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 A B S T R A C T

Online system identification algorithms are widely used for monitoring, diagnostics and control by continuously 
adapting to time-varying dynamics. Typically, these algorithms consider a model structure that lacks parsimony 
and offers limited physical interpretability. The objective of this paper is to develop a real-time parameter 
estimation algorithm aimed at identifying time-varying dynamics within an interpretable model structure. An 
additive model structure is adopted for this purpose, which offers enhanced parsimony and is shown to be 
particularly suitable for mechanical systems. The proposed approach integrates the recursive simplified refined 
instrumental variable method with block-coordinate descent to minimize an exponentially-weighted output 
error cost function. This novel recursive identification method delivers parametric continuous-time additive 
models and is applicable in both open-loop and closed-loop controlled systems. Its efficacy is shown using 
numerical simulations and is further validated using experimental data to detect the time-varying resonance 
dynamics of a flexible beam system. These results demonstrate the effectiveness of the proposed approach for 
online and interpretable estimation for advanced monitoring and control applications.
1. Introduction

System identification involves obtaining mathematical models of 
complex phenomena from measured data, with wide-ranging applica-
tions across diverse fields (Ljung, 1999; Söderström & Stoica, 1989). 
The development of accurate models enables the simulation, analysis, 
and prediction of complex system behavior. In control engineering, 
models are the key to designing effective control strategies, while its 
predictive capabilities support decision-making and planning.

Online system identification plays a significant role in dynamic 
environments where systems are prone to change over time (Ljung & 
Söderström, 1983; Young, 2011). Unlike offline identification, which 
relies on a batch of data, online system identification continuously 
updates models in real-time as new data becomes available. Online 
system identification allows for quick adjustments to evolving condi-
tions, which can enhance model accuracy, improve performance, and 
facilitate effective maintenance of various industrial process (Classens 
et al., 2023). Consequently, it is instrumental in maintaining optimal 
system performance, enabling timely fault detection and diagnosis, and 
supporting adaptive control in dynamic unpredictable settings.

Estimation of continuous-time (CT) dynamical models of industrial 
processes offers advantages over discrete-time (DT) models. Continuous-
time models can provide a more accurate representation of the un-
derlying dynamics of physical systems, since they allow for the direct 
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incorporation of a priori knowledge such as the relative degree of the 
physical systems they model (Garnier & Young, 2014). Incorporat-
ing prior knowledge in the form of interpretable physics has gained 
increasing importance in the fields of system identification, control, 
monitoring, and machine learning. In the context of linear system 
identification, incorporating relative degree information is particularly 
useful when the time evolution of the signals is naturally continuous, 
as seen in mechanical systems (Gawronski, 2004), where impulse re-
sponse discontinuities are typically absent due to the double integration 
relationship between force and position.

Although a single non-additive transfer function is commonly em-
ployed in linear system identification, practical applications in flexible 
motion systems (Oomen, 2018; Voorhoeve et al., 2020), and vibra-
tion analysis are more effectively conceptualized as a sum of transfer 
functions with distinct denominators. For example, mechanical sys-
tems are interpreted more naturally in a modal form, where each 
submodel represents a different resonant mode (Gawronski, 2004). Ad-
ditive model parametrizations bring benefits such as enhanced physical 
insight for fault diagnosis (Classens et al., 2022) and improved nu-
merical conditioning for high-order systems (González, Classens et al., 
2025). These parameterizations are also explored in statistics (Hastie 
& Tibshirani, 1986) and econometrics (Härdle et al., 2004; Opsomer 
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& Ruppert, 1999), offering increased model flexibility and the ability 
to decentralize analysis for optimization and control purposes. De-
spite contributions in nonlinear discrete-time finite-impulse response 
and generalized Hammerstein model estimation (Bai, 2005; Bai & 
Chan, 2008), the utilization of additive model structures in system 
identification has been limited.

The identification of additive models has recently gained increas-
ing attention. An algorithm for offline estimation of continuous-time 
additive models in single-input single-output (SISO) systems, appli-
cable to both open and closed-loop configurations, has been intro-
duced (González, Classens et al., 2025). This approach is based on 
the simplified refined instrumental variable method, SRIVC (Young & 
Jakeman, 1980), which consists of iteratively computing instrumental 
variable estimates of the system parameters. Alternatively, a block 
coordinate algorithm is utilized for identifying these systems under this 
structure with a tailored block-coordinate descent version of the SRIVC 
method (González et al., 2023).

In contrast to these offline algorithms, many recursive algorithms 
have been developed by parameterizing the model as a single non-
additive transfer function (Ljung & Söderström, 1983; Young, 2011). 
These online methods are typically based on a forgetting factor, or 
in state estimation mechanisms analogous to the Kalman filter. Most 
methods are categorized as modifications of offline identification meth-
ods, (non-)linear filtering methods, stochastic approximation meth-
ods, and pseudolinear regression-based methods (Ljung & Söderström, 
1983). Methods for time-varying systems, such as Padilla et al. (2019, 
2017) explore open and closed-loop approaches based on prefiltering 
the input and output derivatives with ad-hoc prefilters, similar to 
the state-variable filter and refined instrumental variable methods for 
linear and time-invariant systems (Garnier & Wang, 2008; Young & 
Jakeman, 1980).

Although current recursive methods can effectively track time-
varying systems, these yield non-additive transfer function models with 
limited interpretability, as the estimated parameters may not directly 
correspond to physical system quantities. In this paper, additive linear 
time-varying systems are considered for which the parameter variation 
is slow compared to the system dynamics. To track these systems, a 
recursive counterpart is developed of the algorithm in González et al. 
(2023), where instrumental variable iterations are performed for each 
submodel until convergence, aligning with the philosophy of the block 
coordinate descent approach for non-convex optimization (Luenberger 
& Ye, 2008). A comprehensive identification method for modeling ad-
ditive linear time-varying continuous-time systems is proposed for both 
open and closed-loop settings. The method is referred to as recursive 
SRIVC for additive systems, or abbreviated as additive RSRIVC.

In summary, the main contributions are summarized as follows.

C1: A condition is provided under which it is preferable to estimate 
an additive model structure instead of an unfactored transfer 
function.

C2: A recursive continuous-time system identification algorithm is 
derived for systems in additive form, for both open and closed-
loop systems and its consistency is assessed.

C3: The proposed method is evaluated through simulations and is 
experimentally validated on a flexible beam setup with a time-
varying resonance mode.

The remainder of this paper is organized as follows. In Section 2 
the system setup is presented and the problem is formulated. Section 3 
elaborates on the benefits of the proposed approach, showcasing moti-
vational examples and demonstrating where an additive decomposition 
is preferable to an unfactored transfer function. Section 4 contains the 
main contribution of this work, namely the derivation of a recursive 
identification method for continuous-time systems in additive form. 
The estimator is numerically evaluated in Section 5, and validated using 
a true mechanical system in Section 6. Lastly, Section 7 concludes this 
paper.
2 
2. System setup and problem formulation

First, the system setup for additive systems in open-loop and closed-
loop configuration is outlined, followed by the formulation of the 
estimation problem.

2.1. System setup

Consider the following continuous-time (CT), linear and time-variant
(LTV), single-input single-output (SISO) system 

𝑥(𝑡) = 𝐺∗(𝑝, 𝑡)𝑢(𝑡), (1)

where 𝐺∗(𝑝, 𝑡) = 𝐵∗(𝑝, 𝑡)∕𝐴∗(𝑝, 𝑡), with 𝑝 being the Heaviside operator 
(i.e., 𝑝𝑥(𝑡) = d𝑥(𝑡)

d𝑡 ). The terms 𝐴∗(𝑝, 𝑡) and 𝐵∗(𝑝, 𝑡) are polynomials in 𝑝
with time-varying coefficients of the form

𝐴∗(𝑝, 𝑡) = 𝑎∗𝑛(𝑡)𝑝
𝑛 + 𝑎∗𝑛−1(𝑡)𝑝

𝑛−1 +⋯ + 𝑎∗1(𝑡)𝑝 + 1, (2)

𝐵∗(𝑝, 𝑡) = 𝑏∗𝑚(𝑡)𝑝
𝑚 + 𝑏∗𝑚−1(𝑡)𝑝

𝑚−1 +⋯ + 𝑏∗1(𝑡)𝑝 + 𝑏∗0(𝑡), (3)

with 𝑎∗𝑛 ≠ 0 and 𝑛 ≥ 𝑚. These polynomials are assumed to be coprime, 
i.e., for any fixed 𝑡 along the parameter trajectory, they do not share 
roots in 𝑝.

The system in (1) is represented in its unfactored function form. Any 
non-additive transfer function that represents (1) can also be described 
as a sum of time-variant systems of lower order. Such decomposition is 
called an additive form of (1), which is described by 

𝑥𝑖(𝑡) = 𝐺∗
𝑖 (𝑝, 𝑡)𝑢(𝑡), (4a)

𝑥(𝑡) =
𝐾
∑

𝑖=1
𝑥𝑖(𝑡), (4b)

where 𝐺∗
𝑖 (𝑝, 𝑡) = 𝐵∗

𝑖 (𝑝, 𝑡)∕𝐴
∗
𝑖 (𝑝, 𝑡), and 𝐴∗

𝑖 (𝑝, 𝑡) and 𝐵∗
𝑖 (𝑝, 𝑡) have the same 

form as (2) and (3), but have orders 𝑛𝑖 and 𝑚𝑖 with 𝑎∗𝑖,𝑛𝑖 ≠ 0, 𝑛𝑖 ≥ 𝑚𝑖, 
and ∑𝐾

𝑖=1 𝑛𝑖 = 𝑛. That is,

𝐴∗
𝑖 (𝑝, 𝑡) = 𝑎∗𝑖,𝑛𝑖 (𝑡)𝑝

𝑛𝑖 + 𝑎∗𝑖,𝑛𝑖−1(𝑡)𝑝
𝑛𝑖−1 +⋯ + 𝑎∗𝑖,1(𝑡)𝑝 + 1, (5)

𝐵∗
𝑖 (𝑝, 𝑡) = 𝑏∗𝑖,𝑚𝑖

(𝑡)𝑝𝑚𝑖 + 𝑏∗𝑖,𝑚𝑖−1
(𝑡)𝑝𝑚𝑖−1 +⋯ + 𝑏∗𝑖,1(𝑡)𝑝 + 𝑏∗𝑖,0(𝑡). (6)

Without loss of generality, it is assumed that the polynomials 𝐴∗
𝑖 (𝑝, 𝑡)

are jointly coprime and anti-monic, i.e., their constant coefficient is 
fixed to one. In addition, for each separate submodel to be identifiable, 
the system is parameterized such that at most one subsystem 𝐺∗

𝑖 (𝑝, 𝑡) is 
biproper. An approach to determine an additive decomposition of (1) 
is to calculate the partial fraction decomposition of 𝐵∗(𝑝, 𝑡)∕𝐴∗(𝑝, 𝑡).

The polynomials 𝐴∗
𝑖 (𝑝, 𝑡) and 𝐵∗

𝑖 (𝑝, 𝑡) are jointly described by the 
parameter vector 
𝜃∗𝑖 (𝑡) =[𝑎

∗
𝑖,1(𝑡) 𝑎∗𝑖,2(𝑡) … 𝑎∗𝑖,𝑛𝑖 (𝑡) 𝑏∗𝑖,0(𝑡) 𝑏∗𝑖,1(𝑡) … 𝑏∗𝑖,𝑚𝑖

(𝑡)]⊤, (7)

and 
𝛽∗(𝑡) ∶=

[

𝜃∗⊤1 (𝑡) 𝜃∗⊤2 (𝑡) … 𝜃∗⊤𝐾 (𝑡)
]⊤ . (8)

A noisy output measurement is retrieved at equidistantly-spaced time 
instants 𝑡 = 𝑡𝑘, see Fig.  1, i.e., 

𝑦(𝑡𝑘) = 𝑥(𝑡𝑘) + 𝑣(𝑡𝑘), (9)

where 𝑣 is a stochastic process of zero mean and finite variance 𝜎2.
If 𝐺∗(𝑝, 𝑡) is in closed loop, see Fig.  2, it is assumed that the system 

is driven by a reference signal 𝑟(𝑡𝑘) and the control input is determined 
through the control law 

𝑢(𝑡𝑘) = 𝐶d(𝑞)(𝑟(𝑡𝑘) − 𝑦(𝑡𝑘)), (10)

where 𝐶d(𝑞) denotes the (discrete-time) controller transfer function, 
and 𝑞 denotes the forward shift operator. It is assumed that the input 
sequence 𝑢(𝑡 ) is interpolated via a zero-order hold prior to being used 
𝑘
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Fig. 1. Block diagram for the open-loop setting studied in this paper.

