We commonly perform computing unknown parameters, or estimates, with geodetic measurements
by Best Linear Unbiased Estimation, or BLUE. With this technique, we define a functional model,
𝐸{𝑦} = 𝐴𝑥, together with a stochastic model, 𝐷{𝑦} = 𝑄𝑦. The design matrix 𝐴 describes the func­
tional relationship between the observations, 𝑦, or measurements, and the estimates 𝑥. The stochastic
properties are parameterized by the variance­covariance matrix, 𝑄𝑦, of the measurements.

We solve the functional model, finding the Best Linear Unbiased Estimator, using:

𝑥̂ = (𝐴𝑇𝑄−1𝑦 𝐴)−1𝐴𝑇𝑄−1𝑦 𝑦. (3.11)

With an estimation for 𝑥̂, the adjusted observations, 𝑦̂, and the residuals, 𝑒̂, are:

𝑦̂ = 𝐴𝑥̂, (3.12)

𝑒̂ = 𝑦 − 𝑦̂. (3.13)

The benefit of using weighted linear least­squares is that it incorporates the stochastic properties of
the observations. We calculate the stochastic properties of the estimators using:

𝑄𝑥̂ = (𝐴𝑇𝑄−1𝑦 𝐴)−1, (3.14)

and the stochastic properties for the adjusted observations and residues are:

𝑄𝑦̂ = 𝐴𝑄𝑥̂𝐴𝑇 , and (3.15)
𝑄𝑒̂ = 𝑄𝑦 − 𝑄𝑦̂ . (3.16)

In this study we use weighted linear least­squares for the spatio­temporal strategy to compute specific
unknown parameters for the kinematic model. The kinematic model was expressed by Eqs. (3.8)
and (3.3). We can dissect the maximum subsidence parameter of the kinematic model into a velocity 𝑣
(or acceleration 𝑎) and a time parameter 𝑡, see Eqs. (3.7) and (3.8). We predominantly use the linear
relationship throughout this study. In order to apply weighted linear least­squares to the kinematic
model, we have to define and assume a few parameters first. Starting with the radial distance, see
Eq. (3.3), the 𝑥 and 𝑦 parameters are the coordinates of the measurement points. The 𝑥0 and 𝑦0
coordinates are the center of the phenomenon, i.e., the depression preceding a sinkhole. The location
of the sinkhole is not known a priori, and thus we do not know 𝑥0 and 𝑦0. However, we can implement
a grid search approach. We define a grid over our area of interest. Then, on each grid point, or
posting, we assume that it is the center of the impending sinkhole, defining 𝑥0 and 𝑦0. We define
the time parameter 𝑡 as the vector of all the used epochs in days relative to the first epoch, e.q.,
𝑡 = [0, 6, 12, 18].

The next parameter is the radius of influence, 𝑅. The size of the impending sinkhole is not known
a priori. There are two approaches to handle the parameter 𝑅. The first approach is to estimate both
the radius of influence and the subsidence velocity. This means that the kinematic model becomes a
non­linear function when solving for 𝑅 and 𝑣. The kinematic model has to be linearized and iteratively
solved.

The second approach is to simply assume a value for 𝑅. By assuming a value for 𝑅, the kinematic
model becomes linearly solvable.

We will first discuss how we linearize the non­linear kinematic model to solve for 𝑅 and 𝑣. Next, we
will discuss how assuming 𝑅 would make the kinematic model linear and thus linearly solvable for 𝑣.

Estimating the radius of influence and the subsidence
This section will explain how we linearize the Gaussian kinematic model and estimate the two unknowns.

The vertical displacement

𝐸{𝑧(𝑟)} = 𝑆𝑒−𝜋
𝑟2
𝑅2 (3.17)
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is a function of the radial distance, 𝑟, from the center of the bowl, see Eq. (3.3). The scaling factor 𝑆
is a function of time 𝑡. As time 𝑡 increases, the Gaussian bowl will deepen. Here, we assume a linear
relation

𝑆(𝑡) = 𝑣𝑡, (3.18)

and thus Eq. (3.17) translates to

𝐸{𝑧(𝑡, 𝑟)⏝⎵⏟⎵⏝
𝑦

} = 𝑣𝑡𝑒−𝜋
𝑟2
𝑅2⏝⎵⎵⏟⎵⎵⏝

𝐴(𝑥)=𝐴(𝑣,𝑅)
. (3.19)

There are two unknowns in the forward model, i.e., 𝑣 and 𝑅. However, Eq. (3.28) needs to be linearized
with respect to the two variables that need to be determined.

𝐸{Δ𝑧(𝑡, 𝑟)⏝⎵⏟⎵⏝
Δ𝑦

} = [𝑎1 𝑎2]⏝⎵⎵⏟⎵⎵⏝
𝜕𝑥𝐴(𝑥0)

[Δ𝑣Δ𝑅]⏝⏟⏝
Δ𝑥

, (3.20)

where

𝑎1=
𝛿𝑧
𝛿𝑣 = 𝑡𝑒

−𝜋𝑟2

𝑅02 , and (3.21)

𝑎2=
𝛿𝑧
𝛿𝑅 =

2𝜋𝑟2

𝑅03
𝑣𝑡𝑒−𝜋

𝑟2

𝑅02 = 2𝜋𝑟2

𝑅03
𝑧0(𝑟), (3.22)

where 𝑧0 follows from fitting the initial values for 𝑅0 and 𝑣0 in Eq. (3.20).
If we have 𝑁 observation points at 𝑇 epochs, we get

𝐸{Δ𝑧(𝑡, 𝑟)} = 𝐸{
⎡
⎢
⎢
⎣

Δ𝑧(𝑡1, 𝑟)
Δ𝑧(𝑡2, 𝑟)

⋮
Δ𝑧(𝑇, 𝑟)

⎤
⎥
⎥
⎦
} =

⎡
⎢
⎢
⎣

𝑎1(𝑡1, 𝑟) 𝑎2(𝑡1, 𝑟)
𝑎1(𝑡2, 𝑟) 𝑎2(𝑡2, 𝑟)

⋮ ⋮
𝑎1(𝑡𝑇 , 𝑟) 𝑎2(𝑡𝑇 , 𝑟)

⎤
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝

𝐴∘

[Δ𝑣Δ𝑅] (3.23)

where

Δ𝑧(𝑡𝑖 , 𝑟) =
⎡
⎢
⎢
⎣

Δ𝑧(𝑡𝑖 , 𝑟1)
Δ𝑧(𝑡𝑖 , 𝑟2)

⋮
Δ𝑧(𝑡𝑖 , 𝑟𝑁)

⎤
⎥
⎥
⎦
, 𝑎1(𝑡𝑖 , 𝑟) =

⎡
⎢
⎢
⎣

𝑎1(𝑡𝑖 , 𝑟1)
𝑎1(𝑡𝑖 , 𝑟2)

⋮
𝑎1(𝑡𝑖 , 𝑟𝑁)

⎤
⎥
⎥
⎦
, and𝑎2(𝑡𝑖 , 𝑟) =

⎡
⎢
⎢
⎣

𝑎2(𝑡𝑖 , 𝑟1)
𝑎2(𝑡𝑖 , 𝑟2)

⋮
𝑎2(𝑡𝑖 , 𝑟𝑁)

⎤
⎥
⎥
⎦
. (3.24)

Given the initial values 𝑅0 and 𝑣0, we find

Δ𝑧(𝑡𝑖 , 𝑟) = 𝑧(𝑡𝑖 , 𝑟) − 𝐴(𝑥0), (3.25)

where we find 𝐴(𝑥0) from Eq. (3.20) by filling in the initial values. We then estimate the unknown
parameter via

[𝑣̂𝑅̂] = [
𝑣0
𝑅0] + (𝐴

𝑇
∘𝑄−1𝑦 𝐴∘)−1𝐴𝑇∘𝑄−1𝑦 Δ𝑧(𝑡, 𝑟) and (3.26)

𝑄𝑥̂ = (𝐴𝑇∘𝑄−1𝑦 𝐴∘)−1. (3.27)

We estimate the unknown parameters iteratively using the Gauss­Newton iteration method. With
this method, we create a loop that converges to a particular answer.

Estimating the subsidence velocity
Estimating only the subsidence velocity is a linear problem and thus it doesn’t use the iterative scheme
we showed in the previous section. Another benefit is that we can use the same linear least­squares
approach for all geometric models. It is quicker and more reliable, but we have to make an extra
assumption assuming a value for 𝑅.



26 3. Methodology

The vertical displacement in the new case is still Eq. (3.28) with 𝑟 explained by Eq. (3.3). The
scaling factor 𝑆 is again rewritten as a linear relationship between subsidence velocity 𝑣 and time 𝑡 and
shown by Eq. (3.18). The final equation translates to

𝐸{𝑧(𝑡, 𝑟)⏝⎵⏟⎵⏝
𝑦

} = 𝑣𝑡𝑒−𝜋
𝑟2
𝑅2⏝⎵⎵⏟⎵⎵⏝

𝐴(𝑥)=𝐴(𝑣)
. (3.28)

This forward model only has one unknown and is linear. Therefore, we use the Best Linear Unbiased
Estimator (BLUE). The equation in matrix notation will look like

𝐸{𝑧(𝑡, 𝑟)⏝⎵⏟⎵⏝
𝑦

} = [𝑡𝑒−𝜋
𝑟2
𝑅2 ]⏝⎵⎵⏟⎵⎵⏝

𝐴
[𝑣]⏟
𝑥
= [𝑎1(𝑡, 𝑟)][𝑣] (3.29)

If we have 𝑁 points at 𝑇 epochs, we get

𝐸{𝑧(𝑡, 𝑟)} = 𝐸{
⎡
⎢
⎢
⎣

𝑧(𝑡1, 𝑟)
𝑧(𝑡2, 𝑟)
⋮

𝑧(𝑡𝑇 , 𝑟)

⎤
⎥
⎥
⎦
} =

⎡
⎢
⎢
⎣

𝑎1(𝑡1, 𝑟)
𝑎1(𝑡2, 𝑟)

⋮
𝑎1(𝑡𝑇 , 𝑟)

⎤
⎥
⎥
⎦⏝⎵⎵⏟⎵⎵⏝

𝐴

[𝑣] , (3.30)

where

𝑧(𝑡𝑖 , 𝑟) =
⎡
⎢
⎢
⎣

𝑧(𝑡𝑖 , 𝑟1)
𝑧(𝑡𝑖 , 𝑟2)
⋮

𝑧(𝑡𝑖 , 𝑟𝑁)

⎤
⎥
⎥
⎦
, and 𝑎1(𝑡𝑖 , 𝑟) =

⎡
⎢
⎢
⎣

𝑎1(𝑡𝑖 , 𝑟1)
𝑎1(𝑡𝑖 , 𝑟2)

⋮
𝑎1(𝑡𝑖 , 𝑟𝑁)

⎤
⎥
⎥
⎦
. (3.31)

We then estimate the unknown parameter via

𝑣̂ = (𝐴𝑇𝑄−1𝑦 𝐴)−1𝐴𝑇𝑄−1𝑦 𝑧(𝑡, 𝑟) (3.32)

and the stochastic properties of the estimate are obtained by

𝑄𝑣̂ = (𝐴𝑇𝑄−1𝑦 𝐴)−1. (3.33)

Stochastic Properties of measurements
We use the variance­covariance matrix 𝑄𝑦 in both the linearized case and the linear case. However,
these measurement variances and covariances, i.e., the precision, are not known, and only rough
estimates are available, which may not be reliable. Therefore, we write the stochastic matrix as a
weight matrix with equal weights on the diagonal. The relationship is as follows:

𝑊 = 𝑐 𝐼 (3.34)

In most cases, we assume the measurements to be uncorrelated spatially and temporally since every
measurement is independent of the other. Strictly speaking, a correlation can be present since large
effects, such as the atmosphere or large­scale surface motion, may influence every measurement.

3.1.5. Defining error metrics to evaluate the performance of multiple models
We analyze the displacement curves by fitting the kinematic model through them. We assess the
performance of the models by two error statistics and a signal­to­noise comparison. Here, we discuss
three metrics. The first metric is the fit and is denote as 𝑓:

𝑓 = 100 ⋅ (1 − √
𝑒̂𝑇𝑒̂
𝑦𝑇𝑦) . (3.35)
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With Eq. (3.35) the percentage of goodness of fit of the model to the measurements is computed. The
closer the fit is 100%, the better the fit is. The next metric is the Root Mean Square Error (RMSE). The
RMSE is given by

RMSE = √ 1𝑁(𝑦 − 𝑦̂)
𝑇(𝑦 − 𝑦̂). (3.36)

Eq. (3.36) is also known as the root mean square deviation (RMSD). The RMSE statistic is a measure
of the performance of a model. We apply a term­by­term comparison of the difference between the
observations and the adjusted observations—the smaller the value, the better the model’s performance.
However, a large drawback of the RMSE test is that a few larger errors (outliers) can significantly
influence the RMSE outcome (Kambezidis, 2012).

Since we do not know the exact center of the impending sinkhole, we use a range of impending
sinkhole centers. We also use the RMSE to identify the best possible impending sinkhole center loca­
tion (𝑥0). An approximation for the trough center is visually inferrable from the figures of the cases.
However, we prefer a more precise estimation based on a quantifiable metric. Therefore, we evaluate
multiple sinkhole centers. We then select the center producing the lowest RMSE for the comparison.
We chose the RMSE since the papers used (Kim et al., 2016, 2019; Nof et al., 2019) also applied it to
assess the performance of their models.

The last metric is the signal­to­noise (SNR) comparison. Here, we make a comparison between the
adjusted observation and the residuals.

SNR = 10 ⋅ log10 (
𝑦̂
𝑒̂ ) (3.37)

We can see the SNR in Eq. (3.37) in decibels (dB). We compute the SNR for each position. Therefore,
we can observe in what locations the expected signal is the strongest and how the signal weakens
when going toward the edges of the trough. Also, we implement a threshold. We first take an arbitrary
value for the threshold. This value was set to 10 dB, meaning that the signal is approximately ten times
higher than the noise. Then, we compute the number of points above the arbitrary threshold, creating
a new metric that computes what percentage is above the threshold, and thus measurable.

3.1.6. Testing the Kinematic Model on Real­world cases
The kinematic model is mostly theory­based, and explanations of this theory can be found in Section
3.1, Kratzsch (1983) and Reddish & Whittaker (1989).

The theory does not explicitly describe the use of the kinematic model on impending sinkholes.
Therefore, we want to validate whether the model represents the impending sinkhole surface expres­
sion adequately. Hence, we apply the kinematic model to a few cases found in published papers. The
displacement time­series where found in the papers Kim et al. (2016), Kim et al. (2019) and Nof et al.
(2019), and subsequently digitized.

Many natural phenomena follow the Pareto distribution. The Pareto distribution is also known as
the Pareto principle or the 80/20 rule, and we can describe it with a power­law distribution. The Pareto
principle states that 80% of the consequences can be attributed to 20% of the causes. In the case
of the kinematic model, the assumption is that the model would describe roughly 80% of the curve
(Dunford et al., 2014). We test this assumption on displacement curves digitized from papers. We
digitize the displacement time series from these papers and subsequently use the displacement time
series to estimate the parameters for the kinematic model. We aim to test whether the kinematic model
would adequately describe the displacement pattern regarding the Pareto distribution.

