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ABSTRACT

The increasing demand for effective forest fire preven-
tion instruments has faced operational and future Earth
observation instruments with the challenge of producing
updated and reliable maps of vegetation moisture. Var-
ious empirical band-ratio indexes have been proposed
so far, based on multispectral remote sensing data, that
have been found to be related to vegetation moisture ex-
pressed in terms of equivalent water thickness (EWT),
which is defined as the weight of liquid water per unit
leaf area. More sophisticated retrieval methodologies can
be adopted when hyperspectral data are available, e.g.
based on spectral curve fitting in selected water absorp-
tion bands or radiative transfer model inversion, allow-
ing for better estimates of EWT. Problems arise with the
evaluation of fuel moisture content (FMC), which is the
percentage weight of water per unit of oven-dried leaf
weight, due to its weak signal in vegetation spectrum.
FMC is essential in fire models, and it is not interchange-
able with EWT.

Basing on simulated vegetation spectra, this study aims
at demonstrating that hyperspectral images of vegetated
areas can be effectively used to evaluate FMC with accu-
racies not achievable with multispectral data. To this pur-
pose, radiative transfer models PROSPECT and SAILH
have been used to simulate canopy reflectance. Vegeta-
tion spectra have then been convolved to hyperspectral
data basing on the design specifications of a formerly
planned ASI-CSA hyperspectral mission (JHM configu-
ration C), similar to those of the forthcoming PRISMA.
For comparison against multispectral instruments, mea-
surements from the Operational Land Imager (OLI) have
also been simulated. Two retrieval methods have been
tested, based on spectral indexes and on partial least
squares (PLS) regression. The latter methodology is par-
ticularly suited to analyse high-dimensional data.

Results confirm that spectral indexes are good predictors
of vegetation moisture expressed as EWT, but their per-
formance in evaluating FMC is poor. By using PLS re-
gression on hyperspectral data, a linear model can be built
that accurately predicts FMC. No such result is achiev-
able from OLI simulated data.
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1. INTRODUCTION

Forest fires are a major environmental threat in the
Mediterranean basin; a total area between 200000 and
600000 ha is burnt every year, with an average of 60000
fires reported each year [6]. The destruction of forests
has a negative impact on carbon fixation, while soil ero-
sion increases due to both the loss of canopy cover, which
attenuates rainfalls and facilitates water percolation in the
soil, and to the physic-chemical alteration of the soil sur-
face. Economic costs are high as well, due to the reduc-
tion in the productive potential of forests and surrounding
lands, with negative impact on regional economies and
populations life quality, especially in the economically
depressed areas.

It is believed that in the Mediterranean area 95% of fires
are due to human activities [8]. Awareness-rising cam-
paigns have shown to be successful in the reduction of
unintentional fires, but the number of fraudulent fires still
remains high, making it necessary the use of more so-
phisticated prevention strategies. Since human behav-
ior (the ignition) cannot be predicted, fire managers are
more concerned about fuel condition and its variation
with time. This information is directly related to the ease
of inception (fire hazard), the difficulty in fire suppression
(fire danger) and the direction of propagation.

For a fire to spread it is required that fuel moisture and
temperature are at an adequate level [18]. A forest fire
hazard index synthesizes this information into a single
value, providing a measure of ignition probability. Var-
ious factors contribute to the quantification of fire dan-
ger, including fuel type, fuel moisture, terrain aspect and
slope, winds [7]; some of them are static (do not change
with time), while others are dynamic. Among the latter,
fuel moisture plays a key role, because it determines the
forests susceptibility to fire ignition and propagation [18].
A higher moisture means a higher amount of heat needed
to ignite a fuel, since more energy is necessary to evap-
orate water [4]. It also implies slower fire propagation,
since part of the heat released by the flames is used to
evaporate the water from the adjacent fuels [19]. For this
reason a fast and reliable tool is needed by local authori-
ties to forecast fire danger, allowing a sound allocation of
intervention resources through risk modeling [1].

Vegetation moisture affects radiometric properties of live
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vegetation in a distinguishable way, that can be recorded
by optical remote sensing instruments [3]. Various em-
pirical band-ratio indexes have been proposed, based on
multispectral remote sensing data, that have been found
to be related to vegetation moisture measured as equiva-
lent water thickness (EWT, g/cm2), e.g. [17, 9, 22, 3].
This quantity is defined as the weight of liquid water in
leaf tissues per unit of leaf area. More sophisticated re-
trieval methodologies can be adopted when hyperspec-
tral data are available, e.g. based on spectral curve fitting
in selected water absorption features [10] or on radiative
transfer models inversion [19], allowing for improved es-
timates of EWT.

