

Delft University of Technology

Web-based dissemination of continuously generalized space-scale cube data for smooth
user interaction

Meijers, Martijn; van Oosterom, Peter; Driel, Mattijs; Šuba, Radan

DOI
10.1080/23729333.2019.1705144
Publication date
2020
Document Version
Final published version
Published in
International Journal of Cartography

Citation (APA)
Meijers, M., van Oosterom, P., Driel, M., & Šuba, R. (2020). Web-based dissemination of continuously
generalized space-scale cube data for smooth user interaction. International Journal of Cartography, 6(1),
152-176. https://doi.org/10.1080/23729333.2019.1705144

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1080/23729333.2019.1705144
https://doi.org/10.1080/23729333.2019.1705144

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tica20

International Journal of Cartography

ISSN: 2372-9333 (Print) 2372-9341 (Online) Journal homepage: https://www.tandfonline.com/loi/tica20

Web-based dissemination of continuously
generalized space-scale cube data for smooth user
interaction

Martijn Meijers, Peter van Oosterom, Mattijs Driel & Radan Šuba

To cite this article: Martijn Meijers, Peter van Oosterom, Mattijs Driel & Radan Šuba
(2020) Web-based dissemination of continuously generalized space-scale cube data
for smooth user interaction, International Journal of Cartography, 6:1, 152-176, DOI:
10.1080/23729333.2019.1705144

To link to this article: https://doi.org/10.1080/23729333.2019.1705144

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 13 Jan 2020.

Submit your article to this journal

Article views: 293

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tica20
https://www.tandfonline.com/loi/tica20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23729333.2019.1705144
https://doi.org/10.1080/23729333.2019.1705144
https://www.tandfonline.com/action/authorSubmission?journalCode=tica20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tica20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/23729333.2019.1705144
https://www.tandfonline.com/doi/mlt/10.1080/23729333.2019.1705144
http://crossmark.crossref.org/dialog/?doi=10.1080/23729333.2019.1705144&domain=pdf&date_stamp=2020-01-13
http://crossmark.crossref.org/dialog/?doi=10.1080/23729333.2019.1705144&domain=pdf&date_stamp=2020-01-13

Web-based dissemination of continuously generalized
space-scale cube data for smooth user interaction
Martijn Meijersa, Peter van Oosteroma, Mattijs Drielb and Radan Šubaa

aGIS Technology, Faculty of Architecture and the Built Environment, Delft University of Technology, Delft,
Netherlands; bTwnkls, Rotterdam, Netherlands

ABSTRACT
The Space-Scale Cube (SSC) model stores the result of a
generalization process, that supports smooth scale transitions for
map objects. The third dimension is used to describe
geometrically the smooth transitions between objects at different
levels of detail. Often-used map generalization operators fit in this
SSC model. The 3D SSC model to derive 2D maps can be used in
a mobile web client, where these days powerful graphics
hardware is available. This article shows the steps needed for
producing and disseminating SSC data with smooth transitions
over the web. Firstly, we explain how SSC data can be obtained
and subsequently be rendered by making effective use of the
GPU. Secondly, we show how we organize data in chunks and
how this ‘chunked’ data can be used for efficient communication
between client and server. In the third place, we describe which
operations can be used on the client side for deriving maps.
Fourthly, the SSC also allows for (a) mixed abstraction slicing
surfaces useful for highlighting specific regions by showing more
detail and (b) near-intersection blending, which helps to prevent
abrupt transitions while the slicing surface is in motion. Finally, we
show how animated pan and zoom functionalities may be
realized. A set of prototypes allows us to disseminate the data
with smooth transitions on the web and in practice judge the
effect of continuous generalization and animating the map image.

RÉSUMÉ
Le modèle du Cube Echelle-Espace (SSC) stocke le résultat dun
processus de généralisation qui permet des transitions d’échelle
fluides pour les objets cartographiques. Les opérateurs standards
de généralisation cartographique s’intègrent dans le modèle SSC.
Le modèle 3D SSC pour dériver des cartes2D peut tre utilisé dans
un client web mobile. Cet article montre les étapes nécessaires
pour produire et distribuer des données SSC avec des transitions
fluides sur le web. En premier, nous expliquons comment les
données SSC peuvent tre obtenues et restituées par une
utilisation efficace du processeur graphique (GPU). Puis nous
montrons comment organiser les données en morceaux et
comment ces morceaux’ peuvent tre utilisés pour une

ARTICLE HISTORY
Received 23 March 2018
Accepted 11 December 2019

KEYWORDS
Map visualization; continuous
generalization; real time;
interaction; web mapping

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT Martijn Meijers b.m.meijers@tudelft.nl
This article has been republished with minor changes. These changes do not impact the academic content of the article.

INTERNATIONAL JOURNAL OF CARTOGRAPHY
2020, VOL. 6, NO. 1, 152–176
https://doi.org/10.1080/23729333.2019.1705144

http://crossmark.crossref.org/dialog/?doi=10.1080/23729333.2019.1705144&domain=pdf&date_stamp=2020-02-11
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:b.m.meijers@tudelft.nl
http://icaci.org/
http://www.tandfonline.com

communication efficace entre le client et le serveur. En troisième
lieu, nous nous décrivons les opérations qui peuvent être utilisées
côté client pour dériver des cartes. En quatrième point, nous
montrons que le SSC peut aussi permettre (a) d’extraire des
coupes de surfaces de niveaux d’abstraction mixtes et (b) de créer
des mélanges proche des intersections afin d’éviter des transitions
abruptes lorsque une coupe de surface est en mouvement. Enfin,
nous montrons comment les fonctionnalités de déplacements et
zoom animés peuvent être réalisées. Un ensemble de prototypes
nous permet de diffuser sur le web des données avec des
transitions fluides et en pratique de juger de l’effet de la
généralisation continue et de l’animation de la carte.

1. Introduction

In the last decade, the use of interactive maps has entered the daily life for many, through
the use of smartphones or other electronic devices. Applications using maps are in general
quite flexible and responsive; a map browsing application should show a new view
immediately when a user is panning (moving around) or zooming in and out, resulting
in a feeling of high responsiveness. However, there is a lingering issue in interactive carto-
graphic maps, which is found in the interaction of zooming. Zooming here is defined as
scrolling through a limited set of maps with increasing levels of abstraction, with more
abstraction showing lower levels of detail. Hence, zooming in and out implies picking
one level from the set and showing it over a larger or smaller area respectively. The
issue is that this set of pre-defined maps is limited. Using this model, it is impossible to
show data in between two adjacent levels, because there simply is no data present
here. Current web mapping applications have implemented workarounds for this fact,
by either snapping to the pre-defined levels, or by introducing graphic blending
between levels. However, the fact is that geometric data is missing for how the map
objects should look between the fixed levels.