Error Metrics
We apply the different models to the digitized displacement time series. We then compute the overall
score by taking the average of the RMSE and fit over every epoch (Section 3.1.5). However, the average
fit parameter does not include the first epoch. Due to the models, the residuals correspond one­to­one
with the data and therefore generate a zero fit. Thus, we exclude the first epoch in the computation
of the average fit of a model.
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Implementation Kinematic Model
We digitized a temporal cross­section of a sinkhole. We need to find the center (𝑥0) and the correspond­
ing subsidence velocity and the radius of influence. We estimate these parameters using the non­linear
least­squares method described in Section 3.1.4. We test multiple locations on the cross­section line
and we select the estimate providing the lowest RMSE.

Implementation Mogi Source Model
To fit the Mogi model, we had to adjust the model (Eq. (2.3)) to incorporate a time parameter. As
mentioned in an earlier section, the Mogi model is Lagrangian­based and thus follows specific points
from its origin. We digitized the data from papers. The papers did not show specific points (or the
points were not always individually distinguishable) and therefore we lose point location information.
We therefore assumed that for each progressing epoch, the volume change (Δ𝑉) increases and that at
each new epoch, the point start from their original position.

Adjusting the Mogi model gives:

[
𝑢
𝑣
𝑤
] = 𝑡 ⋅ Δ𝑉𝑖

1 − 𝜈
𝜋 [

𝑥
𝑅3𝑦
𝑅3𝑧
𝑅3

] . (3.38)

The cross­section is in 2­dimensions and this makes:

[𝑢𝑤] = 𝑡 ⋅ Δ𝑉𝑖
1 − 𝜈
𝜋 [

𝑥
𝑅3𝑧
𝑅3
] . (3.39)

On Eq. (3.39) we can apply the linear least­squares to estimate Δ𝑉𝑖.
We apply the same methodology as for the kinematic model. We define a range of 𝑥0 values along

the cross­section and compute the estimate. The estimate with the lowest RMSE will be selected for
comparison.

3.2. Spatial and Temporal Time Series Characteristics
The second sub­question tries to look at the characteristics of the dataset. Since our data does not
contain a sinkhole, we first discuss how we implement an artificial sinkhole into the dataset using the
kinematic model (Section 3.2.1). The following subsections will explain methods for computing the
minimal detectable sinkhole size (Section 3.2.2) and the method to compute the minimal detectable
deformation given a detectability power and significance level (Section 3.2.4).

3.2.1. Artificial Sinkhole Implementation
The sinkhole collapse event is a high­impact, low­probability event. This means that obtaining data
containing an active impending sinkhole, is not always possible. In this section we will explain how an
impending sinkhole signal is added to the data to simulate an impending sinkhole event.

The kinematic model is used to simulate the impending sinkhole signal (see Section 3.1.2 ). Then,
to implement the model, we need to define the location, radius of influence, the time duration of the
event and the maximum displacement. A well documented sinkhole case is the sinkhole at shopping
mall ’t Loon. A near­collapse sinkhole appeared at the end of 2011. The final near­collapse sinkhole
had a diameter of ∼8 meters. One well documented subsidence event shows that during the summer
(∼3 month period) displacements up to 2.1 centimeters was measured (Chang & Hanssen, 2014). This
provides us with potential sinkhole characteristics based on real world measurements. However, for
testing of the two strategies, a more visible sinkhole was opted. The implemented sinkhole has the
following characteristics: The location of the sinkhole was such that at least one point laid close to the
center and at least a few points are within the radius of influence of the impending sinkhole.

The defined kinematic model is superimposed on a subset of a real dataset. The research was
conducted with the area of Limburg in mind. Here, we utilized a dataset processed by Skygeo. A
subset of the dataset was created and used. The reason for using a real dataset is to keep the spatial
distribution and the displacement time series as authentic as possible. Table. 3.1 shows the properties
of the implemented impending sinkhole signal.

https://skygeo.com/
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Table 3.1: Implemented Sinkhole characteristics. Based on these defined parameters, an artificial sinkhole is superimposed on
the data.

Duration 6 months
Maximum Displacement 5 cm
Radius of Influence 35 m
Start Month 1 June 2018
End Month 31 December 2018

3.2.2. Minimum Detectable Size
The minimum detectable size, or MDS, shows the minimum size of an impending sinkhole that can
be detected at a particular position. It uses the kinematic model to make this assumption. The MDS
computes the smallest possible kinematic model possible to get an estimate. It shows how the spatial
distribution of a particular dataset influences the detection possibilities. The MDS will therefore be
applied to the real subset.

The steps for the method of the MDS are as follows:

1. Defining a grid on which each posting the kinematic model will be evaluated. A grid is created by
simply taking the maximum and minimum values for the x­ and y­coordinates in the dataset. The
spacing (or posting) of the grid points is defined beforehand. The smaller the grid, the longer
the map creation will take.

2. On each posting, a subset using the current radius of influence is created using the K­D tree data
structure (see Section 3.2.2).

3. Using the available data points and the location of the center of the impending sinkhole (posting
coordinates), the design matrix for the estimation of the subsidence velocity is created (see
Section 3.1.4).

4. The condition number of the design matrix is computed see if the estimate is stable (see Sec­
tion 3.2.2).

5. Step 2­4 are repeated for the range of 𝑅­values defined a priori.

Subset creation based on K­D tree data structure
K­D tree is short for K­dimensional tree. It is a binary tree that represents geometric data hierarchically.
Here, the K­D tree is used to create subset rapidly. It was first described by Friedman et al. (1977). The
data structure is optimal for range searching and nearest neighbor searching. The algorithm subdivides
space into rectangular cells. This subdivision will continue recursively until only one point is present
within the cell (Maneewongvatana & Mount, 1999). (Maneewongvatana & Mount, 1999) The time
complexity for generating the K­D tree is 𝑂(𝐷𝑁log(𝑁)) and is a significant improvement over brute­
force approach with large 𝑁. Fig. 3.2 show the visual cell subdivision of a two dimensional dataset.

Figure 3.2: Visual representation of how the cell are defined when implementing the K­D tree data structure. The figure is copied
from Maneewongvatana & Mount (1999) and shows the Sliding­midpoint split.
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The splitting of the cells is governed by the Sliding­midpoint split and is also implemented in the Python
module scipy.spatial.cKDTree (Virtanen et al., 2020).

Condition Number
The estimate computed using BLUE (see Section 3.1.4) might be highly sensitive to perturbations in
the input data. A problem is said to be insensitive, or well­conditioned if a given relative change in the
input data causes a reasonably proportionate relative change in the estimate. An sensitive problem, or
ill­conditioned problem, is if a relative change in the estimate is much larger than that of the input data
(Heath, 2018). The condition number of a problem is the ratio of the relative change in the estimate
to the relative change in the input.

The definition for the condition number is given by

cond(𝐴) = ||𝐴|| ⋅ ||𝐴−1||. (3.40)

By convention, cond(𝐴) = inf when 𝐴 is a singular matrix. Eq. (3.40) makes use of the inverse of
matrix 𝐴. A nonsquare matrix 𝐴, which happens a lot in linear least squares, does not have an inverse
in the conventional sense. The solution is to define a pseudoinverse, denoted as 𝐴+, and behaves like
an inverse in many respects.

For linear least squares problem, the condition number is defined for a rectangular matrix.

𝐴+ = (𝐴𝑇𝐴)−1𝐴𝑇 . (3.41)

Trivially, we see that 𝐴+𝐴 = 𝐼. Then the new equation for the condition number becomes

cond(𝐴) = ||𝐴||2 ⋅ ||𝐴+||2. (3.42)

By convention, cond(𝐴) = inf if rank(𝐴) < 𝑛 whereby 𝐴 is an 𝑚×𝑛 matrix with rank(𝐴) = 𝑛. Just as
the condition number of a square matrix measures closeness to singularity, the condition number of a
rectangular matrix measures closeness to rank deficiency.

Evaluating the design matrix
Eq. (3.8) also uses a time vector. The time vector consists of epochs in days relative to the first epoch
(e.g., 𝑡 = [0, 6, 12, 18]). The number of epochs and the value of each epoch can be taken arbitrarily.

With the ingredients grid points, kinematic model and condition number, a quick map showing the
minimal detectable size can be created. Such a map rapidly shows whether an early warning system
would be feasible for the sinkhole hazard and typical sinkhole sizes prone to the area, which sensor is
needed and what locations can be well monitored.

3.2.3. Quick and Simple Noise Determination based on displacement time
series

This method is based on the displacement time series of either (coherent scattering) points or arcs
(see Section 3.4). It uses the fact that there appears to be an overall displacement trend and the time
series is scattered around that trend. We apply this method so we can get a rough estimate on the
precision of the point and potentially predict displacement values to a certain degree.

An example of the displacement time series is shown in Fig. 3.3. Here, the line of sight displacement
is shown on the y­axis and the epochs are scaled relative to the first epoch of the dataset. This means
that the x­axis is in days since the first epoch. The reason for using relative days is so that a prediction
of the trend can be made. The trend is computed using the linear least­squares. Here, a functional
relationship between the observations and the unknowns must be defined. The unknowns are the
velocity (𝑎) and the bias (𝑏). With 𝑛 observations, the observation vector is

𝑦 = [
𝑑𝑡0
⋮
𝑑𝑡𝑛
] , (3.43)

whereby the 𝑑 is the LOS displacement at a particular epoch (𝑡𝑖). The functional relationship is defined
in the design matrix (𝐴­matrix). Since we have two unknowns, the design matrix consists of two
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Figure 3.3: LOS Displacement time series of one single point scatterer.

columns and is written as

𝐴 = [
𝑡0 1
⋮ ⋮
𝑡𝑛 1

] . (3.44)

Using BLUE (see Section 3.1.4) the velocity (𝑎) and the bias (𝑏) are computed.
In the computation of the BLUE, the weight matrix 𝑊 is set to the inverse of the stochastic matrix

of the measurements. However, the stochastic matrix in not known. Therefore, the weight for each
measurement is set to one and results in

𝑊 = [
1 0

⋱
0 1

] = 𝐼. (3.45)

After obtaining the unknowns velocity (𝑎) and the bias (𝑏), the adjusted observation 𝑦 can be
computed

𝑦̂ = 𝐴𝑥̂, (3.46)

which is needed to compute the residuals. The residuals on their part can be computed using

𝑒̂ = 𝑦 − 𝑦̂. (3.47)

Next, the assumption is made that the residuals follow a Gaussian distribution. Fig. 3.4 is the distribu­
tion of the residuals and shows the residuals plotted as a histogram with its probability density curve.
The mean is assumed to be zero. The variance is then computed and used as the precision of the
displacement time series of that particular point or arc.

3.2.4. Minimal detectable deformation and detectability power
Other rapidly created maps are the Minimal Detectable Deformation and the Detectability Power. The
Minimum Detectable Deformation (MDD) provides a metric of how much deformation must be present
in order to confidently attribute the deformation to a particular deformation signal w.r.t. a given De­
tectability Power (DP). In this section, the methodology of calculating these metrics will be discussed.
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Figure 3.4: Left image shows a displacement time series with a linear trend in red and the residuals in black. The right image
is the histogram of the residuals with the assumed Gaussian behavior plotted.

First, an observation time series is characterized by a linear model. The model assumes a standard
deviation to each observation which acts as a proxy for the noise a particular observation exhibits.
Then, the standard deviation is used for hypothesis testing which calculates the MDD and DP values.

The Minimum Detectable Deformation and the Detectability Power are calculated by testing hy­
pothesis. For each new observation 𝑦

𝑖
we can apply the test. Two hypothesis are formulated, the first

hypothesis is the null hypothesis (𝐻0). Here, the null hypothesis states that no significant deforma­
tion is present. The alternative hypothesis (𝐻𝑎) states that a particular deformation is present. The
hypotheses can be mathematically described as

𝐻0 ∶ 𝐸{𝑦} = 𝑥0, (3.48)

and
𝐻𝑎 ∶ 𝐸{𝑦} = 𝑥𝑎 > 𝑥0. (3.49)

Then, the critical region must be specified. The critical region (𝐾) is the region where 𝐻0 will be rejected
and 𝐻𝑎 will be accepted. The assumption we take here is that each observation (𝑦) follows a Gaussian
distribution. Since 𝐻𝑎 states that the new expected value (𝐸{𝑦}) must be larger than in 𝐻0, the critical
region will only fall to the the right side of the distribution and becomes a one­tailed test. Fig. 3.5

Figure 3.5: The left image is the Gaussian distribution of an observation 𝑦. The orange area shows the critical region (𝐾) where
the null hypothesis will be rejected. The right image is a figure illustrating the hypothesis test.

shows how a particular critical region looks like and when observations will be rejected in favor of the
alternative hypothesis. Fig. 3.5 shows both the null hypothesis and the alternative hypothesis. The
critical region (orange region in Fig. 3.5) is governed by the significance level (𝛼). The significance
level manages the type­I error. The Type I error states that the null hypothesis is falsely rejected (i.e.,
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false negative). The type II error is the error whereby the null hypothesis is falsely accepted (i.e.,false
positive) and the region of this error is denoted with 𝛽 (red region in Fig. 3.5). The Detectability Power
(𝛾) is calculated by 𝛾 = 1 − 𝛽 and shown in Fig. 3.5 as the blue region. The Minimal Detectable
Deformation is the distance between the expected value of the null hypothesis and the alternative
hypothesis (Teunissen, 2000). Be aware that the claim whether a particular hypothesis test has been
proven true can not be made (Teunissen, 2000).

3.3. Spatio­temporal Strategy using kinematic model
In this section, we take a closer look at the data. The most straightforward approach to detect im­
pending sinkholes is looking for the sinkhole shape in the data. We approximate the sinkhole shape
using the kinematic model (Section 3.1.2).

3.3.1. Grid­wise implementation
When we want to look for a sinkhole shape based on the kinematic model, we need to fit its function
to the data. Eq. (3.8) describes the kinematic model whereby 𝑟 consists of Eq. (3.3). The unknowns in
the equations are 𝑥0, 𝑦0, 𝑅, and 𝑣. Looking at the equation, we see that this is not solvable in a linear
fashion. To solve for the origin location of the sinkhole, we can implement a grid­wise search. This grid­
wise search means defining a grid with a specific spacing or posting on top of the dataset (or subset).
We then will systematically evaluate the equation on every grid position therefore predetermining the
center coordinates 𝑥0 and 𝑦0.

3.3.2. Linear Least­Squares
However, 𝑅 and 𝑣 are still unknown, and the equation is still not solvable in a linear fashion. There
are two ways we can solve this problem. The first option is to linearize the function and apply the
Newton­Raphson method (Section 3.1.4). Second, we also evaluate a series of values for 𝑅 at each
posting. With the second approach, we can linearly solve the equation. In this methodology, we prefer
the second approach. The reason is that the non­linear version might take considerably longer (due to
the number of iterations) and might also produce an estimate that is not physically interpretable. For
example, a subsidence velocity of ­1 meter per day is not realistic.

