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Abstract

Three-dimensional (3D) city models are of great significance and are high in demand. They can be
used for various useful applications such as urban planning, visibility analysis and estimating the so-
lar irradiation and energy demand of buildings throughout the day. Nowadays, Light Detection And
Ranging (LiDAR) sensors are one of the most commonly used technologies for the acquisition of cheap,
fast, dense, and reliable 3D point cloud datasets. At the same time, increasing attention has been focused
lately on the utilization of these 3D point cloud datasets for the reconstruction of 3D city models. The 3D
representation of a scene in the form of a 3D point cloud facilitates a variety of analysis tasks like object
recognition, segmentation, and classification, which are an important prerequisite for many building
reconstruction methods. Thus, having an accurate classifier that can automatically assign 3D points a
respective semantic class label is of utmost importance as it can significantly reduce the time and cost
required to analyse 3D scenes. Training machine learning and deep learning algorithms to perform this
task has been the focus of many recent scientific works that provide promising results and insights for
future work.

This thesis attempted to create an accurate Random Forest Classifier for LiDAR point cloud datasets
using the Actueel Hoogtebestand Nederland 3 (AHN3) dataset as training data. The aim was to assist
building reconstruction methods, and for this reason, only three semantic class labels are assigned to the
points by the classifier, namely ground, building and other. Multiple experiments were conducted to
test how large the training dataset needs to be, what features should be included and what point density
the input point cloud needs to have for the classifier to perform well. Tests were also made using the
DALES dataset to evaluate the performance of the classifier for different datasets and environments.
Moreover, the time and memory required to train and test the various Random Forests models and the
evaluation metrics of the results were stored as benchmarking research to provide insights and guide
future work.

The classification approach that was used consists of five major steps. First, the input point cloud is
uniformly sampled and then spherical local neighbourhoods of the points are computed in multiple
scales. Height and eigen-based features are then extracted for each local neighbourhood, and the best
subset of features is then used to train the Random Forest Classifier. Finally, each point of the input point
cloud is assigned to the same class as its nearest neighbour in the sampled point cloud. A comparative
analysis shows that the performance of our final Random Forest model stands in parallel with that of
other available, more complex, deep learning algorithms if we take into consideration its simplicity and
efficiency.
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1 Introduction

This chapter begins with a brief discussion on the motivation behind this graduation project, what
scientific problem it attempts to solve, its importance and its relation to the field of Geomatics. The
main research questions addressed by the project are then presented along with an overview of the
obtained results. Finally, a general outline of the thesis is provided in the last section.

1.1 Motivation

The demand for 3D city models is higher than ever as more and more cities are adopting and embrac-
ing them. Nowadays, many 3D city models of major cities and regions can be found on the web as
open datasets1. With a focus on buildings as prominent features, 3D city models represent urban envi-
ronments using 3D geometry. Thus they are of greater value than 2D datasets and provide additional
insights and applications (Figure 1.1) like the estimation of the solar irradiation, visibility analysis and
3D cadastre [Biljecki et al., 2015].

(a) (b)

Figure 1.1: Visualization of the estimated (a) solar irradiation of a building for a specific date and time
and (b) shadow cast by a building for a few sun positions. (Images are courtesy of Argedor and
CyberCity 3D as cited in [Biljecki et al., 2016]).

The quality of the 3D models and the amount of information that comes with them heavily depends on
the acquisition technique used to collect the necessary data for their reconstruction. An essential concept
in Geographical Information System (GIS) and 3D city modelling is the term LODs, which refers to the
amount of information contained within a 3D city model, both in terms of its geometry and semantics.
The desired Level of Detail (LOD) of a 3D city model determines the essential acquisition technologies
and methods. For example, when dealing with LiDAR data, it indicates the minimum point cloud density
needed and if other datasets are required [Biljecki, 2017; Kavisha, 2020; Tang et al., 2020]. In total, five
different LODs are defined by the CityGML 2.0 standard of the Open Geospatial Consortium [Gröger
et al., 2012]. The LODs are meant for describing several thematic classes of objects, but they primarily
focus on buildings. The higher the LOD of a model, the more geometric and semantic information it
contains (Figure 1.2).

1https://3d.bk.tudelft.nl/opendata/opencities/
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Figure 1.2: A visual example of the refined LODs for a residential building [Biljecki et al., 2016].

LiDAR data can be used for many applications such as forestry [Carson et al., 2004] and Digital Terrain
Model (DTM)/Digital Surface Model (DSM) generation [Kraus and Pfeifer, 2001]. However, increasing
attention has been focused recently on their utilization for reconstructing urban buildings due to their
various useful applications. The development of acquisition technologies such as LiDAR and photogram-
metric techniques greatly facilitated the acquisition of large point cloud datasets used for 3D city models
reconstruction [Yi et al., 2017]. This development was encouraged by the lack of automatic, efficient and
reliable acquisition techniques available in the market. Due to the high requirements of the different ap-
plications of 3D spatial data with respect to data amount and quality, this type of acquisition techniques
eventually became essential [Kulawiak and Lubniewski, 2020].

In addition, much work has been done over the years to develop automatic building reconstruction
methods [Zhou and Neumann, 2010, 2013; Yi et al., 2017; Gold et al., 2006]. For example, open-source
tools like 3dfier2 have been developed lately that can create 3D city models automatically. More specifi-
cally, this tool takes 2D topographic datasets and lifts every 2D polygon to the required height, obtained
from a point cloud, to make them 3D and produce Level of Detail 1 (LOD1) 3D city models. However,
practitioners engaged in developing and utilising 3D city models often come across several issues and
limitations, especially when dealing with 3D city models with a level of detail higher than LOD1. One of
these issues is the lack of datasets with the necessary accuracy to build such models. Potential errors
and anomalies in point clouds and building footprints may yield erroneous results when attempting to
estimate the height of the buildings. More importantly, datasets with the requirements to build such
models are missing in many cases. For instance, accurately classified point clouds are difficult to be
found or even non-existent for some areas. Therefore, efficient and accurate classifiers are needed to be
developed for point cloud classification.

One possible solution is to train machine learning and deep learning algorithms to efficiently and accu-
rately classify point clouds. Using multiple processing algorithms, the full potential of raw point clouds
can be exploited by extracting all the necessary information from them to train such algorithms and
assist in the reconstruction of 3D city models. Having a classified point cloud with at least three classes,
ground, building and other points, can help in the extraction of the building footprints and to further
segment the point cloud into individual building instances.

Both types of algorithms have their own strengths and weaknesses, making them worth comparing.
Simple traditional machine learning methods mainly use handcrafted features or predefined classifica-
tion rules with preprocessing/post-processing operations for point cloud classification and segmenta-
tion. Deep learning algorithms, on the other hand, provide a new approach to solve these two tasks
because of their ability to self-learn features, which has been favoured in many fields [Jin et al., 2020].
A simple machine learning classifier like Random Forest can provide efficient and accurate results for
such a task [Weinmann et al., 2015]. However, in recent years too much attention has been focused on
using deep learning algorithms due to their flexibility and excellent performance when trained with
a huge amount of data and the increasing availability of such data. Deep learning algorithms trans-
formed the field of automated analysis of 3D data and greatly improved the performance for numerous
point cloud analysis tasks, including classification, segmentation and registration, object detection and
panoptic segmentation. But all that at the cost of being more computationally expensive than the other

2https://github.com/tudelft3d/3dfier
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methods. This led to the development of a series of novel convolution methods, which present inter-
est in terms of performance or versatility, that address the core problems of point cloud classification
and segmentation. Some of these methods are data-driven deep networks like PointNet/PointNet++
[Qi et al., 2017a,b], KPConv [Thomas et al., 2019], ConvPoint [Boulch, 2020], SuperPoint [Landrieu and
Simonovsky, 2018], PointCNN [Li et al., 2018] and ShellNet [Zhang et al., 2019]. These methods have
been greatly pushed forward by the availability of open datasets, which can act as benchmarks for the
objective comparison of algorithms and their performance [Hu et al., 2020]. Some of these 3D datasets
can be broadly classified as object-level 3D models, such as ModelNet [Wu et al., 2015] and ShapeNet
[Chang et al., 2015], and indoor scene-level 3D scans, such as S3DIS [Armeni et al., 2017] and ScanNet
[Dai et al., 2017].

In this research, the performance of a simple machine learning algorithm for point cloud classification
will be tested using the AHN3, AHN4, and DALES [Varney et al., 2020] datasets as training and testing
data, and a comparison will be made with deep learning methods. Extensive experiments will be carried
out with different data and parameters each time, and analysis will be made for their results. More
specifically, this research will aim to address the problems faced when reconstructing 3D city models.
Thus, only three classes will be considered, namely ground, building and other. A classified point cloud
is particularly crucial for their reconstruction, and having a reliable and accurate classifier can help
boost the performance and the flexibility of building reconstruction methods. An attempt will be made
to produce a suitable classifier for this task and provide a list of python scripts that will serve as data
preparation and classification tool for 3D point clouds of urban areas that can be used by an automatic
building reconstruction method.

1.2 Research questions

1.2.1 Objectives

The main research question for this thesis is:
How well will existing machine learning algorithms perform when classifying a point cloud into three classes,
namely ground, buildings and other, if we train and test them with the AHN3 dataset?