To fill in this gap, people have worked on continuous generalizations (Chimani, van Dijk,
& Haunert, 2014; Nöllenburg, Merrick, Wolff, & Benkert, 2008; Peng, Wolff, & Haunert, 2017;
Sester & Brenner, 2009). Hence, we want to obtain a web mapping solution that allows to
use the result of these continuous generalization algorithms. The solution should work
well in a server–client architecture, where the load is shared between server and clients
in a balanced way and also the hardware of the client is effectively used. This means
that the data for the system has to be transferred effectively across the web. As
Dumont, Touya, and Duchêne (2017) note: ‘Moreover, usual visualization systems for
multi-scale maps are regularly based on tiled grid structured as a quad tree. Adding inter-
mediate representations may require adaptations of these systems or even new solutions’.
Next to that, we also want to have interaction that feels ‘smooth’ for the end user, i.e. with
interaction (zooming) the content of the map should gradually change.

The Space-Scale Cube (SSC) as introduced by Meijers and van Oosterom (2011); van
Oosterom and Meijers (2013) is an alternate model for representing cartographic data.
van Oosterom and Meijers (2013) mention the need of intersecting such an SSC with a
surface to produce a presentable map and the effects of non-horizontal and curved
surface intersections resulting in mixed-scale maps. Up to now, this model was used as
a conceptual model, without any technical implementations. This paper presents an

INTERNATIONAL JOURNAL OF CARTOGRAPHY 153

approach that allows intersections of SSC based datasets to be rendered in real time on a
client machine. In summary, this paper presents the following contributions, it shows:

. How we obtain SSC based data and how the theoretical model has been refined in
order to be implemented.

. The general approach of deriving maps in real time using rendering techniques by
intersecting the SSC conceptually with a slicing surface.

. Performing intersections with non-horizontal and curved surfaces to produce mixed-
scale maps (high and low level of detail in one map).

. SSC data transfer over the web based on chunks.

. Exploration of functionalities needed for rendering interactive maps based on the SSC
model to enable animation after user interaction.

The remainder of this paper is structured as follows: Section 2 describes how data for an
SSC can be obtained. Section 3 explains the proposed architecture for deriving maps from
an SSC in detail. Section 4 describes the prototypes, each testing/trying a different aspect
of the proposed architecture. Section 5 summarizes what we learned from the prototypes
and gives ideas for future work. Section 6 concludes the paper.

2. Obtaining continuously generalized space-scale cube data

The Space-Scale Cube (SSC) is a 3D data cube that uses the third dimension to rep-
resent Level of Detail (scale) instead of storing a stack of 2D multi-scale maps (van Oos-
terom & Meijers, 2013; van Oosterom, Meijers, Stoter, & Šuba, 2014). Figure 1 shows an
example SSC. In this model, map objects change from 0D points into 1D lines, 1D lines

Figure 1. Example of how to obtain content for a Space-Scale Cube (SSC): ➀ from a sequence of gen-
eralization operations, ➁ a Directed Acyclic Graph (DAG) can be derived and ➂ the DAG and step-wise
generalization results can be converted in a 3D data cube, the SSC. In this example, the colours blue,
grey, yellow and green respectively represent water, road, farmland and forest terrains.

154 M. MEIJERS ET AL.

into 2D surfaces and from 2D polygons into 3D polyhedron objects, i.e. to every map
object the range of map scales the object is intended to be used for is added as extra
dimension.

To produce content for a Space-Scale Cube (SSC) a step-wise generalization process
is run, where generalization operations are iteratively applied starting with the largest
scale base map that contains a planar partition (in which point, line and polygonal
map objects are embedded). A directed acyclic graph (DAG) structure is used to
store the result of and the parent-child relations between the map objects as result
of generalization operations. van Oosterom (2005) introduced the tGAP data structure
(topological Generalized Area Partition) to store the DAG and information on the
(boundaries of the) map objects. Meijers, Šuba, and van Oosterom (2015) show how
the automated generalization process using the tGAP structure can be achieved for
large data sets.

Figure 1 shows a sequence of generalization operations recorded as DAG and then con-
verted to 3D SSC. First, a road object is split over its three neighbours, then the forest area
is merged into neighbouring farmland and finally the boundary between farmland and
water area is simplified. The key to obtain an SSC is to convert the DAG structure into a
cube with 3D geometry (where the z-component of every vertex indicates at what map
scale the geometry is supposed to be used).

The 2D geometry of the map objects and the intended range of map scale of each
map object (as z-component) forms the input for this conversion. The DAG structure
supplies information on the generalization operations that were applied. The input is
converted into faces that connect map objects at two different map scales. We call
these faces the trans-scale boundaries of the embedded map objects. The trans-scale
boundaries (i.e. the tilted/vertical faces in the SSC) of the objects describe how the geo-
metry of the map objects changes over map scale, i.e. how the map objects are gradually
generalized.

Figure 2. A 2D map from the SSC can be obtained by slicing: calculating the resulting intersection of
the 3D cube with a 2D surface.

INTERNATIONAL JOURNAL OF CARTOGRAPHY 155

The SSC, that stores the results of the generalization steps, leads to what we call a vario-
scale data structure from which maps can be derived. Figure 2 illustrates that in order to
get a presentable 2D map from the SSC, one needs to calculate the intersection at the
desired level of detail. Conceptually, maps are created by intersecting the cube with a
finite surface (further referred to as ‘slicing surface’). We intend to make the result of con-
tinuous generalization visible on the resulting maps as gradual as possible. In this way, ‘a
small change in map scale leads to a small delta (change) in geometry of the objects rep-
resented on the map, and when delta scale approaches zero, the delta in the map
approaches zero’ (van Oosterom & Meijers, 2013).

Within the resulting cube, each area object is stored as 3D polyhedron, described
by its boundary (‘boundary representation’). Each 3D object records the transitions
that will be shown to the end user by means of its trans-scale boundaries. The
trans-scale boundaries permit us to define the exact and smooth change in geometry
of a terrain feature when the shape and position of the slicing surface changes. The
geometry of the trans-scale boundaries in the cube has a huge influence on how the
user will be able to perceive the result of a generalization operation. Figure 3 illus-
trates how the object on the left (grey) is merged with the object on the right
(white) by applying this algorithm. The grey object disappears from the map when
the slicing surface is moved up, while the white object takes over its space. Depen-
dent on the geometry of the trans-scale boundaries (either using completely vertical
or tilted trans-scale boundaries) the result can appear at once (Figure 3(a)) or in a
more gradual fashion (Figure 3(c)). Šuba, Meijers, and van Oosterom (2016) have intro-
duced some algorithms to obtain the trans-scale boundaries, for two area objects that
are merged. Figure 4 shows that the outcome of a line simplification algorithm, for
which the order in which vertices are removed from a polyline is stored, can be recon-
structed as trans-scale boundary, showing a gradual change in geometry of the poly-
line. Map browser applications using an SSC are thus able to show smooth transitions
when a user is zooming, all while displaying the intended data correctly at any level
of detail.

Figure 3. Comparing vertical with tilted trans-scale boundaries. (a) Vertical trans-scale boundaries
between grey area object on the left and white area object on the right. Note that the grey object
has a horizontal top (at which it disappears from the map). (b) Maps obtained by slicing at 4
different locations in the cube. Slices as viewed from the top. Outcome of merge appears at once.
(c) Tilted trans-scale boundaries describe how the grey area object on the left is merged gradually
to the white area object on the right. (d) Maps obtained by slicing at 4 different locations in the
cube. Slices as viewed from the top. Outcome of merge is presented gradually to the end user.