3.3.3. Filter Results
The current approach defines a grid on which we apply the kinematic model on each posting. We
have predefined 𝑅, and we can compute 𝑟 by using the locations of the observations and the posting
coordinates (𝑥0, 𝑦0). The time vector 𝑡 is the number of epochs used for the model and is in relative
days. For example, we assume the impending sinkhole started 15 epochs ago. Therefore, the first
epoch will get 0 (days), and each consecutive epoch will increase the number of days since the previous
epoch. 𝑣𝑧 is the displacement value corresponding with the observation location and epoch. We then
solve for 𝑣, the subsidence rate or velocity.

The estimate we obtain for 𝑣 (𝑥̂) can still contain various values. We are only interested in a
subsidence velocity within a specific range. Therefore, we filter the estimated rates such that only we
accept rates within a prespecified range. Other values will receive a NaN value. NaN stands for Not a
Number. We apply the filter to both the estimate (𝑥̂) and the variance of the estimate (𝑄𝑥̂).
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3.4. Temporal Strategy using arcs
This section will explain the methodology behind the temporal strategy based on arcs. Arcs are the
connections between points. The number of connections that can be made is

𝐸 = 𝑁(𝑁 − 1)
2 , (3.50)

connections, whereby 𝑁 is the number of points within the subset. This section will first explain how the
number of arcs is defined and how we efficiently compute the connection pairs. We then characterize
each arc by subtracting one endpoint from the other endpoint, creating a new displacement time
series per arc. The next step is characterizing each arc with a (linear) model. A simple linear least­
squares are applied to the time series to obtain a model predicting a trend. The model can be updated
using different update strategies. Several update strategies will be discussed in this section. We
then need a way to compute the noisiness of the time series. We compute the noisiness by first
computing the residuals. We compute the residuals by taking the trend (provided by the model)
or adjusted observations, 𝑦̂, and subtracting the observations, 𝑦. The residuals are assumed to be
Gaussian distributed and plotted in a histogram. We then use the standard deviation of this distribution
as a proxy for the noisiness of the arc displacement time series. Finally, with the standard deviation
and the trend, we can compute confidence intervals. We then test the newly acquired epoch whether
it falls within the predefined confidence interval. We flag the arcs that failed the test. These steps are
called the flagging procedure. The final step in the flagging procedure is to track the frequency on how
often an arc is flagging in one row. We achieve this by setting flagged arcs to 1 plus the flagged arc
value of the previous epoch. Therefore, the arc will obtain a number called flagged value.

After the flagging procedure, we can plot the flagged arcs and color the arcs according to the
flagged value. However, the interesting information is to find the points with an increased number of
flagged arcs towards them. The hypothesis is that an increase in flagged arcs will lead to the detection
of anomalous behaving points. Therefore, we dismantle the arcs into points again corresponding to
the input dataset. Each point will obtain the sum of the flagged value of each arc going towards a
particular point. The total flagged point value will act as the measure of how anomalous a point is
behaving. We apply a threshold to filter out these anomalous points, whereby we state that every
point exceeding the threshold value behaves anomalously.

We explained, in short, the methodology of the temporal strategy. Below will be a more extensive
explanation of this particular strategy.

Figure 3.6: Figure showing all the possible arc connections within a subset. The figure shows that more observations can cause
the figure to get computational expensive and messy.
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3.4.1. Arc Creation
The main motivation of the usage of arcs is to eliminate most error sources commonly found in every
observation and to optimally exploit the information content of each point. By subtracting two points
from each other, we eliminate the correlated errors affecting those two points.

We compute the arcs by creating tuples (𝑝𝑖 , 𝑝𝑗) of combinations of points (two points denoted
here as 𝑝𝑖 and 𝑝𝑗) within the total number of points (𝑁). One way to create all the tuples for all the
arcs is by simply going from point to point and create all the tuples connecting that point. However,
this introduces many duplicate tuples and is therefore very inefficient. Here, we implemented a tuple
creating scheme based on a lower triangular matrix to identify all possible combinations. For example,

Table 3.2: Matrix for defining the arc combinations used for the temporal anomaly detection strategy.

1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 1 1 0 0 0 0 0 0 0
5 1 1 1 1 0 0 0 0 0 0
6 1 1 1 1 1 0 0 0 0 0
7 1 1 1 1 1 1 0 0 0 0
8 1 1 1 1 1 1 1 0 0 0
9 1 1 1 1 1 1 1 1 0 0
10 1 1 1 1 1 1 1 1 1 0

a subset with 𝑁 = 10 points will create the Table 3.2. It shows the lower triangular for a subset of ten
points. We automated the creation of this tuple list with a Python function (See Appendix A).

3.4.2. Processing Arcs

Figure 3.7: Figure showing two points with the arc they are making. The points are denoted as 𝑃𝑖 and 𝑃𝑗.

We now know how to compute all arcs in a subset efficiently. Here, we explain what the procedure
is to compute the new displacement time series of each arc. Arcs are the difference between two
points. The equation look as follows:

Δ𝑑𝑖,𝑗𝑡𝑘𝑡0 = (1,−1) (
𝑑𝑖𝑡𝑘𝑡0
𝑑𝑗𝑡𝑘𝑡0

) (3.51)
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Eq. (3.51) computes the difference between point 𝑃𝑖 and 𝑃𝑗 at a particular epoch. The displacements
are relative w.r.t. the first epoch. Therefore, each displacement value is from epoch 𝑡𝑘 relative to the
first epoch 𝑡0.

3.4.3. Arc Characterization
The next step is the characterization of an arc using a particular model. With the model, we can
predict, to a certain degree, the displacement of the new incoming epoch. Therefore, we prefer a
model describing the displacement time series to the highest degree such that the model incorporates
all the expected behavior, and only the anomalous behavior will be the culprit for deviating trends.

However, for this thesis, to keep the methodology initially lean and straightforward, we decided
only to use a linear model. We compute the linear model using linear least­squares (Heath, 2018). The
linear least­squares only computes a displacement rate (or velocity) and a bias and neglects seasonal
trends or higher polynomial trends.

With this model, we can predict whether a newly acquired observation behaves anomalously. We
perform the prediction by first computing the variance of the residuals and then setting the confidence
intervals. The variance computation will provide a proxy for how noisy an arc is behaving. Another
aspect of this model is how we would update it with newly incoming observations. It is advantageous
to incorporate newly obtained epochs since it will improve the model. However, this might also taint
the model so that anomalous behavior is not detected. in the next section.

Arc Noise and Confidence Interval Determination
We describe the noise, or variance, of the displacement time series in Section. 3.2.3. Here, the same
methodology is applied to describe the behavior of the arc.

The next step is to define confidence intervals. We use these confidence intervals to test if we need
to flag the new incoming observation. In this study, we set the confidence interval to 95 percent. We
calculated these confidence intervals by multiplying the standard deviation (obtained from the analysis
of the residuals, Section. 3.2.3) by a factor 𝑟𝛼/2. Thus, 𝛼 is the significance level, and for a 95 percent
confidence interval, the significance level must be 5 percent (𝛼 = 1 − 0.95).

We assume that newly incoming measurements will fall within the defined confidence interval and
thus outside the critical region (𝐾). We can set the size of the critical region by setting the significance
level. The test is two­tailed, meaning that observations above and below the mean can fall within
the critical region (𝐾). We split the critical region symmetrically into two regions with a similar size
(i.e., two regions with 2.5 percent). To find this boundary, we need to compute 𝑘𝑎. We find 𝑘𝑎 by
multiplying the critical value (𝑟𝛼/2) with the standard deviation. Since the mean is non­zero, we add
or subtract the multiplication from the mean (Teunissen, 2000). Using either lookup tables (Teunissen,
2000) or the SciPy library in Python (Virtanen et al., 2020), we find the critical value to be 𝑟𝛼/2 = 1.96
for a confidence interval of 95 percent (Teunissen, 2000). We then apply the obtained critical value to
compute the confidence interval, and we show an example in Fig. 3.8.

Relative Days Computation
The model can not use fixed Gregorian dates. These are, however, used in the dataset to indicate the
day it was measured. To compute the model, we convert the epoch dates to relative days. We set the
first day of the displacement time series to zero, and every subsequent date will be in relative days
since the first epoch. We automated this process with the a Python function (see Appendix A).

3.4.4. Arc Flagging Procedure
We start the arc anomaly detection procedure using one of the predefined model updating strategies.
With the linear model, the arc noise is estimated (Section. 3.2.3), and the 95% confidence intervals
are defined. The prediction for a new incoming observation is estimated using

Δ𝑑̂𝑖𝑗𝑡𝑘𝑡0 = 𝑥̂1𝑡𝑘 + 𝑥̂2. (3.52)

Where 𝑥̂1 and 𝑥̂2 are the model estimations (velocity and bias) and 𝑡𝑘 is the relative number of days.
The confidence interval is defined by

|Δ𝑑𝑖𝑗𝑡𝑘𝑡0 | ≤ 𝑦̂ + 𝑟𝛼/2𝜎𝑒̂ . (3.53)
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Figure 3.8: Time Series of the LOS Displacements plotted together with the trend and the subsequent 95% confidence intervals

Whereby 𝑦 is the arc displacement observation, 𝜎𝑒̂ is the standard deviation of the residuals of the
linear model and 𝑟𝛼/2 the critical value and thus selecting 95% confidence interval. Eq. (3.53) tests
new incoming observation.

If the new observation does not satisfy Eq. (3.53) (i.e., falls outside the boundary), we flag that
particular arc. We give flagged arcs a value of 1, and non­flagged arcs will always obtain 0.

Flag count
Here, we introduce a counting method that implements a short­term memory in the flagging procedure.
The flag count is the value given to a specific arc on a specific epoch. The flag count typically is zero
(arc is not flagged). We increase the flag count with one when the arc is flagged. Increasing the flag
count means that the flag count of an arc can obtain a very high number. We reset the flag count to
zero again when the arc is not flagged. In practice, we see the flag count increase a few times; then,
the method does not flag the arc, resetting the flag count to zero. We can set a maximum value for
the flag count to ensure a maximum short­term memory length.

We also use the flag count to color the arcs in a plot. In this way, it is an easy method to show the
arcs behaving most anomalous visually.

3.4.5. Total Flagged Value
We discussed a method that creates arcs, characterizes them, and finally flags anomalous behavior.
In this section, we convert the flagged arcs to a value linked to the observation points. We named
this value the total flagged value. The total flagged value indicates how many flagged arcs are going
towards an observation point.

We compute the total flagged value by going through the tuple list defined in Section 3.4.1. Then,
for each point number in the tuple, we add the flag count of a particular epoch of that tuple (i.e., arc)
to the total flagged value of the selected point in the tuple. Therefore, we add the flag count of a
flagged arc to both endpoints of the arc.

3.4.6. Anomalous Point Detection
The last step we need to implement is defining a threshold. Section 3.4.5 describes the total flagged
value, which is an indication of how many flagged arcs and how many high flag counts are running
towards a specific point. We want to flag a point as behaving anomalously. To do this, we suggest
implementing a threshold value.
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The threshold is a minimum value for the total flagged value above which we determine a point to
behave anomalously. The threshold, however, depends on multiple factors. A few of these factors are
the quality of the InSAR dataset, the local geology, the significance level, and the detectability power.
Therefore, the anomalous point detection method requires tweaking and testing before implementing
it as a monitoring system.



4
Results and Discussion

We present the results obtained by following the methodology explained in Chapter 3. Each of the sec­
tions will be answering one of the sub­questions. We start by showing how we modeled the impending
sinkhole surface expression in Section 4.1.1. Section 4.2 will show the results how we characterized
the displacement time series. Section 4.3 will show the results of the spatio­temporal strategy based
on the kinematic model. We end this chapter with Section 4.4, the arc­based temporal strategy.

4.1. Sinkhole Surface Expression and Simulation
The first results will show how we simulated the surface motions in the vertical and the horizontal
direction. Second, we compare the Eulerian­based method to the Lagrangian­based method. The last
step is to apply our defined kinematic model to some real­world cases.

4.1.1. Surface Displacement Curves
In Section 2.2 we explained the mathematical approximation of the displacement curves. Here, we

Figure 4.1: The first column shows a top view of the different curves generated by the geometric model. The second column
is a cross­sectional view of the generated curves. The first row shows the subsidence curve, vertical displacement. Then, the
second row shows the tilt (or slope) of the subsidence curve. The third and last row shows the curvature computed using both
approaches. The radius of influence used is 7 meters.

39



40 4. Results and Discussion

used the geometric model described in Eq. (3.4) to compute the subsidence experience at an arbitrary
epoch. We can derive other curve properties analytically, such as tilt (i.e., slope) and curvature, from
the geometrical model. Fig. 4.1 shows the different curves associated with ground subsidence. We
base the curves on the geometric model (Eq. (3.4)). The first column shows a top view of the type of
curve in question. The second column is a cross­sectional view. The set of figures hosts the subsidence
curve on the first row with the tilt on the second row and the curvature on the last row. The analytical
tilt and curvature are the first and second derivatives of the influence function (Eq. (3.4)), respectively.
We compute the tilt using Eq. (2.14) and the curvature with Eq. (2.15).

We compute the horizontal displacement using the focal point method described in Section 2.2.3.
We based the focal point method upon the geometric model, and it assumes a cavity depth. The
horizontal displacement is orientated radially towards the center of the sinkhole. Therefore, taking a
cross­section is concentrically symmetric. We then use the horizontal displacement to compute the
linear change (strain). The linear change is the change in point spacing. Depending on the horizontal
displacement, the point spacing increases or decreases. We obtain the extension or compression by
dividing the point spacing with a fixed unit distance (e.g., 1 meter). The extension is positive, while
the compression is a negative value. These metrics can be beneficial since maximum strain indicates
where earth fissures might occur and damage buildings (Kratzsch, 1983). Fig. 4.2 shows the horizon­

Figure 4.2: The first column is a top view of the horizontal movements. The second column is a cross­sectional view of the
horizontal movements at latitude 𝑦 = 25 meters. The first row is the radial horizontal displacement towards the center of the
impending sinkhole (i.e., centripetal displacement). The second row also shows the horizontal displacement but now from East
to West mimicking a descending satellite geometry. Hence, the negative horizontal displacement. The third row is the linear
change (Eq. (2.21)) or change in point spacing. The last row is the extension and compression (Eq. (2.22)). The radius of
influence is 7 meters.

tal displacement based on the focal point method. The first row shows the horizontal displacement
orientated radially towards the center. The second row also shows the horizontal displacement but
then from East to West. The third row is the linear change and the last row is the compression and
extension curve.

In the next step, we begin to compare the temporal behavior of the displacement curves. We look
at two types of subsidence behavior, linear and accelerating subsidence (Fig. 4.3). Here, we simulated
displacements, and thus, the displacements have no real­world meaning. Also, comparing displacement
values between the two figures does not bear any significance. The important message of Fig. 4.3 is
the temporal ground movement. Fig 4.3 shows the linear subsidence and horizontal displacement with
a linear subsidence velocity. Each extra time step produces an equal amount of vertical and horizontal
displacement.