Based on this research question, the main goal of this research is to study the potential of machine
learning and deep learning models for point cloud classification into three classes, which are ground,
buildings and other, and to produce trained models that can perform this task accurately. To achieve all
of this, the following sub-questions will be addressed:

1. What features of the 3D points should be included in the training and testing processes of the
machine learning algorithms to improve their performance?

2. How accurately will the trained models perform when tested with datasets other than the AHN3
dataset?

3. How large does the training dataset needs to be for the models to perform well?

4. In case the trained model underperforms for LiDAR datasets with low point densities, what is the
minimum point cloud density required for the trained model to perform well?

5. Do deep learning algorithms outperform profoundly simpler machine learning algorithms?

1.2.2 Scope of research and challenges

This thesis project focuses on point cloud classification with the Random Forest Classifier using the
AHN3 dataset as training data. It attempted to produce a trained model that can accurately classify a
point cloud into three classes, ground, buildings and other, and to assist in the automatic reconstruction
of 3D city models from LiDAR point clouds. The processing of classified point clouds for the recon-
struction of 3D city models was out of the scope of this research. Furthermore, this research focuses
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on benchmarking and comparing the performance of different models. Extensive experiments were
conducted using different datasets, hyperparameters and handcrafted features.

Training, testing and validating machine learning algorithms is a very challenging task that requires a
lot of time and computational power. Deep learning algorithms are expected to perform more accu-
rately at the cost of being more computationally expensive. However, efficiency is also an important
characteristic of a classifier, which is why a simpler machine learning algorithm was tested.

Classified LiDAR point clouds are not always available. In many cases, the available datasets have differ-
ent accuracies and inconsistencies, making the reconstruction of 3D city models difficult or even impos-
sible. Thus, reducing the minimum required data to produce a 3D city model to just an unclassified point
cloud can significantly boost the efficiency and performance of building reconstruction methods.

The memory and time requirements, as well as the features and the scores of the trained models, were
saved as benchmarking research to provide insights and guide future research. However, multiple
challenges were needed to be tackled first to provide clear answers for all of the research questions and
achieve worth mentioning results.

1.3 Overview of obtained results

Overall, multiple Random Forest models have been trained and tested with different data, different
amounts of data and different handcrafted features combinations each time. Most of the handcrafted
features used in the experiments were eigen-based features and features derived from the Z coordinate
of the points. Visualization and analysis of the results at each step helped to identify the most prominent
features and achieve better classification scores. The amount of memory required to train the models
was reduced significantly over time by improving our python code. We also considered the efficiency
of the proposed methodology, and thus, for many of our experiments, we kept track of how much
time it took to train the models and how much random-access memory (RAM) was required. Details
about the data, features and hyperparameters that were used are also provided. The final model trained
with a subset of the AHN3 dataset was able to achieve an F1 score of 0.90 and a mean Intersection Over
Union (IoU) of 0.79 when tested with another larger subset of the AHN3 dataset. Using a simple machine
learning algorithm like Random Forest, a classification model was achieved that, for some classes, has
comparable performance with more complex deep learning models. Many observations were made, and
conclusions were derived from the final results that answer many of the research questions addressed
by the thesis project.

1.4 Thesis outline

The main content of this thesis is organised into five chapters. Chapter 2 is an elementary introduction
to the theoretical background and scientific work related to this graduation project. Particularly arti-
ficial intelligence, machine learning and deep learning with an emphasis on point cloud classification
algorithms.

In Chapter 3, the design of the experiments and the methodology and algorithms proposed to address
the research questions of this project are described. Further details on the experiments and the imple-
mentation of the methodology that was developed are provided in Chapter 4.

In Chapter 5, the results of the experiments are presented from the application of our proposed method-
ology and algorithms to exemplary point cloud datasets. These results are then analysed and used to
reflect on the methodology, first by examining them individually and then comparing them with the
results from other methods proposed from related scientific work.

The thesis concludes in Chapter 6. A summary of the main results is given, followed by partial or
complete answers to the research questions defined in the introduction. Finally, the limitations of our
methodology are presented, which serve as the ground for the recommendation of some future work.
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In this chapter, the scientific research related to this graduation project is reviewed. In the following
sections, relevant basic knowledge is reviewed for AI, machine learning and deep learning, as well as
information for machine learning algorithms and deep learning Convolutional Neural Network (CNN)
architectures used for point cloud classification and segmentation. Lastly, some details about 3D scene
analysis, in terms of automatically assigning 3D points a respective semantic class label, are provided.

2.1 Artificial intelligence, Machine Learning and Deep Learning

AI is a field that has progressed over the last decades and has many practical applications and active
research topics. In general, it tries to simulate, expand, and extend human intelligence by developing
techniques that enable machines to think without any human intervention and encompasses machine
learning and deep learning concepts.

Figure 2.1: A Venn diagram of AI illustrating the link between AI, machine learning and deep learning,
which is a kind of representation learning. Deep learning is a subset of machine learning, and machine
learning is a subset of AI [Chollet, 2017].

2.1.1 Machine Learning

Machine learning is the most promising and applicable subset of AI concerned with statistical learning
algorithms that can learn from data. In other words, it refers to different techniques that enable systems
to adapt to new circumstances, recognize patterns in the data and improve their performance after
making observations. Most machine learning algorithms have settings called hyperparameters that can
be used to control their behaviour. These parameters are set before the learning process, and they can
influence their performance. Moreover, the performance of machine learning algorithms heavily relies
on having input handcrafted features that are informative, discriminating and independent and the
accuracy of the labelled data used to train them [Goodfellow et al., 2016].

Generally, we can divide machine learning algorithms into supervised, unsupervised, semi-supervised
and reinforcement learning algorithms. Supervised learning algorithms are provided with labelled
datasets, which they use to evaluate their accuracy on the training data, and they are used for solv-
ing tasks like classification and regression. Unsupervised learning algorithms are fed with unlabelled
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datasets and attempt to learn useful properties of their structures and patterns. These algorithms are
usually used for solving clustering and dimensionality reduction problems. Semi-supervised learning
algorithms fall between the latter two categories as they combine labelled and unlabelled data during
training. They are used in cases where labels for the majority of the observations are absent and make
use of a small amount of labelled data to improve the learning accuracy. Finally, reinforcement learning
algorithms can interact with an environment by creating a feedback loop between the learning system
and its experiences, and this enables them to take actions that improve their behaviour and performance
[Louridas and Ebert, 2016; Goodfellow et al., 2016; Sutton and Barto, 2018].

2.1.2 Deep Learning

On the other hand, deep learning is a subset of machine learning, and traditional machine learning al-
gorithms strongly influenced its development. Specifically, deep learning algorithms are representation
learning algorithms that can improve with experience and data. They focus on learning successive lay-
ers of increasingly meaningful data representations through a hierarchical learning process that utilizes
artificial neural networks. In other words, deep learning is a multistage way of sufficiently scaled sim-
ple mechanisms to learn data representations. Deep learning algorithms can use handcrafted features
but do not depend on them like simple machine learning algorithms. Instead, they manage to learn and
extract important features of the data themselves. Each hidden layer of the neural network model they
use stores weights that parameterize the transformation they implement on the input data. Through an
iterative training process, these algorithms try to find the best set of values for the weights of all layers
in their network to improve their performance. This is done using a loss function that computes a dis-
tance score between their predictions and the true labels of the training data. This score is then used as
a feedback signal to adjust the values of the weights using an optimizer that implements a backpropa-
gation algorithm. The initial values of the weights are random, and they are slowly adjusted with each
iteration to minimize the loss function and yield better results. The performance of these algorithms
heavily depends on the design of the neural network architecture they use and accuracy, and the size of
the training data [Goodfellow et al., 2016; Chollet, 2017].

2.1.3 Machine Learning VS Deep Learning

Table 2.1 summarizes the similarities and differences between a simple machine learning algorithm and
advanced deep learning convolution algorithms.

Table 2.1: Comparison between the Random Forest classifier and deep CNNs.
Characteristic Machine learning (Random Forests) Deep learning (Deep CNNs)

Data
dependency

Can perform very well with a
small or a medium size of data.

Require a large amount of data to
perform well.

Computer
specifications

Can be implemented on low-end
machines with a CPU of fairly

decent specifications

Implemented on high-end machines
and usually require a GPU.

Computational
cost & time

Depends on the amount of data.
Training of a descent performing

model does not necessarily last long.

Depends on the amount of data and
the depth of the neural network. Training
of a descent performing model last long.

Training
process

Depends on labeled data and
handcrafted features.

Depends on the labeled data. Extracts
meaningful features from the data during

the training process.

Accuracy
Depends on the hyperparameters, the
accuracy of the labeled data and the
quality of the handcrafted features.

Depends on the architecture of the
neural network and the accuracy and the

size of the labeled training data.
Interpretability Easy to almost impossible. Difficult to impossible. Black boxes.
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2.2 3D point cloud analysis and classification with Machine Learning
and Deep Learning algorithms

Nowadays, 3D point clouds are ubiquitous as LiDAR sensors, laser scanning systems and drones are in-
creasingly used for cheap, fast, dense, and reliable 3D mapping. The 3D representation of a scene in
the form of a 3D point cloud facilitates various analysis tasks like object recognition, segmentation and
classification. Automatically assigning 3D points a respective semantic class label is an important pre-
requisite for further applications such as 3D city modelling and significantly reduces the time and cost
required to analyse 3D scenes [Weinmann, 2016; Wang et al., 2019]. Machine learning and deep learning
algorithms could be used to do this, some of which are mentioned in the following subsections. How-
ever, the processing workflow of a point cloud classification task consists of multiple steps that vary
and are manually (machine learning) or automatically (deep learning) done depending on the classi-
fication algorithm and the approach that was used. In general, a typical approach for 3D point cloud
classification involves (i) recovering the optimal local neighbourhoods for all points, (ii) extracting the
geometric features of those neighbourhoods, (iii) identifying the most informative and discriminating
features, and finally, (iv) classifying all points based on those features (Figure 2.2).