156 M. MEIJERS ET AL.

3. Visualizing and interacting with SSC data on the web

This section will explain the design of a possible architecture that makes it possible to visu-
alize and interact with SSC data in a web environment. In a web environment, the SSC data
is stored on a server and a client is used where a user can retrieve and interact with the
retrieved SSC data. Dissemination via the web with a fat client has our preference, for
the possibilities this offers. A fat web client (with powerful graphics hardware) has the fol-
lowing advantages for rendering vector data:

. The graphics hardware on the client side can be effectively used by using WebGL.
WebGL is available within all mainstream browser implementations and there is no
requirement for installing specific desktop applications. Also on mobile devices (tele-
phone/tablet) these browsers are available.

. It is possible to style the map interactively (e.g. change colours).

. Rotating the map interactively by means of a cursor or finger gestures becomes poss-
ible, as well as making perspective renderings of the map.

. Interactivity with objects is possible, for example highlighting an object, after a user has
clicked on it.

Section 3.1 explains how with the graphics hardware of the client map images can be
produced (rendered). Moreover, Section 3.2 explains three additional rendering tech-
niques (non-horizontal intersections, near-intersection blending and texture mapping).
Section 3.3 gives an overview of how SSC data can be requested in parts (chunks of
data) from a server so that retrieval also works for datasets of nationwide extent. Finally,
Section 3.4 gives a description of how panning and zooming of the map image can be ani-
mated improving the gradual appearance of the map.

3.1. Intersecting an SSC in real time

Zooming and panning a 2D map in the SSC approach is conceptually realized by intersect-
ing the 3D data cube with a surface patch of which the user can influence the shape and its
location. As an end user will expect to see the results of any modification of the slicing
surface in real time, it is of utmost importance that the 2D image of the resulting intersec-
tion can be obtained fast.

Figure 4. When a polyline is simplified, the outcome of the simplification can be stored as trans-scale
boundary. (a) A trans-scale boundary for a polyline simplified with the Visvalingham-Whyatt algorithm
(the original polyline is visualized with the black line at the bottom of the trans-scale boundary). Each
time a vertex is removed from the polyline, this results in a triangle in the resulting transscale boundary.
(b) Slicing at different locations through the resulting trans-scale boundary, leads to a polyline with less
(top) or more (bottom) vertices. Result of slicing operation shown in perspective view.

INTERNATIONAL JOURNAL OF CARTOGRAPHY 157

One possible route to obtain the resulting intersection (2D map) is to calculate explicit
boundary intersections. A dataset based on the SSC model, represented as closed polyhe-
dra, is algebraically intersected with a surface resulting in a collection of polygons. The
polygons can then be fed to a vector rendering application to produce the final image.
The complexity of this algorithm is determined by the amount of polyhedra the surface
is intersecting with. However, the polyhedra are likely to have differing amounts of
faces. Moreover, because the input data is non-uniform, it is difficult to take advantage
of efficient parallelization. The algorithm does not fit the Single Instruction Multiple Data
(SIMD) paradigm well (Flynn, 1972), which is the currently preferred paradigm in graphics
hardware. One idea to make a SIMD approach more feasible was to represent the polyhe-
dra as tetrahedra. This would make the data uniform and thus fit better with graphics hard-
ware. Even though this could work, it will not use the GPU rendering pipeline which
requires triangle primitives. Taking a broader perspective on visualizing intersections,
some domains have faced very similar problems. Constructive Solid Geometry (CSG)
uses solids to represent manufactured products and virtual environments. Solids are
defined as a series of boolean operations on geometric primitives (e.g. spheres, cylinders).
Computing the result of the boolean operations is necessary to visualize the solid. This
computation is quite costly. Therefore, a variety of works (Guha, Krishnan, Munagala, & Ven-
katasubramanian, 2003; Hable & Rossignac, 2005) avoid calculating the explicit result of the
boolean operations when pixel precision is sufficient, which is whenever the result needs to
be displayed on a screen. They use a rendering approach that takes advantage of graphics
hardware and avoids the need of computing explicitly the exact outcome of the boolean
operations. The rendering approach proposed here uses similar ideas from this domain: For
our purpose, we can avoid the need of computing the intersection result explicitly.

Every terrain feature represented in the SSC data is a polyhedron (or 3D boundary rep-
resentation, with triangles) with a unique identifier (ID), and the terrain features together
form a partition of space, so each terrain feature fits tightly to its neighbours. To get a
specific 2D map out of the SSC imagine a set of grid-aligned points that is placed on
the surface patch inside the SSC where we want to produce a 2D map. Figure 5 presents
an example. For the 2D map, we will need to know for each grid point what terrain feature
it is intersecting to determine its colour. This will give us a displayable result as the grid is
equivalent with a 2D raster. A naive rendering approach could go over all grid-aligned
points and for each point, do a point-in-polyhedron test for all polyhedra in the data.
With the degenerate case of a grid point lying on a polyhedron boundary, we simply
pick one of the polyhedra, the difference will hardly be noticeable in a full image. Although
inefficient, this brute force approach does guarantee that each grid point finds the right
terrain feature (and the associated pixel can be coloured accordingly).

Figure 6 shows that our intersection approach builds on this naive approach, as it also
starts with a set of grid-aligned points on the slicing surface. Notice that when you shoot a
ray from the top of the SSC downwards, the ray can intersect multiple polyhedron bound-
aries. One should take the first intersection point of the ray below the slicing surface (with
the polyhedron at the side closest to the slicing surface determining the colour) to deter-
mine the colour for a particular grid point in the resulting map image. Based on this obser-
vation, we render (produce an image of) the visible insides of the polyhedra below the
slicing surface, while simultaneously clipping off (discarding) all geometry above the
slicing surface.

158 M. MEIJERS ET AL.

Figure 5. The rendering approach its goal is to determine what ‘colour’ to give each pixel in a raster. To
do this, the centre points of the pixels are tested for what colour polyhedron it is inside. This example
highlights a single row of grid points in the raster, and determines that in this row, 1 pixel shows forest,
4 shows farmland and 3 shows water. Because of the placement of the points, the road is not visible. (a)
Raster placement viewed where the plane is intersecting. (b) Raster placement in 3D. (c) Side view on
one row of pixels, represented as their centers.

Figure 6. By shooting a ray through the grid points downwards we find the correct colours for the
pixels. The greyed area must be explicitly ignored, otherwise some invalid colours will appear. In
this example, if the greyed region was not clipped the first and fifth pixels would incorrectly get
assigned yellow and blue respectively.