Fig. 2. Block diagram for the closed-loop setting studied in this paper.

to excite the system. Substitution of the output 𝑦(𝑡𝑘) = 𝐺∗
d(𝑞, 𝑡𝑘)𝑢(𝑡𝑘) +

𝑣(𝑡𝑘) gives the input described as 
𝑢(𝑡𝑘) = 𝑟(𝑡𝑘) − 𝑣̃(𝑡𝑘), (11)

where 
𝑟(𝑡𝑘) ∶= 𝑆∗

𝑢𝑜(𝑞, 𝑡𝑘)𝑟(𝑡𝑘), 𝑣̃(𝑡𝑘) ∶= 𝑆∗
𝑢𝑜(𝑞, 𝑡𝑘)𝑣(𝑡𝑘), (12)

with 𝑆∗
𝑢𝑜(𝑞, 𝑡𝑘) the sensitivity function 𝑆∗

𝑢𝑜(𝑞, 𝑡𝑘) = 𝐶d(𝑞)∕[1 + 𝐺∗
d(𝑞, 𝑡𝑘)

𝐶d(𝑞)], and 𝐺∗
d(𝑞, 𝑡𝑘) being the zero-order-hold equivalent discrete-time 

system of 𝐺∗(𝑝, 𝑡) =
∑𝐾

𝑖=1 𝐺
∗
𝑖 (𝑝, 𝑡). Explicit expressions for computing 

𝐺∗
d(𝑞, 𝑡𝑘) are obtained when changes in the parameters in 𝐴∗(𝑝, 𝑡) and 

𝐵∗(𝑝, 𝑡) occur only at the sampling time instants 𝑡𝑘, see Tóth (2010, 
Chap. 6.3.1) for more details.

2.2. Problem formulation

Consider the CT LTV system with input 𝑢(𝑡) and output 𝑦(𝑡) in (4) 
and (9). The data-generating system is described by (9) in the open-loop 
setting. In case the system is closed-loop controlled, the data-generating 
system additionally includes (10) and the setpoint 𝑟(𝑡).

It is assumed that the plant is represented by the model set 
𝑥𝑖(𝑡) = 𝐺𝑖(𝑝, 𝑡, 𝜃𝑖)𝑢(𝑡), (13a)

𝑥(𝑡) =
𝐾
∑

𝑖=1
𝑥𝑖(𝑡), (13b)

𝑦(𝑡𝑘) = 𝑥(𝑡𝑘) + 𝑣(𝑡𝑘). (13c)

Here 𝐺𝑖(𝑝, 𝑡, 𝜃𝑖) = 𝐵𝑖(𝑝, 𝑡, 𝜃𝑖)∕𝐴𝑖(𝑝, 𝑡, 𝜃𝑖), where the polynomials 𝐴𝑖(𝑝, 𝑡, 𝜃𝑖)
and 𝐵𝑖(𝑝, 𝑡, 𝜃𝑖) have the same structure as (5) and (6) with 𝜃𝑖(𝑡) ∈ R𝑛𝜃𝑖 , 
and 𝑛𝜃𝑖 = 𝑛𝑖 + 𝑚𝑖 + 1. The estimate of the total additive form is 
described by 𝛽(𝑡) ∈ R𝑛𝛽 , which has the same structure as (8) and where 
𝑛𝛽 =

∑𝐾
𝑖=1(𝑛𝑖 + 𝑚𝑖) +𝐾.

The considered problem is to recursively estimate 𝛽(𝑡) which char-
acterizes the model structure given by (13), based on the input and 
output data {𝑢(𝑡𝑘), 𝑦(𝑡𝑘)}𝑁𝑘=1. Here, 𝑁 is the number of samples available 
at time 𝑡𝑁  for the open-loop scenario, while {𝑟(𝑡𝑘)}𝑁𝑘=1 is also known in 
the closed-loop setting.

Next, the primary benefits of additive parameterizations are pre-
sented, supported by multiple motivating examples.

3. Parsimony and interpretability in continuous-time system iden-
tification

The estimation in an additive form has several benefits including 
the following.
3 
1. Direct continuous-time identification methods may suffer from 
a lack of parsimony when the sum of transfer functions of 
particular relative degrees is estimated (González et al., 2023).

2. The parameters in an additive structure may be more inter-
pretable compared to an unfactored transfer function.

3. Typically, derivatives of the input and output data are required 
for recursive estimation. Considering an additive structure can 
significantly reduce the order of the derivatives to be estimated 
from sampled data.

First, the advantages with respect to parsimony and interpretabil-
ity are described. Later, in Section 4.2, Remark  4.2, the additional 
advantage regarding the derivative order is highlighted.

Direct continuous-time identification approaches such as the SRIVC 
method may suffer from a lack of parsimony when identifying a system 
that consists of the sum of transfer functions. The following proposition 
quantifies the additional parameters being estimated when opting to 
estimate (1) with a model structure 𝐺(𝑝) = 𝐵(𝑝)∕𝐴(𝑝) of relative degree 
𝑟 instead of separately estimating the parameters for each transfer 
function 𝐵𝑖(𝑝)∕𝐴𝑖(𝑝).

Proposition 1 (González et al., 2023).  Consider the system in (1), and 
the model structure 𝐺(𝑝) =

∑𝐾
𝑖=1 𝐵𝑖(𝑝)∕𝐴𝑖(𝑝). Opting for the model structure 

𝐺(𝑝) = 𝐵(𝑝)∕𝐴(𝑝) during identification (with the minimal relative degree 𝑟
that encompasses the true system) results in a lack of parsimony for the 
latter model structure if and only if 
𝐾
∑

𝑖=1
𝑟𝑖 − 𝑟 > 𝐾 − 1, (14)

where 𝑟𝑖 = 𝑛𝑖 −𝑚𝑖 is the relative degree of 𝐵𝑖(𝑝)∕𝐴𝑖(𝑝). The surplus in (14) 
is the number of additional parameters considered by the model structure 
𝐺(𝑝) = 𝐵(𝑝)∕𝐴(𝑝).

An immediate implication derived from Proposition  1 is that when 
𝑟 = 0 or 𝑟 = 1, the model structure 𝐺(𝑝) = 𝐵(𝑝)∕𝐴(𝑝) suffers from a lack 
of parsimony if a transfer function 𝐺∗

𝑖 (𝑝) exists in its partial fraction 
expansion (1) with a relative degree greater than one. Two examples 
of this property are given below. 

Example 3.1.  Consider the system

𝐺∗(𝑝) =
𝑏∗1,0

𝑎∗1,1𝑝 + 1
+

𝑏∗2,0
𝑎∗2,2𝑝

2 + 𝑎∗2,1𝑝 + 1
,

where the 𝑎∗𝑖,𝑗 values are strictly positive, and the 𝑏∗𝑖,0 are non-zero. Only 
5 parameters must be estimated if the following model structure is used:

𝐺(𝑝) =
𝑏1,0

𝑎1,1𝑝 + 1
+

𝑏2,0
𝑎2,2𝑝2 + 𝑎2,1𝑝 + 1

. (15)

Alternatively, if the consideration of this partial fraction decomposition 
is disregarded and the decision is made to employ the model structure

𝐺(𝑝) =
𝑏2𝑝2 + 𝑏1𝑝 + 𝑏0

𝑎3𝑝3 + 𝑎2𝑝2 + 𝑎1𝑝 + 1

with no constraints on the parameter values, then 6 parameters must be 
estimated. This model structure leads to a lack of parsimony compared 
to the one in (15). ▵

Example 3.2.  Consider the system

𝐺∗(𝑝) =
𝑏∗0

𝑎∗2𝑝
2 + 𝑎∗1𝑝 + 1

,

where 𝑎∗1 and 𝑎∗2 are strictly positive, and 𝑎∗1 > 2
√

𝑎∗2. Hence, 𝐺∗(𝑝) has 
two real-valued poles. If the following partial fraction decomposition 
of 𝐵∗(𝑝)∕𝐴∗(𝑝) is considered

𝐺(𝑝) =
𝑏1,0 +

𝑏2,0 ,

𝑎1,1𝑝 + 1 𝑎2,1𝑝 + 1
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then 4 parameters must be estimated instead of 3. This additive repre-
sentation does not directly take into account the relationship between 
the numerator terms 𝑏1,0 and 𝑏2,0, leading to a lack of parsimony. ▵

The following example shows a mechanical system in one of its 
canonical forms. In addition to parsimony for this type of system, the 
interpretability of the parameters is also examined. 

Example 3.3.  Mechanical systems are typically described as a sum of 
modes, i.e., 

𝐺∗(𝑝) =
𝐾
∑

𝑖=1

𝑏∗𝑖,0
𝑝2∕𝜔∗

𝑖
2 + 2(𝜁∗𝑖 ∕𝜔

∗
𝑖 )𝑝 + 1

, (16)

where 𝜔∗
𝑖 > 0 and 𝜁∗𝑖 > 0 denote the natural frequency and the damping 

coefficient of the 𝑖th subsystem (Gawronski, 2004). These systems are 
described by 3𝐾 parameters if the following model structure is used: 

𝐺(𝑝) =
𝐾
∑

𝑖=1

𝑏𝑖,0
𝑎𝑖,2𝑝2 + 𝑎𝑖,1𝑝 + 1

. (17)

On the contrary, if the partial fraction decomposition is overlooked and 
the decision is made to adopt the widely utilized model structure of 
order 𝑛 and relative degree two 

𝐺(𝑝) =
𝑏𝑛−2𝑝𝑛−2 + 𝑏𝑛−3𝑝𝑛−3 +⋯ + 𝑏0
𝑎𝑛𝑝𝑛 + 𝑎𝑛−1𝑝𝑛−1 …+ 𝑎1𝑝 + 1

, (18)

with 𝑛 = 2𝐾 and no constraints on the parameter values, then a total 
of 4𝐾 − 1 parameters must be estimated. This model structure leads 
to a lack of parsimony compared to the one in (17) if 𝐾 > 1, with a 
further degradation of parsimony for larger values of 𝐾. Furthermore, 
the parameters in (17) are physically interpretable, as they directly 
relate to the natural frequencies 𝜔∗

𝑖  and the damping coefficients 𝜁∗𝑖 . 
This interpretability is hidden and is lost mostly in (18). ▵

Interpretability of the parameters, as illustrated in the latter exam-
ple, is highly favorable in many engineering applications. For example, 
in the field of fault diagnosis, this interpretability greatly simplifies the 
task of fault isolation, as faults often manifest in a specific submodel. 
Estimating the system in an unfactored form leads to variations in most 
parameters, while estimating it in an additive form results in variations 
solely in the directly related parameters.

4. Recursive estimation of continuous-time systems: A block coor-
dinate descent method

This section provides a recursive solution to estimate additive mod-
els. A key optimization tool that is considered in the approach is the 
block-descent method, which is examined in the next subsection. Then, 
the recursive estimators are presented for both open and closed-loop 
settings. In addition, a summary of the algorithm is presented, adapta-
tions for marginally stable systems are given, and practical aspects are 
described.

4.1. Block coordinate descent

Towards the goal of computing a recursive estimator for 𝛽∗, consider 
the minimization problem 
min
𝜃𝑖∈𝛺𝑖

𝑖=1,…,𝐾

𝑉𝑁 (𝛽), (19)

where 𝛺𝑖 ⊂ R𝑛𝜃𝑖  is a compact set which contains the true parameters 
of the 𝑖th subsystem. The cost 𝑉𝑁 , using the 𝑁 available samples at 𝑡𝑁 , 
is the weighted least squares output error cost function 

𝑉𝑁 (𝛽) =
𝑁
∑

𝛼𝑁−𝑘

[

𝑦(𝑡𝑘) −
𝐾
∑

𝐺𝑖(𝑝, 𝑡, 𝜃𝑖)𝑢(𝑡𝑘)

]2

, (20)

𝑘=1 𝑖=1
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where the notation 𝐺𝑖(𝑝, 𝑡, 𝜃𝑖)𝑢(𝑡𝑘) means that the input 𝑢(𝑡) is filtered 
through the continuous-time transfer function 𝐺𝑖(𝑝, 𝑡, 𝜃𝑖) and later eval-
uated at 𝑡 = 𝑡𝑘. The function 𝛼 is a non-negative weighting function of 
the form 

𝛼𝑘 = 𝜆𝑘, 𝜆 ∈ (0, 1]. (21)

Note that 𝛼 satisfies the multiplicative property 𝛼𝑘+1 = 𝜆𝛼𝑘, with 𝛼0 = 1. 
The parameter 𝜆 is often referred to as the forgetting factor (Ljung, 
1999).