However, the fire research community is much more in-
terested in vegetation water measured as fuel moisture
content (FMC, %), which is defined as the percentage
weight of liquid water in leaf tissues per unit of dry leaf
weight. It is equivalent to the ratio of EWT over the
dry leaf weight per unit area (dry matter content, DMC,
g/cm2). Its evaluation from spectral measurements is
more problematic, as compared to EWT, due to the fact
that it is the ratio of two parameters that independently af-
fect vegetation reflectance. This causes broad-band spec-
tral indexes to capture a smaller proportion of FMC vari-
ability, as compared to EWT, but more interesting results
can be expected with the use of hyperspectral data.

In this study, two methodologies have been tested for the
exploitation of hyperspectral measurements and the eval-
uation of EWT and FMC, with the help of simulated re-
flectance data. The first one was based on the use of
spectral indexes related to vegetation moisture, initially
developed for broad-band multispectral instruments. Re-
sults from their narrow-band equivalents calculated from
hyperspectral measurements are compared against those
achieved by the same indexes calculated from simulated
broad-band measurements. The second experiment is
based on the use of partial least squares (PLS) regression
[21], which is suited to exploit the high dimensionality
of hyperspectral measurements. Results from hyperspec-
tral data will be compared against those achieved from
the Operational Land Imager (OLI) on board the Land-
sat Data Continuity Mission, due for launch in December
2012.

2. SPECTRAL ESTIMATION OF VEGETATION
MOISTURE

2.1. Measures of vegetation moisture

There are two different ways to express water content in
vegetation tissues. The equivalent water thickness (EWT,
g/cm2) is defined as the weight of liquid water per unit
leaf area:

EWT =
Wf −Wd

A

where Wf is the weight of the fresh leaf as measured in
the field, andWd is the corresponding weight of the same

leaf that has been oven dried. This parameter explains
most of the variability of leaf spectral reflectance in the
entire short-wave infrared (SWIR) domain [2], and it is
directly related to absorption features at 970, 1200, 1450
and 1950 nm.

The fuel moisture content (FMC, %) is the percentage
weight of water per unit of oven-dried leaf weight:

FMC =
Wf −Wd

Wd
· 100

This quantity is related to fuel ignitability and fire behav-
ior, and it is an essential input to fire models. FMC is
equivalent to the ratio of EWT over the dry leaf weight
per unit area (dry matter content, DMC, g/cm2), which
is defined as:

DMC =
Wd

A

EWT and DMC affect vegetation spectra independently
[3]. This complicates the retrieval of FMC from vege-
tation reflectance measurements, also in consideration of
the fact that FMC variability causes little spectral vari-
ations that can be confounded among those caused by
other influencing factors [10, 14]. For this reason, most
researches on the remote sensing of vegetation moisture
have concentrated on EWT and on the canopy EWT:

EWTc = EWT · LAI

which is a measure of the thickness of the equivalent layer
of leaf tissues water within the pixel that would produce
the observed reflectance. However, FMC is used in fire
models for the prediction of ignition probability and fire
behavior, and due to their different physical meaning, it
is not interchangeable with EWTc.

2.2. Remote sensing methods for vegetation mois-
ture retrieval

A study on leaf spectral signature sensitivity to EWT and
DMC [3] has shown that SWIR reflectance is mainly in-
fluenced by EWT, but also by leaf structure and DMC,
while near infrared (NIR) reflectance is only sensitive
to the latter two. This consideration has been the ba-
sis for the development of a number of spectral indexes
based on NIR and SWIR wavelengths, where NIR re-
flectance serves as a normalizing factor to enhance SWIR
response to leaf moisture. Despite the large number of
spectral indexes developed so far, in this study only two
indexes were taken into consideration. The Normalized
Difference Water Index (NDWI), constructed basing on
MODIS optical bands [9], is defined as:

NDWI =
R860 −R1240

R860 +R1240

where R860 and R1240 are reflectance measures in bands
centerd at 860 and 1240 nm respectively. More recently,



the Global Vegetation Moisture Index (GVMI) has been
developed basing on SPOT-VEGETATION data [3]:

GVMI =
(R840 + 0.1)− (R1660 + 0.02)

(R840 + 0.1) + (R1660 + 0.02)

Our choice of these indexes is based on the fact that they
rely on two different SWIR bands, and that most of the
indexes found in literature are based on the same wave-
lengths. While NDWI bases its sensitivity to vegetation
moisture on the reflectance around 1240 nm, the GVMI
uses the band around 1660 nm. Researches have shown
that both indexes are good indicators of EWTc [5], al-
though the produced humidity estimates are also sensitive
to the leaf area index (LAI) of the observed vegetation
[3, 16].