Figure 2.2: Framework presented by Weinmann [2016] for 3D point cloud classification. A respective
generalized processing workflow consisting of four components for neighbourhood selection, feature
extraction, feature selection, and classification.

In the following subsections, more details are provided for the crucial components of the processing
workflow of a 3D point cloud classification task. General information is presented on how these pro-
cessing steps are implemented when using machine learning and deep learning algorithms. Apart from
the four major components we already mention, we also discuss point cloud sampling, an important
processing step in the processing workflow of deep CNN architectures for point cloud classification that
can also be used for machine learning algorithms.

2.2.1 Point cloud sampling

Point cloud sampling, also known as thinning, is the process of discarding a portion of the points to
make a point cloud more manageable and quicker to visualise and process. This process is mostly done
to tackle the major problem of high computational cost and time required for processing and visualising
3D point clouds. Also, in many cases, the point density of a point cloud may be higher than what is
needed for a given application, and therefore redundant information has to be removed. In practice,
commonly used sub-sampling methods for point cloud data thinning are the random, the nth-point,
the minimal distance and the 2D or 3D grid methods. The first method randomly selects and discards
a percentage of the points while the second method loops over them and keeps only the first point for
every n points. The third method specifies a minimum distance that all points in the selected subset
should have from each other, and the final method overlays a grid over the point cloud and keeps one
point per grid cell. In this case, the number of points in the new sub-sampled point cloud depends on
the specified size of the grid cells. The latter two methods can produce uniformly sampled point clouds
as a result. In other words, they can achieve homogeneous spatial distribution of data points that is
more suited for classification tasks [Ledoux et al., 2020; Poux, 2020].
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(a) (b)

(c) (d)

Figure 2.3: Example of point cloud sampling using a 3D grid method. (a) Original point cloud, (b)
voxelization, (c) voxel grid and (d) resulting uniformly sampled point cloud [Poux, 2020].

2.2.2 Neighbourhood selection

Neighbourhood selection is the first component in the processing workflow of a typical point cloud
classification approach. It refers to the process of recovering the optimal local neighbourhoods for all
points within a point cloud. In this case, a neighbourhood corresponds to a set of points in the vicinity
of a point, for which different strategies may be applied to define it. Commonly applied strategies
to define the neighbourhood of a point is using a sphere, a cylinder or its k-nearest neighbours. The
spherical neighbourhood of a point is formed by all the points within a sphere that is centred at that
point, with a fixed radius that must be specified. The cylindrical neighbourhood of a point is formed
by all the points whose 2D projections onto a plane are within a circle centred at the projection of that
point, with a fixed radius that must be specified. Lastly, the k-nearest neighbours neighbourhood of
a point is formed by a fixed number of k closest points to that point according to a specified distance
metric [Weinmann, 2016].

(a) (b)

Figure 2.4: Visualization of the (a) spherical neighbourhood, (b) cylindrical neighbourhood of a 3D point
indicated by a green dot [Gross et al., 2007]. In the case of k-nearest neighbors using the Euclidean 3D
distance as a distance metric and with the right specified number of k neighbors, the local neighbor-
hood of the point would look the same as the spherical neighborhood.
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These strategies of defining local point neighbourhoods are described as single-scale representations
because they rely on using a constant scale parameter across all 3D points of a given point cloud. While
efficient, these single-scale representation strategies do not consider the variations of the local properties
of different neighbourhoods. Consequently, to increase the distinctiveness of the respectively derived
geometric features for all local neighbourhoods, the scale parameters should not be the same for all
3D points. Information derived from multi-scale representations, which extract geometric features over
multiple scales, facilitate the discrimination between different classes and improve classification tasks’
results [Brodu and Lague, 2012; Niemeyer et al., 2014].

Figure 2.5: Behaviour of multi-scale neighbourhoods defined with k-nearest and spherical neighbour-
hoods [Thomas et al., 2018].

Thomas et al. [2018] highlighted some of the differences between multi-scale spherical and k-nearest
neighbourhoods. As shown in Figure 2.5, spherical neighbourhoods can provide a more consistent ge-
ometrical meaning to the extracted features since they always correspond to a fixed part of the space,
unlike k-nearest neighbourhoods. However, the number of points within those fixed area neighbour-
hoods can vary according to the point density of the input point cloud. If the input point cloud exhibits
strong point density variations, then big scales and high point density areas will correspond to local
neighbourhoods with too many points. At the same time, small scales and low point density areas will
correspond to local neighbourhoods with too few points. Possible solutions for these two challenges is
using a uniformly sub-sampled point cloud and multiple scales representations [Hackel et al., 2016].

2.2.3 Feature extraction and selection

Feature extraction and selection are the next components in the processing workflow of a typical point
cloud classification approach. They refer to the process of extracting geometric features from the local
neighbourhoods of the points and identifying which of them are the most informative and discriminat-
ing features.
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As far as feature extraction is concerned, the basic geometric 3D properties and the local 3D shape of the
3D points within the local neighbourhoods could be used to directly extract a variety of 3D features. For
example, valuable information about the points might be represented by their height values, which are
derived by the Z coordinate of the points and by the vertical component of the normal vector of their
neighbourhoods. Additionally, important features may be calculated using the normalized eigenvalues
of the neighbourhoods, which encode information about the spatial distribution of their points.

Subsequently, during feature selection, it is considered that some of these features may be less relevant
than others or even redundant. Thus, a suitable method must be followed to score or filter the fea-
tures by evaluating the relations among them and between them and the classes. This is crucial since
irrelevant information can influence the performance of a classifier, and a large number of features sig-
nificantly increase the computational cost and time [Weinmann, 2016].

In general, we can group feature selection methods into three categories, namely filter-based, wrapper-
based and embedded methods. Each category has its own advantages and disadvantages. Filter-based
methods are fast, classifier-independent and could model feature dependencies, but they have no in-
teraction with the classifier. On the other hand, wrapper-based methods interact with the classifier and
could model feature dependencies as well. However, they are computationally intensive and depend
on the classifier. Finally, embedded methods have similar pros and cons with wrapper-based methods,
but they are faster and less computationally intensive [Saeys et al., 2007; Weinmann et al., 2015].

2.2.4 Classification with Machine Learning and Deep Learning algorithms

Nowadays, point clouds have become very popular and are used in several fields. Their increasing
availability and the continuous decrease of the cost of LiDAR sensors enabled researchers to develop a
series of novel deep learning algorithms to address the core problem of semantic segmentation of point
clouds. Some of these algorithms focus on achieving more accuracy than others, while others strive for
memory and computational efficiency. Each neural network architecture proposed over the years is a
different approach to the problem and has its own strengths and weaknesses. Overall, 3D point cloud
segmentation received a radical boost in performance due to the ongoing revolution of these data-driven
deep neural networks.

With new methods being developed and new datasets becoming freely available, benchmarking is
needed to identify which methods yield the best results for point cloud analysis tasks like classifica-
tion. Multiple recent pieces of research implemented extensive experiments and provide benchmarks
for comparing the performance of various machine learning and deep learning neural network architec-
tures in the task of point cloud classification [Weinmann et al., 2015; Chaton et al., 2020; Hu et al., 2020;
Varney et al., 2020]. Moreover, all methods discussed in this research provide their own benchmarks
and comparisons with other state-of-the-art approaches. In most experiments, the KPConv [Thomas
et al., 2019] neural architecture provides the best results in terms of Overall Accuracy (OA) and per-class
accuracy. However, it does not outperform some of the other methods profoundly, and when tested
with some datasets, it yields less accurate results. Furthermore, some of these deep learning methods
and some machine learning algorithms might not be the most accurate ones, but they are a lot more
efficient, and thus, they are still worth considering.

In the following subsections, more information is provided for some of these machine learning algo-
rithms and deep learning architectures, focusing on the Random Forest classifier.

Random Forest Classifier

Decision Trees are a non-parametric supervised classification technique that learns simple decision
rules inferred from the input data features and predicts the value of a target variable based on them
[Wikipedia, 2021d]. Figure 2.6 shows how a decision tree makes a prediction and its main parts. It can
be explained as a set of nodes and edges organized as a hierarchical structure. Each internal node con-
tains a function that is used to test the input data and makes a decision. Each branch corresponds to the
outcome of that test, and each terminal node contains a class label which is the prediction of the target
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variable. The uppermost node in the tree is called the root node. It can be interpreted as a hierarchical
piecewise model that splits complex problems into a hierarchy of simpler ones [Criminisi et al., 2011].

Figure 2.6: (a) The main parts of a decision tree. (b)Illustration of a decision tree that attempts to under-
stand whether a photo represents an indoor or outdoor scene [Criminisi et al., 2011].