Comparing this behavior to the accelerating subsidence, we see that the accelerating subsidence
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Figure 4.3: The top figure shows the linear subsidence behavior, and the bottom figure shows an accelerating subsidence
behavior. Each column contains the same type of displacement. The first column shows the vertical displacement. The increasing
subsidence shows how an upward moving cavity would interact with the surface. The second column is the vertical displacement.
In both the first and second columns, we mark four points on the curve. The third column shows these marked points and how
they temporally move vertically. The last column shows the vertical displacement (y­axis) and horizontal displacement (x­axis).

starts with minimal subsidence but quickly increases. We observe the same behavior in the horizontal
displacement figure. In the first two columns, we selected four points which we highlight in the next two
columns. In the third column, we see the temporal vertical movement of a single point. Depending
on the location in the subsidence trough, the point moves downward. The last column shows the
vertical versus the horizontal displacement. The vertical displacement is dominant, but the horizontal
displacement can still get to 50% of the vertical displacement.

4.1.2. Eulerian versus Lagrangian Displacement Comparison
In this section, we compare the two viewpoints. We base the Eulerian viewpoint on the Gaussian
kinematic model and base the Lagrangian viewpoint on the Mogi source model (physical model). Thus,
we compare the subsidence curves obtained from the kinematic and the physical model. We adjust the
geometric model to fit the physical model. We can manipulate the geometric model by modifying 𝑅 or
𝑆max. We set 𝑅 equal to 7 meters and 𝑆max to the maximum subsidence obtained from the physical
model. The physical model has more parameters to tune. First, we compare the vertical displacement

Table 4.1: Values for the parameters used for the physical model.

Parameter Value Source
Δ𝑉 0.5 m3 Eq. (3.10)
𝜈 0.25 Bekendam & Pottgens (1995)
𝑥0 0 ­
𝑦0 0 ­
𝑧0 −11.5 m 𝑑 = 𝐻 = 𝑅

tan(𝜃)
𝜃 35𝑜 Ren & Li (2008)

curves of the two models. We used the maximum subsidence to reference both curves. We assume
that the volume decreases, resembling a sphere with a one­meter diameter (creating a volume loss of
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Figure 4.4: The two curves represent the two models used in this section. The figure shows the vertical displacement. The blue
curve is the geometric model and the orange curve is the physical model. The radius of influence for both models is set to 7
meters.

around 0.5m3). The Mogi model will generate maximum subsidence straight above the cavity location.
We then use the maximum subsidence to adjust the geometric model. Both models now have the
maximum subsidence in common, and we can now look at how the models express an impending
sinkhole.

Fig. 4.4 shows the curve for the geometric and the physical model. We see that the maximum
subsidence coincides with both curves. The geometric model has set the radius of influence to seven
meters. The equation of the geometric model explicitly uses the radius of influence, while the Mogi
model implicitly uses the radius of influence. We compute the depth of the cavity (𝑑) using the radius
of influence. The geometric model matches the radius of influence satisfyingly, while the Mogi model
does not. The Mogi model still shows roughly a tenth of the total subsidence at the edge of the radius
of influence. Therefore, concluding that the sinkhole based on the Mogi model would have a much
larger surface expression.

Figure 4.5: The two curves represent the two models used in this section. The figure shows the horizontal displacement. The
blue curve is the geometric model. The horizontal component for the geometric model is obtained with the focal point method
(see Section 2.2.3). The orange curve is the physical model. The radius of influence for both models is set to 7 meters.

Fig. 4.5 shows the horizontal displacement obtained using the geometric model and the physical



4.1. Sinkhole Surface Expression and Simulation 43

model. We compute the horizontal displacement for the geometric model using equations described in
Section 2.2.3 (focal point method).

We notice that both curves behave similarly near the center of the sinkhole. The curves start to
deviate nearing the peak displacement. The peak of the geometric model is near 2 meters from the
center, while the maximum displacement for the physical model is closer to 2.5 meters from the center.
After the maximum displacement, the geometric model converges to zero and is zero at the 7­meter
border. Yet, the physical model still exhibits more than half of its maximum displacement. The large
magnitude of the horizontal displacement suggests that there is more horizontal displacement present
than expected initially.

Next, we take a closer look at how the models behave over time. We implement this by using
the physical model. The physical model reacts to volume change and repositions the affected points.
Therefore, we take an arbitrary amount of epochs (in our case, 10) with an arbitrary unit (months,
days, hours, minutes). At each epoch, the same amount of volume decreases, affecting the tracked
points. At each epoch, the physical model computes a new curve. We compute the new curve by
taking the 𝑧 coordinates of the points and subtracting the computed vertical displacement. We couple
the geometric model at each epoch to the physical model using the maximum subsidence. The physical

Figure 4.6: The subsidence patterns computed by the geometric and the physical model. At each new time step, both models
compute the new shape of the subsidence curve.

model computes the new position of each point in 3D space (𝑥, 𝑦, 𝑧). Therefore, the further in time we
are, the more the points have moved relative to their starting position. Fig. 4.6 shows the subsidence
curves at each epoch 𝑡𝑖. At 𝑡0, both models have a subsidence curve of only zero (physically meaning
no subsidence). Through time, the subsidence increases, and the subsidence trough deepens. We can
couple the deepening trough to the decreasing ground elevation indicative of an impending sinkhole.

We have linked the maximum subsidence to the volume decrease. At each new epoch, the same
amount of volume shrinkage occurs. Thus, when we plot the maximum subsidences, we expect a
linearly decreasing line. Fig. 4.7 shows the decreasing trend of the maximum subsidence. However,
when we increase the volume change per epoch, the trend starts to exhibit accelerating behavior.

The right figure in Fig. 4.7 shows the accelerating trend. We increased the volume decrease per
epoch to unrealistic high values, but we implemented this absurd decrease to observe the accelerat­
ing trend better. Thus, when the surface is getting close to the cavity, the subsidence process will
accelerate. We made this conclusion based on the physical model.

We do the same for the horizontal displacement. Only here we show the displacement relative to
𝑡0, not the actual displacement values. The reason is to be able to compare both models. In Fig. 4.8,
we see that close to the center, both models behave in the same way. However, the differences are
starting to appear going towards the peaks of the curves. In this case, the peak of the physical model
is later (further from the center) and higher than the geometric model.
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Figure 4.7: Maximum Subsidence of the Mogi model with to different volume changes. The left figure shows the temporal
change of the maximum subsidence. The right figure also shows the temporal change of the maximum subsidence, but here
the volume change is 25 times higher.

Figure 4.8: The horizontal displacement of the geometric and the physical model.
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When we increase the volume change per epoch, we notice an interesting effect in the curves
produced by the physical model. Fig. 4.9 shows the horizontal displacement with the maximum dis­

Figure 4.9: The horizontal displacement computed using the Mogi model. The volume change is increased to extremes exacer­
bating the shift in postion of the peaks.

placement marked in red. The point of maximum displacement shifts slowly towards the center. We
increased the volume change just as in Fig. 4.7 to observe the behavior better. This moving trend is
also present in Fig. 4.8, but not significant enough. Hence, we can conclude that this effect is present
but not significant in the simulation of a sinkhole.

The vertical displacement is maximum in the center and slowly levels off radially outward. The hor­
izontal displacement is zero in the center, increases to a peak, and then levels off towards zero. How­
ever, the vertical and horizontal displacement levels off at different rates. The difference is significant
enough that the vertically dominant displacement becomes smaller than the horizontal displacement
at some point. Fig. 4.10 shows when the displacements in the models are vertically dominant and

Figure 4.10: Here, we show the ratio of the horizontal versus vertical displacement direction. Close to the impending sinkhole
center, we observe a dominant vertical displacement, while at the edge, the horizontal displacement is dominant. We base the
left figure on the geometric model and the right figure on the physical model. The theory for the geometric model states that
there is no significant displacement outside the radius of influence. Hence, no displacement.
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horizontally dominant. Both models display a transition at around the same point within the predefined
radius of influence. The shift is roughly around 2

3 of the radius of influence. Thus, the models suggest
that the radius of influence is larger than the possible observed depression and that the horizontal
displacement becomes more relevant the further away from the center.

Figure 4.11: Location of the Wink sinkholes and the newly forming unstable locations. Subfigure (1) shows the location where
Wink is located in Texas. Subfigure (2) shows Wink Sink #1, #2, and the unstable area. Line i­j is the cross­sectional location
found in Kim et al. (2016) and line A­B is the cross­sectional location found in Kim et al. (2019). Both images are from the paper
Kim et al. (2016). Both subfigures are adjusted with a number for better reference. In subfigure (2), line A­B has been added.

4.1.3. Comparing the kinematic model to real­world cases
This section applies different models (physical and kinematic) and tests them to real­world cases found
in three separate published papers. The selected cases are from two separate areas. The first area
is Wink, located in Texas, USA, and the second area is the west coast of the Dead Sea in Israel.
This comparison aims to test whether the defined models are flexible and adequately describing the
observed displacements related to sinkhole subsidence (describe at least 80% of the subsidence, see
Section 3.1.6).

We explained the error metric in Section 3.1.6 on which we test, characterize, and evaluate the cor­
rectness and the behavior of the used models. We provide some (geological) background information
together with the initial displacement time series for each location. In the last step, we compare the
selected models to the digitized real­world displacement time series.

We fit the model to the data using the linear least­squares method and compute two parameters,
𝑣, and 𝑅. The model is linearized to compute the two parameters. We describe the implementation of
the linear least­squares in Section 3.1.4.

Wink Texas, USA
Sinkholes in West Texas have developed from the dissolution of subsurface evaporite deposits that
came in contact with fresh groundwater. The first sinkhole was formed on 3 June 1980 (Wink Sink
#1). The second sinkhole (Wink Sink #2) was formed on 21 May 2002 and is located about 1500
meters south of Wink Sink #1. The petroleum activity from 1926 to 1964 around the Wink sinkholes
has been suspected to be a trigger that accelerated the dissolution of the underlying salt bed (Johnson,
1989). The cavity then grew and migrated upward and resulted in the formation of the Wink sinkholes
after successive roof failures. The region around the collapsed sinkholes in Wink is still subsiding,
and the neighboring areas of Wink Sink #2 are significantly unstable (Kim et al., 2019; Paine et al.,
2012). Fig. 4.11 shows the locations of the collapsed sinkholes and a newly developing unstable area.
The papers Kim et al. (2016) and Kim et al. (2019) each took a closer look at a part of the unstable
developing area. Fig. 4.11­2 shows two lines, i­j and A­B. These are both cross­sectional lines. The
reason for the odd numbering of the cross­sections is that we preserved the papers’ notation. The
displacements measured at both cross­sections in Fig. 4.11­2 are shown in Fig. 4.12. The vertical
deformation is the most dominant component of the ground deformation around Wink sinkholes and
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Figure 4.12: The InSAR measured displacements at Wink. Subfigure (1) is the vertical subsidence of line i­j in Fig. 4.11­2
obtained from Kim et al. (2016) and digitized. Subfigure (2) is the line of sight displacement of line A­B in Fig. 4.11­2 obtained
from Kim et al. (2019) and digitized.

Figure 4.13: Fitted kinematic and physical models to digitized sinkhole data obtained from Kim et al. (2016).

can be accounted for 80% of the LOS InSAR measurements (Kim et al., 2016). Therefore, in the
analysis, the LOS displacements in Fig. 4.12­2 are assumed to be very similar to the vertical subsidence.
The two subfigures in Fig. 4.12 are different cross­sections of the same unstable area published in two
different papers, and the obtained data comes from two different satellites. Therefore the cross­section
i­j in Fig. 4.11­2 is referred to as Wink 2016 and the cross­section denoted as A­B is referred to as Wink
2019.

We have introduced the various models. Here, we finally implemented the models to start the
analysis. The first figure is from Wink 2016. Fig. 4.13 shows the cross­section of Wink 2016 with
two fitted curves in the bottom part and the signal­to­noise ratio in the upper part together with the
threshold. On top of the plots are the percentage values for the part of the curve above the threshold.
Table 4.2 shows the average results for the RMSE and the fit for the selected models. The second

Table 4.2: Table for the averaged estimated parameters of the final results for the Wink 2016 sinkhole.

Model name Average RMSE (mm) Average Fit (%)
Geometric Model 2.7 74
Physical Model 2.5 77

cross­section Wink 2019 has a very clear subsidence pattern and Fig. 4.12­2 shows the location. When
we look at Fig. 4.14, we see an excellent estimate of the models. The geometric model looks like an
almost perfect fit to the subsidence pattern measured. The linear subsidence rate of the models is an
excellent fit to both the sinkhole cross­section of Wink 2016 and Wink 2019. The SNR plots show a
good correlation between maximum subsidence and the center of the sinkhole models, meaning that
the most hazardous location is well estimated and can be observed very early in the sinkhole formation
process. Looking at table 4.2 and 4.3 we see that all the models have a rough fit of 80% and thereby
indicating that the models are well suited.
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Figure 4.14: Fitted kinematic and physical models to digitized sinkhole data obtained from Kim et al. (2019).

Table 4.3: Table for the averaged estimated parameters of the final results for the Wink 2019 sinkhole.

Model name Average RMSE (mm) Average Fit (%)
Geometric Model 3.9 90
Physical Model 4.5 87

Dead Sea, Israel

Figure 4.15: Line of sight cumulative displacement time series from the published paper Nof et al. (2019).

More than 6000 sinkholes have been mapped in the region of the Dead Sea (Frumkin & Raz, 2001).
The hazard of sinkholes affects the region’s local agriculture, industry, tourism, infrastructure, and
daily life (Nof et al., 2019). The Dead Sea has a 5­20 meter thick salt (halite) layer buried at depths
between 5 m to 65 m along the shores. The water level has been declining at a rate of more than
1m/yr. The result is the exposure of the salt layer to unsaturated water, and the formation of cavities
eventually leads to collapses in the shape of sinkholes (Nof et al., 2019). Much research has already
been performed on the sinkhole phenomenon at the Dead Sea. Also, the use of InSAR has already
been researched for some time. In the paper Nof et al. (2019) the Hever site has been a case study
where a sinkhole collapse has been investigated using InSAR. The displacement time series obtained
from the ex post facto analysis was used to apply our models. Fig. 4.15 shows the los cumulative
displacements measured at the Hever site. The time windows starts on 14 December 2011 and closes
on 23 June 2012. The time window is roughly half a year. The displacement is in the line of sight and
shows a maximum displacement of nearly 6 centimeters. Here, we also assumed that displacements
in the line of sight are sufficient to test our subsidence models. Fig. 4.16 shows the two models with
their best estimate. The estimate seems to overperform in the first two figures and underperforms in
the last figure. The bad performance in Fig. 4.16 is also visible in Table 4.4. The average RMSE is high,
but the average fit is close to zero. The linear subsidence approximation of this sinkhole is thus not
adequate for all the tested models. We then try to use an accelerating approximation for our models.
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Figure 4.16: Fitted linear kinematic and physical models to digitized sinkhole data obtained from Nof et al. (2019)

Table 4.4: Table for the estimated parameters for the linear subsidence approximation shown in Fig. 4.16. The Dead Sea sinkhole
is found in the paper Nof et al. (2019).