These indexes have in common the fact that they exploit
the different sensitivities of NIR and SWIR reflectance to
leaf biophysical properties to estimate leaf water content.
They have been developed for broad-band multispec-
tral instruments, although equivalent narrow-band spec-
tral indexes can be defined. When hyperspectral mea-
surements are available, the NIR-SWIR paradigm can be
abandoned, and the additional information included in the
data can be exploited by taking into account the physi-
cal processes influencing vegetation reflectance. In [10]
a simplified vegetation reflectance model has been used
to fit observed spectra with calculated spectra around the
liquid water absorption feature at 970 nm and to calcu-
late leaf EWT. In [19] the entire measured spectrum is
used together with inverse radiative transfer modeling to
retrieve EWT. However, these methodologies fail to pro-
vide accurate estimates of DMC [15], and thus of FMC.

For these reasons, we adopted a different approach, based
on the Partial Least Squares (PLS) regression [21]. PLS is
a particular type of multivariate analysis which is capable
of modeling the underlying structure relating the predic-
tor variable X (the observed spectra) to the response vari-
able Y (in our case, the FMC), and it is particularly suited
to analyse strongly collinear high-dimensional data.

The basic concept of PLS model is the definition of a
reduced number of variables, called the X-scores and de-
noted by matrix T. The X-scores are ortogonal, and are
both a predictor of Y and a model of X. The underlying
assumption is that both Y and X can be modeled by the
same “latent” variables. In matrix form, the X-scores are
a linear combination of variables X:

T = X ·W∗ (1)

where W∗ is the transformation matrix. The X-scores
are also good predictors of variables X:

X = T ·P′ +E

where P′ is the weights matrix and E are the residuals.
The X-scores are simultaneously a predictor of Y:

Table 1. PROSPECT simulation parameters
min max

N (adim) 1 3
Cab (µg/cm2) 25 80
EWT (g/cm2) 0.01 0.03
DMC (g/cm2) 0.01 0.04

Table 2. SAILH simulation parameters
min max

Soil reflectance dark, medium, bright
Hotspot size 0.001 0.01

LAI (m2/m2) 0.5 3
Leaf angle distribution plagiophile, erectophile
Sun Zenith angle (deg) 40 60

Sun Azimuth angle (deg) 180 220
View Zenith angle (deg) -30 30

Y = T ·Q′ + F (2)

where Q′ is the weights matrix and F are the residuals.
By inserting (1) in (2) we obtain the multiple linear re-
gression model:

Y = X ·W∗ ·Q′ + F = X ·B+ F

To find the X-scores and the PLS regression coefficients
B the Non-linear Iterative Partial least Squares (NIPALS)
algorithm has been used [21].

3. DATASET

Experiments were based on synthetic vegetation spec-
tra. Simulated data were produced by coupling PRO-
SECT and SAILH models. PROSPECT [11] is a ra-
diative transfer model for the simulation of reflectance
and transmittance of plant leaves. Four parameters are
required: chlorophyll a+b concentration Cab (µg/cm2),
EWT (g/cm2), DMC (g/cm2), and a leaf structural pa-
rameter N. With this model a wide range of vegeta-
tion spectra can be simulated, corresponding to a vari-
ety of physiological conditions. In the present study,
PROSPECT has been used to simulate 1000 vegetation
reflectance and transmittance spectra, randomly choos-
ing each simulation parameter from a uniform distribu-
tion whose minimum and maximum values are those re-
ported in Tab. 1.

A second radiative transfer model, SAILH [20], has been
used to scale leaf reflectance/transmittance to top of the
canopy reflectance. Model parameters are leaf area index,
leaf angle distribution and hot-spot size, soil background
spectrum, skylight fraction, and view and illumination
geometry. SAILH parameters for each of the simulated
leaf spectra have been randomly chosen from the values
in Tab. 2.
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Figure 1. Relationship between EWTc and GVMI based
on simulated hyperspectral measurements.

Simulated spectra were then convolved to satellite mea-
surements basing on the design specifications of a for-
merly planned ASI-CSA hyperspectral mission (JHM
configuration C), similar to those of the forthcoming
PRISMA. For comparison against retrieval performance
from typical multispectral data, OLI measurements on-
board the planned Landsat Data Continuity Mission have
been simulated as well.