The Random Forest classifier is a fairly simple and relatively easy to understand machine learning
method for solving classification problems. It is an ensemble method consisting of multiple smaller
decision trees trained on a random subset of the training sample and produce their own predictions,
which are then aggregated to produce a more accurate prediction. Random Forests can handle well
large datasets with high dimensionality and heterogeneous feature types. Furthermore, unlike stan-
dard decision tree classifiers, they are not prone to overfitting, and they can provide estimates of what
variables are important in the classification [Breiman, 2001]. Overall, the Random Forest classifier pro-
vides a good trade-off between accuracy and efficiency compared to other machine learning and deep
learning algorithms [Weinmann et al., 2015].

Figure 2.7: Diagram example of majority voting in a Random Forest Classifier [Polamuri, 2017].

Like many other simple machine learning algorithms, the accuracy of the Random Forest classifier de-
pends on the quality of the input handcrafted features vector, and its hyperparameters greatly influence
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it. Having distinguishing features in our input vector can decrease the inhomogeneity of the labels at
the nodes of the trees and make them highly uncorrelated, which leads to better splits and eventually
better results. As for its hyperparameters, the Random Forest classifier has several ones that must be
specified and should be optimized to improve its performance. Below we list and provide information
for some of the most important hyperparameters of the Random Forest classifier:

• K number of features randomly selected at each node during the tree induction process

Bernard et al. [2009] explain that this number is an integer that takes values from 1 to M, with M being
the number of features in the input handcrafted features vector. The smaller the value of K, the more
the randomization in the feature induction process. If K = 1, then only one feature is randomly selected
each time the tree structure is split. On the contrary, if K = M, then all the available features are used to
grow each tree, and thus, no randomization is introduced. The value of the K parameter also influences
the stability and accuracy of the trees. Low K values lead to less correlated trees that are more stable
when aggregating and exploit better less significant features. However, they also lead to having trees
that underperform on average since they are built based on suboptimal features [Probst et al., 2019].
Through experimentation, Geurts et al. [2006] have proven that when the K parameter is set equal to√

M is most of the times close to the optimal setting. In their experimental work, Bernard et al. [2007]
introduced another value for the K parameter, log2(M) + 1, which was later used in further experi-
ments [Bernard et al., 2009] together with

√
M and were found to yield accurate results and sometimes

exactly correspond to the best parametrization of K. However, these experiments also showed that the
global relevancy of the features should also be taken into account when deciding what the value of the K
parameter will be. In other words, if we have too many irrelevant, and not important features, the ran-
domization will rapidly decrease the accuracy of the trees, while having too many features that provide
important information facilitates the overfitting of trees and weakens the randomization effects in split
selection. Finally, the experimental work of Wright and Ziegler [2015] illustrated that the computation
time of a Random Forest classifier is reduced, almost in a linear way, with lower K values.

• N number of trees in the Random Forest

The research conducted by Oshiro et al. [2012] suggests, based on the findings of their analysis on dif-
ferent datasets, that the optimal number of trees that should be used within a Random Forest ranges
between 64 and 128. Increasing the value of N more than that did not improve the performance sig-
nificantly and only increased the computational cost. However, to find the best value for the hyper-
parameter N and obtain optimal performance, the dataset’s characteristics should also be considered.
Usually, the best performance can be achieved when growing the first 100 trees [Oshiro et al., 2012;
Probst and Boulesteix, 2017]. Lastly, the experimental work of Wright and Ziegler [2015] illustrated that
the computation time of a Random Forest classifier increases linearly with the number of trees.

• Node size

The node size hyperparameter controls the complexity of the trees by specifying the minimum number
of observations contained in the terminal nodes for predictions [Probst et al., 2019]. The experimental
works of Dı́az-Uriarte and De Andres [2006] and Goldstein et al. [2011] have shown that the default
value used for this hyperparameter, which is 1 for classification and 5 for regression, tends to produce
good results. However, Segal [2004] illustrated that if the predictors of our data are noisy and if higher
numbers of features considered for splitting a node are performing best, then optimal node size to
improve performance is going to be higher. Moreover, increasing the node size means that the tree
complexity is reduced, which usually decreases the computation time substantially.

• Splitting rule

The splitting rule of a Random Forest classifier is the function used to measure the quality of a split.
It maximizes the impurity reduction introduced by a split. Every node in the tree is a condition on
a single feature that splits the dataset so that similar response values end up in the same set. The
term node impurity refers to how homogeneous are the labels of a node which can be calculated using
measures like the Gini impurity and entropy [Nembrini et al., 2018; Ishwaran, 2015; Breiman, 2001].
As stated on Wikipedia [2021d], ”Gini impurity is a measure of how often a randomly chosen element
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from the set would be incorrectly labelled if it was randomly labelled according to the distribution of
labels in the subset.” On the other hand, entropy is a measure of uncertainty or randomness that is
higher for variables with more randomness and uniform distribution. Subsequently, impurity could
also be used to calculate the importance of the features. For example, if a split has a large decrease of
impurity, then the feature used for splitting is considered to be important. Based on this, the impurity
importance of a feature can be computed as the mean and standard deviation of the accumulation of the
impurity decrease of all nodes in the forest where a split has been made using that feature [Nembrini
et al., 2018].

• Size of samples and replacement (bootstrap samples)

The sample size hyperparameter determines the number of data points used to train the trees. Low
values tend to increase the randomness between the trees, however, they also reduce their prediction
accuracy. The optimal value of the sample size is found where the best trade-off between stability and
accuracy of the trees is achieved [Probst et al., 2019].

Bootstrapping is a random sampling method used to estimate statistics on a population by sampling a
dataset with replacement [Wikipedia, 2021a]. Usually, each tree in a Random Forest is trained using the
whole input dataset. When bootstrapping is enabled, the training samples of each tree are drawn with
replacement. This means that each tree will be trained using different samples, the so-called bootstrap
samples and that some samples from the input dataset will be used multiple times for their training.
Out-of-bag (OOB) score is a metric used to validate a random forest when bootstrapping is used. Dur-
ing the training process of each tree, some of the samples are not included in their bootstrap training
samples. These are the so-called out-of-bag samples, and the out-of-bag score can be calculated as the
mean prediction error of the trees on these samples [Wikipedia, 2021g].

The work of Martı́nez-Muñoz and Suárez [2010] suggests that when the number of data points that are
drawn from the input training dataset to train each tree is set optimally, there is no significant differ-
ence in the performance if sampling with replacement or without replacement is used. Moreover, their
analysis concludes that the optimal value for this parameter is problem dependent and can be estimated
with out-of-bag predictions. In most problems, they investigated that the performance was better when
its value was set smaller than the default one, which is equal to the number of data points in the input
training dataset. In addition, using smaller training samples reduces the runtime.

Multi-layer Perceptron

In machine learning, neurons are used to process weighted inputs by applying an activation function
on them and return an output. The input values can be features extracted from the training data or
the outputs of the neurons in the previous layer of the network. Different weights are applied to each
input, and the activation function is applied to the sum of weighted inputs to predict the output. An
additional constant, the bias, is attached to the neuron, and it is added to the weighted input before the
activation function is applied to them.

As stated on Wikipedia [2021f], a perceptron or a single-layer neural network/perceptron is an algo-
rithm for binary classification that uses a linear prediction function (activation function) and combines
a set of weights with the input feature vector to decide whether or not it belongs to some specific class.
Single-layer perceptrons do not contain any hidden layers, and they are the simplest feedforward neu-
ral networks, which means that information moves in only one direction within their network, from the
input nodes to the output nodes. Figure 2.8 illustrates the procedures of a single-layer perceptron.
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Figure 2.8: Single-layer Perceptron using a threshold function [Kang, 2017].

A Multi-layer Perceptron (MLP) is a supervised learning algorithm and a class of feedforward artificial
neural networks that consists of at least three layers of perceptrons, an input layer, a hidden layer, and
an output layer. In other words, it is a cascade of single-layer perceptrons. What distinguishes MLPs
from single-layer perceptrons is that the neurons of their hidden and output layers can also use non-
linear activation functions. This enables them to model highly complex relationships between features
and distinguish data that is not linearly separable. However, MLPs require hyperparameters tuning,
they are sensitive to feature scaling and with different random weight initializations they can lead to
different validation accuracy.

PointNet and PointNet++

According to Qi et al. [2017b], PointNet++ is a deep CNN with a hierarchical feature learning architec-
ture that can process a set of points sampled in a metric space in a hierarchical fashion and is able to
learn deep point set features efficiently and robustly. To do that, it carries out an iterative process that
uses a distance metric to partition the set of points into overlapping local regions and extracts local fea-
tures capturing fine geometric structures from small neighbourhoods. These features are then further
grouped into larger units and processed to produce higher-level features. The process ends when the
features for the whole point set are obtained.

PointNet [Qi et al., 2017a] is the predecessor of PoinNet++, which has proven to be efficient for pro-
cessing 3D points and extracting semantics. However, it suffers from limitations when attempting to
recognize fine-grained patterns and to generalize in complex scenes. To tackle these issues, PointNet++
applies PointNet recursively on a nested partitioning of the input set and uses it as its local feature
learner to abstract sets of points or local features into higher-level representations.
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Figure 2.9: Illustration of the PointNet++ architecture and its application for set segmentation and clas-
sification using points in 2D Euclidean space as an example [Qi et al., 2017b].

What really makes PointNet++ special is its ability to achieve both robustness and detail capture by
taking full advantage of neighbourhoods at multiple scales, and processing point sets efficiently and
robustly, which was proven by experiments. With the help of random input dropouts during the train-
ing process, the network learns to adaptively weight patterns detected at different scales and combine
multi-scale features according to the input data.