Model name Average RMSE (mm) Average Fit (%)
Gaussian 4.3 3.5
Mogi 4.8 −13

We describe the accelerating kinematic model in Eq. (3.8). Eq. (3.8) improves the performance of the

Figure 4.17: Fitted accelerating kinematic and physical models to digitized sinkhole data obtained from Nof et al. (2019).

kinematic model and we show the results in Fig. 4.17. We show the averaged results in Table 4.5. The
average RMSE has improved satisfactorily, but the average fit still underperforms. The last few epochs
(in Fig. 4.17) show a terrible estimate, and an explanation can be that the sinkhole experienced partial
collapse at this stage.

4.1.4. Discussion
We discern from Fig. 4.1 that the obtained tilt and curvature from the computed vertical displacement
differ in magnitude for the numeral and the mathematical approach. The shape shows a likeness since
the peaks and troughs of both methods share the same radial position.

Fig. 4.2 shows the horizontal displacement. The horizontal displacement assumes a cavity depth
to compute the displacements. The cavity depth is related to the angle of draw 𝜃 and the radius of
influence (𝑅), Eq. (2.4). 𝑅 governs the surface expression, and 𝜃 is characteristic for the local geology.
Therefore, 𝜃 can be roughly indicative of the local geology (Ren & Li, 2008). Both parameters might
be hard to determine in practice since the surface expression might be faint or the local geology is
challenging. The depth estimation of the cavity might not be reliable.

The horizontal movement is radially towards the center of the sinkhole. We see that the maximum
horizontal displacement is roughly at 13 of the 𝑅 from the center. The linear change shows how each
point on the surface gets dislocated w.r.t. its neighbor. The linear change is also active beyond 𝑅.
When we divide the linear change by a fixed unit distance (e.g., 1 meter), we get the extension and
compression. We see that around roughly 2

3 of 𝑅 we have the maximum extension. The position of
maximum extension is the location where the first signs of cracks will appear (Kratzsch, 1983). At
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Table 4.5: Table for the averaged estimated parameters for the accelerating subsidence approximation. The final results are
from the Dead Sea sinkhole found in Nof et al. (2019).

Model name Average RMSE (mm) Average Fit (%)
Gaussian 2.1 64
Mogi 2.9 57

around 1
3 of 𝑅, we see that the extension flips to compression (positive to negative). At the center of

the sinkhole, the compression is about twice as big as the extension at its peak.
Fig. 4.3 shows the temporal behavior of the vertical and horizontal displacements. The centers

subside at a linear and accelerating rate according to our implementation. We notice that the peaks
stay at the same position. The vertical and horizontal displacements increase as expected, and we
observe the linear or accelerating trend in the third column. The last column shows the vertical versus
the horizontal displacement.

We notice from the last column that closer to the middle, the vertical displacement is more dominant,
while closer to the edges, the horizontal displacement becomes more dominant. It follows roughly the
following rule of thumb; the horizontal displacement is ∼ 10% of the vertical displacement in the center.
Closer to the edges, the ratio approaches ∼ 50%.

In Section 4.1.2 we started by explaining the Eulerian­based and the Lagrangian­based viewpoint.
In this study, we mainly apply the Eulerian­based geometric and kinematic models. However, the
Lagrangian­based model is closer to reality since it tracks individual points. The reason why we prefer
using the Eulerian­based model is that it is easier to implement. Therefore, in this section, we looked
at the similarities and differences between the two viewpoints. For the Eulerian viewpoint, we used
a geometric model based on the Gaussian influence function. For the Lagrangian viewpoint, we used
the Mogi source model.

We first compared the subsidence curves of both models. We coupled the maximum subsidence of
both models to investigate the shape better. We saw that the shape agrees reasonably at the center
but deviates further away from the center. The geometric model is confined within the predefined
radius of influence, while the subsidence simulated by the physical model extends very far out. The
implications are that the surface expression for the physical model is much larger.

Second, the comparison is between the horizontal displacements generated by both models. In
Fig. 4.5 we also see that the curves of both models are very similar to each other and deviate moving
outward. We also see that the physical model again doesn’t confine itself to the radius of influence.

In the next step, we look at how the shape of the subsidence bowl evolves. Each epoch, we again
scale the geometric model to the physical model. The same volume shrinkage occurs in each epoch, and
therefore, the points change slightly for the physical model. It is not the case for the geometric model.
We observe the same behavior as in the single epoch for the vertical and horizontal displacement at
each epoch. Interestingly, when we increase the decreasing volume (to extreme levels), we notice
accelerating maximum subsidence and an inward moving maximum for the horizontal displacement.
These trends are only visible using the physical model and are due to the changing point coordinates.
Less intense volume change will provide a visible linear subsidence rate and an imperceptibly slow
movement of the maximum horizontal displacement. We can conclude from this finding that low
volume change and small displacements (centimeters) do not significantly impact the point position
to induce a visible accelerating behavior. Hence, simulating sinkhole subsidence can be approximated
using linear trends.

What is an interesting observation is that the horizontal displacement is significant. The horizontal
displacement gets relatively larger than the vertical displacement the further away from the center.
At around 2

3 of the radius of influence, the horizontal displacement becomes larger than the vertical
displacement. Interestingly, this holds for both the geometric and the physical models. Therefore, it
seems that both models are adequate to simulate sinkhole subsidence.

In Section 4.1.3 we see mixed results showing that we can simulate the surface expression of an
impending sinkhole using one of these models. It is not perfect, and sometimes the estimate can
be dubious, but it is a decent approximation in general. Relating the results to the Pareto principle
(mentioned in Section 3.1.6), we can conclude that the results are very relevant to the amount of
subsidence and the local geology. For example, Wink showed a very good fit using a standard linear
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subsidence approximation, while the sinkhole at the Dead Sea needed an accelerating subsidence
approximation. Unfortunately, the accelerating subsidence approximation still didn’t provide the fit
according to the Pareto principle. Also, we suspect that in the last figure in Fig. 4.17 partial collapse
has occurred which has a negative impact on the model fit.

The SNR shows that the signal is indeed the strongest at the center of the of the sinkhole. However,
obtaining a signal above the 10 dB is not very common. The SNR also shows that the model fit works
better with higher displacement values.

4.2. Spatial and Temporal Time Series Characteristics
In this section the spatial and temporal characteristics of the data are visualized using two developed
methods. The methods are the Minimum Detectable Size (MDS) and the results are shown in Sec­
tion 4.2.2. The MDS immediately shows, on a map, how the distribution of point scatterers lead to
the detectability of an impending sinkhole. Then, the next method will provide a probability that a
measured displacement can be attributed to an impending sinkhole. This method will be discussed in
Section 4.2.3.

4.2.1. Subset selection and artificial impending sinkhole Implementation
The methodology for artificially superimposing an impending sinkhole signal into a real dataset was
discussed in Section 3.2.1. In the introduction, we explained that we are limiting ourselves to one

Figure 4.18: The location of the subset used for this thesis. The subset is situated in the city of Kerkrade close to the German
border.

sensor and one track. From that track, we created a subset to test our methodology. We’ve chosen
the Sentinel­1 sensor because it is free of charge. Choosing track 88 was an arbitrary decision since
track 37 and track 139 would also be possible. Here, we implemented the sinkhole around the location
of the Franciscanerstraat in Kerkrade.

Fig. 4.18 shows the location of the subset in Kerkrade. In this thesis, we mainly use the Rijks­
driehoek coordinate reference system (EPSG:28992). It is a local Dutch reference system and has the
benefit of displaying the coordinates and distances in meters. We denote the x­coordinates as rdx
and the y­coordinates as rdy when we are working with Rijksdriehoek coordinate reference system.
Fig. 4.19 shows the situation of the subset of the observations, or Persistent Scatterer (PS) points.
The subset is originally obtained from the Sentinel­1 satellite orbiting in the descending track 88. The
displacement data is originally still in the line of sight and not in the vertical direction. However, to test
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Figure 4.19: Dataset with the impending sinkhole and the affected observations. The left figure shows an overview of all the
observations located within the subset. In the center the impending sinkhole center and radius of influence is shown in red. The
red dots are the data points located within the radius of influence. The right figure shows the impending sinkhole center and
radius of influence together with the observations located inside the radius.

the methodology, the point geometry and natural displacement variability was more important than
actual vertical displacement data. The following strategical research assumes that no significant small
scale, short time frame deformations are happening in the subset and that the superimposed sinkhole
is the only deformation event.

The left figure shows the whole subset. In the center of the subset, the superimposed sinkhole is
shown. The sinkhole center (+) and radius of influence (−−) is shown in red. The radius of influence
is 35 meters and thus the diameter becomes 70 meters. This is considerable for a sinkhole, but
for research purposes this sinkhole is enlarged to better investigated the signal and behavior it is
generating. The red dots in the left figure show the affected observation and are also shown in the
right figure. The right figure is zoomed in on the implemented sinkhole phenomenon. The observations
are numbers such that the time series in later figures are more easy to compare. Also, the distance of
each observation towards the center (location of maximum subsidence) is clearly visible. For example,
observation 82 is the closest observation to the center and thus we can expect to observe the strongest
subsidence signal in its time series.

Linear Subsidence Velocity
The location for the superimposed sinkhole is selected and now the sinkhole signal is added to the
displacement time series. In this section the sinkhole with a linear subsidence velocity is added to
the displacement time series. Fig. 4.20 shows two figures where the sinkhole signal is added to the
displacement time series. The left figure is a top view of the observations. Each observation is color
with respect to its deformation rate, or displacement velocity. The displacement velocity is computed
by fitting a linear model through the displacement time series of each observation. So, in this way
the general movement of an observation can be characterized. The general movement is shown as
millimeter per year. The implemented sinkhole is also shown on the map. From the left figure an
increasingly downward trend can be seen for the points closer towards the center of the sinkhole. This,
however, doesn’t necessarily mean something is actually happening at this locations (if the locations
of the sinkhole was unknown).

The right side figure shows the displacement time series of all the observations within the radius of
influence. Each line corresponds with a particular observation and can be compared with the observa­
tions in the right figure of Fig. 4.19. Be aware, the colors in Fig. 4.19 and Fig. 4.20 do not agree. After
the vertical dotted black line, we added the impending sinkhole signal to the dataset.
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Figure 4.20: The left figure shows the observation colored by their displacement velocity. The displacement movement is
displayed in mm/yr. The location of the sinkhole is also visible in the left figure. The right figure shows the displacement time
series of all the observation within the sinkhole radius of influence. The vertical dotted black line shows the moment when the
sinkhole signal is added to the time series.

Accelerating Subsidence Velocity
An impending sinkhole doesn’t always subside linearly. Sometimes it exhibits an accelerating behavior.
In this section an accelerating trend is added to the dataset. Fig. 4.21 shows in the left figure the

Figure 4.21: The left figure shows the observation colored by their displacement velocity. The displacement movement is
displayed in mm/yr. The location of the sinkhole is also visible in the left figure. The right figure shows the displacement time
series of all the observation within the sinkhole radius of influence. The vertical dotted black line shows the moment when the
sinkhole signal is added to the time series.

observation with the subsidence velocity. The right figure shows the displacement time series with the
accelerating sinkhole signal added to the end of the series. The moment when we added the impending
sinkhole signal to the dataset is highlighted with the vertical dotted black line and continues to the end
of the dataset.

4.2.2. Minimum Detectable Size
Before we start implementing one of our strategies on a particular area of interest, we prefer to have
some a priori knowledge. We can obtain this knowledge in the shape of maps and show the dataset’s
characteristics in the area of interest. The maps are the minimum detectable sinkhole size and the
minimum detectable deformation given a detectability power and significance level. The latter map
can also be inverted, showing the detectability power given a minimum detectable deformation and
significance level. These maps will provide us with a priori knowledge and help us manage expectations.

First, we show the map for the minimum detectable sinkhole size of our area of interest. Fig. 4.22
shows the subset of observations of the Sentinel­1 sensor in its ascending track number 88. The map
clearly shows that closer to clusters of observations, the minimum size gets smaller. The smallest
sinkhole tested in this dataset is a sinkhole with a radius of influence of 1 meter and thus has a
diameter of 2 meters. We used a posting of 1 meter, meaning that every 1 meter we evaluated the
algorithm. The edges of the map may show some misleading results because the dataset is a subset.
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Figure 4.22: Minimal detectable size of a potential impending sinkhole over the area in Limburg around the Franciscanerstraat
in Kerkrade. The observations are from the Sentinel­1 sensor and the ascending track 88.

The observations near the edges are filtered out since we are using a subset. The results of the
map are interesting. It indicates what size is possible to observe and where we can observe it. We
are more interested in sinkholes in urbanized areas than in nature since it poses an anthropological
hazard. Fig. 4.23 shows a histogram of the observed sizes. Interestingly, minimum detectable sizes
with a radius between 5 meters and 20 meters are most common for this subset. With higher resolution
datasets, the minimum detectable size approaches observed sinkholes. However, to detect sinkholes,
we need sufficient observable displacement. The next section will talk about the minimum detectable
deformation.

4.2.3. Minimal Detectable Deformation and Detectability Power
The minimum detectable size, or MDS, shows the minimum size of a sinkhole we can detect at a
particular location. Fig. 4.24 shows two maps with the minimum detectable deformation and the
detectability power. More stable time series will provide a lower minimum detectable deformation.
These maps provide a priori knowledge of how much deformation we need or what detectability power
we can attribute to a specific deformation value. For example, when we detect anomalous behavior,
how certain are we that the measured deformation can be attributed to an impending sinkhole?

4.2.4. Discussion
In this section, we first talked about implementing an artificial sinkhole into the dataset and its effect.
We implemented a linear subsiding sinkhole and an accelerating subsiding sinkhole. When we look at
the velocity maps of each implementation, we see a (slightly) decreasing linear trend. However, we
can not make strong statements solely based on the velocity map without more definitive clues.

The second topic we researched is the minimum size we can detect. The size is dependent on the
resolution of the observations. The observations are not homogeneously distributed, and thus, the
detectable sizes highly vary. The histogram (Fig. 4.23) shows the distribution of the detectable sizes.
Fig. 4.23 shows that 64% of the locations will have a minimum radius of 20 meters or smaller. 86%
of the area has a minimum radius of 30 meters or lower. The MDS map indicates that at 91% of the
locations on the map, an impending sinkhole can be detected with a minimum radius of 35 meters.
The most common minimum detectable size is a radius of 10 meters.

The last topic showed how we implemented the minimum detectable deformation or detectability
power. When we have detected anomalous behavior in an observation, we can combine it with this
metric to put a probability on the detection.
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Figure 4.23: Histogram showing the distribution of minimum detectable sizes for potential impending sinkholes in the subset.