The approach to solving (19) consists of iteratively minimizing the 
cost with respect to 𝜃𝑖 while leaving the other variables fixed. Algorithm 
1 describes the general procedure that is solved, typically after every 
incoming sample, known as block coordinate descent (Luenberger & Ye, 
2008).

Algorithm 1 Block coordinate descent
1: Choose an initial parameter vector 𝜃1𝑖  for each 𝑖
2: for 𝑙 = 1, 2,…  do
3:  for 𝑖 = 1,… , 𝐾 do
4:  𝜃𝑙+1𝑖 ← arg min

𝜃𝑖∈𝛺𝑖
𝑉𝑁 (𝜃𝑙+11 ,… , 𝜃𝑙+1𝑖−1 , 𝜃𝑖, 𝜃

𝑙
𝑖+1,… , 𝜃𝑙𝐾 )

5:  end for
6: end for

Let 𝛽𝑙 ∶= [(𝜃𝑙1)
⊤,… , (𝜃𝑙𝐾 )

⊤]⊤ ∈ 𝛺 ⊂ R𝑛𝛽 , with 𝛺 =
∏𝐾

𝑖=1 𝛺𝑖
being the parameter space. Therefore, each iteration of the algorithm 
(in 𝑙) can be written as 𝛽𝑙+1 = (𝛽𝑙), where ∶ R𝑛𝛽 → R𝑛𝛽  is the 
composite mapping  =  ◦𝐾◦ ◦𝐾−1◦⋯◦ ◦1. This notation is 
adopted from (Luenberger & Ye, 2008), where the block coordinate 
descent iterations are referred to as -iterations. Here, the choice 
function is defined as 𝑖(𝛽) ∶= (𝛽, 𝑖), and the optimization function 
 (𝛽, 𝑖) ∶= (𝜃1,… , 𝜃𝑖−1, 𝜃𝑖, 𝜃𝑖+1,… , 𝜃𝐾 ), with 𝜃𝑖 being defined as 𝜃𝑖 =
argmin𝜃𝑖∈𝛺𝑖

𝑉𝑁 (𝜃1, … , 𝜃𝑖,… , 𝜃𝐾 ). The following result concerns the 
convergence of Algorithm 1 to a stationary point of the cost (19).

Theorem 1 (Global Convergence of Algorithm 1).  If the search along any 
coordinate direction 𝜃𝑖 yields a unique minimum point of 𝑉𝑁 , then the limit 
of any convergent subsequence of {𝛽𝑙} obtained from 𝛽𝑙+1 = (𝛽𝑙) belongs 
to the set of fixed points 𝛤𝑁 = {𝛽 ∈ 𝛺∶∇𝑉𝑁 (𝛽) = 0}.

Proof.  See, e.g., Luenberger and Ye (2008, Section 8.9). □

Remark 4.1.  The result in Theorem  1 still holds if the unique mini-
mum assumption is replaced with the requirement that 𝑉𝑁  decreases in 
each coordinate search. In this case, it is sufficient to find a parameter 
vector 𝜃̄𝑖 that reduces the cost 𝑉𝑁  instead of minimizing it.

The block coordinate descent algorithm described in Algorithm 1 
requires a way to compute  (𝛽, 𝑖) at each iteration, for each 𝑖 =
1, 2,… , 𝐾. That is, given the data up until 𝑡𝑁 , compute 

𝜃𝑙+1𝑖 = argmin
𝜃𝑖∈𝛺𝑖

𝑁
∑

𝑘=1
𝛼𝑁−𝑘

[

𝑦(𝑡𝑘) −
𝑖−1
∑

𝑗=1
𝐺𝑗 (𝑝, 𝑡, 𝜃𝑙+1𝑗 )𝑢(𝑡𝑘)

−
𝐾
∑

𝑗=𝑖+1
𝐺𝑗 (𝑝, 𝑡, 𝜃𝑙𝑗 )𝑢(𝑡𝑘) − 𝐺𝑖(𝑝, 𝑡, 𝜃𝑖)𝑢(𝑡𝑘)

]

2 (22)

for 𝑖 = 1, 2,… , 𝐾, for fixed values of {𝜃𝑙+1𝑗 }𝑖−1𝑗=1 and {𝜃𝑙𝑗}𝐾𝑗=𝑖+1. For a suf-
ficiently large compact parameter space 𝛺𝑖, the optimization problem 
in (22) becomes a nonlinear least-squares problem that lends itself to 
iterative solution methods. To this end, define the residual output of 
each submodel as

𝑦̃𝑖(𝑡𝑘) ∶= 𝑦(𝑡𝑘) −
𝑖−1
∑

𝐺𝑗 (𝑝, 𝑡, 𝜃𝑙+1𝑗 )𝑢(𝑡𝑘) −
𝐾
∑

𝐺𝑗 (𝑝, 𝑡, 𝜃𝑙𝑗 )𝑢(𝑡𝑘).

𝑗=1 𝑗=𝑖+1
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Substitution of this residual output in (22) gives 

𝜃𝑙+1𝑖 = argmin
𝜃𝑖∈𝛺𝑖

𝑁
∑

𝑘=1
𝛼𝑁−𝑘

[

𝑦̃𝑖(𝑡𝑘) − 𝐺𝑖(𝑝, 𝑡, 𝜃𝑖)𝑢(𝑡𝑘)
]2
. (23)

Next is shown how this is solved through recursive SRIVC.

4.2. Recursive SRIVC for additive open-loop systems

In the linear and time-invariant case, when solved iteratively, the 
optimization problem in (23) leads to a local minimum for the complete 
optimization problem (19) (González et al., 2023). Each optimization 
problem in (23) takes the form of minimizing the weighted sum of 
squares of the residual equal to 𝜀𝑖(𝑡𝑘, 𝜃𝑖) = 𝑦̃𝑖(𝑡𝑘) − 𝐺𝑖(𝑝, 𝑡, 𝜃𝑖)𝑢(𝑡𝑘). This 
pseudolinear regression takes the general form 
𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑖) = 𝜑⊤

𝑖,f(𝑡𝑘, 𝜃𝑖)𝜃𝑖(𝑡𝑘) + 𝜀𝑖(𝑡𝑘, 𝜃𝑖). (24)

This generic form admits the refined instrumental variable iterations 
(Young & Jakeman, 1980). Essentially, the refined instrumental vari-
able iterations provide a sequence which, under mild conditions, con-
verges to a point 𝜃̄𝑖 that satisfies the first order optimality condition of 
the cost in (23), i.e.,
𝑁
∑

𝑘=1
𝛼𝑁−𝑘

𝜕𝜀𝑖(𝑡𝑘, 𝜃𝑖)
𝜕𝜃𝑖

|

|

|

|𝜃𝑖=𝜃̄𝑖
𝜀𝑖(𝑡𝑘, 𝜃̄𝑖) = 0.

The instrumental variable refinements, from now denoted as SRIVC 
iterations, are denoted using the iterate counter 𝑠, as 

𝜃𝑙+1𝑖,𝑠+1 =

[ 𝑁
∑

𝑘=1
𝛼𝑁−𝑘𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 )𝜑⊤

𝑖,f(𝑡𝑘, 𝜃
𝑙+1
𝑖,𝑠 )

]−1

×

[ 𝑁
∑

𝑘=1
𝛼𝑁−𝑘𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 )𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 )

]

.

(25)

Appendix  A shows how (23) fits the pseudolinear regression framework 
with (24) and how this leads to SRIVC iterations in (25). In (25), the 
subscripts 𝑖 and 𝑙 refer to the current block-coordinate descent iteration. 
The filtered residual output, regressor vector and instrument vector, 
indicated with subscript f , are respectively given by

𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 ) = 1
𝐴𝑖(𝑝, 𝜃𝑙+1𝑖,𝑠 )

𝑦̃𝑖(𝑡𝑘), (26)

𝜑𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 ) =
[

−𝑝
𝐴𝑖(𝑝, 𝜃𝑙+1𝑖,𝑠 )

𝑦̃𝑖(𝑡𝑘) …
−𝑝𝑛𝑖

𝐴𝑖(𝑝, 𝜃𝑙+1𝑖,𝑠 )
𝑦̃𝑖(𝑡𝑘)

1
𝐴𝑖(𝑝, 𝜃𝑙+1𝑖,𝑠 )

𝑢(𝑡𝑘) …
𝑝𝑚𝑖

𝐴𝑖(𝑝, 𝜃𝑙+1𝑖,𝑠 )
𝑢(𝑡𝑘)

]⊤
,

(27)

𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 ) =
[

−𝑝
𝐴𝑖(𝑝, 𝜃𝑙+1𝑖,𝑠 )

𝑥̂𝑖(𝑡𝑘) …
−𝑝𝑛𝑖

𝐴𝑖(𝑝, 𝜃𝑙+1𝑖,𝑠 )
𝑥̂𝑖(𝑡𝑘)

1
𝐴𝑖(𝑝, 𝜃𝑙+1𝑖,𝑠 )

𝑢(𝑡𝑘) …
𝑝𝑚𝑖

𝐴𝑖(𝑝, 𝜃𝑙+1𝑖,𝑠 )
𝑢(𝑡𝑘)

]⊤
,

(28)

where 𝑥̂𝑖(𝑡𝑘) is the estimate of 𝑥𝑖(𝑡𝑘). This estimate is based on the latest 
parameter estimate of the previous time-sample, denoted by 𝜃̄𝑖(𝑡𝑘−1), 
i.e.,

𝑥̂𝑖(𝑡𝑘) =
𝐵𝑖(𝑝, 𝜃̄𝑖(𝑡𝑘−1))
𝐴𝑖(𝑝, 𝜃̄𝑖(𝑡𝑘−1))

𝑢(𝑡𝑘).

To clarify, the refinement step refers to updating the denominator 
polynomial of the prefiltering step in (26) to (28). Hence, the filtered 
output, regressor vector, and instrument vector, are updated based on 
the estimates obtained from the previous iterate. The instrument vector 
is similar to the regressor vector but uses 𝑥̂𝑖 instead of 𝑦̃𝑖, i.e., an 
estimate of the output of the submodel instead of using the noisy 
measured variable.

Remark 4.2.  The regressor (27) and the instrument (28) require the 
computation of derivatives up to order 𝑚  for the input and 𝑛  for the 
𝑖 𝑖

5 
residual output. Note that the order of the required derivatives is signif-
icantly lower compared to the case where a single unfactored transfer 
function would have been used. In this scenario, given that ∑𝐾

𝑖=1 𝑛𝑖 = 𝑛, 
obtaining the derivative of the 𝑛th order of the output is necessary for 
standard recursive continuous-time identification methods, along with 
a substantially higher derivative of the input. 

Remark 4.3.  Note that the expressions in (25) to (28) give the standard 
SRIVC iterations when 𝑦̃(𝑡𝑘) = 𝑦(𝑡𝑘) (i.e., when 𝐾 = 1 and all the modes 
of the composite transfer function are estimated jointly) and 𝛼𝑁−𝑘 = 1
for all integer 𝑘 less than 𝑁 (i.e., when there is no forgetting factor).

Remark 4.4.  The expressions provided in (26), (27) and (28) require 
prefiltering the data, relying implicitly on the commutativity property 
given by 
𝑐𝐺(𝑝)𝑥(𝑡) = 𝐺(𝑝)[𝑐𝑥(𝑡)], (29)

where 𝑐 is a constant. It is not recommended to prefilter the data by 
transfer functions when the parameters exhibit rapid temporal vari-
ations, since the property (29) does not hold in general when 𝑐 is 
time-varying (Tóth, 2010). However, it is important to note that (29) 
is a useful approximation in cases where the parameters exhibit slow 
temporal variations.