KPConv

The Kernel Point Convolution (KPConv) deep learning algorithm presented by Thomas et al. [2019] is a
point convolution operator that consists of a set of local 3D filters. Similarly to image-based convolution,
it uses a set of kernel points to define the areas where each kernel weight is applied. A correlation func-
tion defines the area of influence of the kernel points which carry the kernel weights. More importantly,
the number of kernel points can vary, which increases the flexibility of the algorithm. Through the anal-
ysis of the results of experiments, KPConv was proven to build and train fast very deep architectures
for classification and segmentation.

Figure 2.10: Rigid KPConv illustrated on 2D points [Thomas et al., 2019].

KPConv has a deformable version as well, which consists of learning local shifts applied to the kernel
points and performs as good as its rigid version. Through this method, the algorithm manages to adapt
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the shape of its kernels for different regions of the input cloud by generating different shifts at each
convolution location. However, flaws occur when kernel points are shifted away from the input points
and to ensure that the deformed kernels fit the point cloud geometry and that we are not left with empty
spaces, a regularization loss is needed to be applied.

Figure 2.11: Deformable KPConv illustrated on 2D points [Thomas et al., 2019].

The two versions of KPConv have their own strengths. For example, the rigid version performs better
on simpler tasks, like object classification or segmentation of small datasets, while the deformable one
achieves high accuracy for complex tasks, like segmentation of large datasets with multiple varying
object instances. Moreover, the deformable version is more robust to a lower number of kernel points,
which implies a greater descriptive power, and overall it improves the algorithm’s ability to adapt to
the geometry of the scene objects. But whether someone uses the deformable version of KPConv for
complex tasks or the rigid version of KPconv for simpler tasks, the benchmarking provided by Thomas
et al. [2019] on several datasets indicates that KPConv will provide them with better results than several
other state-of-the-art classification and segmentation approaches.

PointCNN

The PointCNN method proposed by Li et al. [2018] is a generalization of typical CNNs to feature learning
from data represented in the point cloud. Operator X -Conv, which is the core of PointCNN, weights
and permutes the input points and features that are associated with them before they are processed
by a typical convolution operator that applies on them element-wise product and sum operations. X -
convolutional layers in PointCNN work in a similar way as convolutional (Conv) layers in grid-based
CNNs (Figure 2.12). The only difference they have is the way they use to extract local regions and learn
their information.
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Figure 2.12: Illustration of a hierarchical convolution using Conv layers of typical CNNs on a regular grid
and X -Conv layers of PointCNN on a point cloud [Li et al., 2018].

While this method still has some room for improvement and open problems for future work, it manages
to produce similar or even better results than other state-of-the-art methods, including PointNet++ [Qi
et al., 2017b], when tested with multiple challenging benchmark datasets and tasks.

ConvPoint

The ConvPoint framework presented by Boulch [2020] is a generalization of discrete CNNs for point
clouds that replaces discrete kernels with continuous ones. More specifically, it is a formulation of
continuous convolutions that are simple and straightforward extensions of the discrete ones, designed
for unstructured data, which can be used to build neural networks similarly to 2D CNNs. Figure 2.13
illustrates the continuous convolution formulation introduced in the work of Boulch [2020]. To establish
a relation between the points {p} of the input point cloud and the kernel elements {c}, a geometrical
weighting function is applied that distributes them onto the kernel. The function is independently
applied on each point to be invariant to their permutations and uses relative coordinates with respect to
kernel elements to be invariant to global translations applied on the points and the kernel. The spatial
part c and feature part {w} of a kernel {(c, w)} are processed separately. If the green arrows and boxes
(spatial operations) are removed from Figure 2.13 then the convolution operation becomes discrete. This
convolution operation is applied locally on a subset of the input point cloud.

Figure 2.13: Convolution operation, black: features operations, green: spatial operations[Boulch, 2020].
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Figure 2.14 represents the convolutional layer applied on an input point cloud P, and optionally {q},
that uses continuous convolutions. If not provided, {q} can be selected by computing the local neigh-
bourhoods of each q. For each point of {q}, local neighbourhoods in P are computed, and convolution
operation is applied on them, creating the output features {y}. The result is Q = {(q, y)}, which is the
union of the pairs.

Figure 2.14: A convolutional layer consisting of two steps, spatial structure computation and applying
the convolution operation, defined in Figure 2.13, on each neighborhood [Boulch, 2020].

ConvPoint can be applied to various classification and segmentation tasks, including large scale indoor
and outdoor semantic segmentation. Experiments show that its performance for each task is comparable
to other state-of-the-art methods.

SuperPoint graph representation

Landrieu and Simonovsky [2018] presented a deep learning framework to tackle the challenge of se-
mantic segmentation of large-scale LiDAR data that consists of PointNets [Qi et al., 2017a] for superpoint
embedding and graph convolutions for contextual segmentation. By using superpoint graph represen-
tations of point clouds, the proposed method enables the application of deep learning on large-scale
point clouds without sacrificing fine details and with long-range interactions. Superpoint graph rep-
resentations partition the point cloud data into geometrically homogeneous elements with rich edge
features that efficiently encode the contextual relationship between object parts, which can then be used
by deep learning algorithms based on graph convolutions to classify their nodes. Figure 2.15 illustrates
the application of this framework on a toy scan of a table and a chair.

Figure 2.15: (a) Geometric partitioning of the input point cloud. (b) Superpoint graph representation
of the input point cloud. (c) Superpoints embedding with PointNet networks. The embeddings are
refined in Gated Recurrent Units by message passing along superedges to produce the final labelling
[Landrieu and Simonovsky, 2018].
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ShellNet

ShellNet is an efficient neural network introduced by Zhang et al. [2019] that directly consumes point
clouds with large receptive fields while maintaining fewer layers. Its core operator is ShellConv, a
simple and effective convolution operator that uses statistics from concentric spherical shells to define
representative features. ShellConv is permutation invariant for input points, allowing traditional con-
volution to perform on such features. Figure 2.16 shows the architecture of the ShellNet for classification
and segmentation. Typical 2D convolutional neural networks inspired the architecture but it uses Shell-
Conv instead of 2D convolution. Three layers of ShellConv are applied on the input point cloud before
the fully connected classifier in the case of classification, while a U-net architecture is followed in the
case of segmentation.

Figure 2.16: ShellNet architecture for classification and segmentation. The encoder is in green, and the
decoder is in yellow. Point downsampling and upsampling are also included in the convolution,
depending on its use. Zhang et al. [2019] explain that ”N0 > N1 > N2 denotes the number of points
in the input and after being sampled in each convolution, and C < C0 < C1 < C2 denotes the output
feature channels at each point. S0 > S1 > S2 denotes the number of shells in each ShellConv operator
that is analogous to the convolution kernel size. Given a fixed shell size, the number of shells also
decreases when the point cloud is downsampled. 1× S0 × C0 denotes a convolution that convolutes
an input features using kernel (1, S0) and output C0 feature channels.”

ShellNet can be used for 3D scene understanding tasks such as object classification, object part segmen-
tation, and semantic scene segmentation. Experiments show that it can achieve high accuracy that is
comparable to other state-of-the-art methods when applied on publicly available datasets.
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Based on the research objectives defined in Chapter 1: Introduction, and the related scientific research
and knowledge reviewed in Chapter 2: Related work, an analysis is provided in this Chapter of the
methodology developed to address the research questions of this graduation project. Particular focus
is given on describing the design of the implemented experiments and what mathematical equations
and algorithms were used from a conceptual point of view. In the following sections, an overview of
the developed methodology is presented, and information about the classification framework that was
followed is provided. Lastly, the data processing methods used and the evaluation metrics calculated
for the classification results are briefly described.

3.1 Overview

This section provides an overview of the classification approach that was developed and used to train
and test our machine learning models. The methodology is broken down into several steps, which are
explained in detail in the following sections.

The machine learning algorithm that was decided to be used for the experiments and to address the
research questions of this graduation project is the Random Forest Classifier. More specifically, the
implementation of the Random Forest algorithm via the scikit-learn Python library [Pedregosa et al.,
2011] was used since all of our code was written in Python. What is different for this implementation1 of
the Random Forest algorithm compared to the one Breiman [2001] defined is that it combines classifiers
by averaging their probabilistic prediction. As for our classification approach, we followed a similar
processing workflow like the one proposed by Weinmann [2016].

Multiple changes have been made to our methodology over time, such as adding extra processing steps
or using fewer features and multi-scale neighbourhoods, to tackle the memory bottlenecks we encoun-
tered. The final training and testing processing workflows of the classification approach developed for
this graduation project, while taking into account the limitations faced during the initial experiments,
consists of five major components and some smaller processes as depicted in Figures 3.1 and 3.2. The
five major components that compose the 3D point cloud analysis framework are the following:

• Uniform sampling using a 3D voxel grid.

• Neighborhood selection using multi-scale spherical neighborhoods.

• Height features extraction using cylindrical neighbourhoods with large radii and the Z coordinate
of the 3D points.

• Eigen-based features extraction using the normalized eigenvalues of the multi-scale spherical
neighbourhoods.

• Feature selection by examining the importance of all features and filtering out the most insignifi-
cant ones.