Figure 4.24: The left figure shows the minimum detectable deformation with a detectability power of 95% and a significance
level of 5%. The right figure shows the detectability power with a minimum detectable deformation of 1.2 centimeter and a
significance level of 5%.
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4.3. Spatio­Temporal Strategy using Kinematic Model
This section will describe the results obtained from implementing the Spatio­temporal strategy per­
formed with the kinematic model. In Section 3.3 we explained how we execute this strategy. We used
the same subset as described in Section 4.2.1. In this subset, we know when the sinkhole signal
is active, and thus we can anticipate when and where the sinkhole signal should be present. First,
we quickly tested the strategy using arbitrary values for the number of epochs used for the kinematic
model, the radius of influence, and the grid density. Then, we tested individually how each parameter
influences the result. This part of the research aims to (1) investigate the feasibility of implementing
the kinematic model and (2) identifying parameters influencing the results.

4.3.1. Implementation Spatio­temporal strategy
Here, we implemented the search algorithm. There are three parameters set:

1. The number of epochs used in this model is 10. Thus, the model computes the subsidence rate
over ten epochs, which is about a range of 60 days depending on the epochs selected.

2. We set the radius of influence to 35 meters. Thirty­five meters is the radius used for the imple­
mented sinkhole. We assumed that it is easier to set it to the same value initially.

3. We used a grid of 10 by 10, totaling 100 grid points. The distance between each posting (i.e.,
grid point) is 25 meters.

We used the filter functions for both the estimate (𝑥̂) and the estimated variance (𝑄𝑥̂). We implemented
these filter options to reject unrealistic estimates that do not fall within our window of interest (e.g.,
we are not interested in ground heave). We have set the filter boundaries as follows:

1. We set the window for subsidence velocity estimates to 0 for the upper bound and ­0.0006 for the
lower bound. The upper bound is evident since we only are interested in subsidence behavior. We
set a lower bound regarding our implemented sinkhole. We know that the implemented sinkhole
has a maximum subsidence of 5 centimeters. Five centimeters in half a year amounts to roughly
­0.0003 meters per day of maximum subsidence. Thus, we assume that the maximum measured
subsidence does not exceed the ­0.0003 meters per day. To be on the safe side, we multiplied the
computed maximum subsidence by a factor of two, obtaining a lower bound of ­0.0006 meters
per day.

2. For the filter of the estimated variance, we were more liberal. We settled on a filter window
between 0 and 0.0001 (1e­4). We obtained these values by trial­and­error, and these values
seem to work best.

We visualize the results using two figures. The first (left) figure displays the marked observations and
their corresponding index number. Each marked observation we color according to their estimated
subsidence velocity. The second (right) figure shows a bar plot of each grid point and its subsidence
velocity. We mark each bar with its index number. Fig. 4.25 shows the final result of the Spatio­
temporal strategy in action. We see some marked observations, but observation 55 shows a lot of
subsidence present in the area. The estimated subsidence is indeed from the implemented sinkhole.
Therefore, using the Spatio­temporal strategy using the kinematic model can detect an impending
sinkhole. However, we had to do much tweaking (especially with the filters) to get these results.

Now, we look at the three parameters mentioned earlier and look at their effect on the results.
We took the date 08­10­2018 as the comparison date because it is one of the first dates to show the
implemented sinkhole signal and also shows numerous false positives.

Influence of the number of epochs used
In this subsection, we take a closer look at using different epochs for our estimation. We assume that
more epochs will provide less noise. Using only a few epochs, we assume it will give a lot of false
positives.

Ten epochs are roughly sixty days. We know that the sinkhole is active for at least half a year.
Therefore, we will first look at the results when we use twenty epochs. Twenty epochs correspond
with roughly 120 days (∼four months). Fig. 4.26 has the same setup as Fig. 4.25, but now we have
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Figure 4.25: Results for the subsidence velocity estimation using 10 epochs, radius of influence of 35 meters, and a grid density
of 10 by 10 (posting every 25 meters). The date is 8 October 2018. The left image is a top view with the estimates not filtered
out. The right image is are the bar plots of the estimates.

Figure 4.26: Results for the subsidence velocity estimation using 20 epochs, radius of influence of 35 meters, and a grid density
of 10 by 10 (posting every 25 meters). The date is 8 October 2018. The left image is a top view with the estimates not filtered
out. The right image is are the bar plots of the estimates.
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used twenty epochs to estimate the subsidence velocity. We can see the same signal but with a smaller
magnitude. Also, other marked observations popped up. A quick conclusion is that ten epochs better
capture the signal of interest.

The next step is to use fewer days for the estimation. We try and use five epochs (about thirty
days). The result we got was almost non­existing. Hence, we increase, only for this case, the upper
bound of the filter for the estimated variance to 0.001 (1e­3). We increase the upper bound with a
factor of ten. With the new limit, we obtain a fair amount of results. Fig. 4.27 shows the results for

Figure 4.27: Results for the subsidence velocity estimation using 5 epochs, radius of influence of 35 meters, and a grid density
of 10 by 10 (posting every 25 meters). The date is 8 October 2018. The left image is a top view with the estimates not filtered
out. The right image is are the bar plots of the estimates.

using five epochs and an increase for the upper filter bound. The sinkhole signal is even more apparent
in these figures but also increases the detection of other observations. The exciting part is that the
affected points show a very high subsidence velocity. If we implement a threshold approach, we might
be able to set up a detection algorithm.

Influence of the Radius of influence
In the next step, we look at the influence of selecting different radii. We pick five different radii for
October 8. The radii that we tested are 𝑅 = 17 m , 𝑅 = 25 m, 𝑅 = 33 m, 𝑅 = 40 m, and 𝑅 = 60 m.
We start with the smallest radius of influence, 𝑅 = 17 m. Fig. 4.28. By using smaller radii, we have to
keep in mind the posting distance. When we investigate the area, we want the grid and the radius of
influence to cover the whole area. We do not want uncovered areas which might host some points. In
the case of 𝑅 = 17 meters and a posting distance of 25 meters, we constantly have an area of around
1 m2 that is not covered. The exposed area lies on the diagonal between the grid points.

On October 8, we do not see much and therefore conclude that we do not see any impending
sinkhole in the area with a radius of influence of 17 meters. Increasing the radius to 25 meters gives
us at least coverage of the whole area. Still, the radius is much smaller than the implemented sinkhole
radius. In Fig. 4.29, we still do not see a lot of signals indicating an impending sinkhole. The results
look similar to Fig. 4.28. We increase the radius again to almost the radius of the implemented sinkhole.
We expect that we should see at least some indication of the impending sinkhole since the difference
in radii is minimal. Fig. 4.30 shows the result, and to our disliking, we do not see anything out of the
ordinary. We suspect that the grid size has to play a role here. We already looked at Fig. 4.25, and
here we see a sinkhole signal at observation 55, which is the closest point to our implemented sinkhole.
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Figure 4.28: Results for the subsidence velocity estimation using 10 epochs, radius of influence of 17 meters, and a grid density
of 10 by 10 (posting every 25 meters). The date is 8 October 2018. The left image is a top view with the estimates not filtered
out. The right image is are the bar plots of the estimates.

Figure 4.29: Results for the subsidence velocity estimation using 10 epochs, radius of influence of 25 meters, and a grid density
of 10 by 10 (posting every 25 meters). The date is 8 October 2018. The left image is a top view with the estimates not filtered
out. The right image is are the bar plots of the estimates.
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Figure 4.30: Results for the subsidence velocity estimation using 10 epochs, radius of influence of 33 meters, and a grid density
of 10 by 10 (posting every 25 meters). The date is 8 October 2018. The left image is a top view with the estimates not filtered
out. The right image is are the bar plots of the estimates.

Figure 4.31: Results for the subsidence velocity estimation using 10 epochs, radius of influence of 40 meters, and a grid density
of 10 by 10 (posting every 25 meters). The date is 8 October 2018. The left image is a top view with the estimates not filtered
out. The right image is are the bar plots of the estimates.
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Fig. 4.31 shows the search for the impending sinkhole with a radius of influence of 40 meters. This
figure clearly shows something happening at point 55 on the contrary to Fig. 4.30. We suspect that
the posting is an issue here since the radius used in Fig. 4.31 is much larger than the radius used
in Fig. 4.30. The last figure is Fig. 4.32. This radius of influence is almost twice as big as from the

Figure 4.32: Results for the subsidence velocity estimation using 10 epochs, radius of influence of 60 meters, and a grid density
of 10 by 10 (posting every 25 meters). The date is 8 October 2018. The left image is a top view with the estimates not filtered
out. The right image is are the bar plots of the estimates.

impending sinkhole. However, we still see that the algorithm picked up point 55, albeit not very strong.

Grid Density
The last parameter that we investigate is the grid density. Here, we use more points to evaluate the
kinematic model and decrease the posting distance. The grid of 10­by­10 points had a posting every
25 meters (in x­ and y­direction). We increase the density by defining a grid of 20­by­20, which has
a posting of 12.5 meters. Finally, we obtain a grid of 40­by­40 with a posting distance of 6.3 meters.
Here, we only looked at the effect the increased grid density has, and thus the number of epochs used
and the radius of influence was set again to 10 and 35, respectively.

The increase of the grid density slows down the algorithm a lot. A grid of 10­by­10 only has 100
points to evaluate, while a grid of 20­by­20 had 400 points, and finally, 30­by­30 has 900 points to
evaluate. Also, with the increase of grid points, the figure becomes messier since we show more data.
Fig. 4.33 is the first grid density increase. As already mentioned, the posting distance decreased to
12.5 meters. We notice that a lot more points are marked, which is logical since we increase the
number of points by a factor of four. With the increased grid density, we still observe the area of the
impending sinkhole being marked, and by a lot more points. In the previous section (Section 4.3.1), we
noticed that radii smaller than the implemented sinkhole were not detected while larger radii did pick
up the impending sinkhole signal. Fig. 4.34 uses a smaller radius (𝑅 = 25 meters) and an increased
grid density. Now, we do detect something at the location of the implemented sinkhole. We can thus
conclude that the size of the grid can play an important role in detecting a particular size of a sinkhole.
In the last figure, Fig. 4.35, we again increased the grid density to a total of 900 points. The posting
distance decreases to 6.3 meters. Interestingly, with the increased grid density, we marked fewer
points. However, the points are situated closer together. We removed the point numbering since this
would clog up the figure and make it hard to interpret.
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Figure 4.33: Results for the subsidence velocity estimation using 10 epochs, radius of influence of 35 meters, and a grid density
of 20 by 20 (posting every 12.5 meters). The date is 8 October 2018. The left image is a top view with the estimates not filtered
out. The right image is are the bar plots of the estimates.

Figure 4.34: Results for the subsidence velocity estimation using 10 epochs, radius of influence of 25 meters, and a grid density
of 20 by 20 (posting every 12.5 meters). The date is 8 October 2018. The left image is a top view with the estimates not filtered
out. The right image is are the bar plots of the estimates.
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Figure 4.35: Results for the subsidence velocity estimation using 10 epochs, radius of influence of 35 meters, and a grid density
of 40 by 40 (posting every 6.3 meters). The date is 8 October 2018. The left image is a top view with the estimates not filtered
out. The right image is are the bar plots of the estimates.

4.3.2. Discussion
To get results using the spatio­temporal strategy requires a lot of rigorous tweaking and filtering of
the estimates. Also, tweaking the number of epochs, radius of influence, and grid density significantly
impacts the results. Still, the results are not always optimal, and sometimes the signal does not even
get detected. All these factors make it very hard to predict an impending sinkhole accurately. Since
we implemented an artificial sinkhole in the dataset, we know where to look. Therefore, it sometimes
feels more of a game of filtering out false positives. If we do not know how the sinkhole signal would
form, it would be tough to tweak this algorithm to detect an impending sinkhole.

We know that the subsidence velocity is 0.0003 meters a day, but the estimates seem to bounce
around this value. Most of the time, the estimate is lower. We conclude that the estimated velocity
is unreliable, and we can at most predict a probable velocity range. Changing the number of epochs
does not lose the impending sinkhole signal. It mainly affects the magnitude and the number of false
positives found. Using five epochs seems to be interesting because most sinkholes occur within a short
time window. However, obtaining the results was only possible by adjusting a filter. What we observe
is interesting. We detect a stronger signal for the affected points, but sometimes the signal completely
disappears. It looks like a good strategy, but when looking at Fig. 4.36, we see that it can also produce
a result containing much noise. However, if one would develop a way to identify or reduce these false
positives, then this set of parameters might harbor potential.

We detect the sinkhole using multiple 𝑅 values. It means that the exact radius is hard to determine,
and we can only obtain a range. A strange discovery is that a radius of 33 meters does not detect the
sinkhole signal, while a radius of 40 meters does. The current explanation is that the grid density is
inadequate to use smaller radii, and it seems to be supported by Fig. 4.34.

For computational reasons, we want to make the grid as sparse as possible. However, the drawback
is that the detection of sinkholes tends to favor larger sizes. It might not be a problem if we only want to
detect impending sinkholes, but it might impede obtaining more realistic results. The grid density also
affects the minimal detectable size. We need at least a few observations close to a grid point before
computing a reliable estimate. Increasing the posting distance together with a decreasing radius of
influence might inadvertently exclude many observations.
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Figure 4.36: Results for the subsidence velocity estimation using 5 epochs, radius of influence of 35 meters, and a grid density
of 10 by 10 (posting every 25 meters). The date is 24 March 2018. The left image is a top view with the estimates not filtered
out. The right image is are the bar plots of the estimates.

False Positives
We know when and where the sinkhole signal should pop up. Marked observations outside this time
window, are labeled false positives. It makes our search more manageable. We endure many false
positives, and luckily most of them have a minimal subsidence velocity. Sometimes this is not the case,
and it forces us to find new ways to identify these false positives. We notice that a group of points in the
top right corner is marked relatively more often. However, points too close to the edges might indicate
false positives since shifting the subset would reveal more observations to correct the estimates.

Another theory is that false positives are inherent to the dataset. When using multiple sensors or
multiple tracks, these occasional marks can get filtered out.

4.4. Temporal strategy using Arcs
In Section 3.4 we describe the arc­based methodology to detect anomalous behaving points system­
atically. This section applies the methodology to a subset whereby we superimposed an artificial
impending sinkhole pattern on the data. We based the impending sinkhole pattern on the kinematic
model (Section 3.1). The methodology consists of two steps. The first step is the characterization of
an arc. Here, we use a linear model and sufficient epochs to characterize an arc. We also make a
statement about how we think the model should be updated. The second step shows the detecting
procedure of the impending sinkhole. We visualize this performance using a top­view plot and a bar
graph. The idea is that an anomalous behaving point has more arcs with a high flag count connected,
which would be visible in the bar graph of the total flag count. This part of the research aims to (i) de­
velop an alternative methodology for finding sinkholes and (ii) identifying some key parameters when
applying this methodology.