Instead of computing (25), an equivalent recursion is derived which 
does not involve the summation operator over all available samples and 
allows to achieve an update of the estimate after every incoming time 
sample. This recursion involves computing

𝐾 𝑙+1
𝑖,𝑠+1(𝑡𝑁 ) =

𝑃𝑖(𝑡𝑁−1)𝜑̂𝑖,f(𝑡𝑁 ,𝜃𝑙+1𝑖,𝑠 )

𝜆+𝜑⊤
𝑖,f(𝑡𝑁 ,𝜃𝑙+1𝑖,𝑠 )𝑃𝑖(𝑡𝑁−1)𝜑̂𝑖,f(𝑡𝑁 ,𝜃𝑙+1𝑖,𝑠 )

, (30)

𝜃𝑙+1𝑖,𝑠+1(𝑡𝑁 ) = 𝜃̄𝑖(𝑡𝑁−1) +𝐾 𝑙+1
𝑖,𝑠+1(𝑡𝑁 )

×
(

𝑦̃𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 ) − 𝜑⊤
𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )𝜃̄𝑖(𝑡𝑁−1)

)

,
(31)

and 
𝑃 𝑙+1
𝑖,𝑠+1(𝑡𝑁 ) = 1

𝜆
(

𝑃𝑖(𝑡𝑁−1) −𝐾 𝑙+1
𝑖,𝑠+1(𝑡𝑁 )𝜑⊤

𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )𝑃𝑖(𝑡𝑁−1)
)

, (32)

where 𝜃̄𝑖(𝑡𝑁−1), and 𝑃𝑖(𝑡𝑁−1) denote the last parameter estimate and in-
verse of the matrix being inverted in (25) at the previous time instance 
𝑡𝑁−1 after the -iterations over 𝑙 and 𝑖, and after the SRIVC iterations 
using 𝑠. The derivation of this recursion is presented in Appendix  B. 
Note that 𝑃𝑖(𝑡𝑁−1) is interpreted as an approximate covariance matrix 
of the resulting estimate, see Young (2015) and Pan, Welsh et al. (2020) 
for more details. A summary of the algorithm is provided in Section 4.4.

4.3. Consistency analysis with 𝛼𝑘 = 1

First, the conditions under which the additive RSRIVC approach 
produces a consistent estimator are analyzed. To this end, consider the 
following assumptions to facilitate the analysis, theorem, and related 
remarks. These assumptions are standard in the SRIVC analysis litera-
ture, see, e.g., González et al. (2024), Pan, González et al. (2020) and 
González, Pan et al. (2025). The scenario with 𝛼𝑘 = 1 allows to employ 
a similar reasoning as the non-recursive SRIVC approach as presented 
in Pan, González et al. (2020), although special caution is taken to 
address the time-varying nature of the models used for constructing 
the instrument and regressor vectors. 

Assumption 1 (BIBO Stability).  The true system and the estimated 
models are uniformly bounded-input, bounded-output (BIBO) stable, 
i.e., for any initial time instant 𝑡0 and bounded input signal, the output 
sequence {𝑦(𝑡𝑘)}𝑘≥0 is bounded (Rugh, 1996).

Assumption 2 (Persistence of Excitation).  The input sequence is persis-
tently exciting of order no less than 2𝑛.
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Assumption 3 (Coprimeness and Sampling Frequency).  The additive 
subsystems pertaining to the true system and the models obtained 
through the descent iterations do not have zero-pole cancellations. 
Furthermore, the sampling frequency is more than twice the largest pos-
itive imaginary part of the zeros of ∏𝐾

𝑖=1 𝐴𝑖(𝑝, 𝜃𝑙𝑖,𝑠)𝐴
∗
𝑖 (𝑝). The subscript 

𝑠 and superscript 𝑙 relate to the SRIVC iterations and block-coordinate 
descent iterations, respectively, defined in Section 4.

Assumption 4 (Independence and Stationarity).  The input sequence 
{𝑢(𝑡𝑘)} is quasi-stationary (Ljung, 1999, p. 34), the disturbance {𝑣(𝑡𝑙)}
is stationary, and they are mutually independent for all integers 𝑘 and 
𝑙.

Assumption 5 (Parameter Trajectories).  The changes in the parameters 
occur only at the sampling instants 𝑡𝑘, i.e., the parameter trajectories 
are piecewise constant.

Theorem 2.  Consider the proposed estimator for the open-loop setting 
in Fig.  1 with 𝛼𝑘 = 1 for all 𝑘, and suppose the following assumptions, 
Assumptions  1 to 5 hold. In addition, assume that the SRIVC iterations 
of the estimator for all 𝑁 sufficiently large converge, where the converged 
parameter is denoted by 𝜃𝑙+1𝑖,∞ . Then, if both the proposed model and system 
converge as 𝑁 → ∞ to linear and time-invariant transfer functions, then 
their limits are equal with probability 1 and generically consistent1 with 
respect to the limiting system and model parameters.

The proof is provided in Appendix  C.

Remark 4.5.  Note that consistency is only considered for 𝛼𝑘 = 1
for all 𝑘. This is a special case of (21). In case (21) is used with a 
different constant-rate-forgetting factor 𝜆 < 1, the effect of noise does 
not disappear for 𝑁 → ∞. Therefore, considering more data does not 
reduce the influence of measurement noise making the estimator not 
consistent. Variable-rate-forgetting factors may be considered, ensuring 
consistent estimators (see Bruce et al., 2020 for details); however, these 
considerations are beyond the scope of this work.

4.4. Summary iterative recursive estimation algorithm

The proposed additive RSRIVC algorithm involves nested iterations 
in 𝑙, 𝑖, and 𝑠. To facilitate implementation, the nested iterations are 
discussed in this subsection.

First of all, the recursive nature allows to update the estimate after 
every incoming sample. Therefore, these iterations will be performed 
at the discrete times 𝑡𝑘, where 𝑘 denotes the count in the discrete-
time domain. At each of these points in time, the -iterations are 
performed 𝑀𝑙 times, see Section 4.1, i.e., the block-coordinate method 
runs through each of 𝐾 additive models for 𝑀𝑙 times. The current 
additive model is denoted by 𝑖 and the -iteration is denoted by 𝑙. 
Finally, within each of these parameter updates, 𝑀𝑠 SRIVC iterations 
are performed, with the current SRIVC iterate being indicated by 𝑠.

To summarize, compute the recursive formulas in (30), (31) and 
(32) at each time step and for every additive model 𝐺𝑖 to solve the 
additive model identification problem in (23). This way, the proposed 
method solves (23) recursively. The algorithm is presented in Algorithm 
2. Note that the regressor vector has an explicit dependence on the 
parameter vector of the other models being estimated; this dependence 
is implicit in the equations via the expression for the residual 𝑦̃𝑖. A 
block-diagram of the block-coordinate descent RSRIVC algorithm for 
additive systems is shown in Fig.  3. Two distinct blocks are highlighted 
in this diagram, which refer to the SRIVC and the block-coordinate 
descent step. These are executed after every incoming sample. During 

1 A statement 𝑠, which depends on the elements 𝜌 of some open set 𝛺 ⊆ R𝑛, 
is generically true with respect to 𝛺 (Söderström & Stoica, 1983) if the set 
{𝜌 ∈ 𝛺|𝑠(𝜌) is not true} has Lebesgue measure zero in 𝛺.
6 
Algorithm 2 Recursive estimator for open-loop continuous-time 
systems in additive form
1: Initialization: Set 𝑀𝑙, 𝑀𝑠, 𝜆. Initialize 𝜃̄𝑖(𝑡0), and 𝑃𝑖(𝑡0) for 
each 𝑖 = 1,… , 𝐾, by using the first part of the input-
output data {𝑢(𝑡𝑘), 𝑦(𝑡𝑘)}0𝑘=−𝑁init

 with any linear and time-invariant 
continuous-time system identification method. With this 𝜃̄𝑖(𝑡0), 
compute 𝜑𝑖,f, 𝜑̂𝑖,f, and 𝑦̃𝑖,f at 𝑡0 by filtering the input-output 
data {𝑢(𝑡𝑘), 𝑦(𝑡𝑘)}0𝑘=−𝑁init

 through (26)-(28) using the denominator 
𝐴𝑖(𝑝, 𝜃̄𝑖(𝑡0)).

2: for 𝑘 = 1,…  do
3:  𝜃1𝑖 (𝑡𝑘) ← 𝜃̄𝑖(𝑡𝑘−1) for all 𝑖
4:  for 𝑙 = 1,… ,𝑀𝑙 do
5:  for 𝑖 = 1,… , 𝐾 do
6:  𝜃𝑙+1𝑖,0 (𝑡𝑘) ← 𝜃𝑙𝑖 (𝑡𝑘)
7:  for 𝑠 = 0, 1,… ,𝑀𝑠 do
8:  Parameter 𝜃𝑙+1𝑖,𝑠+1(𝑡𝑘) update:

𝐾 𝑙+1
𝑖,𝑠+1(𝑡𝑘) ←

𝑃𝑖(𝑡𝑘−1)𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 )

𝜆 + 𝜑⊤
𝑖,f(𝑡𝑘, 𝜃

𝑙+1
𝑖,𝑠 )𝑃𝑖(𝑡𝑘−1)𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 )

,

𝜃𝑙+1𝑖,𝑠+1(𝑡𝑘) ← 𝜃̄𝑖(𝑡𝑘−1) +𝐾 𝑙+1
𝑖,𝑠+1(𝑡𝑘)

(

𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 ) − 𝜑𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 )𝜃̄𝑖(𝑡𝑘−1)
)

,

𝑃 𝑙+1
𝑖,𝑠+1(𝑡𝑘) ←

1
𝜆
𝑃𝑖(𝑡𝑘−1) −

1
𝜆
𝐾 𝑙+1

𝑖,𝑠+1(𝑡𝑘)𝜑
⊤
𝑖,f(𝑡𝑘, 𝜃

𝑙+1
𝑖,𝑠 )𝑃𝑖(𝑡𝑘−1).

9:  end for
10:  𝜃𝑙+1𝑖 (𝑡𝑘) ← 𝜃𝑙+1𝑖,𝑀𝑠+1

(𝑡𝑘)

11:  𝑃 𝑙+1
𝑖 (𝑡𝑘) ← 𝑃 𝑙+1

𝑖,𝑀𝑠+1
(𝑡𝑘)

12:  end for
13:  end for
14:  𝜃̄𝑖(𝑡𝑘) = 𝜃𝑀𝑙+1

𝑖 (𝑡𝑘) for all 𝑖
15:  𝑃𝑖(𝑡𝑘) = 𝑃𝑀𝑙+1

𝑖 (𝑡𝑘) for all 𝑖
16: end for
17: Output: the parameter estimates {𝜃̄𝑖(𝑡𝑘)}𝑘≥1.

these iterations, the quantities 𝑦̃𝑖,𝑓 , 𝜑𝑖,𝑓 , 𝜑̂𝑖,𝑓  are updated, which only 
involves filtering between 𝑡𝑘−1 and 𝑡𝑘. Optionally, a stability test is 
included which is further examined in Section 4.7.

Remark 4.6.  Note that the SRIVC refinements in 𝑠 are optional. In case 
the refinements are omitted, the optimization problem (23) is not being 
solved until convergence at every time-step, but rather a quasi-Newton 
descent algorithm of the form (25) is being implemented (Young, 
2015). Despite this, the iterations stem from the fact that solving (23) 
and iterating over the additive models is a viable way to derive a model 
that fully minimizes the cost in (19). 

Remark 4.7.  While not inherently restrictive to the method, it is 
practically advantageous if parameters change gradually compared to 
the sampling rate. In general, slower parameter variation improves 
the effectiveness of the methods as it allows reducing the number of 
iterations 𝑀𝑙 and 𝑀𝑠, which in turn reduces computational burden and 
improves parameter adaptation efficiency and robustness. 