Our Python code was split into two separate scripts. One for training the Random Forest models (Figure
3.1) and one for testing the resulting trained models (Figure 3.2). The analysis for the training and
testing data, however, is the same. Analyzing the data used for training and testing the Random Forest
models is a very time-consuming task. Due to this, the training and testing data analysis were done
separately to first make a visual inspection of the extracted features, decide which of them are the most

1https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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important ones, and check if our code works well before testing the trained models. The first step in
our methodology is to merge and relabel the input classified point cloud into three classes: ground,
building, and other. After that, we continue with our 3D point cloud analysis framework. A few extra
processing steps were added at the end of our testing process to assign a class label to all input point
cloud points and calculate the classification evaluation metrics.

Figure 3.1: Flowchart diagram of the methodology followed to train different Random Forest classifica-
tion models.
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Figure 3.2: Flowchart diagram of the methodology followed to test the Random Forest classification
models. The ”3D point cloud analysis” step refers to the same series of processing steps as the ones
noted in Figure 3.1.

3.2 Data diversification

The quality of the training and testing data plays an important role in achieving optimal model perfor-
mance. The right data can provide a model with more information during the learning process, and
the learned model can be a better fit for the data. Therefore, the first thing that we did was decide
which point cloud tiles should be used to train and test our models. Data diversification is a method
used to improve the performance of a model by using more informative and less redundant samples of
data with enough information to train the model. Simply put, the increase of diversity in training data
aims to maximize the information contained in the data [Gong et al., 2019; Shi et al., 2021]. Based on
this method, we compared the feature diversities of our point cloud tiles to identify which are the most
suitable ones to be used as training and testing data. To compute the feature diversity Fm of a tile m the
following equation was used:

Fm =
∑

N f
i=1 σ2

i
N f

(3.1)

where σ2
i represents the variances of the handcrafted features of the N f dimensional feature vector.

Before we compute the variances of all features within a tile, we first apply a min-max normalization on
the values of each feature. For every feature, its minimum value is transformed into a 0, the maximum
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value is transformed into a 1, and every other value gets transformed into a decimal between 0 and 1.
The formula of the min-max normalization is as follows:

valuenormalized =
value−min
max−min

(3.2)

In addition, to decide which tiles are the best, we also considered the number of classes each tile has
and calculated the percentages of points that belong to each class. Tiles with points from all three classes
were considered more important than others despite having a smaller feature diversity score. Finally,
we visually inspected all tiles and discarded some of them because the environment they represent, i.e.
flat areas and construction sites with cranes, led to false high and low Z features values.

3.3 Point cloud classification framework

In this section, we briefly explain the ideas behind the processing steps of our classification methodol-
ogy. The five major components of our 3D point cloud analysis framework are individually addressed.
We discuss their purpose, what mathematical equations were used and what experiments we have done
to help us decide which available approaches yield the best results.

3.3.1 Merging classes and relabelling

Before we begin analysing the training and testing data, we first relabel the input AHN classified point
cloud into three classes, namely ground, building and other, since we are not interested in other classes
for building reconstruction. In our initial experiments, we kept the original building and ground classes
of the AHN dataset and merged all other classes into a new class, the other class. Our initial re-
sults showed that our classification model could not distinguish the water points and bridges from
the ground. Thus, we decided to merge these two classes, 9 and 26, with the ground class since we
mainly focus on assisting building reconstruction methods, and this decision does not affect our scope.
However, this decision comes with a risk because class 26 contains other man-made structures, which
could cause our classification model to underperform for the building and other classes. Thankfully,
only a few of these man-made structures can be found in our data, and no significant drop has been
noted for the ground and other class evaluation metrics after this change.

Figure 3.3: Error maps of initial experiments. Bridges and water points in the red circles are misclassified
as ground. Blue = misclassified points, Green = correctly classified points.
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Table 3.1: Class labels that are merged and relabelled into our new ground, building, and other classes.
Merging classes and relabelling

Class Class
label

Corresponding
AHN classes

Corresponding
DALES classes

other 0
all classes except ground (2),

building (6), water (9) and
special infrastructural work (26)

vegetation (2), cars (3),
trucks (4), power lines (5),

fences (6), poles (7)
building 1 building (6) building (8)

ground 2 ground (2), water (9),
special infrastructural work (26) ground (1)

3.3.2 Uniform sampling

To reduce the computational cost and time required to train and test our Random Forest models, the
input point cloud datasets are first uniformly sampled using a 3D grid method described in the online
article of Poux [2020]. Using the original input point clouds that contain millions of points slowed down
the whole process when attempting to loop over the points and calculate their local neighbourhoods.
The uniformly subsampled point clouds with fewer points helped speed up the training and testing
process and, consequently, have a more efficient classifier.

The sampling process is simple and straightforward. It can be broken down into six steps. First, the
bounding box of the input point cloud is found using the minimum and maximum values of the X, Y,
Z coordinates of the 3D points. Secondly, the bounding box is discretized into voxels by dividing the
bounding box dimensions with the user-specified voxel size. Thirdly, we identify which voxels contain
points and separate them from the empty ones. Then we calculate the number of points and the indexes
of those points in all non-empty voxels. Finally, an iterative procedure begins where we loop over all
non-empty voxels and find which points are closer to their centres. Those points and their labels are
stored and appended in the new subsampled point cloud. The computational complexity of the process
is O(n) since it uses a single for loop. The overview of the uniform sampling process is provided in
Algorithm 3.1.

Algorithm 3.1: UNIFORM SAMPLING (pcd, vs) [Poux, 2020]
Input: A 3D point cloud pcd, and the voxel size of the 3D grid vs
Output: pcds: a uniformly sampled version of pcd

1 find the 3D bounding box of the pcd
2 discretize the bounding box into voxels of size vs
3 vkeys ← find the indexes of non-emtpy voxels
4 ids← calculate the sorted list of the indexes of the points in the non-empty voxels
5 n← calculate the number of points in each voxel
6 last seen = 0
7 pcds = nil
8 for idx, vox in enumerate(vkeys) do
9 pts← get the last seen : nidx point indexes from the ids list

10 p← get the closest point to the center of vox
11 pcds ← append p
12 last seen + = nidx

13 return pcds

3.3.3 Neighbourhood selection

For this graduation project, we decided to use two of the three 3D point neighbourhood definitions men-
tioned by Weinmann [2016] to extract meaningful handcrafted features from our data. More specifically,
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3 Methodology

for our eigen features and point density feature, we used multi-scale spherical neighbourhoods, and for
our height features, we used a cylindrical neighbourhood with a large radius.

An alternative choice for our eigen features is the k-nearest neighbours definition, but unlike the spher-
ical neighbourhood definition, it does not correspond to a fixed part of space. A point cloud with strong
point density variations can lead to local spherical neighbourhoods with too many or too few points and
local k-nearest neighbourhoods covering a small or a huge part of space. However, we solve this prob-
lem with our proposed methodology by applying a uniform sampling algorithm on the input point
cloud before we extract the local neighbourhoods of the 3D points and using multi-scale representa-
tion.

The addition of the uniform sampling algorithm in our 3D point cloud analysis process ensures that our
spherical neighbourhoods will have the same number of points in most cases. This means that using the
k-nearest neighbours definition with the Euclidean 3D distance as a distance metric will yield the same
results with the right number of k neighbours. Because of this, we decided to focus on using the spher-
ical neighbourhood definition for our experiments since it can provide a more consistent geometrical
meaning to the extracted features.

On the other hand, the cylindrical neighbourhood definition without a height parameter that sets a
distance limit for the points included in the neighbourhoods is not suited for describing the local ge-
ometry of 3D points, and due to this, it was not considered. For our height features, however, we used
the cylindrical neighbourhood definition since they are more meaningful and discriminating when the
variance of the Z coordinates of the points inside the local neighbourhoods is large. To make sure that
for every point a high (building roof) and low (ground) Z coordinate value could be found within their
neighbourhood large cylindrical neighbourhoods with a radius of 50 meters were used.

A larger radius is better. However, in our case, using a radius larger than 50 meters significantly in-
creased the execution time of our python scripts. We avoided using all the points within each tile to
calculate each point’s height features to help our classifier better distinguish buildings and other objects
from the ground, even in cases where mountains or very tall objects like cranes could be found in the
data. We are aware, however, that this method we decided to follow suffers from some limitations.
The radius we use can yield false Znormalized values in some cases, as shown in Figure 3.4. We tried to
minimize such errors by carefully selecting our training and testing data during the data diversification
process.

(a) (b)

Figure 3.4: (a) False high Znormalized values for plain fields caused by the luck of tall objects within the
50 meters cylindrical neighbourhoods of the points. In this case, a larger radius for the cylindrical
neighbourhoods would yield better results. (b) False low Znormalized values for objects close to a crane.
In this case, a smaller radius for the cylindrical neighbourhoods would yield better results.
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3.3.4 Feature extraction

Height features

The heigh features of every 3D point in the input point cloud were calculated using the Z coordinates
of all the points within their cylindrical local neighbourhood. The range of values of the Z coordinates
differs depending on the location of the input point cloud. To tackle that, the normalized Z coordinates
of the points were used instead, which were calculated as follows:

Znormalized =

√
(Zi − Zmin)

(Zmax − Zmin)
(3.3)

In addition, we also take into account the difference between their Z coordinate value and the minimum
Z coordinate value found within their local neighbourhood.

Zbelow = Zi − Zmin (3.4)

(a) Znormalized (b) Zbelow

Figure 3.5: Visualization of the two height features.