INTERNATIONAL JOURNAL OF CARTOGRAPHY 159

For use on the graphics hardware, the boundary representation of the SSC polyhedrons
needs to be converted to a structure that is based on triangles. Figure 7 shows that the
rendering process consists of a series of steps (the so-called rendering pipeline). The
process is initiated by uploading to the GPU the trans-scale boundaries of the SSC, rep-
resented as properly oriented 3D triangles. For producing the 2D raster image, we also
send an orthogonal transformation matrix to the GPU. This matrix specifies for which
part of the SSC we want to produce the image of the insides of the polyhedra. The tri-
angles are transformed with the transformation matrix to a box-shaped clipping region.
The triangles that overlap fully or partly with this box-shaped region and that represent
the correct sides of the polyhedron boundaries (which is inferred from the triangle orien-
tation) are converted into so-called ‘fragments’. Fragments are grid-aligned points, which
next to the ID of the associated polyhedron, also maintain their z-coordinate (from which
the relation to the slicing surface can be determined). We can discard all fragments that
appear above the slicing surface. Subsequently, we can also sort all fragments below
the slicing surface, to keep only the fragments closest to it. The remaining fragments
store the integer ID of the corresponding terrain polyhedra. We convert this set of frag-
ments from ID to colour, to obtain our final 2D raster image. This information can also
be used to sample single IDs directly when a user wants to view information on a map
object under a mouse or touch cursor location.

Figure 7. Intersecting an SSC in real time. SSC data runs through some steps on the GPU (the rendering
pipeline) before a map is displayed to the end user. Note that the steps in green are programmable and
can be modified by the programmer. Image after Hock-Chuan (2019).

160 M. MEIJERS ET AL.

3.2. Additional rendering techniques

Section 3.1 explained that by intersecting the SSC with a horizontal planar surface patch
we can produce and visualize a map with one Level of Detail (map scale). Here we will
explain three additions: using non-horizontal surface patches to intersect the SSC, blend-
ing colours while the slicing surface is in motion and mapping textures to the interiors of
displayed polygons.

3.2.1. Non-horizontal intersections
As we have mentioned, we discard the SSC geometry above the slicing surface by testing
each fragment its z-position against that of the z-location of the slicing surface. This implies
a constant z-value over the entire slicing surface, making the intersection horizontal. We
can make this more flexible by instead testing each fragment with a pre-calculated
z-value that is stored for every grid point. This grid can be prepared using any sort of func-
tion z = f (x, y). This implies that any slicing surface that does not fold over in the z-axis
(scale) is a valid input. The grid of the slicing surface is uploaded to the GPU, to make it
available for the fragment processor to determine which fragments to consider. The
end user can be given tools in the user interface that allows to modify the shape of the
surface (e.g. the geometry of the slicing surface can be obtained by means of control
points and interpolation). Figure 8 shows an example of a side-view using a curve-
shaped slicing surface. A non-horizontal or curved slicing surface will display low and
high level of detail in the resulting map image. This serves a function in highlighting
specific areas.

3.2.2. Near-intersection blending
When quickly zooming over a large set of scales with our approach, some changes could
appear abruptly. Near-intersection blending provides a way to further smooth a temporary
map image by blending the colours for two terrain features that are adjacent on the scale-
axis. Imagine a second slicing surface placed c units below the primary slicing surface (see
Figure 9). Any polyhedron boundaries between the two surfaces can be said to be near to
the actual intersection with a distance of d = {0, c}. Below the boundary, a different terrain
(and thus a different colour) is defined. If we blend the colours of both the intersecting and
near-intersecting terrains with a factor of fblend = d/c, we make the appearance of the soon
to be displayed terrain feature less abrupt.

Remember that we render the insides of polyhedra to get the intersection result. If we
render the outsides instead, we encounter the terrain feature directly below the intersect-
ing terrain. Also note that we know from the fragment what the z-position is of the bound-
ary between the intersecting and near-intersecting polyhedrons. We can utilize this as
follows: We perform both inside and outside renders and store them. Then at the last
stage where we provide a colour for every ID we can blend the two colours together
with the blending factor described above. Note that it is possible that outside rendering
will look through the SSC (cf. Figure 9), but this simply means that the intersecting polyhe-
dron is already the lowest one in the cube at that grid position and no colours will need to
blend.

Note that near-intersection blending is applied only when the slicing surface is in
motion, i.e. during the zooming interaction. The result is a smoother looking transition

INTERNATIONAL JOURNAL OF CARTOGRAPHY 161

between map objects while actively zooming, which is visually more comfortable to look
at. Figure 10 shows an example of this.

3.2.3. Texture mapping
In the final stage to provide colours, we have used simple flat colours corresponding to the
polyhedron IDs to produce the final image for display. When including near-intersection
blending, at most two colours are blended. Instead of, or in addition to flat colours, we
can easily add texture in this step (by using an additional small raster image containing
the texture). A possible use of this is to give some types of terrain an extra visual hint
to their properties (such as a tree texture to a forest, or waves in water). Figure 11
shows a simple number of texture example. Because the z-coordinate (map scale) is
also known for every fragment, the texture can be used for specific map scales only,
giving a user direct visual feedback on the map scale currently visible.

3.3. Chunking data

If we want to realize the visualization of an SSC over the web for nationwide datasets, we
will need to have a way to request parts of the SSC dataset (as it would take too long to

Figure 8. In this example, the centre of the raster requires less abstraction than the raster edges. As a
result, the forest becomes invisible and the road visible.

162 M. MEIJERS ET AL.

transfer the complete dataset at first use). With the rendering approach explained, we will
explain how access to large SSC data sets can be accomplished. Figure 12 shows an over-
view of the architecture:

(1) The vario-scale server, on which chunks of SSC data and an index structure are stored.
(2) The web client which has main memory, a CPU, a GPU, memory on the graphics card

and possibly permanent storage memory (such as a flash memory card in a mobile
telephone).

Huang, Meijers, Šuba, and van Oosterom (2016) introduced a protocol for retrieving
tGAP data, based on the tGAP structure. The client sends a bounding box to the server
and then the server determines which part of the tGAP data structure the client exactly
needs to draw the map (note, the full tGAP structure is available at server side). With
the SSC approach, the protocol is adjusted: chunks of data are prepared in advance
(before use, with a pre-processing step) and these chunks together with an index structure
are placed on the server. The index structure, which is retrieved in an initial step, makes it

Figure 9. The three marked points represent an intersection within the given distance. The left and
middle points will blend yellow-green and yellow-grey respectively. The right point resides on the
cube boundary, so blending will not occur there.

INTERNATIONAL JOURNAL OF CARTOGRAPHY 163

possible that the client can retrieve individual chunks by requesting these from the server.
Figure 13 shows the two protocols.

Once the client has retrieved the index structure, the index can be used by the client to
determine which chunks are needed for making a map for the current viewport (while the

Figure 11. Texturing is shown as the numbers rendered in the regions. They fade on the sides because
of the non-planar intersection used to generate the image, showing that abstraction variations
influence the result.

Figure 10. This example shows how a transition from one object (a) to the next (d) can be abrupt while
zooming out (the purple object at the bottom takes over the region of the yellow object in the middle).
This is noticeable, while the slicing surface is in motion, zooming in or out. Compared to (b) when near-
blending is disabled (c) blending the colours makes the transition appear less abrupt.