4.5. Closed-loop case

The identical recursion as in (30), (31) and (32) applies to the 
closed-loop scenario, albeit with a different instrument vector. Employ-
ing an output error cost for system identification is known to introduce 
asymptotic bias in the presence of output measurement noise (Van 
den Hof, 1998). Consequently, instrumental variable methods are used 
in the closed-loop setting to mitigate this bias (Gilson et al., 2011; 
González, Pan et al., 2025). Instead of (23), the instrumental variable 
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Fig. 3. Block diagram of the block-coordinate descent RSRIVC for open-loop systems, 
summarized by Algorithm 2. The section featuring SRIVC iterations is highlighted  ( ), 
see (25) to (28), alongside the block containing the -iterations  ( ), described in 
Section 4.1.

solution is employed which is given by

𝜃𝑙+1𝑖 ∈ sol
𝜃𝑖∈𝛺𝑖

{ 𝑁
∑

𝑘=1
𝛼𝑁−𝑘𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑖)

(

𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑖) − 𝜑⊤
𝑖,f(𝑡𝑘, 𝜃𝑖)𝜃𝑖(𝑡𝑘)

)

= 0

}

,

with 𝜑̂𝑖,f being the filtered instrument vector related to additive model 
𝑖. Users have the flexibility to choose from various instrument vec-
tors (Söderström & Stoica, 1983). In this context, the instrument is 
constructed as a noiseless version of the regressor, a choice recog-
nized in similar identification contexts for yielding minimal asymptotic 
covariance among all instrumental variable estimators (Boeren et al., 
2018; Gilson et al., 2008; González, Classens et al., 2025; Mooren et al., 
2023). To this end, the instrument (28) is rewritten as 

𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 ) =
[

−𝑝
𝐴𝑖(𝑝, 𝜃𝑙+1𝑖,𝑠 )

𝐵𝑖(𝑝, 𝜃̄𝑖(𝑡𝑘−1))
𝐴𝑖(𝑝, 𝜃̄𝑖(𝑡𝑘−1))

…

−𝑝𝑛𝑖

𝐴𝑖(𝑝, 𝜃𝑙+1𝑖,𝑠 )
𝐵𝑖(𝑝, 𝜃̄𝑖(𝑡𝑘−1))
𝐴𝑖(𝑝, 𝜃̄𝑖(𝑡𝑘−1))

1
𝐴𝑖(𝑝, 𝜃𝑙+1𝑖,𝑠 )

…
𝑝𝑚𝑖

𝐴𝑖(𝑝, 𝜃𝑙+1𝑖,𝑠 )

]⊤
𝑧(𝑡𝑘),

(33)

however, instead of 𝑧(𝑡𝑘) = 𝑢(𝑡𝑘), the noiseless input is estimated 
as 𝑧(𝑡𝑘) = 𝑆𝑢𝑜(𝑞, 𝑡𝑘)𝑟(𝑡𝑘), where the sensitivity function 𝑆𝑢𝑜(𝑞, 𝑡𝑘) =
𝐶d(𝑞)∕[1 + 𝐶d(𝑞)𝐺d(𝑞, 𝑡𝑘)]−1. Hence, the instrument now depends on an 
estimate of the control input, computed by means of a model of the 
sensitivity and the known setpoint 𝑟(𝑡 ).
𝑘

7 
4.6. Marginally stable systems

Mechatronic position systems, frequently encountered in engineer-
ing applications, lend themselves to a decomposition comprising both 
rigid body and flexible modes. Notably, the rigid body modes are 
considered as double integrators, leading to eigenvalues precisely sit-
uated at the origin. The denominator polynomial of such marginally 
stable system cannot be represented in an anti-monic form as in (5) 
and (6). To this end, the proposed parametrization is slightly adapted 
to accommodate for the estimation of marginally stable systems as 
follows.

Consider the system (4), but where the first submodel has 𝓁 poles 
at the origin. In other words, let 𝐺∗

1(𝑝, 𝑡) = 𝐵∗
1 (𝑝, 𝑡)∕[𝑝

𝓁𝐴∗
1(𝑝, 𝑡)], where 

𝐴∗
1(𝑝, 𝑡) and 𝐵∗

1 (𝑝, 𝑡) are co-prime, and have the same form as in (2) 
and (3). Let the remaining submodels be parameterized as originally 
defined in Section 2.2. For either open or closed-loop variants of the 
proposed approach, the computation of the gradient of each submodel 
with respect to their respective parameter vector is required. For 𝐺1(𝑝), 
this computation results in the modified instrument vector 

𝜑̂1,f(𝑡𝑘, 𝜃𝑙+11,𝑠 ) =
[

−𝑝
𝑝𝓁𝐴1(𝑝, 𝜃𝑙+11,𝑠 )

𝐵1(𝑝, 𝜃̄𝑖(𝑡𝑘−1))
𝐴1(𝑝, 𝜃̄𝑖(𝑡𝑘−1))

…

−𝑝𝑛1

𝑝𝓁𝐴1(𝑝, 𝜃𝑙+11,𝑠 )
𝐵1(𝑝, 𝜃̄𝑖(𝑡𝑘−1))
𝐴1(𝑝, 𝜃̄𝑖(𝑡𝑘−1))

1
𝑝𝓁𝐴1(𝑝, 𝜃𝑙+11,𝑠 )

…
𝑝𝑚1

𝑝𝓁𝐴1(𝑝, 𝜃𝑙+11,𝑠 )

]⊤
𝑧(𝑡𝑘),

(34)

where 𝑧(𝑡𝑘) = 𝑢(𝑡𝑘) for the open-loop algorithm, and 𝑧(𝑡𝑘) = 𝑆𝑢𝑜(𝑞, 𝑡𝑘)𝑟(𝑡𝑘)
for the closed-loop variant. On the other hand, the model residual 
retains the same form as in 4.1, with the filtered residual output given 
by (24), but with the regressor vector now expressed as 

𝜑1,f(𝑡𝑘, 𝜃𝑙+11,𝑠 ) =
[

−𝑝
𝐴1(𝑝, 𝜃𝑙+11,𝑠 )

𝑦̃1(𝑡𝑘) …
−𝑝𝑛1

𝐴1(𝑝, 𝜃𝑙+11,𝑠 )
𝑦̃1(𝑡𝑘)

1
𝑝𝓁𝐴1(𝑝, 𝜃𝑙+11,𝑠 )

𝑢(𝑡𝑘) …
𝑝𝑚1

𝑝𝓁𝐴1(𝑝, 𝜃𝑙+11,𝑠 )
𝑢(𝑡𝑘)

]⊤
.

(35)

By computing the iterations in (25) with the first instrument and 
regressor vectors given by (34) and (35) respectively, a direct extension 
of the proposed method for identifying marginally stable systems in 
additive form is obtained. Aside from these modifications to the first 
submodel, the algorithm remains unchanged. 

Remark 4.8. Assumption  1 is exclusively employed in the proof 
for generic consistency with uniformly stable systems. This excludes 
marginally stable systems, yet it does not constrain the proposed ap-
proach.

4.7. Practical aspects for implementation

Next, several practical aspects of the additive RSRIVC implementa-
tion are investigated. First, the initialization process of the algorithm is 
discussed, followed by a discussion of the robustness of the algorithm. 
Subsequently, to alleviate the computational load associated with the 
approach, output subsampling is examined.

A proper initialization of the algorithm is important, particularly 
the initial estimate 𝜃̄𝑖(𝑡0), which should be selected carefully, as it 
influences the initial values of 𝜑𝑖,f, 𝜑̂𝑖,f, and 𝑦̃𝑖,f at 𝑡0. Inadequate ini-
tialization can lead to divergence. The parameters 𝜃̄𝑖(𝑡0) and covariance 
𝑃𝑖(𝑡0) can be obtained through any offline, non-recursive method using 
the input–output data {𝑢(𝑡𝑘), 𝑦(𝑡𝑘)}0𝑘=−𝑁init

. For example, approaches 
such as those described in González et al. (2023) or (González, Classens 
et al., 2025) may be utilized.

In the offline SRIVC method, ensuring model stability is vital, es-
pecially in challenging conditions like low Signal-to-Noise Ratio (SNR) 
or mismatched model orders (Ha & Welsh, 2014). Typically, stability 
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is monitored and enforced throughout iterations (Garnier, 2015). In 
RSRIVC, where both prefilter and auxiliary model depend on preceding 
estimates, stability verification is more intricate. For slowly-varying 
systems, checking characteristic equation poles and reflecting right-half 
plane poles to the left suffices for confirming bounded-input, bounded-
output stability under specific conditions (Padilla et al., 2019). Notably, 
in time-varying parameter models, uniform exponential stability is as-
sured by assuming slow parameter changes and keeping system matrix 
eigenvalues on the left half plane. RSRIVC incorporates a projection 
algorithm to guarantee the stability of the prefilter and auxiliary model, 
reflecting unstable poles into the left half plane while preserving the 
magnitude characteristics. This approach addresses potential stability 
issues that may arise, particularly at the beginning of the data record.

The algorithm presented is theoretically sound, however, the re-
cursion in (32) may not be numerically reliable (Ljung & Söderström, 
1983, Chapter 11). Since 𝑃 (𝑡𝑘) is essentially computed by succes-
sive subtractions, round-off errors can accumulate and make 𝑃 (𝑡𝑘)
ill-conditioned. Other continuous-time recursive methods based on in-
strumental variables (Padilla et al., 2017; Pan et al., 2021) incorporate 
a covariance matrix 𝑄(𝑡𝑘) that is added to 𝑃 (𝑡𝑘) at each iteration. 
The proposed algorithm does not include this matrix since it is not 
compatible with the coordinate descent interpretation of the iterations 
in Algorithm 2. However, from a practical perspective, including this 
matrix can help with the convergence of the parameters. To achieve 
smoother estimates, a constant prefilter can replace the adaptive filter 
in the proposed approach, though this may prevent SRIVC iterations 
from converging to a local minimum, affecting the global convergence 
of the block coordinate descent.

Subsampling data may be valuable to managing computational 
complexity without compromising significant accuracy. This facilitates 
the implementation of recursive algorithms in resource-constrained en-
vironments. Subsampling should be performed cautiously to ensure that 
the subsampled data still captures the smallest timescale for a reliable 
estimate. Therefore, it is primarily applicable when the timescale of the 
system dynamics is considerably shorter than the sampling time. When 
subsampling the output, it is advised to take all input samples into 
account for the estimation of the filtered input and filtered auxiliary 
variables. Hence, the block-coordinate descent algorithm and additive 
RSRIVC iterations may be performed at this lower sampling rate. 
Furthermore, as hinted in Remark  4.6, it is not always necessary to 
perform multiple iterations. In case the parameters of the system vary 
slowly with respect to the sampling period, typically no refinements are 
necessary and a single -iteration can achieve accurate estimates.

5. Numerical simulation

In this section, the proposed method is illustrated using the follow-
ing additive system

𝐺∗(𝑝, 𝑡) =
3
∑

𝑖=1

𝑏∗𝑖,0(𝑡)

𝑎∗𝑖,2(𝑡)𝑝
2 + 𝑎∗𝑖,1(𝑡)𝑝 + 1

,

with initial DC-gains 
[

𝑏∗1,0(0) 𝑏∗2,0(0) 𝑏∗3,0(0)
]

=
[

3 0.5 1
]

, and 
associated denominator parameters 

[

𝑎∗1,2(0) 𝑎∗2,2(0) 𝑎∗3,2(0)
]

=
[

0.25 0.04 0.0025
]

, and 
[

𝑎∗1,1(0) 𝑎
∗
2,1(0) 𝑎

∗
3,1(0)

]

 = [0.25 0.01 0.01
]

. 
The output 𝑦(𝑡𝑘) is measured at a sampling frequency of 20 [Hz] and is 
contaminated by a zero-mean Gaussian white noise with a variance of 
0.01. The system is operated in closed-loop with feedback controller

𝐾(𝑞) =
0.02329𝑞2 − 0.2058𝑞 + 0.00454

𝑞2 − 𝑞
,

and the setpoint equals 𝑟(𝑡) = 3 sin (0.005𝑡) + sin (2𝑡) + sin (5𝑡) + sin (17.5𝑡). 
The algorithm is initialized with covariance matrices 𝑃𝑖(𝑡𝑁1

) =
diag(10−3, 10−3, 10−5), and forgetting factor 𝜆 = 0.999. The estimator 
is initialized at a random system with parameters 𝜃̄ (𝑡 ) = 𝜃∗(0)(1 +
𝑖 𝑁1 𝑖
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Fig. 4. Parameter estimates ( ) and true parameters ( ) related to the first 
submodel with decreasing denominator parameters.

Fig. 5. Parameter estimates ( ) and true parameters ( ) related to the second 
submodel with decreasing damping coefficient 𝜁2, which corresponds to an increasing 
𝑎21.

Fig. 6. Parameter estimates ( ) and true parameters ( ) related to the third 
submodel with decreasing natural frequency 𝜔3, which corresponds to an increasing 
𝑎32 and decreasing 𝑎31.
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Fig. 7. Plant estimate at 𝑡 = 50 [s] ( ) and at 𝑡 = 950 [s] ( ). Clearly, all resonances 
changed. Note that the natural frequency of the first mode decreased and the damping 
of the second mode decreased. A combination of the two occurred at the third mode.