Eigen-based features

For every 3D point in the input point cloud and the points inside its spherical local neighbourhood, the
respective derived normalized eigenvalues λi with i ∈ {1, 2, 3} and λ1 ≥ λ2 ≥ λ3 ≥ 0 were exploited
to obtain a set of local 3D shape covariance features [Hackel et al., 2016; Weinmann et al., 2015; Thomas
et al., 2018]. The eigenvalues and eigenvectors of every local neighborhood were extracted from their
covariance matrices defined by:

con(N) =
1
N ∑

p∈N
(p− p)(p− p)T (3.5)

Where p is the centroid of the neighbourhood N. The feature set calculated for this research using
the normalized eigenvalues and eigenvectors encapsulates omnivariance, eigenentropy, anisotropy, pla-
narity, linearity, surface variation, sphericity and verticality according to the equations of Table 3.2 and
the number of points inside the spherical neighbourhoods.
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Table 3.2: Covariance geometric features calculated from the normalized eigenvalues of the local neigh-
bourhoods of the 3D points [Hackel et al., 2016].

Feature Equation
Omnivariance (λ1 · λ2 · λ3)

1
3

Anisotropy (λ1 − λ3)/λ1
Planarity (λ2 − λ3)/λ1
Linearity (λ1 − λ2)/λ1

Surface Variation λ3/(λ1 + λ2 + λ3)
Sphericity λ3/λ1
Verticality 1− |nz|

In the following paragraphs, we briefly describe each eigen feature:

• Omnivariance: a measure that describes the volumetric point distribution of a neighbourhood. In
other words, how inhomogeneously the points of a neighbourhood are spread across a 3D volume
[Waldhauser et al., 2014]. High values occur for lower point densities. In our results, we can see
that trees have higher values.

• Anisotropy: a measure which is higher for local point neighbourhoods with eigenvectors that
differ a lot and oriented objects, which enables anisotropic operations to discriminate between
orientated and non-orientated objects [Elberink and Maas, 2000]. When visually inspecting our
results, we see that trees have lower values of anisotropy.

• Planarity: a feature used to describe the smoothness of a surface [Waldhauser et al., 2014] and can
discriminate planar structures. Planar objects such as the ground and building roofs have high
planarity values, while trees have low planarity values.

• Linearity: a feature used to detect line structures. Higher values occur for sets of points that can
be modelled by a 3D line [Waldhauser et al., 2014] like powerlines and the edges of buildings.

• Surface variation: or curvature, ”is the amount by which a curve deviates from being a straight
line, or a surface deviates from being a plane” as stated by Wikipedia [2021c]. Our results show
that higher values occur for tree points and the edges of buildings.

• Sphericity: a feature used to measure how closely a structure resembles that of a perfect sphere.
Vegetation has higher sphericity values.

• Verticality: a feature used to detect vertical structures. Building facades have significantly higher
verticality values than other objects and the ground.
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3.3 Point cloud classification framework

(a) Omnivariance (b) Anisotropy

(c) Planarity (d) Linearity

(e) Surface variation (f) Sphericity

(g) Verticality (h) Density

Figure 3.6: Visualization of the seven eigen features and point density values of the local spherical neigh-
bourhoods of the points.
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3.3.5 Feature selection

Considering that some of the handcrafted features that we extracted from the local neighbourhoods
of the points might be less significant than others, and also due to the memory bottlenecks that we
encountered during our initial experiments, feature extraction was a necessary and important step in
our final processing workflow. Overall, we used four different methods to analyse which subset of the
handcrafted features is the best one:

1. Visual inspection of the handcrafted features to check the variance and the range of the values and
if some objects are highlighted.

2. Training and testing Random Forest models with a different number of handcrafted features.

3. Training and testing Random Forest models with different combinations of handcrafted features.

4. Calculating the feature importances based on the mean decrease in impurity. More specifically,
compute them as the mean and standard deviation of accumulation of the impurity decrease
within each tree.

3.3.6 Assigning class labels to the testing data

Our classification model predicts class labels only for the candidate centre points of the voxels in the
voxel grid used for our uniform sampling algorithm. In other words, it only makes predictions for
the subsampled point cloud tiles and not for the whole testing dataset. As far as the candidate centre
points of the voxels are concerned, it was decided to keep for each voxel the coordinates and the class
label of the closest point from the input point cloud to their centre. Alternatively, the barycenters of all
the points inside each voxel could have been used. However, this method was not used for efficiency
reasons since new points, and class labels must be calculated.

After our model makes predictions for the points of the subsampled point cloud tiles, the nearest neigh-
bour approach is followed to assign a class label to all the points of the input point cloud testing tiles.
More specifically, a k-dimensional tree is built using the points of the subsampled point cloud tiles, and
then the nearest neighbour for each point from the input point cloud tiles is found using the tree. The
points are then assigned to the same class label as the one predicted for their nearest neighbour.

3.4 Evaluation metrics

Following the examples of previous work [Chaton et al., 2020; Hu et al., 2020; Varney et al., 2020],
the evaluation metrics that will be used for benchmarking the deep learning and machine learning
algorithms are the mean IoU, per class IoU, Class Consistency Index (CCI), OA, F1 score and the confusion
matrix. IoU is simply a ratio calculated by dividing the intersection with the union of the predicted
and ground-truth values. In total, there will be three classes for which their IoU will be calculated as
follows:

IoUi =
cii

cii + ∑j 6=i cij + ∑k 6=i cki
(3.6)

The term cii is the number of points that have the same predicted and ground-truth labels (True Pos-
itives), while the terms cij and cki stand for the number of points with wrong predicted labels (False
Positives and False Negatives) for a certain class. The mean IoU is simply the mean across all three
classes, and it is defined as:

IoU =
∑N

i=1 IoUi

N
(3.7)
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OA is the ratio of correct predictions to total predictions made. It is calculated for most benchmarking
researches, however, it can be a misleading and unreliable metric for imbalanced datasets, such as a
point cloud with a significant disparity between classes. The OA suffers from this problem which can
hide details about the performance of a model. For example, if a high OA score is achieved for an
imbalanced dataset, we are not sure if that is because all classes are being predicted equally well or
whether some of the classes are being neglected by the model. A high OA score can be achieved if we
always predict the most common class value. The OA can be computed as:

OA =
∑N

i=1 cii

∑N
j=1 ∑N

k=1 cjk
(3.8)

High OA does not necessarily mean a good classification but a high mean IoU and CCI indicate that an
algorithm is robust and has high performance that is also uniform across each class. The CCI can be
calculated with the following equation, where σ2 is the variance of the per-class IoU values:

CCI = 1− σ2

|IoU|
(3.9)

The confusion matrix is a table used to describe the performance of a classification model. The signifi-
cance of this table is that it shows in which class some points are incorrectly classified. This information
helps to understand which features should be included, excluded or recalculated to improve the perfor-
mance of a classification model.

Table 3.3: Confusion matrix.
Predicted:
Positives

Predicted:
Negatives

Actual:
Positives True Positives (TP) False Negatives (FN)

Actual:
Negatives False Positives (FP) True Negatives (TN)

Precision is the fraction of relevant instances among the retrieved instances and it can be seen as a
measure of quality. High precision means that an algorithm returns more relevant results than irrelevant
ones [Wikipedia, 2021h]. Based on the confusion matrix, precision is defined as:

precision =
TP

TP + FP
(3.10)

Recall is the fraction of relevant instances retrieved and can be seen as a measure of quantity. High recall
means that an algorithm returns most of the relevant results [Wikipedia, 2021h]. Based on the confusion
matrix, recall is defined as:

recall =
TP

TP + FN
(3.11)

Finally, the F1 score is a metric that measures the accuracy of a model and conveys the balance between
the precision and the recall [Wikipedia, 2021e]. The formula of the F1 score is the harmonic mean of the
precision and recall, and it is calculated as:

F1 = 2× precision× recall
precision + recall

(3.12)
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4 Implementation details / Experiments

In chapter 4, the implementation details of our experiments and methodology are provided. We explain
what tools and datasets were used, how our training and testing data were created and what parameter
values were used in our experiments. We also discuss what Python packages and libraries were used to
implement our 3D point cloud analysis tasks and what limitations we faced during our experiments.

4.1 Tools

To meet the objectives of the graduation project, several tools were needed to process and visualize
the LiDAR point cloud datasets. Table 4.1 lists all the tools and software that we used and for what
purpose.

Table 4.1: Tools and software used to meet the objectives of the graduation project.
Tool/software Usage description

QGIS to make shapefiles that will assist
in the creation of the training and testing datasets

FME to create the training and testing datasets

Python coding to process the training and testing datasets and
to train and test the Random Forest models

Cloud Compare to visually inspect the extracted features
and the results of the classification

LAStools to visually inspect the training and testing datasets
TU Delft’s

HPC cluster
to run python scripts that require large

computing resources and a lot of processing time

4.1.1 TU Delft’s HPC cluster

The HPC cluster of TU Delft is a collection of large computing resources, namely processor (CPUs),
Graphics cards (GPUs), memory and storage that are shared with others to use. In the cluster, jobs can
be scheduled, and a lot of computational work can be done. Users are able to utilize multiple computers
together, use a lot of threads, run long computations and compute on big datasets like point clouds.
Training and testing machine learning models requires a lot of computational power, memory and time.
Due to this, it was essential to make use of the HPC cluster as standard computers do not usually have
the required specifications.