164 M. MEIJERS ET AL.

user is zooming and panning). The task of the server becomes easier (more scalable with
additional users), as it only has to serve the chunks, without additional work. Furthermore,
(a part of) the chunks can be retrieved before using the data, such that later without
network traffic the data can be also used. The relevant chunks (those intersecting the
slicing surface) have to be sent to the GPU memory, such that the data can be used for
rendering.

How should the chunks be made, which requirements do we have for them and how
should the index structure look? In theory, there are multiple ways to make chunks of data:

(1) the 3D objects can be cut into multiple pieces, once they overlap with a piece of space
(space division approach, e.g. by using an Octree);

(2) the 3D objects can be left as one piece, without having to introduce additional geo-
metry (object division approach, for example by using an R-tree).

Furthermore, for the chunks we have some desiderata:

Figure 13. Protocol for retrieving (a) tGAP data compared to (b) SSC data.

Figure 12. Architecture overview. How data flows through the architecture for each map image to be
rendered is shown.

INTERNATIONAL JOURNAL OF CARTOGRAPHY 165

. Chunks should not introduce (or at least in a very limited way) additional geome-
try. Therefore, we prefer not to cut the geometry into multiple pieces, as this
leads to additional maintenance load (heavier pre-processing and more work
while interacting with the data on the client, e.g. combine all pieces to highlight
one object).

. Chunks need to have approximately the same amount of object geometry (this would
lead to chunks having the same data size, once the data is serialized for network trans-
mission). Once a chunk is requested, it is clear how much network traffic this would
cause. Evenly sized chunks are also useful for using the GPU memory without too
much fragmentation (as the active chunks that reside in the GPU memory will
change over time, when the user is zooming and panning).

. Chunks need to have a compact bounding box. For example, in case a chunk has one
very long side (either for the space or for the scale dimension) the result is that this
chunk subsequently is needed for many visualizations, but only limited amount of
data from the chunk is possibly used for the visualization.

For the index structure it is also good when:

(1) Requests for chunks are possible in real time (so traversing the index structure should
be possible to be executed in the order of a few milliseconds).

(2) It should be possible to request the index structure in parts (when chunks are available
for a very large dataset, e.g. with the extent of the world, the index structure will be
large itself).

All in all, we need to find a balance between all given (and sometimes contradictory)
requirements. We elaborate more on this in Sections 4.2 and 5.4.

3.4. Smooth interaction techniques by applying animation

Once we have retrieved SSC data to the client side, we can have an in-depth look to the
interaction possibilities. The way the end user can control the movement of the slicing
surface through the SSC data cube, should emphasize a smooth and continuous
impression. In a web browser, interaction can be realized by making use of the event
loop that the JavaScript programming language offers. By means of actions that the
end user performs events can be generated. Concretely this means that once the user
instructs with a pointer device, e.g. by clicking the mouse or performing a click with the
mouse wheel, this can move the position and shape of the slicing surface (i.e. setting
up a different transformation matrix for the rendering) and other actions, such as data
retrieval, can be initiated.

Although a user action (changing the slicing surface) can ensure that a rendering action
takes place on the GPU, such rendering actions (producing a map image with the help of
the GPU) do not have to be linked one to one to user actions. For example, we can instruct
the GPU to perform every 1/60 of a second a rendering action during a certain period of
time after the user has executed an action. This then leads to the system showing an ani-
mation, i.e. a rapid succession of several map images (as if a video is played). A description
of the animation is given in the form of the current starting point of the map in world

166 M. MEIJERS ET AL.

coordinates and its scale (xs, ys, scales), the desired end point and its scale (xe, ye, scalee), the
start time and the desired duration of the animation.

For producing an animation it is important to keep track of the path that the mouse
cursor travels during an action of the user. From this path the speed and direction can
be derived when the mouse button is released. Hence, the map can continue to slide in
the direction in which the user is already moving the map (i.e. the path to display during
the animation is extrapolated using the path of the cursor). Furthermore, when producing
the animations, a deceleration factor can also be used, so that the speed of themovingmap
gradually decreases and the map image slowly comes to a standstill. A point of attention
when using animated zooming and panning is that the system should be able to abort
running animations. For example, a new zoom-in action has to stop the currently
running animation which was running as a result of a pan action, to schedule a new anima-
tion from the point that the user has broken into the original animation.

Note that a user action not only triggers an animation, but also leads to requesting chunks.
Inorder tominimize interferenceofhandlingof the requestswith the renderingwith theGPU,
so-calledwebworkers can be used in Javascript. A webworker starts a second process within
the internet browser, which can be made responsible for a separate task, e.g. for the data
transfer. The advantage is that this makes the client more responsive (because receipt and
processing of the received data can be handled in parallel with the rendering instructions).

4. Prototypes – experiences with SSC data on the web

We have implemented different prototypes, ranging from a stand-alone application to
web clients, to experiment with the features of the described architecture. Each prototype
demonstrates a part of the above sketched architecture: Using the GPU for rendering
(Prototype I), packing and sending chunked data over the web (Prototype II-a and II-b)
and allowing user interaction with animation to take place (Prototype III).

4.1. Prototype I: rendering; using the GPU allows real-time interaction

Driel (2015) has implemented a stand-alone desktop application (using the Java program-
ming language), which did load SSC data completely at start-up time of the program,
without network access. Figure 14 illustrates the datasets that were used. Advanced ren-
dering features were implemented, making it possible to get a feel for the different
options a vario-scale map browser could bring, while effectively using the GPU.
Figure 15 demonstrates different types of slicing surfaces that were implemented.
Several screen casts were recorded for illustrating the resulting effects.1 Prototype I was
run on a laptop computer with modest graphics hardware (MSI GE620DX). When render-
ing the maps at a resolution of 1280× 720 frame rate remained at a satisfying 40–100
frames per second while the slicing surface was in motion.

4.2. Prototype II-a and II-b: chunking SSC data

We produced two web clients for experimenting with how to obtain chunks of SSC data
and to investigate what effect chunking the original SSC into smaller parts has on the total
size of the dataset.

INTERNATIONAL JOURNAL OF CARTOGRAPHY 167

4.2.1. Prototype II-a: Octree chunks are verbose!
Xu (2017) has produced a web client (using Javascript and WebGL) and preprocessor for
making use of the Octree as an index structure. This prototype showed that the index
structure also has its role to prevent transmission of chunks multiple times. By administrat-
ing in the index structure which status each block has (e.g. ‘not yet available’, ‘being
requested’, ‘retrieved’, ‘retrieved and made available on the GPU’), multiple transfers can
be prevented. However, it was also shown that this Octree structure leads to an explosion
of data: Tests with an area of 9× 9 km show that 40 MB of storage space is needed for 1

Figure 14. Testing data based on the SSC model, shown at the highest level of detail. (a) Land cover
dataset (source: CORINE Land Cover dataset, Middlesbrough, UK). (b) City centre dataset (source:
TOP10NL, Leiden city centre, NL). (c) Rural region dataset (source: TOP10NL, near Maastricht, NL).