 (−0.02, 0.02)), where  (𝑎, 𝑏) denotes a uniform distribution with 
lower limit 𝑎 and upper limit 𝑏.

First, in the interval 𝑡 ∈ [100, 300] [s], the parameters 𝑎1,1, 𝑎1,2, and 
𝑎2,1, are varied in such a way that the corresponding natural frequency 
𝜔1 and damping coefficient 𝜁2 decrease, c.f., (16). Subsequently, in the 
interval 𝑡 ∈ [500, 800] [s], the denominator parameters of the third 
model, i.e., 𝑎3,2 and 𝑎3,1 are varied. Algorithm 2 is deployed to estimate 
the time-varying parameters, where no SRIVC iterations are performed 
and only a single coordinate descent iteration is performed at every 
incoming sample, i.e., the two loops in the algorithm are omitted as 
𝑠 = 0 and 𝑀𝑙 = 1. Since the system is operating in closed loop, 
the instrument is chosen as (33). The obtained estimates and the true 
parameters are depicted for each of the submodels in Figs.  4 to 6. 
The estimated model at 𝑡 = 50 [s] and 𝑡 = 950 [s] are depicted in 
Fig.  7. From the figures is concluded that no further refinements and 
gradient descent steps are required to achieve an accurate tracking of 
the parameters.

6. Experimental validation on an overactuated and oversensed 
flexible beam setup

In this section, the method is tested on an experimental setup. 
To this end, consider the setup shown in Fig.  8. The system consists 
of a thin flexible steel beam of 500 × 20 × 2 [mm]. It is equipped 
with five contactless fiberoptic sensors and three voice-coil actuators 
and is suspended by wire flexures, leaving one rotational and one 
translational direction unconstrained. The system is operating at a 
sampling frequency of 4096 [Hz]. The second and fourth sensor are not 
used for the conducted experiments.

The main aim is to estimate the SISO system 𝐺∗ between the input 
𝑢, exciting the system at the outer ends of the beam equally, see 
Figs.  8 and 9, and the output 𝑦 which is the average deflection of 
the outer ends. This average deflection is controlled by a feedback 
controller and the setpoint is a square wave with a frequency of 2
[Hz]. By means of a second internal control loop, the stiffness of the 
beam is artificially manipulated such that the observed behavior is 
time-varying, see Classens et al. (2021, 2022) for details.

Lightly-damped systems such as the one under study are well-suited 
to be described in a modal representation, see Example  3.3, i.e.,

𝐺∗(𝑝) =
𝐾
∑

𝑖=1

𝑏∗𝑖,0
𝑝2∕𝜔2

𝑖 + 2(𝜁𝑖∕𝜔𝑖)𝑝 + 1
,

where 𝜁𝑖 and 𝜔𝑖 represent the damping coefficients and natural fre-
quencies of the flexible modes respectively, see Gawronski (2004). The 
flexible beam fits the modal description, and the system is approxi-
mated with 𝐾 = 2 modes. The first mode is the suspension mode of the 
system and the second mode is the first internal flexible mode which 
is artificially manipulated. Fig.  12 shows the model of the system in 
9 
Fig. 8. Prototype experimental flexible beam setup. The moving part is indicated 
by a  and is suspended by wire flexures b . The deflection is measured with five 
contactless fiber optic sensors, of which two are used c  and the setup is actuated 
with three current-driven voice coils of which the outer two are used d .

Fig. 9. Schematic illustration of the experimental setup. The three actuators are visible 
on the bottom part of the image and the five sensors at the top. During operation, the 
beam translates, rotates and exhibits internal flexible behavior. The inputs and outputs 
are transformed as 𝑢1 = 𝑢2 =

1
2
𝑢 and 𝑦 = 1

2

(

𝑦1 + 𝑦2
)

, respectively.

Fig. 10. Parameter estimate related to the first submodel. This first mode relates to 
the suspension of the flexible beam setup which remains unaltered throughout the 
experiment explaining the graphs.

the frequency domain, including the neglected higher order modes, and 
the model at 𝑡0 after initializing the system. Two distinct forgetting 
factors are used tailored to the distinct modes, namely 𝜆1 = 0.9999 and 
𝜆2 = 0.999, and the approximate covariance matrices are initialized at 
𝑃1(𝑡0) = 𝑃2(𝑡0) = diag(10−11, 10−6, 10−1).

An experiment is conducted where the internal flexible mode is 
actively manipulated from 𝑡 ∈ [40, 100] [s]. Algorithm 2 is deployed 
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Fig. 11. Parameter estimate related to the second submodel. This mode is artificially 
manipulated between 𝑡 = 40 [s] and 𝑡 = 100 [s], which explains the changing 
parameters.

Fig. 12. Frequency response function of the nonmanipulated system ( ), the plant 
estimate at 𝑡 = 𝑡𝑁1

= 0 [s] ( ), and at the plant estimate at 𝑡 = 135 [s] ( ).

to estimate the time-varying behavior, where no SRIVC iterations are 
performed and only a single coordinate descent iteration is performed 
at every incoming sample, i.e., 𝑠 = 0 and 𝑀𝑙 = 1. Since the system is 
operating in closed loop, the instrument is chosen as (33). The obtained 
estimates are depicted for each of the two submodels in Figs.  10 and
11, and the estimated model at 𝑡 = 0 [s] and 𝑡 = 135 [s] is depicted in 
Fig.  12. From the figures is concluded that the shifting resonance mode 
is effectively observed, and the first mode does not exhibit parameter 
variations. The small fluctuations in the estimate of the second mode 
are at the frequency of the setpoint.

7. Conclusions

This article addresses a recursive method to identify additive sys-
tems for both open and closed-loop setups. The proposed algorithms, 
based on a block-coordinate descent with refined instrumental vari-
ables, are capable to track time-varying parameters of continuous-time 
systems in real-time. This allows tracking of more parsimonious and 
physically-relevant model representations, particularly for mechanical 
systems. Practical aspects are provided and finally the effectiveness of 
the proposed approach is illustrated through numerical validation and 
application on a real-time setup.
10 
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Appendix A. Derivation of the refined instrumental variable iter-
ations

In this appendix, it is shown that a stationary point of the follow-
ing optimization problem is obtained from the refined instrumental 
variable method. Recall the optimization problem 

𝜃𝑙+1𝑖 (𝑡𝑁 ) = argmin
𝜃𝑖∈𝛺𝑖

𝑁
∑

𝑘=1
𝛼𝑁−𝑘

[

𝑦̃𝑖(𝑡𝑘) − 𝐺𝑖(𝑝, 𝑡, 𝜃𝑖)𝑢(𝑡𝑘)
]2
, (A.1)

with

𝑦̃𝑖(𝑡𝑘) ∶= 𝑦(𝑡𝑘) −
𝑖−1
∑

𝑗=1
𝐺𝑗 (𝑝, 𝑡, 𝜃𝑙+1𝑗 )𝑢(𝑡𝑘) −

𝐾
∑

𝑗=𝑖+1
𝐺𝑗 (𝑝, 𝑡, 𝜃𝑙𝑗 )𝑢(𝑡𝑘).

and define
𝜀𝑖(𝑡𝑘, 𝜃𝑖) = 𝑦̃𝑖(𝑡𝑘) − 𝐺𝑖(𝑝, 𝑡, 𝜃𝑖)𝑢(𝑡𝑘).

By taking Remark  4.7 into consideration, this residual is well approxi-
mated as
𝜀𝑖(𝑡𝑘, 𝜃𝑖) =

1
𝐴𝑖(𝑝, 𝜃𝑖)

(

𝐴𝑖(𝑝, 𝜃𝑖)𝑦̃𝑖(𝑡𝑘) − 𝐵𝑖(𝑝, 𝜃𝑖)𝑢(𝑡𝑘)
)

,

and subsequently 𝐴𝑖(𝑝, 𝜃𝑖) and 𝐵𝑖(𝑝, 𝜃𝑖) gives

𝜀𝑖(𝑡𝑘, 𝜃𝑖) =
1

𝐴𝑖(𝑝, 𝜃𝑖)

(

𝑎𝑖,𝑛𝑖 (𝑡𝑘)𝑝
𝑛𝑖 𝑦̃𝑖(𝑡𝑘) +⋯ + 𝑎𝑖,1(𝑡𝑘)𝑝𝑦̃𝑖(𝑡𝑘) + 𝑦̃𝑖(𝑡𝑘)

− 𝑏𝑖,𝑚𝑖
(𝑡𝑘)𝑝𝑚𝑖𝑢(𝑡𝑘) −⋯ − 𝑏𝑖,1(𝑡𝑘)𝑝𝑢(𝑡𝑘) − 𝑏𝑖,0(𝑡𝑘)𝑢(𝑡𝑘)

)

.

The filtered residual output, filtered regressor vector, and parameter 
vector are defined as
𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑖) =

1
𝐴𝑖(𝑝, 𝜃𝑖)

𝑦̃𝑖(𝑡𝑘),

𝜑𝑖,f(𝑡𝑘) =
1

𝐴𝑖(𝑝, 𝜃𝑖)

[

−𝑝𝑦̃𝑖(𝑡𝑘) … − 𝑝𝑛𝑖 𝑦̃𝑖(𝑡𝑘) 𝑢(𝑡𝑘) 𝑝𝑢(𝑡𝑘) … 𝑝𝑚𝑖𝑢(𝑡𝑘)
]⊤

,

𝜃𝑖(𝑡𝑘) =
[

𝑎𝑖,1(𝑡𝑘) … 𝑎𝑖,𝑛𝑖 (𝑡𝑘) 𝑏𝑖,0(𝑡𝑘) 𝑏𝑖,1(𝑡𝑘) … 𝑏𝑖,𝑚𝑖
(𝑡𝑘)

]⊤
,

which allows to write 𝜀𝑖 as 

𝜀𝑖(𝑡𝑘, 𝜃𝑖) = 𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑖) − 𝜑⊤
𝑖,f(𝑡𝑘, 𝜃𝑖)𝜃𝑖(𝑡𝑘), (A.2)

which is a pseudolinear regression problem in 𝜃𝑖 that admits the refined 
instrumental variable (Garnier & Wang, 2008; Young, 2011) iterations. 
To this end, the parameter estimate of the previous SRIVC iterate 𝑠 is 
taken in the denominator polynomial 𝐴𝑖 which is used as prefilter for 
𝑦̃𝑖,f and 𝜑𝑖,f. Then, substitution in the first order optimality condition of 
(A.1), i.e.,
𝑁
∑

𝛼𝑁−𝑘
𝜕𝜀𝑖(𝑡𝑘, 𝜃𝑖) 𝜀𝑖(𝑡𝑘, 𝜃𝑖) = 0,
𝑘=1 𝜕𝜃𝑖
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with the instrument vector 𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑖) gives
𝑁
∑

𝑘=1
𝛼𝑁−𝑘𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑖)

(

𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑖) − 𝜑⊤
𝑖,f(𝑡𝑘, 𝜃𝑖)𝜃𝑖(𝑡𝑘)

)

= 0.

Hence, the iterations for a fixed block descent iteration 𝑙 + 1 are of the 
form

𝜃𝑙+1𝑖,𝑠+1(𝑡𝑁 ) =

[ 𝑁
∑

𝑘=1
𝛼𝑁−𝑘𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 )𝜑⊤

𝑖,f(𝑡𝑘, 𝜃
𝑙+1
𝑖,𝑠 )

]−1

×

[ 𝑁
∑

𝑘=1
𝛼𝑁−𝑘𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 )𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 )

]

, (A.3)

with 𝑠 ≥ 1.