4.4.1. Arc Characterization
An essential aspect of the arc­based detection method is the characterization of the computed arcs.
Ideally, we want to characterize the arc so that only anomalous observations are flagged. Unfortunately,
the characterization of an arc tends to be more difficult in practice due to errors such as unwrapping
errors, outliers, (seasonal) trends, point quality, physical change (e.g., placing of a dormer), weather,
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or other sources provoking volatile behavior.
However, it seems that a linear model with a sufficient confidence interval encompasses most of

the arc behavior. Albeit, if we chose the model size sufficiently and the number of to be flagged
observations concisely. Fig. 4.37 shows three figures. We have based the selection of the three

Figure 4.37: Three plots showing arc time series where we used 50 epochs to train our model. The top plot shows the time
series with the lowest standard deviation of the residuals. The middle plot shows the highest standard deviation, and the bottom
plot shows the median standard deviation.

figures on the residuals. We used all the observations in the computation for the residuals, and from
the residuals, we computed the standard deviation. We then sort every arc to the computed standard
deviation. The first (top) figure is the displacement time series with the lowest standard deviation. The
second (middle) figure shows the highest standard deviation. As is visible in the figure, the highest
standard deviation includes the point most affected by the implemented impending sinkhole. The third
(bottom) figure shows the time series with the middle (median) standard deviation in the sorted series.
Fig. 4.38 shows two histograms containing statistics about the arcs. The left figure shows a histogram

Figure 4.38: Two histograms showing the distribution of the total flag count of an arc, and the distribution of the standard
deviation per model.

of the summed­up flag count per arc (without short­term memory retention, see Section 4.4.2). The
summed­up flag count is the total number of times we have flagged the arc in the time series. We
see that an average arc is flagged 16 times. We chose to use a median instead of a mean because we
expect the outliers to be relatively large. The right figure shows a histogram of the standard deviations
of the arcs. The average standard deviation is 3.5.

Having 50 epochs to apply the model on is already a large time span. In this case, 50 epochs
stand for roughly 552 days, thus around 1.5 years. Still, we would expect that increasing the number
of epochs will decrease the general arc flags and the standard deviation. Fig. 4.39 shows the same
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Figure 4.39: Three plots showing arc time series where we used 80 epochs to train our model. The top plot shows the time
series with the lowest standard deviation of the residuals. The middle plot shows the highest standard deviation, and the bottom
plot shows the median standard deviation.

three different time series but now the model used 80 epochs. Fig. 4.40 shows the histogram with

Figure 4.40: Two histograms showing the distribution of the total flag count of an arc, and the distribution of the standard
deviation per model.

the summed­up flagged arcs and the standard deviation. Again, we see a clear improvement in both
histograms meaning that more epochs indeed improves the model. Thus, using fewer epochs will
produce worse results. Fig. 4.41 shows the results when using only 30 epochs to fit our model. The
results are worse than in Fig. 4.37 and Fig. 4.39. In the histogram of Fig. 4.42, it is even better visible
that the results of using fewer epochs produce a worse fit.

Therefore, a quick conclusion is that the quality of the model depends on the number of used
epochs. However, characterizing the arc might also be influenced by the number of days between the
last epoch in the model and the newly incoming observation. We investigate the relationship between
the number of flagged observations and the model size used in the following steps. The two metrics
to investigate the performance of the model are the median summed­up flag count and the standard
deviation of the residuals. We compute the residuals using the whole time series. In Fig. 4.43 we
automated the process of testing the model size. We kept the number of flagged observations the
same per figure while changing the model size to incorporate more epochs. Using the metrics median
summed­up flag count and the standard deviation, we can draw a few conclusions on the preferable
model size and the preferable number of flagged observations before updating the model.

From experience, we flag arcs continuously and seemingly randomly, and most of the time only
once. We can also recognize that in Fig. 4.43 since it converges to a specific value and not zero.

We notice that fewer observations flagged will provide a lower median flag count. We would expect



4.4. Temporal strategy using Arcs 67

Figure 4.41: Three plots showing arc time series where we used 80 epochs to train our model. The top plot shows the time
series with the lowest standard deviation of the residuals. The middle plot shows the highest standard deviation, and the bottom
plot shows the median standard deviation.

Figure 4.42: Two histograms showing the distribution of the total flag count of an arc, and the distribution of the standard
deviation per model.
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Figure 4.43: Figures showing the number of to be flagged observations relative to the model size. We chose a model size and
then look at the median summed flag count and the std of the number of the to be flagged epochs. We do this for 50, 60, 70,
and 80 to be flagged epochs.

this since observations are closer to the model. Also, a minimum of 60 epochs for the model is preferred.
Sixty epochs are roughly one and a half years of displacement time series data. Further, one year of
displacement data also covers the seasonal trend.

Discussion Update Strategies
The next step is to devise a strategy that implements new observations into the characterization model.
We assumed that nothing is happening in our subset and that the only sinkhole signal is the imple­
mented artificial sinkhole signal.

To get a decent characterization, we need at least 50 epochs (1.5 years) and preferably a little more
(i.e., 60+ epochs). This conclusion was drawn by looking at Fig. 4.43. By trial and error, we found
that using more or fewer epochs does not significantly impact the computation time, fortunately, and
therefore does not pose a big issue.

Another aspect is to change from a linear model to a seasonal or higher polynomial model. A (slight)
seasonal trend is visible in some of the time series. We expect the arc creation process to filter out
most of this signal because a seasonal trend in two observations would get subtracted from the newly
obtained time series. However, in some cases, a seasonal model might still better characterize the arc.

A simple model updating scheme is to add an observation to the model that we did not flag. Thus,
the model will get extended with approved observations. In this way, the incoming observation also
lays close to the model. Nevertheless, a deviating trend might be incorporated into the model too
soon. An option can be to lag behind several epochs before the approved observation gets appended
to the model. We can think of many other updating schemes. To test the effectiveness of the update
scheme, the median flag count might be a good metric to keep in mind. The most important aspect
of an updating scheme is to use sufficient (i.e., 1+ years of epochs) to characterize the displacement
time series. The temporal size of the model seems to have the most influence on the characterization
process.

4.4.2. Arc­Based Detection Method Implementation
This subsection shows how an arc­based detection method would look like and how anomalous points
can be detected.

In the previous section, we concluded that ideally, we use at least 60 epochs for the model for
characterizing an arc and use around 50 epochs to flag. During the flagging procedure, we introduce
a short­term memory in the shape of a flag count. The flag count tracks the number of times the
flagging procedure flags an arc in succession. We use the flag count also for coloring the arc in the
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visualization. We set a maximum value for the flag count to four. The first time we flag an arc, we do
not show it, and we do not use it for the coloring scheme. The reason is that with so many arcs, single
outliers tend to be appearing too often, which only clutters the image. Later, we use the flag count to
create the total flagged value per observation. The total flagged value represents all the flagged arcs
going towards an observation, and we visualize this using a bar plot.

We currently visualize the flagging procedure using a short clip; however, this is not possible to
show within this thesis. Therefore, we show snapshots from the clip. The actual link to the clip can be
found in the Appendix A.

Figure 4.44: Top view of the time series consisting of 5 epochs. At each epoch we show the flagged arcs colored corresponding
to their flag. The first epoch is 24­12­2017, the second epoch is 29­05­2018, the third epoch is 09­08­2018, the fourth epoch is
02­10­2018, and the last epoch is 31­12­2018.

Figure 4.45: Bar plot of the time series consisting of 5 epochs. At each epoch we show the total flagged value per observation.
We start numbering the bars above a value of 20. The epochs are consistent with Fig. 4.44.

From Fig. 4.44 and Fig. 4.45, we see that more and more arcs are getting flagged towards the end
of the time series. Fig. 4.44 tends to get very messy at this point, while in Fig. 4.45 we see some
observations hinting at anomalous behavior.

Since we implemented an artificial sinkhole, we know which observations are most affected, making
it a little easier to spot anomalous behavior. For example, we know that observations 82, 74, and 75
are most affected, and see it stick out in Fig. 4.45.

Figure 4.46: Two epochs showing two random observations above the set threshold indicating anomalous behavior.

Threshold for Minimum Total Flagged Value
To detect these anomalous points, we would like to set a threshold. This threshold suggests that above
a set number, the procedure will mark the observation as behaving anomalously.

Let us say we put the detection threshold at a total flagged value of 150. We define this value
by looking at the observations’ regional behavior, especially the bar plot. We expect to define a new
threshold for every new region and every new sensor because each dataset or sensor might be affected
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by other types of errors or noise. However, the short­term memory has biggest effect on the threshold.
In this subset, there are two moments when two random observations are above the threshold.

Fig. 4.46 shows the two epochs when the detection threshold would classify these observations as
behaving anomalously (i.e., above a threshold value of 150). However, the observations are only clas­
sified for one epoch, while the affected observations (i.e., observations 82, 74, and 75) are consistently
flagged. The table appendix B shows the marked points (points exceeding the 150 TFV threshold) in

Table 4.6: Shortend table of the marked Total Flagged Values obtained from running the arc­based strategy. The full table can
be found in Appendix B.

Epoch Date ID Total Flagged Value
2018­03­18 17 174
2018­08­03 31 163
2018­09­14 82 179
2018­09­26 82 202
2018­10­02 74 163
2018­10­02 82 225
2018­10­02 75 171

the whole subset. There are two randomly marked point, but are marked only once. At 14 September
we notice that point 82 is getting marked and stays marked. On 2 October the two neighboring points
are marked also denoting that something anomalous is happening at this particular location.

We can find the details of the implemented sinkhole signal in Table 3.1 On 14 September 2018,
observation number 82 is flagged, and on 2 October 2018, the procedure flags the three most affected
observations.

Table 4.7: Displacements introduced by the artificial sinkhole. This is only the sinkhole signal and not the time series displace­
ment.

Point ID Distance [m] Displacement [mm] Detectability Power [%] Total Flagged Value [­]
14­Sept 26­Sept 02­Oct 14­Sept 26­Sept 02­Oct 14­Sept 26­Sept 02­Oct

82 15 ­12 ­14 ­15 90 100 100 179 202 225
75 20 ­7 ­8 ­9 49 97 100 99 140 171
74 19 ­8 ­9 ­9 53 96 100 77 121 163
2 33 ­1 ­2 ­2 13 5 21 13 14 26
73 31 ­2 ­2 ­2 8 14 21 11 9 21

Table 4.7 shows the various observations that the sinkhole signal influences. The Displacement
column shows the implemented displacement by the subsidence trough. We compute the Detectability
Power (DP) by using the linear trend computed in Section 4.4.1. The difference the incoming observa­
tion has with the trend is used as the Minimum Detectable Deformation. The significance level was set
to 5% (used throughout the thesis) and using the methodology explained in Section 3.2.4 we compute
the DP. The table ends with the Total Flagged Value we gave each point.

4.4.3. Discussion
We introduced a flagging procedure with a short­term memory in the shape of a flag count. The
benefits of using the flag count is that consistently anomalous behaving arcs are magnified. The flag
count is then used to compute the Total Flagged Value (TFV) which is in essence the summation of all
the flagged arcs towards a single measurement point.

The TFV has showed that using a threshold value is possible to judge whether a point is behaving
anomalous. Here, we’ve taken a threshold value of 150 to mark points anomalous. This value was
obtained by looking at the regional behavior. The threshold is highly influence by the short­term
memory. Longer memories will need a higher threshold since the TFV will be substantially larger.
Using the discussed tools, we detected two anomalous points (point ID 17 and 31), but these were
only marked once and thus assumed to be false positives. Starting 14 September, point 82 is marked
and stays marked. This is roughly 3 months after the impending sinkhole signal started. Point 82
lies roughly 15 meters from the center of the subsidence trough is already detected with 12 mm of
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implemented displacement. On 2 October point 75 and 74 are also marked (see Table. 4.7). Table. 4.7
also shows the corresponding Detectability Power (DP) with the significance level set to 5%. Both
the TFV and DP show a similar trend. Flagged points also exhibit a very high DP. This strengthens
the detection of an impending sinkhole. The TFV is preferred over the DP, since the TFV uses the
information of all the produced arcs and therefore the information in all the points within the used
subset.





5
Conclusion and Recommendations

This study assessed the potential of using PSI time series to detect impending sinkholes. The key
findings this research has produced are discussed in Section 5.1. The key findings are split up into
the sub­questions that will subsequently be answered. During the course of this thesis, the arc­based
method was developed creating the last sub­question in the research. After the sub­questions, a gen­
eral conclusion for this research can be found in Section 5.2. Finally, this research also produced three
recommendations for future research and implementation of the developed methods. The recommen­
dation can be found in Chapter 6.

5.1. Key Findings
How does a subsurface cavity manifests itself onto the surface, and how can we model the
manifestation?

A subsurface cavity causes a subsidence trough at the surface. The generated trough was modeled
using the kinematic model. The kinematic model generated various insights such as ...

Another insight into the manifestation of a subsurface cavity came from approaching the generated
subsidence from two different viewpoints. The Eulerian viewpoint only concerns itself with vertical
displacement while the Lagrangian viewpoint follows the path of a particle. The two viewpoints are
compared using geometric model (i.e., kinematic model) and a physical model (i.e., Mogi point source
model).

From the Lagrangian viewpoint it is expected that a rising subsurface cavity would cause accelerated
subsidence since each discrete point would move towards the center making the points more subjective
to the cavity’s forces. The effect of accelerated subsidence was not visible when iteratively small volume
changes would occur. An accelerating behavior was only visible when the changed volume increased
to unrealistic sizes. The effect of moving ground particles will therefore not have a large impact on
the subsidence rate and thus the kinematic model is a good approximation of the subsidence trough.
An interesting discovery in this thesis was that the dominant direction of the displacement changes at
roughly 2

3 of the radius of influence. This holds for both the kinematic and the Mogi model. It means
that depression troughs would exhibit more horizontal displacement at the edges.

The last insight came from the comparison of the kinematic model and the Mogi model to some
real­world cases. The fit of the models start bad but get better as the trough deepens. In the Dead Sea
case accelerated subsidence was observed and showed that the last frame (just before catastrophic
collapse) showed worse results. The bad fit in the last frame is suspected to be caused by small local
failures since full on failure would already happen shortly after.

Over the lifetime of an evolving subsidence trough the kinematic model showed to be adequate at
modeling an impending sinkhole.

73
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How do the spatial and temporal time series characteristics influence impending sinkhole
detection?

The spatial characteristics of the time series is illustrated using a map on where the Minimum De­
tectable Size (MDS) is visible. The insight this map provides are the areas where there is a higher
chance of detecting impending sinkholes due to the ability of detecting smaller sized impending sink­
holes. It provides a priori knowledge as to the effectiveness of the spatio­temporal strategy (Section
4.3.1) at any specific location. The histogram (Fig. 4.23) of the MDS map shows that at 91% of the
locations on the map, an impending sinkhole can be detected with a minimum radius of 35 meters.
This size corresponds to the size of the implemented impending sinkhole.

The temporal characteristics can be typified with the Minimum Detectable Deformation or Detectabil­
ity Power. Using the methodology described in Section 3.2.4 the insight into how much deformation
can be detected given a specific detectability power and significance level was developed. It adds to
the ability to provide a probability when anomalous behavior is detected in a specific observation.

How can a spatio­temporal strategy based on a kinematic model improve early detection
of an impending sinkhole?

With the spatio­temporal strategy, we implemented a grid­search approach that tries to fit the kine­
matic model on each posting. The results were plentiful and therefore it was hard to distinguish the
actual signal from false signals. Precursory subsidence usually has a short time span and therefore it
is of most interest to use as few epochs as possible. However, fewer epochs will overlook the actual
signal sometimes, we need to adjust the filter, and produces more false positives. Another important
factor is the grid density. The denser the grid, the better the results will be.