168 M. MEIJERS ET AL.

chunk (not splitting up the SSC) and if the SSC is split up over 1135 chunks these chunks
together have a total size of 239 MB: 6 times more data, only because the objects have to
be split up over the Octree nodes! This problem originates from the fact that the chosen
Octree data structure very much resembles a multi-layer approach as is currently common
in current web map services (Web Map Tile Service, WMTS). As explained in Section 3.1, we
render the insides of the polyhedra currently intersecting the slicing surface. To produce a
complete map, a set of triangles at the bottom of each Octree leaf node is needed, other-
wise you will see through the bottom of the chunks, without being able to get an image of
the inside of the polyhedra. For this, the triangles which have to be added to the bottom of
each Octree chunk lead to the explosion of data.

4.2.2. Prototype II-b: chunks with non-cut objects
Rovers (2016) elaborates on another attempt to create chunks of vario-scale data (trans-
scale boundaries). Starting point is that the 3D objects must remain complete (geometry
is not cut). Each object is completely contained in only one chunk and this prevents the
redundancy of the Octree approach (the need of having to add extra triangles at
the bottom of every chunk). A Space-Filling Curve (SFC) can be used to create groups
of the objects. An SFC is a curve that traverses linearly through an n-dimensional (nD)
grid (hyper cube) with a given resolution. Each cell in the grid is visited exactly once
by the curve. An important property is that locality from the nD space is preserved in
the location on the curve (Dai & Su, 2003). Each object is approximated by a point in
the 3D Space-Scale Cube (x, y, scale) and then the location of this point is mapped to
the chosen Space-Filling Curve. Objects that are nearby each other in the SSC will

Figure 15. The slice surface on the left produces the corresponding map image shown on the right.
Note that with higher level of detail more buildings and roads become visible. (a) Horizontal slice
plane. (b) Map scale equal everywhere. (c) Sine curve slice plane. (d) Larger map scale in the middle.

INTERNATIONAL JOURNAL OF CARTOGRAPHY 169

also get a nearby location on the SFC and will subsequently be grouped in the same
chunk. This work has shown that tuning this approach requires quite a lot of experimen-
tation and an important question to deal with is how to treat the scale dimension in
relation to the space dimensions (we need to express what is the relation of 1 m in
the space dimension to the values in the scale dimension), as this determines how
objects will be grouped.

4.3. Prototype III: enabling smooth interaction

The different user interactions followed by the client producing an animation were
implemented in Prototype III.2 This client has been implemented using Javascript and
WebGL. The zoom action that has been implemented zooms the map image in (or
out) around the location where the mouse is positioned. This allows the user to zoom
in easily around a point on the map. It does not (yet) retrieve data in chunks, but all
data is retrieved when the client program is loaded in the web browser, using one
chunk.

The following parameters associated with the animated zoom and pan interactions can
be adjusted by the end user in our implementation (Figure 16 illustrates the user interface
controls below the displayed map image):

. Size of the step for zooming in or out (how big is the scale factor, which corresponds to
a click of the mouse wheel, by default a factor of 2).

. The duration that an animation takes after the user has finished interacting with the
map, either for zooming or for panning (e.g. 2 s). By setting the duration parameters
to 0 s the system does not show the animation of the map image. This makes it possible
to make comparisons between smooth/gradual interaction with added animation and
interaction that feels more step-by-step.

5. Discussion and future work

Based on the described principles (Section 3) and experiences (Section 4) we will now
reflect on the results covering the following aspects: Rendering lines, points and texts,
the place of different parts in the architecture, an alternative way of making chunks and
making smooth transitions better visible. Based on this reflection we will give some poin-
ters for future work: carrying out usability tests, prediction of user movement, and dealing
with 4D data (3D geometry, 1D Level of Detail).

5.1. Rendering linear and point features

The rendering approach as implemented in the prototypes assumes 3D volumetric features
that are reduced to 2D polygons, but maps in practice include line and point objects. Roads
will not appear on the resulting maps, although these are kept in the original tGAP structure
by our generalization process (by applying the approach from Šuba, Meijers, & van Oosterom,
2016). By making an additional rendering pass for every frame that is produced, rendering
lines should be possible. However, it is an open question whether lines need to be sent to

170 M. MEIJERS ET AL.

the GPU next to the trans-scale boundary geometries in a different way or that the same set
of triangles can be used for making the linear objects visible.

5.2. Rendering text/labels

Text labels or other types of objects in maps are also commonly placed along the direc-
tion of roads or centred in specific areas. Been, Daiches, and Yap (2006) discuss placing
map labels for interactive maps. Placement of labels could be optimized in correspon-
dence with the SSC polyhedrons (i.e. minimize overlap of labels with background poly-
gonal objects). Flickering and jumping effects of the labels should be avoided
(following the vario-scale definition small delta in scale should lead to a small delta
in map content). Next to placing the labels, it is also an open question how to
embed the location of the placed labels in the SSC or that a separate data structure
is needed.

Figure 16. Parameters for controlling smooth transitions as implemented in the user interface.

INTERNATIONAL JOURNAL OF CARTOGRAPHY 171

5.3. Which functionality needs to go where in the architecture

A number of the steps to arrive at maps from the 3D SSC data are now performed as a pre-
processing step. Chunks with triangle geometry are finally prepared and offered on the
server side. However, this is not the only option. We can also perform some parts in real
time instead of as a pre-processing step. Or even on a different part of the architecture
(server or client), i.e. we should reconsider which component does what when: Can the
triangular data be derived in real time from blocks of data from the tGAP structure on
the client? For example, this would be advantageous if tGAP data can be send more com-
pactly than the triangular SSC data (more efficient transfer), and processing on the client
side can be executed fast.

5.4. Alternative index structures/chunking approach

Prototype II-a showed that the Octree structure yields a huge increase in the data volume.
However, the experiments of Protoype II-b with using a Space-Filling Curve for packing
data in chunks also illustrated that getting good chunks is not easy. To obtain a good
set of chunks an approach, that balances size and compactness of chunks and that is
efficient to use at run time (not too much overhead per frame) is necessary. This is to
be tested in a representative benchmark of chunk retrieval.

Furthermore other ways of obtaining chunks should be investigated. Next to using
an Octree where polyhedra are stored non-split and not only in the leaf nodes of the
Octree, another idea under study is to make compact chunks based on the following
approach: The geometry of each object is represented by a 3D box and all geometries
are sorted for each dimension. For each sorting step, we split the sorted object set
into two subsets and for both sets we look at a number of heuristics for the resulting
enveloping 3D box (we can apply various measures, such as a ratio between the box
area versus circumscribed tight-fitting sphere area). The algorithm then chooses the
best dimension with the most favourable overall measure for sorting and splitting.
This is repeated on the two subsets separately. Sorting and splitting continues until
a set of objects is sufficiently small (the amount of data is smaller than a pre-
defined tolerance value). This guarantees that each chunk has a maximum size.
Furthermore, if the resulting binary tree structure is too deep, then the number of
levels in the binary tree can be limited by grouping several nodes together (by re-
using the same algorithm, but now on the node geometry). The advantage of this
is that the depth of the tree is limited, which can lead to faster tree traversal (more
pruning takes place).