Appendix B. Recursive computation of the SRIVC iterations

In order to reformulate (25) into its recursive form, define 

𝑅𝑙+1
𝑖,𝑠 (𝑡𝑁 ) =

𝑁
∑

𝑘=1
𝛼𝑁−𝑘𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 )𝜑⊤

𝑖,f(𝑡𝑘, 𝜃
𝑙+1
𝑖,𝑠 ), (B.1)

and 

𝑓 𝑙+1
𝑖,𝑠 (𝑡𝑁 ) =

𝑁
∑

𝑘=1
𝛼𝑁−𝑘𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 )𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 ). (B.2)

Using that 𝛼𝑘 = 𝜆𝑘 and that 𝛼 satisfies the multiplicative property 
𝛼𝑘+1 = 𝜆𝛼𝑘, with 𝛼0 = 1, 
𝑅𝑙+1
𝑖,𝑠 (𝑡𝑘) = 𝜆𝑅̄𝑖(𝑡𝑘−1) + 𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 )𝜑⊤

𝑖,f(𝑡𝑘, 𝜃
𝑙+1
𝑖,𝑠 ), (B.3)

and 
𝑓 𝑙+1
𝑖,𝑠 (𝑡𝑘) = 𝜆𝑓𝑖(𝑡𝑘−1) + 𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 )𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,𝑠 ), (B.4)

where 𝑅̄𝑖(𝑡𝑘−1) and 𝑓𝑖(𝑡𝑘−1) denote the final value of the iterations 
at the previous time step 𝑡𝑘−1 (i.e., after iterating over the modes 
through 𝑖 and 𝑙, and after the iterations in 𝑠). Using that 𝜃𝑙+1𝑖,𝑠+1(𝑡𝑁 ) =
(

𝑅𝑙+1
𝑖,𝑠 (𝑡𝑁 )

)−1
𝑓 𝑙+1
𝑖,𝑠 (𝑡𝑁 ), and 𝑓𝑖(𝑡𝑘−1) = 𝑅̄𝑖(𝑡𝑘−1)𝜃̄𝑖(𝑡𝑘−1),

𝜃𝑙+1𝑖,𝑠+1(𝑡𝑁 ) =
(

𝑅𝑙+1
𝑖,𝑠 (𝑡𝑁 )

)−1 (
𝜆𝑅̄𝑖(𝑡𝑁−1)𝜃̄𝑖(𝑡𝑁−1) + 𝜑̂𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )𝑦̃𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )

)

,

which after substitution of 𝑅̄𝑖(𝑡𝑘−1) from (B.3) is written as

𝜃𝑙+1𝑖,𝑠+1(𝑡𝑁 ) =
(

𝑅𝑙+1
𝑖,𝑠 (𝑡𝑁 )

)−1
(

𝜑̂𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )𝑦̃𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )

+ (𝑅𝑙+1
𝑖,𝑠 (𝑡𝑁 ) − 𝜑̂𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )𝜑⊤

𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 ))𝜃̄𝑖(𝑡𝑁−1)
)

,

and thus 
𝜃𝑙+1𝑖,𝑠+1(𝑡𝑁 ) = 𝜃̄𝑖(𝑡𝑁−1) +

(

𝑅𝑙+1
𝑖,𝑠 (𝑡𝑁 )

)−1
𝜑̂𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )

×
(

𝑦̃𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 ) − 𝜑⊤
𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )𝜃̄𝑖(𝑡𝑁−1)

)

.
(B.5)

In order to avoid inverting 𝑅𝑙+1
𝑖,𝑠 (𝑡𝑁 ) at each time step, introduce 

𝑃 𝑙+1
𝑖,𝑠 (𝑡𝑁 ) = (𝑅𝑙+1

𝑖,𝑠 (𝑡𝑁 ))−1. The Sherman–Morrison formula (Horn & 
Johnson, 2012, Chap. 0.7.4), a generalization of the matrix inversion 
lemma, states that (𝐴 + 𝑢𝑣⊤

)−1 = 𝐴−1− 𝐴−1𝑢𝑣⊤𝐴−1

1+𝑣⊤𝐴−1𝑢
, provided the inverses 

exist, with 𝐴 invertible and square, and column vectors 𝑢 and 𝑣. Take 
𝐴 = 𝜆𝑅̄𝑖(𝑡𝑁−1), 𝑢 = 𝜑̂𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 ), and 𝑣 = 𝜑𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 ). Then,
(

𝑅𝑙+1
𝑖,𝑠 (𝑡𝑁 )

)−1
= 1

𝜆
(

𝑅̄𝑖(𝑡𝑁−1)
)−1

−
1
𝜆

(

𝑅̄𝑖(𝑡𝑁−1)
)−1 𝜑̂𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )𝜑⊤

𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 ) 1𝜆
(

𝑅̄𝑖(𝑡𝑁−1)
)−1

1 + 𝜑⊤
𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 ) 1𝜆

(

𝑅̄𝑖(𝑡𝑁−1)
)−1 𝜑̂𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )

,

and thus with 𝑃𝑖(𝑡𝑁−1) =
(

𝑅̄𝑖(𝑡𝑁−1)
)−1, 

𝑃 𝑙+1
𝑖,𝑠 (𝑡𝑁 ) = 1

𝜆
𝑃𝑖(𝑡𝑁−1)

− 1
𝜆

𝑃𝑖(𝑡𝑁−1)𝜑̂𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )𝜑⊤
𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )𝑃𝑖(𝑡𝑁−1)

⊤ 𝑙+1 ̄ 𝑙+1
.

(B.6)
𝜆 + 𝜑𝑖,f(𝑡𝑁 , 𝜃𝑖,𝑠 )𝑃𝑖(𝑡𝑁−1)𝜑̂𝑖,f(𝑡𝑁 , 𝜃𝑖,𝑠 )

11 
Define 𝐾 𝑙+1
𝑖,𝑠+1(𝑡𝑁 ) = 𝑃 𝑙+1

𝑖,𝑠 (𝑡𝑁 )𝜑̂𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 ), or equivalently, 
𝐾 𝑙+1

𝑖,𝑠+1(𝑡𝑁 ) = 𝑃𝑖(𝑡𝑁−1)𝜑̂𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )

×
(

𝜆 + 𝜑⊤
𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )𝑃𝑖(𝑡𝑁−1)𝜑̂𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )

)−1
.

(B.7)

This expression allows us to write (B.6) as

𝑃 𝑙+1
𝑖,𝑠 (𝑡𝑁 ) = 1

𝜆

(

𝑃𝑖(𝑡𝑁−1) −𝐾 𝑙+1
𝑖,𝑠+1(𝑡𝑁 )𝜑⊤

𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )𝑃𝑖(𝑡𝑁−1)
)

,

and (B.5) as
𝜃𝑙+1𝑖,𝑠+1(𝑡𝑁 ) = 𝜃̄𝑖(𝑡𝑁−1) +𝐾 𝑙+1

𝑖,𝑠+1(𝑡𝑁 )
(

𝑦̃𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 ) − 𝜑⊤
𝑖,f(𝑡𝑁 , 𝜃𝑙+1𝑖,𝑠 )𝜃̄𝑖(𝑡𝑁−1)

)

.

Hence, (B.7), (B.6), and (B.5), form a recursive equivalent of (A.3).

Appendix C. Generic consistency proof with 𝜶𝒌 = 𝟏 for all 𝒌

In this appendix, the proof of Theorem  2 is provided.

Proof.  As the number of SRIVC iterations 𝑠 tends to infinity, 

𝜃𝑙+1𝑖,∞ = 1
𝑁

[ 𝑁
∑

𝑘=1
𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,∞ )𝜑⊤

𝑖,f(𝑡𝑘, 𝜃
𝑙+1
𝑖,∞ )

]−1

× 1
𝑁

[ 𝑁
∑

𝑘=1
𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,∞ )𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,∞ )

]

.

(C.1)

That is, 

1
𝑁

𝑁
∑

𝑘=1
𝜑̂𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,∞ )

[

𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,∞ ) − 𝜑⊤
𝑖,f(𝑡𝑘, 𝜃

𝑙+1
𝑖,∞ )𝜃𝑙+1𝑖,∞

]

= 0, (C.2)

where

𝑦̃𝑖,f(𝑡𝑘, 𝜃𝑙+1𝑖,∞ ) − 𝜑⊤
𝑖,f(𝑡𝑘, 𝜃

𝑙+1
𝑖,∞ )𝜃𝑙+1𝑖,∞

= 1
𝐴𝑖(𝑡𝑘 ,𝜃𝑙+1𝑖,∞ )

𝑦̃𝑖(𝑡𝑘) +
𝑝𝑎𝑙+1𝑖,∞,1+⋯+𝑝𝑛𝑖 𝑎𝑙+1𝑖,∞,𝑛𝑖

𝐴𝑖(𝑡𝑘 ,𝜃𝑙+1𝑖,∞ )
𝑦̃𝑖(𝑡𝑘)

−
𝑏𝑙+1𝑖,∞,0+𝑝𝑏

𝑙+1
𝑖,∞,1+⋯+𝑝𝑚𝑖 𝑏𝑙+1𝑖,∞,𝑚𝑖
𝐴𝑖(𝑡𝑘 ,𝜃𝑙+1𝑖,∞ )

𝑢(𝑡𝑘)
(C.3)

= 𝑦̃𝑖(𝑡𝑘) −
𝐵𝑖(𝑡𝑘, 𝜃𝑙+1𝑖,∞ )

𝐴𝑖(𝑡𝑘, 𝜃𝑙+1𝑖,∞ )
𝑢(𝑡𝑘) (C.4)

= 𝑦(𝑡𝑘) −
𝑖−1
∑

𝑗=1
𝐺𝑗 (𝑝, 𝑡𝑘, 𝜃𝑙+1𝑗 )𝑢(𝑡𝑘) −

𝐾
∑

𝑗=𝑖+1
𝐺𝑗 (𝑝, 𝑡𝑘, 𝜃𝑙𝑗 )𝑢(𝑡𝑘)

−
𝐵𝑖(𝑡𝑘 ,𝜃𝑙+1𝑖,∞ )

𝐴𝑖(𝑡𝑘 ,𝜃𝑙+1𝑖,∞ )
𝑢(𝑡𝑘).

(C.5)

To simplify the notation, in the subsequent analysis, the 𝑡𝑘 dependency 
on the transfer functions is omitted. Denoting the parameter vector 𝜃∞𝑖,∞
as the limit of 𝜃𝑙𝑖,∞ when the number of descent iterations tends to 
infinity, then, as 𝑙 → ∞, 

𝑦̃𝑖,f(𝑡𝑘, 𝜃∞𝑖,∞) − 𝜑⊤
𝑖,f(𝑡𝑘, 𝜃

∞
𝑖,∞)𝜃∞𝑖,∞ = 𝑦(𝑡𝑘) −

𝐾
∑

𝑗=1
𝐺𝑗 (𝑝, 𝜃∞𝑗,∞)𝑢(𝑡𝑘). (C.6)

On the other hand, note that 

lim
𝑁→∞

1
𝑁

𝑁
∑

𝑘=1
𝜑̂𝑖,f(𝑡𝑘, 𝜃∞𝑖,∞)𝑣(𝑡𝑘) = Ē

{

𝜑̂𝑖,f(𝑡𝑘, 𝜃∞𝑖,∞)𝑣(𝑡𝑘)
}

= 0, (C.7)

where the first equality is due to the ergodicity property of the input 
and noise signals (see Theorem 2B.1 of Butcher et al. (2008) for more 
details), and the second equality holds since 𝑣 and 𝜑̂𝑖,f are uncorrelated 
due to Assumption  4. So, for 𝑖 = 1,… , 𝐾, combining (C.2), (C.6), (13) 
and (C.7) leads to 

lim
𝑁→∞

1
𝑁

𝐾
∑

𝑗=1

𝑁
∑

𝑘=1
𝜑̂𝑖,f(𝑡𝑘, 𝜃∞𝑖,∞)

[

𝐺∗
𝑗 (𝑝) − 𝐺𝑗 (𝑝, 𝜃∞𝑗,∞)

]

𝑢(𝑡𝑘) = 0. (C.8)

Now,

𝐺∗
𝑗 (𝑝) − 𝐺𝑗 (𝑝, 𝜃∞𝑗,∞) =

𝐵∗
𝑗 (𝑝)
∗ −

𝐵𝑗 (𝑝, 𝜃∞𝑗,∞)
∞
𝐴𝑗 (𝑝) 𝐴𝑗 (𝑝, 𝜃𝑗,∞)
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=
𝐵∗
𝑗 (𝑝)𝐴𝑗 (𝑝, 𝜃∞𝑗,∞) − 𝐴∗

𝑗 (𝑝)𝐵𝑗 (𝑝, 𝜃∞𝑗,∞)

𝐴∗
𝑗 (𝑝)𝐴𝑗 (𝑝, 𝜃∞𝑗,∞)

=

[

1, 𝑝, … , 𝑝𝑛𝑗+𝑚𝑗
]

𝐴∗
𝑗 (𝑝)𝐴𝑗 (𝑝, 𝜃∞𝑗,∞)

ℎ𝑗 , (C.9)

where ℎ𝑗 ∈ R𝑛𝑗+𝑚𝑗+1 is the vector that contains the coefficients of 
𝐵∗
𝑗 (𝑝)𝐴𝑗 (𝑝, 𝜃∞𝑗,∞) − 𝐴∗