4. RESULTS

4.1. Sensitivity of spectral indexes to vegetation
moisture

The two spectral indexes introduced in the section 2 have
been calculated using the corresponding narrow-band re-
flectance values from simulated hyperspectral data. Re-
gression of calculated GVMI and NDWI against EWTc
values show that both indexes are able to explain a large
proportion of the variability of this parameter (Fig. 1 and
Fig. 2). A performance comparison with OLI derived
moisture estimates can only be based on the GVMI, due
to the absence in this instrument of a band around 1240
nm. As shown in Fig. 3, OLI derived GVMI perfor-
mance is very similar to that of the same index calcu-
lated from narrow-band reflectance. This underlines the
fact that the use of spectral indexes calculated from hy-
perspectral data provides no greater accuracy in evaluat-
ing vegetation moisture as compared to the corresponding
broad-band based indexes. The evaluation of FMC from
both indexes provides much worse results (R2 = 0.09,
graph not shown), with no increase in accuracy provided
by hyperspectral data.
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Figure 2. Relationship between EWTc and NDWI based
on simulated hyperspectral measurements.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.02 0.04 0.06 0.08 0.1

G
VM

I

Simulated EWTc (g/cm2)

GVMI vs EWTc
Y=1.02+0.22*log(X)   R2=0.85

Figure 3. Relationship between EWTc and GVMI based
on simulated OLI measurements.
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Figure 4. EWTc retrieval accuracy from simulated hyper-
spectral measurements using PLS regression.

4.2. PLS retrievals of vegetation moisture

Before preforming PLS regression, the samples were split
into two sets: 600 samples picked at random were used to
evaluate the X-scores and the regression coefficients with
the NIPALS algorithm, while the remainder 400 samples
were used to validate the regression. Nine latent variables
were selected to describe the relationship between simu-
lated and predicted values of both EWTc and FMC, being
this number the one providing the best performance.

As shown in Fig. 4, PLS regression achieved good results
in the prediction of the EWTc; however, the accuracy is
comparable to that of spectral indexes. This confirms the
qualities of spectral indexes based on NIR and SWIR re-
flectance in the evaluation of EWTc.

The PLS regression shows good results in the prediction
of FMC (Fig. 5), with 87% of the variability caught
by the model. The subtile signal in vegetation spec-
trum due to FMC is an information “hidden” in the high-
dimensional hyperspectral measurements, and PLS re-
gression appears to be able to catch its variability.

A previous research has shown that FMC retrieval accu-
racy is affected by vegetation density, with lower LAI
values providing less accurate retrievals [13]. However,
PLS seems to be robust against the “noise” in other veg-
etation paramaters. Fig. 6 shows that PLS regression can
still model the relationship between measured spectra and
FMC when only test samples with LAI<1 are selected.

5. DISCUSSION

The Remote Sensing community has long been involved
in the estimation of EWTc, since this paramater provides
spectrally distinct features. However, the Fire Models re-
search community is much more interested in vegetation
moisture expressed as FMC, being this parameter directly
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Figure 5. FMC retrieval accuracy from simulated hyper-
spectral measurements using PLS regression.
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related to fire behavior. The advent of operational satel-
lites carrying hyperspectral instruments opens new op-
portunities for the development of products aimed at the
estimation of vegetation FMC and the characterization of
forest fire hazard.

In this study, with the help of simulated vegetation spec-
tra, we have shown how conventional spectral indexes
developed for broad-band multispectral instruments are
able to accurately evaluate EWTc, but they are poor
predictors of vegetation FMC, and no improvement is
achieved when calculated from hyperspectral data.

The problem lies with the weak signal in vegetation spec-
tra provided by FMC variability. To capture this vari-
ability, the PLR regression appears to be a valid method-
ology. Thanks to its use of the concept of “latent vari-
ables” related to both the independent and the dependent
variables, PLS allows the construction of a linear regres-
sion model successfully linking hyperspectral measure-
ments to FMC. A previous research has shown similar
results based on leaf spectral measurements [12]. How-
ever, the authors have envisaged the need to first reduce
data dimensionality (by selecting 44 to 54 channels) by
means of genetic algorithms. In this study we show that
there is no such need, since PLS is able to easily adapt to
high-dimensional data, while fully capturing the desired
relationship. This relationship also appears to be robust
against factors that traditionally affect retrieval accuracy,
such as low LAI values.
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