5.5. Making smooth transitions better visible

Prototype III showed that the outcome of the continuous generalization operations
(the smooth merge operation from Figure 3) is only visible when putting the right
parameters: Making the smallest steps for zooming and having long animation dur-
ation. Even when the continuous transitions are visible, these are difficult to notice.
This is due to the fact that the slicing surface does intersect only once or twice per
trans-scale boundary, but this should happen more frequently during a zoom

172 M. MEIJERS ET AL.

operation to be able to observe the gradual transition that is modelled by the trans-
scale boundary. Hence, we should model the continuous transitions differently (e.g.
give a longer scale span for each trans-scale boundary). That polyhedra their scale
span is too short is caused by the step-wise generalization actions to obtain the
tGAP structure. A possible solution is to perform generalization actions on multiple
map objects in parallel, giving the whole group the same start and end map scale.
The transition of the map objects in the group goes slower, instead of just one
object after another having a transition.

5.6. Usability tests

We would like to customize Prototype III further, so that it also works on mobile devices,
such as phone or tablet, with interaction using a touch screen and using gestures as input.
After this has happened, we want to subject the vario-scale approach to further user
research, using for example a questionnaire (to get a qualitative evaluation of the user
experience) and modern techniques such as eye-tracking. Such an experiment could
find user preferences, regarding settings such as what zoom steps and animation
speeds users prefer. In order to test well, we want to make a larger test dataset available
(for example, starting with the 1:10, 000 base map of The Netherlands). The tool for build-
ing a large tGAP is available, but converting it to an SSC divided into chunks still requires
the necessary ‘engineering’.

5.7. Anticipation of user actions

A logical next step during interaction is to predict which chunks will be needed in the near
future, as rendering and determining which chunks are needed for making a map are dis-
tinct in our approach. This can be a form of user interaction anticipation by requesting
chunks ahead of a smooth pan or zoom movement by extrapolating recent/past move-
ments (Weber, 2010). However, this could also lead to data being retrieved that turns
out to not be needed, if the prediction is wrong. Animated jumping from one place to
another on the map (for example by entering a place name) is a special case of this.
Given that the path through space and scale can already be determined, because the
start and end point are known at the beginning (e.g. when a user has just finished
typing in the place name, something that is not the case with free movement of users),
the chunks can be ordered in sequence when they are needed. In this case, data can
already be transferred in advance (as the path where the user will look within x seconds
is fully known beforehand). van Wijk and Nuij (2003) describe how such a path can be
determined.

5.8. 4D data

Another option noted by van Oosterom and Meijers (2013) is that an additional axis
could be added to the SSC producing a 4D hypercube which can be ‘intersected’ to
produce a 3D intersection. Instead of starting with 2D maps (x, y), we now start with
3D models (x, y, z) and add scale (Level of Detail) as the fourth dimension. Some parts
of the proposed rendering approach could work if we assume that the 4D data would

INTERNATIONAL JOURNAL OF CARTOGRAPHY 173

still need to be projected to a 2D screen, which is where the advantage of using frag-
ment operations on existing GPU hardware is still present. This idea is nevertheless
difficult to conceptualize, so we can not predict whether some parts might prove imprac-
tically difficult.

6. Conclusion

In this article, we have shown the first steps we have made with an online web platform for
displaying vario-scale data with more gradual transitions, based on the SSC model. For the
first time, we have a complete implementation of the SSC model available and we are able
to assess the results of the continuous generalization operations of the vario-scale
approach and show it animated and continuously across the web. This will make it poss-
ible to carry out usability research (how end users perceive continuous generalization).
Moreover, we have identified several challenges remaining and we also have a ‘wish
list’ for further implementation.

Notes

1. Screen casts:

. Intersecting an SSC in real time – https://vimeo.com/193857079 – user zooming in.

. Near-intersection blending – https://vimeo.com/193857089 – same zoom in action, but
now with near-intersection blending activated.

. Non-planar slicing surface – https://vimeo.com/193857103 – user drags the blue dot over
the map, a slice surface is used as shown in Figure 15(c). The result is that around the blue
dot the map scale is larger and map objects of larger scale are connected seamlessly to
surrounding objects of smaller scale.

2. Prototype III is available at https://varioscale.bk.tudelft.nl/ ⊲ ‘WebGL demo’.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Martijn Meijers (1981) started his studies in Geodesy and Cartography at Utrecht University of Pro-
fessional Education (Hogeschool van Utrecht), where he specialised in Geographic Information
Systems. He continued his studies at Delft University of Technology, where he obtained a Master
of Science degree in Geomatics in 2006. In 2011, he successfully defended his PhD thesis at this uni-
versity on the topic of Variable-scale Geo-information. Currently, he is employed as Assistant Pro-
fessor at Delft University of Technology, Department of GIS technology. Martijns research interests
include map generalisation, geo-database management systems, cartography and geo-visualisation,
(applied) computational geometry for GIS, handling large datasets and topological consistency.

Peter van Oosterom (1963) obtained an MSc in Technical Computer Science in 1985 from Delft Uni-
versity of Technology, The Netherlands. In 1990 he received a PhD from Leiden University on the
topic ‘Reactive Data Structures for GIS’. From 1985 until 1995 he worked at the TNO Physics and Elec-
tronics Laboratory in The Hague where he was one of the developers of GEO++, an open GIS based
on the Postgres DBMS. From 1995 until 2000 he was senior information manager at the Dutch

174 M. MEIJERS ET AL.

https://vimeo.com/193857079
https://vimeo.com/193857089
https://vimeo.com/193857103
https://varioscale.bk.tudelft.nl/

Cadastre, where he was involved in the renewal of the Cadastral (Geographic) database. Since 2000,
he is professor at the Delft University of Technology and head of the section ‘GIS Technology’. His
research topics include: Spatial databases (point clouds), GIS architectures, Map Generalization,
Vario-Scale, 5D Modeling, Querying and presentation, Internet/interoperable GIS and (3D) Cadastral
applications. He is the current chair of the FIG working group on ‘3D-Cadastres’.

Mattijs Driel (1987) completed an MSc at Utrecht University in 2015 working on the visualisation of
the Vario-Scale data structure for real-time applications, under the supervision of Prof. dr. ir. P.J.M.
(Peter) van Oosterom, dr.ir. B.M. (Martijn) Meijers, and Prof. dr. E Eisemann. Following the completion,
he diverted away from research to focus more on improving his software engineering, architecture
and development skills. In the latter half of 2015 he started at Double Dutch Games helping to refac-
tor their game’s architecture to better support multi platform deployment. In 2016 switching to work
at Twnkls (now a branch of PTC) to help and lead construction of, amongst others, the Ikea Place app.
Currently, he is still employed at PTC.