𝑗 (𝑝)𝐵𝑗 (𝑝, 𝜃∞𝑗,∞) in increasing order of degree. With 
regards to the instrument vector, the following decomposition holds 
(see, e.g., Eq. (16) of Pan, González et al., 2020) 

𝜑̂𝑖,f(𝑡𝑘, 𝜃∞𝑖,∞) = 𝑆(−𝐵𝑖, 𝐴𝑖)
1

𝐴2
𝑖 (𝑝, 𝜃

∞
𝑖,∞)

𝑈𝑖(𝑡𝑘), (C.10)

where 𝑈𝑖(𝑡𝑘) =
[

1 𝑝 … 𝑝𝑛𝑖+𝑚𝑖
]⊤ 𝑢(𝑡𝑘), and where 𝑆(−𝐵𝑖, 𝐴𝑖) is a 

Sylvester matrix formed by the coefficients of the polynomials
−𝐵𝑖(𝑝, 𝜃∞𝑖,∞) and 𝐴𝑖(𝑝, 𝜃∞𝑖,∞), similar to Eq. (13) of Pan, González et al. 
(2020). Thus, (C.8) is equivalent to 
𝐾
∑

𝑗=1
lim

𝑁→∞
1
𝑁

𝑁
∑

𝑘=1
𝑆(−𝐵𝑖, 𝐴𝑖)

1
𝐴2
𝑖 (𝑡𝑘, 𝜃

∞
𝑖,∞)

𝑈𝑖(𝑡𝑘)

× 1
𝐴∗
𝑗 (𝑝)𝐴𝑗 (𝑝, 𝜃∞𝑗,∞)

𝑈⊤
𝑗 (𝑡𝑘)ℎ𝑗 = 0,

(C.11)

for 𝑖 = 1,… , 𝐾. After applying Lemma  1 in Appendix  C.1 and the 
ergodicity result in Theorem 2B.1 of Butcher et al. (2008), which 
hold since the system and model denominators describe uniformly 
stable transfer functions and the input is assumed quasi-stationary, the 
following is obtained. 

𝑆(−𝐵̄𝑖, 𝐴̄𝑖)
𝐾
∑

𝑗=1
Ē
{

1
𝐴2
𝑖 (𝑡𝑘, 𝜃

∞
𝑖,∞)

𝑈𝑖(𝑡𝑘)

× 1
𝐴∗
𝑗 (𝑝)𝐴𝑗 (𝑝, 𝜃∞𝑗,∞)

𝑈⊤
𝑗 (𝑡𝑘)

}

ℎ̄𝑗 = 0,

(C.12)

for 𝑖 = 1,… , 𝐾, where (𝐴̄𝑖, 𝐵̄𝑖) = lim𝑁→∞(𝐴𝑖(𝑝, 𝜃∞𝑖,∞), 𝐵𝑖(𝑝, 𝜃∞𝑖,∞)), and 
ℎ̄𝑗 = lim𝑁→∞ ℎ𝑗 . The 𝐾 conditions in (C.12) are jointly expressed as 
𝛷𝑢𝜂 = 0, where  is a block-diagonal matrix whose block-diagonal 
is comprised by {𝑆(−𝐵̄𝑖, 𝐴̄𝑖)}𝐾𝑘=1, while 𝜂 = [ℎ̄⊤1 ,… , ℎ̄⊤𝐾 ]

⊤, and 𝛷𝑢 has 
block entries given by

𝛷𝑖,𝑗
𝑢 = Ē

{

1
𝐴2
𝑖 (𝑡𝑘, 𝜃

∞
𝑗,∞)

𝑈𝑖(𝑡𝑘)
1

𝐴∗
𝑗 (𝑝)𝐴𝑗 (𝑡𝑘, 𝜃∞𝑗,∞)

𝑈𝑗 (𝑡𝑘)

}

.

Assumption  3 regarding the coprimeness of 𝐴̄𝑖 and 𝐵̄𝑖 implies that  is 
nonsingular, as shown in Lemma A3.1 of Söderström and Stoica (1983). 
Moreover, Lemma  2 in Appendix  C.1 applied over each entry of 𝛷𝑢
indicates that the non-singularity of 𝛷𝑢 can be studied directly from the 
cross covariance of the inputs filtered by the LTI systems obtained at 
the limit as 𝑁 → ∞. Thus, following the same reasoning as in Lemma 
3 of González, Classens et al. (2025), Assumptions  1 to 4 imply the 
generic nonsingularity of 𝛷𝑢 with respect to the converging system and 
model denominator parameters. Consequently, 𝜂 = 0, i.e., lim𝑁→∞ ℎ𝑗 =
0 for all 𝑖 = 1,… , 𝐾, as desired. □

C.1. Technical lemmas

Lemma 1.  If the matrix 𝑘 has a bounded norm for all 𝑘 with probability 
1, then, with probability 1, 

lim
𝑁→∞

1
𝑁

𝑁
∑

𝑘=1
𝑆𝑘𝑘ℎ𝑘 = 𝑆̄ lim

𝑁→∞
1
𝑁

𝑁
∑

𝑘=1
𝑘ℎ̄, (C.13)

where 𝑆𝑘 and ℎ𝑘 are matrices and vectors of appropriate dimensions, such 
that lim𝑘→∞ 𝑆𝑘 = 𝑆̄ and lim𝑘→∞ ℎ𝑘 = ℎ̄.

Proof.  Note that the following inequalities hold:

1
𝑁

‖

‖

‖

‖

𝑁
∑

(𝑆𝑘 − 𝑆̄)𝑘ℎ𝑘
‖

‖

‖

‖

≤ 1
𝑁

𝑁
∑

‖𝑆𝑘 − 𝑆̄‖‖𝑘ℎ𝑘‖

‖

‖

𝑘=1 ‖

‖

𝑘=1

12 
≤
𝑀1
𝑁

𝑁
∑

𝑘=1
‖𝑆𝑘 − 𝑆̄‖, (C.14)

where 𝑀1 = sup𝑘 ‖𝑘ℎ𝑘‖ < ∞ with probability 1, since 𝑘 and ℎ𝑘 are 
bounded. Since ‖𝑆𝑘−𝑆̄‖ → 0 as 𝑘 → ∞, then the Cesàro mean in (C.14) 
also goes to zero due to Theorem 4.2.3 of Cover and Thomas (2006). 
By the same reasoning, it follows that

1
𝑁

‖

‖

‖

‖

‖

‖

𝑁
∑

𝑘=1
𝑆̄𝑘(ℎ𝑘 − ℎ̄)

‖

‖

‖

‖

‖

‖

≤ 1
𝑁

𝑁
∑

𝑘=1
‖𝑆̄𝑘‖‖ℎ𝑘 − ℎ̄‖

≤
𝑀2
𝑁

𝑁
∑

𝑘=1
‖ℎ𝑘 − ℎ̄‖

𝑁→∞
←←←←←←←←←←←←←←←←←←←←←←←←→ 0.

Thus, the result in (C.13) follows from decomposing 𝑆𝑘𝑘ℎ𝑘 as
𝑆𝑘𝑘ℎ𝑘 = (𝑆𝑘 − 𝑆̄)𝑘ℎ𝑘 + 𝑆̄𝑘(ℎ𝑘 − ℎ̄) + 𝑆̄𝑘ℎ̄,

summing over 𝑘, dividing over 𝑁 , and computing the limit as 𝑁 →

∞. □

Lemma 2.  Let 

𝑤(𝑡) =
∞
∑

𝑘=0
𝛼𝑡(𝑘)𝑒(𝑡 − 𝑘), 𝑣(𝑡) =

∞
∑

𝑘=0
𝛽𝑡(𝑘)𝑒(𝑡 − 𝑘), (C.15)

where the families of filters 𝛼𝑡(𝑘), 𝛽𝑡(𝑘), 𝑡 = 1, 2,…  are uniformly stable, 
and {𝑒(𝑡)} is a quasi-stationary signal. In addition, let 𝑤̄(𝑡) and 𝑣̄(𝑡) be 
defined as in (C.15) but for the LTI filters 𝛼̄(𝑘) and 𝛽(𝑘) respectively, where 
𝛼𝑡(𝑘) → 𝛼̄(𝑘) and 𝛽𝑡(𝑘) → 𝛽(𝑘) for every 𝑘 as 𝑡 → ∞. Then, 
|

|

Ē{𝑤(𝑡)𝑣(𝑡)} − Ē{𝑤̄(𝑡)𝑣̄(𝑡)}|
|

→ 0 as 𝑁 → ∞. (C.16)

Proof.  The following inequalities hold:
|

|

Ē{𝑤(𝑡)𝑣(𝑡)} − Ē{𝑤̄(𝑡)𝑣̄(𝑡)}|
|

=
|

|

|

|

|

1
𝑁

𝑁
∑

𝑡=1

∞
∑

𝑘=0

∞
∑

𝓁=0
E{𝑒(𝑡 − 𝑘)𝑒(𝑡 − 𝓁)}

(

𝛼𝑡(𝑘)𝛽𝑡(𝓁) − 𝛼̄(𝑘)𝛽(𝓁)
)

|

|

|

|

|

(C.17)

≤ 𝐶
𝑁

𝑁
∑

𝑡=1

∞
∑

𝑘=0

∞
∑

𝓁=0

|

|

|

(

𝛼𝑡(𝑘)(𝛽𝑡(𝓁) − 𝛽(𝓁)) + 𝛽(𝓁)(𝛼𝑡(𝑘) − 𝛼̄(𝑘))
)

|

|

|

(C.18)

≤ 𝐶
𝑁 sup𝑡∈N

∞
∑

𝑘=0
|𝛼𝑡(𝑘)|

𝑁
∑

𝑡=1

∞
∑

𝓁=0

|

|

𝛽𝑡(𝓁) − 𝛽(𝓁)|
|

+ 𝐶
𝑁

∞
∑

𝓁=0
|𝛽(𝓁)|

𝑁
∑

𝑡=1

∞
∑

𝑘=0

|

|

𝛼𝑡(𝑘) − 𝛼̄(𝑘)|
|

,

(C.19)

where (C.17) holds by definition, (C.18) uses the quasi-stationary prop-
erty |E{𝑒(𝑡 − 𝑘)𝑒(𝑡 − 𝓁)}| ≤ 𝐶 for any indices 𝑡, 𝑘 and 𝓁, and (C.19) is due 
to the triangle inequality. Since 𝛼𝑡(𝑘) and 𝛽𝑡(𝓁) describe uniformly stable 
families of filters, the two series sup𝑡∈N

∑∞
𝑘=0 |𝛼𝑡(𝑘)| and 

∑∞
𝑘=0 |𝛽(𝑘)|

converge. Thus, to prove (C.16) we require to show that 

1
𝑁

𝑁
∑

𝑡=1

∞
∑

𝑘=0

|

|

𝛼𝑡(𝑘) − 𝛼̄(𝑘)|
|

→ 0 as 𝑁 → ∞, (C.20)

and similarly with 𝛽𝑡(𝑘). Due to the pointwise convergence, lim𝑡→∞
|𝛼𝑡(𝑘) − 𝛼̄(𝑘)| = 0, and due to the uniform stability of 𝛼𝑡(𝑘),
∞
∑

𝑘=0
|𝛼𝑡(𝑘) − 𝛼̄(𝑘)| ≤ 2

∞
∑

𝑘=0
sup
𝑡∈N

|𝛼𝑡(𝑘)| < ∞.

Thus, by the Weierstrass M-test (Billingsley, 1995, Theorem A28),

lim
𝑡→∞

∞
∑

𝑘=0
|𝛼𝑡(𝑘) − 𝛼̄(𝑘)| =

∞
∑

𝑘=0
lim
𝑡→∞

|𝛼𝑡(𝑘) − 𝛼̄(𝑘)| = 0.

Hence, (C.20) can be interpreted as a Cesàro mean with sequence in 𝑡
given by ∑∞

𝑘=0 |𝛼𝑡(𝑘) − 𝛼̄(𝑘)|, which goes to zero as 𝑡 tends to infinity. 
Thus, by Theorem 4.2.3 of Cover and Thomas (2006), (C.20) holds. The 
same derivation holds for 𝛽𝑡(𝓁), which implies that the right hand side 
of (C.19) tends to zero as 𝑁 tends to infinity, thus proving (C.16). □
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