We noticed persistent groups of marked grid points which highlights the location of the impending
sinkhole. However, this methodology is prone to false positive groups thus for a definitive warning
other clues must be gathered. The spatio­temporal strategy provides a range of possible surface ex­
pression sizes in the form of radii of influences. Estimating a range of possible sinkhole expression sizes
is very useful for assessing the severity of the impending sinkhole and contributes to the improvement
of the early detection. The spatio­temporal strategy also provides a general location of the impending
sinkhole since the results will be clustered around a specific location.

How can an arc­based temporal strategy improve the early detection of an impending sink­
hole?

The arc­based approach consists of two parts. The first part is the characterization of an arc. We
need to characterize the individual arcs to detect anomalous behavior in these arcs. We characterized
the arc with a linear model consisting of at least 50 epochs but preferably 60 epochs or more for Sen­
tinel data. The insight we obtained from the results is that the model size comes down to more than
1.5 years of time series estimates for the characterization process using Sentinel­1 data. With smaller
model sizes, false detections will increase. We tested the ideal model size using the defined Median
Flag Count (MFC). This metric indicates the median total number of flags per arc. The lower the value,
the better the model predicts the arc’s behavior. The insight we obtained is that the MFC commonly
plateaus out at a certain value. The number of epochs needed for the plateau value is the optimum
number of epochs needed for the model. New strategies to update the model can use the MFC to
evaluate the performance of the newly developed strategy.

The second part consist of the actual detection of anomalous behavior. The flag counts of all
arcs for a specific measurement point are summed up and to create the Total Flagged Value (TFV)
per measurement point. We can then implement a threshold that detects when the TFV exceeds the
threshold and thus exhibits anomalous behavior.

The arc­based temporal strategy can improve the early detection of impending sinkholes. Sec­
tion 3.4.3 and 4.4.2 shows how we proposed a new method, based on arcs, to utilize all the information
in the subset to detect anomalous behaving points.

We detected anomalous behavior by setting a threshold of 150 for the TFV. Two points were falsely
flagged, but quickly discarded. Roughly 3 months after the subsidence trough started developing,
anomalous behavior was detected in point 82. The detection started on 14 September 2018 and lasted
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to the end of the year. On 2 October points 74 and 75 were also marked therefore strengthening the
case of detection. Table 4.7 also showed the Detectability Power (DP). The DP concurs with the TFV
meaning that marked points also show a very high DP. The DP looks similar to the TFV, however we
prefer to use the TFV since it uses information from all the other points.

5.2. General Conclusion
In general, we conclude that the kinematic model is adequate to model the manifestation of a sub­
surface cavity onto the surface. We came to this conclusion by comparing two different viewpoints
and compare the kinematic model to real­world cases. We found that inspecting a dataset’s spatial
aspects can be achieved by creating the Minimum Detectable Size maps. The temporal elements are
characterized by computing the Minimum Detectable Displacement given the Detectability Power and
significance level. The developed methodology for the Minimum Detectable Deformation is compelling
for detecting anomalous displacements since the measured displacement can be substantiated with a
probability.

We conclude that both detection strategies improve the early detection of impending sinkholes. We
concluded that the spatio­temporal strategy is optimal for detecting a sinkhole size range and provides a
general location of the possible impending sinkhole. The arc­based temporal strategy is very promising
in early detecting of impending sinkholes. In this case, we found that the strategy detects an impending
sinkhole after 3 months by setting a threshold. High values for the Detectability Power substantiate
the results.





6
Recommendations

We took a careful look at the surface expression, datasets and two strategies. We showed that the
surface expression is a viable approximation of the surface expression of an actual impending sinkhole
and that the two strategies can detect these impending sinkholes. In this section we will talk about three
recommendations. The first recommendation is the implementation of the strategies on a large subset.
We tested the strategies on a small subset but now we want to monitor a larger area. Each strategy
has its own limitations and this our thoughts are discussed in Section 6.1. The next recommendation
will discuss the next step to test the strategies in Section 6.2. The last recommendation will discuss
how to implement the two discussed strategies in Section 6.3.

6.1. Large scale Implementation
We want an early detection system to monitor a larger region than our used subset. Here, we discuss
some thoughts on how to best scale the strategies to a larger area.

The spatio­temporal strategy based on the kinematic model is the easiest of the two to scale to a
large area. One simply has to enlarge the grid. Making sure the grid covers the extent of the monitored
area is sufficient for this strategy. However, expanding the grid will cost computationally.

The arc­based strategy is a little more trickier to scale­up. The arc­based strategy works best with
small datasets. Larger datasets will exponentially make more arcs and these arcs are more prone to
random flags. The large amount of arcs can be very computationally expensive and might clutter the
results.

We recommend to implement this strategy subset­by­subset. The arc­based strategy works best
on datasets containing ∼60 points. We suggest implementing a grid onto the dataset whereby each
posting can create a subset of around 60 points. We can quickly create subsets using the K­D tree data
structure (Section 3.2.2). Processing a subset requires the steps: (1) arc creation and processing, (2)
Arc characterization, (3) arc flagging, and (4) total flagged value computation. The last step is least
optimized and will take the longest.

The current subset is 250 meters in the East direction and 400 meters in the North direction. The
full dataset for track 88 has the dimension of 180 kilometers East to 317 kilometers North. We can
make 4848 subsets out of the complete datasets with dimensions 250 by 400 meters. If we need 60
seconds per subset (i.e., subset creation, flagging), we need 81 hours of processing time. Eighty­one
hours is too long. If we could cut down the number of subsets by a quarter, we have 1212 subsets
that will need 20 hours of processing, still on the long side. We preferably want the subsets to overlap
so that the edge observations can also lie closer to the center, making them more reliable. Doing this
will again increase the number of subsets.

Therefore, implementing the arc­based strategy on the whole area might pose some difficulties.
This method might be more applicable for monitoring small areas such as bridges, buildings, dams and
ancient abandoned shafts.

77



78 6. Recommendations

6.2. Further Research on Impending Sinkhole Detection
The strategies were applied on a subset containing an artificial sinkhole. We want to discover actual
sinkholes and a simulation might not take certain natural aspects into account (e.g., local geology).
Therefore, we recommend to apply these strategies to actual collapsed sinkholes. One such an example
of an area littered with collapsed sinkholes is given in the paper of Malinowska et al. (2019). Here,
another ex post facto study was performed suggesting that PSI estimates contained displacement data
indicative of an impending sinkhole. It would be very interesting if the proposed strategies would detect
the impending sinkholes in time.

6.3. Implementation of the strategy
We investigated two strategies and how they improve early detection. Here, we discuss some recom­
mendations on how to apply these strategies.

The spatio­temporal strategy provide a lot of information. It will not only give a rough estimate of
the location but also provides an indication of its size. The provided information might be interesting
for damage to the built environment. However, we found out that it was not the best strategy for early
detection. The arc­based strategy detected the anomaly earlier. Therefore, we recommend apply this
strategy for detecting phenomena location and extent.

The second strategy is the arc­based strategy. This strategy is better at detecting anomalous
behavior in point measurements. However, this strategy will not provide any additional information. It
simply marks a measurement point when it detects anomalous behavior. Thus, after the detection we
still have to look for the location and size of the impending sinkhole.

We recommend to use the arc­based strategy for early detection and the spatio­temporal method
for retrieve additional information. The optimal way would be to combine both strategies. For example,
the arc­based strategy detects anomalous behavior where than the spatio­temporal strategy can be
deployed for a more precise estimation of the location and the size.
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A
Links to external content

This appendix acts as an index for the different notebooks, data, and scripts used to obtain the results
for this thesis. Most items will be referring to either GitHub (https://github.com/maxfelius) or my
personal website (max.felius.nl).

• Notebook, 2.2.2.Figure_Angle_Definitions,
https://github.com/maxfelius/Notebooks_List/blob/main/2.2.2.Figure_Ang
le_Definitions.ipynb

• Notebook, 2.2.2.Selected geometric models (influence functions)
https://github.com/maxfelius/Notebooks_List/blob/main/2.2.2.Selected%2
0geometric%20models%20(influence%20functions).ipynb

• Notebook, 3.1.1.Comparison Gaussian Influence Function with Normal Distribution
https://github.com/maxfelius/Notebooks_List/blob/main/3.1.1.Comparison
%20Gaussian%20Influence%20Function%20with%20Normal%20Distribution.ipyn
b

• Notebook, 3.2.3.Precision_Deformation_Time_Series
https://github.com/maxfelius/Notebooks_List/blob/main/3.2.3.Precisio
n_Deformation_Time_Series.ipynb

• Notebook, 3.2.4.MDD_DP_Figure
https://github.com/maxfelius/Notebooks_List/blob/main/3.2.4.MDD_DP_Fig
ure.ipynb

• Notebook, 4.1.1.Ground_Movement
https://github.com/maxfelius/Notebooks_List/blob/main/4.1.1.Ground_Mov
ement.ipynb

• Notebook, 4.1.1.Ground_Movement_Over_Time
https://github.com/maxfelius/Notebooks_List/blob/main/4.1.1.Ground_Mov
ement_Over_Time.ipynb

• Notebook, 4.1.2.Comparison_Kinematic_Physical_Model
https://github.com/maxfelius/Notebooks_List/blob/main/4.1.2.Comparison
_Kinematic_Physical_Model.ipynb

• Folder, 4.1.3.Real­world cases https://github.com/maxfelius/Notebooks_List/tree
/main/4.1.3.Real­world%20cases

• Notebook, 4.2.1.Implement_Accelerating_Sinkhole_Into_Dataset
https://github.com/maxfelius/Notebooks_List/blob/main/4.2.1.Implemen
t_Accelerating_Sinkhole_Into_Dataset.ipynb
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• Notebook, 4.2.1.Implement_Linear_Sinkhole_Into_Dataset
https://github.com/maxfelius/Notebooks_List/blob/main/4.2.1.Implemen
t_Linear_Sinkhole_Into_Dataset.ipynb

• Notebook, 4.2.2.Histogram_MDS
https://github.com/maxfelius/Notebooks_List/blob/main/4.2.2.Histogra
m_MDS.ipynb

• Notebook, 4.2.2.Methodology_Detectability_Map_v2
https://github.com/maxfelius/Notebooks_List/blob/main/4.2.2.Methodolog
y_Detectability_Map_v2.ipynb

• Notebook, 4.2.3.Maps_MDD_and_DP
https://github.com/maxfelius/Notebooks_List/blob/main/4.2.3.Maps_MDD_a
nd_DP.ipynb

• Folder, 4.3.1.Spatio­temporal Strategy based on the kinematic model
https://github.com/maxfelius/Notebooks_List/tree/main/4.3.1.Spatio­tem
poral%20Strategy%20based%20on%20the%20kinematic%20model

• Folder, 4.4.1.Arc Characterization
https://github.com/maxfelius/Notebooks_List/tree/main/4.4.1.Arc%20Char
acterization

• Folder, 4.4.2.Temporal Strategy based on arcs
https://github.com/maxfelius/Notebooks_List/tree/main/4.4.2.Temporal%2
0Strategy%20based%20on%20arcs

A.1. Sinkhole Package Scripts
In this section the scripts are listed which are part of the sinkhole package used in multiple notebooks.
The notes in the scripts will explain the workings.

• Python Script, arc_flagging.py,
https://github.com/maxfelius/sinkhole_scripts/blob/main/arc_flagging.
py

• Python Script, create_tuple_list.py,
https://github.com/maxfelius/sinkhole_scripts/blob/main/create_tuple_l
ist.py

• Python Script, deformation_analysis.py,
https://github.com/maxfelius/sinkhole_scripts/blob/main/deformation_a
nalysis.py

• Python Script, detectability_map.py,
https://github.com/maxfelius/sinkhole_scripts/blob/main/detectability
_map.py

• Python Script, functions.py,
https://github.com/maxfelius/sinkhole_scripts/blob/main/functions.py

• Python Script, geometric_models.py,
https://github.com/maxfelius/sinkhole_scripts/blob/main/geometric_mod
els.py

• Python Script, get_delta_days.py,
https://github.com/maxfelius/sinkhole_scripts/blob/main/get_delta_day
s.py
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• Python Script, influence_function.py,
https://github.com/maxfelius/sinkhole_scripts/blob/main/influence_fun
ction.py

• Python Script, linear_model.py,
https://github.com/maxfelius/sinkhole_scripts/blob/main/linear_model.p
y

• Python Script, mogi_model.py,
https://github.com/maxfelius/sinkhole_scripts/blob/main/mogi_model.py

• Python Script, process_arc_connections.py,
https://github.com/maxfelius/sinkhole_scripts/blob/main/process_arc_c
onnections.py

• Python Script, process_arc_flagging.py,
https://github.com/maxfelius/sinkhole_scripts/blob/main/process_arc_f
lagging.py

• Python Script, spatio_temporal_functions.py,
https://github.com/maxfelius/sinkhole_scripts/blob/main/spatio_tempora
l_functions.py
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B
Arc­based Strategy Output Table

Table B.1: Table of the results from the arc­based strategy with a threshold set to 150. All the marked points with a Total Flagged
Value above the threshold (150) are shown in the table. It clearly shows that the point with ID 82 is marked from 14 September
till the end of the time series.

Epoch Date ID pnt_rdx pnt_rdy Total Flagged Value

d_20180318 17 202994 318388 174.0
d_20180803 31 202875 318394 163.0
d_20180914 82 202944 318351 179.0
d_20180926 82 202944 318351 202.0
d_20181002 74 202940 318336 163.0
d_20181002 82 202944 318351 225.0
d_20181002 75 202942 318336 171.0
d_20181008 74 202940 318336 155.0
d_20181008 82 202944 318351 228.0
d_20181008 75 202942 318336 183.0
d_20181026 82 202944 318351 233.0
d_20181026 75 202942 318336 188.0
d_20181101 82 202944 318351 232.0
d_20181101 75 202942 318336 161.0
d_20181119 82 202944 318351 235.0
d_20181119 75 202942 318336 164.0
d_20181201 74 202940 318336 151.0
d_20181201 82 202944 318351 238.0
d_20181201 75 202942 318336 178.0
d_20181207 10 202874 318366 157.0
d_20181207 82 202944 318351 228.0
d_20181213 10 202874 318366 165.0
d_20181213 82 202944 318351 231.0
d_20181213 75 202942 318336 164.0
d_20181213 36 202880 318410 151.0
d_20181219 74 202940 318336 152.0
d_20181219 82 202944 318351 234.0
d_20181219 75 202942 318336 181.0
d_20181219 36 202880 318410 151.0
d_20181225 10 202874 318366 158.0
d_20181225 74 202940 318336 189.0
d_20181225 82 202944 318351 237.0
d_20181225 75 202942 318336 202.0
d_20181225 36 202880 318410 155.0
d_20181231 10 202874 318366 173.0
d_20181231 74 202940 318336 227.0
d_20181231 82 202944 318351 240.0
d_20181231 75 202942 318336 219.0
d_20181231 36 202880 318410 169.0
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