Radan Šuba (1986) finished his studies in 2012 at the University of West Bohemia, in Pilsen, the Czech
Republic, and obtained his Master degree in Geomatics. During his studies, he gained practical
experience when he worked as a land surveyor. In 2012 Radan was appointed as a PhD candidate
at the Delft University of Technology, the Netherlands, under the supervision of Prof.dr.ir. P.J.M.
(Peter) van Oosterom and dr.ir. B.M. (Martijn) Meijers funded by the Dutch Technology Foundation
STW (projectnumber 11185). He researched vario-scale maps: Alternative solution for obtaining and
maintaining geographical data sets on different map scales. He focused on R&D to expand and to
enrich current prototypes for automated map generalisation.

References

Been, K., Daiches, E., & Yap, C. (2006). Dynamic map labeling. IEEE Transactions on Visualization and
Computer Graphics, 12(5), 773–780.

Chimani, M., van Dijk, T. C., & Haunert, J.-H. (2014). How to eat a graph: Computing selection
sequences for the continuous generalization of road networks. In Proceedings of the 22nd ACM
SIGSPATIAL international conference on advances in geographic information systems (pp. 243–
252). ACM.

Dai, H. K., & Su, H. C. (2003). On the locality properties of space-filling curves. In T. Ibaraki, N. Katoh, &
H. Ono (Eds.), Algorithms and computation. ISAAC 2003. Lecture notes in computer science (Vol. 2906,
pp. 385–394). Berlin: Springer.

Driel, M. (2015). Real time intersections on space scale cube data (Master’s thesis). Utrecht University.
Dumont, M., Touya, G., & Duchêne, C. (2017). Alternative transitions between existing representations

in multi-scale maps. In Proceedings of 2017 international cartographic conference.
Flynn, M. (1972). Some computer organizations and their effectiveness. IEEE Transactions on

Computers, C-21(9), 948–960.
Guha, S., Krishnan, S., Munagala, K., & Venkatasubramanian, S. (2003). Application of the two-sided

depth test to CSG rendering. In Proceedings of the 2003 symposium on interactive 3D graphics
(pp. 177–180). ACM.

Hable, J., & Rossignac, J. (2005). Blister: GPU-based rendering of boolean combinations of free-form
triangulated shapes. In ACM transactions on graphics (TOG) (Vol. 24, pp. 1024–1031). New York, NY:
ACM.

Hock-Chuan, C. (2019). Yet another insignificant… programming notes. 3D graphics with OpenGL.
Retrieved from: http://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.
html

Huang, L., Meijers, M., Šuba, R., & van Oosterom, P. (2016). Engineering web maps with gradual
content zoom based on streaming vector data. ISPRS Journal of Photogrammetry and Remote
Sensing, 114, 274–293.

Meijers, M., Šuba, R., & van Oosterom, P. (2015). Parallel creation of vario-scale data structures for
large datasets. In ISPRS archives volume XL-4/W7, 4th ISPRS international workshop on web
mapping and geoprocessing services, Sardinia (pp. 1–9).

INTERNATIONAL JOURNAL OF CARTOGRAPHY 175

http://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html
http://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

Meijers, M., & van Oosterom, P. (2011). The space-scale cube: An integrated model for 2D polygonal
areas and scale. In E. Fendel, H. Ledoux, M. Rumor, & S. Zlatanova (Eds.), ISPRS archives volume
XXXVIII-4/C21, 28th urban data management symposium, Delft (pp. 95–101).

Nöllenburg, M., Merrick, D., Wolff, A., & Benkert, M. (2008). Morphing polylines: A step towards con-
tinuous generalization. Computers, Environment and Urban Systems, 32(4), 248–260.

Peng, D., Wolff, A., & Haunert, J.-H. (2017). Using the Aw algorithm to find optimal sequences for area
aggregation. In M. P. Peterson (Ed.), Advances in cartography and GIScience (pp. 389–404). Cham:
Springer.

Rovers, A. (2016). Exploring the use of a generic spatial access method for caching and efficient retrieval
of vario-scale data in a client-server architecture (Master’s thesis). Delft University of Technology.

Sester, M., & Brenner, C. (2009). A vocabulary for a multiscale process description for fast transmission
and continuous visualization of spatial data. Computers & Geosciences, 35(11), 2177–2184.

Šuba, R., Meijers, M., Huang, L., & van Oosterom, P. (2014). An area merge operation for smooth
zooming. In J. Huerta, S. Schade, & C. Granell (Eds.), Connecting a digital Europe through location
and place (pp. 275–293). Cham: Springer.

Šuba, R., Meijers, M., & van Oosterom, P. (2016). Continuous road network generalization throughout
all scales. ISPRS International Journal of Geo-Information, 5(8), 21.

van Oosterom, P. (2005). Variable-scale topological data structures suitable for progressive data
transfer: The GAP-face tree and GAP-edge forest. Cartography and Geographic Information
Science, 32(4), 331–346.

van Oosterom, P., & Meijers, M. (2013). Vario-scale data structures supporting smooth zoom and pro-
gressive transfer of 2D and 3D data. International Journal of Geographical Information Science,
28(3), 455–478.

van Oosterom, P., Meijers, M., Stoter, J., & Šuba, R. (2014). Data structures for continuous generalis-
ation: tGAP and SSC. In Abstracting geographic information in a data rich world (pp. 83–117).
Cham: Springer.

van Wijk, J. J., & Nuij, W. A. A. (2003). Smooth and efficient zooming and panning. In Proceedings of the
ninth annual IEEE conference on information visualization, INFOVIS’03 (pp. 15–22). Washington, DC:
IEEE Computer Society.

Weber, B. T. (2010). Mobile map browsers: Anticipated user interaction for data pre-fetching (Master’s
thesis). The University of Maine.

Xu, Y. (2017). Construction of a responsive web service for smooth rendering of large SSC dataset and the
corresponding preprocessor for source data (Master’s thesis). Delft University of Technology.

176 M. MEIJERS ET AL.

	Abstract
	1. Introduction
	2. Obtaining continuously generalized space-scale cube data
	3. Visualizing and interacting with SSC data on the web
	3.1. Intersecting an SSC in real time
	3.2. Additional rendering techniques
	3.2.1. Non-horizontal intersections
	3.2.2. Near-intersection blending
	3.2.3. Texture mapping

	3.3. Chunking data
	3.4. Smooth interaction techniques by applying animation

	4. Prototypes – experiences with SSC data on the web
	4.1. Prototype I: rendering; using the GPU allows real-time interaction
	4.2. Prototype II-a and II-b: chunking SSC data
	4.2.1. Prototype II-a: Octree chunks are verbose!
	4.2.2. Prototype II-b: chunks with non-cut objects

	4.3. Prototype III: enabling smooth interaction

	5. Discussion and future work
	5.1. Rendering linear and point features
	5.2. Rendering text/labels
	5.3. Which functionality needs to go where in the architecture
	5.4. Alternative index structures/chunking approach
	5.5. Making smooth transitions better visible
	5.6. Usability tests
	5.7. Anticipation of user actions
	5.8. 4D data

	6. Conclusion
	Notes
	Disclosure statement
	Notes on contributors
	References