When a job is submitted in the HPC cluster, the scheduler allocates resources for it based on the partition
and Quality of Service (QoS) that the user specified. These two variables also determine the CPU, GPU
and memory limits for that specific job. Details about the partitions, Quality of Services and resources
limits are provided in the Table 4.2.
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Table 4.2: Characteristics and resources limits of the partitions and QoS in the HPC cluster.

Partition QoS Priority Maximum
run time

CPU limits Memory limits
Per QoS Per user Per QoS Per user

general

interactive high 1 hour - 2 - 16 GB
short normal 4 hours 2884 1696 17689 GB 10405 GB
long low 7 days 2544 678 15608 GB 4162 GB

infinite none infinite 32 - 250 GB -
stud-ewi stud-ewi low 1 hour 256 2 1625 GB 12 GB

Running python scripts with Slurm

The HPC cluster uses the Slurm1 scheduler to efficiently manage workloads. Slurm is an open-source,
fault-tolerant, and highly scalable cluster management and job scheduling system for large and small
Linux clusters that requires no kernel modifications for its operation and is relatively self-contained.
To run python scripts that utilize the computing resources of the HPC cluster, batch scripts had to
be created and submitted to Slurm that specify which python scripts should be executed and what
resources should be allocated to them. The essential options and commands that must be specified in a
batch script to run a script are the following ones:

• #!/bin/sh she-bang line that must be the first line in the batch script tells the system that the batch
script contains a set of commands to be fed to the command interpreter indicated, in this case, the
Bourne shell or a compatible shell, with path /bin/sh.

• #SBATCH –partition=general option sets the partition of the job, in this case general.

• #SBATCH –qos=short option sets the Quality of Service of the job, in this case short (maximum
run time: 4 hours).

• #SBATCH –time=00:01:00 option determines for how long the job will run and use the allocated
resources, in this case, 1 minute.

• #SBATCH –ntasks=1 option determines the number of parallel tasks for the job, in this case, 1.

• #SBATCH –cpus-per-task=1 option determines the number of allocated CPUs per task, in this
case, 1.

• #SBATCH –mem=1024 option determines how much RAM in megabytes (MB) is allocated for the
job, in this case, 1 gigabytes (GB).

• #SBATCH –mail-type=END option sends a mail notification when the job is done.

• srun python scriptname.py command specifies which python script will be executed.

4.2 Datasets

The focus of this graduation project is studying how accurately a simple machine learning algorithm
like the Random Forest Classifier will perform compared to more complex deep learning models if we
train it with an accurate LiDAR dataset like the AHN3. Subsequently, an attempt is made to create an
efficient and accurate point cloud classifier used by automatic building reconstruction methods. Lately,
large LiDAR datasets of different cities worldwide can be found on the internet as open data, which can
serve as training and testing data for machine learning and deep learning models. This thesis made an
effort to exploit some of those large and accurate datasets and train, test, and compare machine learning
models. Specifically, we focused on using the AHN3 dataset2, the AHN4 dataset and the DALES dataset3.

1https://slurm.schedmd.com/overview.html
2https://downloads.pdok.nl/ahn3-downloadpage/
3https://docs.google.com/forms/d/e/1FAIpQLSe3IaTxCS7wKH01SHn_o7U86ToIw9K26vc0bkwiELn6wwh8gg/viewform

34

https://slurm.schedmd.com/overview.html
https://downloads.pdok.nl/ahn3-downloadpage/
https://docs.google.com/forms/d/e/1FAIpQLSe3IaTxCS7wKH01SHn_o7U86ToIw9K26vc0bkwiELn6wwh8gg/viewform


4.2 Datasets

These three datasets have their own characteristics and cover different environments that we discuss in
the following sections.

4.2.1 AHN3 and AHN4 datasets

The national Dutch AHN3 LiDAR dataset is a freely available point cloud dataset with detailed and precise
height data for the whole Netherlands. The measured points have a height accuracy with a systematic
and stochastic error of five centimetres and a planimetric accuracy with eight centimetres systematic
error and five centimetres stochastic error. The dataset is disseminated in the LAZ format and uses the
LAS classification codes. A custom code is also used for an extra class that includes only specific built
structures such as bridges and viaducts. Besides urban and rural areas, wooded areas are classified
as well due to the multiple reflections of the LiDAR systems used for the collection of the data that
provide enough ground-level points. The point density of the AHN3 dataset is on average between 6
and 10 points per square meter [AHN, 2020]. As far as the AHN4 dataset is concerned, it has similar
characteristics with AHN3, but it is still a work in progress. It uses the same classification codes and is
divided into tiles of the same size as the tiles of AHN3 dataset. Its point density, however, is a lot larger
than the AHN3 dataset.

Figure 4.1: Classification codes used in the AHN3 dataset [Ledoux et al., 2020].

The AHN3 and AHN4 datasets were used to train and test Random Forest models. Because the whole
size of these two datasets is enormous, it was very difficult for us to train and test Random Forest
models with them. Thus, only two tiles were used from these two datasets. Tile 25GN1 was used
from both datasets to create training and testing data covering the same environment but with different
characteristics. Also, these two tiles were chosen because our goal was to create a classifier to assist
automatic building reconstruction methods. They cover a dense urban area (city centre of Amsterdam)
with a large percentage of building points and many different types of buildings (apartment buildings,
churches, small houses etc.) which can increase the diversity of our features and subsequently improve
the performance of the classifier.
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(a)

Figure 4.2: Location of the AHN3 and AHN4 tiles used for training and testing the Random Forest
models.

(a) (b)

Figure 4.3: Visualization of the two tiles used for training and testing Random Forest models. (a) AHN3
and (b) AHN4 tile. The two tiles cover the same area. It is visible from the water points that the AHN4
tile has a lot more points.

4.2.2 DALES dataset

The DALES dataset is a dense aerial LiDAR point cloud of the city of Surrey in British Columbia, Canada,
distributed in the LAS format. It consists of 40 tiles, 0.5 squared kilometres each, that are split into 29
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training files and 11 testing files. The projection of the data is UTM zone 10N, the horizontal datum is
NAD83, and the vertical datum is CGVD28, using the metro Vancouver Geoid. Easting, northing, Z,
and object category is provided for every point in their original UTM Zone 10N coordinates. In total,
there are 8 categories in the dataset: ground (1), vegetation (2), cars (3), trucks (4), power lines (5), fences
(6), poles (7) and buildings (8). The mean error for hard surface vertical accuracy was determined to be
± 8.5 cm at 95% confidence. When all returns are included, and after an initial noise filtering, the point
cloud’s measured density is on average 50 points per meter [Varney et al., 2020]. The DALES dataset
was used to train models, compare their performance with previous works, and test the models trained
with AHN3 and AHN4 datasets to examine their performance with different datasets.

Figure 4.4: A training tile of the DALES dataset and its 8 classes [Varney et al., 2020].

4.3 AHN3 and AHN4 training and testing data

Using Python coding, the two AHN3 and AHN4 tiles were split into 120 tiles of equal size, as shown in
Figure 4.5a. Each tile is a square with a perimeter of 2 kilometres and an area of 0.25 squared kilometres
(500X500 meters). An analysis was made for these tiles to identify which ones are the best to be used
as training and testing data for our experiments and our final model. For each tile, we computed its
feature diversity score, the number of classes and the percentages of points that belong to each class.
The best 40 tiles (Figure 4.5b) out of the 120 tiles have been chosen based on these three characteristics.
Moreover, we visually inspected them to discard potentially unwanted tiles (Figure 4.6). This analysis
was made for all the 240 tiles derived from the two AHN3 and AHN4 tiles, but our selection of the best
tiles was focused on the statistics of the AHN3 tiles. For many tiles, their statistics were similar for both
datasets. However, there are a few differences since the AHN4 dataset was collected more recently and
has a higher point density. To better compare the results of our experiments, we decided to use the same
tiles for both datasets (see Section 5.2).
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(a)
(b)

Figure 4.5: (a) The 120 tiles clipped from the 25GN1 tile of the AHN3 and AHN4 datasets. Tiles grid:
bottom left (0,0), top right (9,11). (b) The best 40 tiles.

Figure 4.6: Tiles with high feature diversity that were discarded because they represent environments
(very flat areas) or include objects (cranes) that we did not want them to be used during the training
process of our classification model.

On average, our best 40 tiles from the AHN3 dataset have a point density of 18± 12 points per squared
meter, while the corresponding tiles from the AHN4 dataset have a point density of 42± 25 points per
squared meter.

4.4 3D point cloud analysis and classification

4.4.1 Programming specifics

For the purposes of this project, the methodology was implemented in Python. Data analysis tasks,
model training and testing, and evaluation of the results were done using methods from the NumPy
[Harris et al., 2020], SciPy [Virtanen et al., 2020], Laspy, pandas [Wes McKinney, 2010] and scikit-learn
[Pedregosa et al., 2011] Python libraries. The classification metrics of the main experiments were visu-
alised using methods from the matplotlib Python library.
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4.4.2 Uniform sampling experiments

To decide which voxel size is the best for our uniform sampling algorithm, models that use different
voxel sizes were trained and tested to check the effect that the voxel size parameter can have on the
performance of our classifier. In total, four different models were trained, tested and evaluated. The first
model was trained and tested without applying a uniform sampling algorithm on the input data, while
for the rest, different voxel sizes were used for their uniform sampling, namely 0.5, 1, 1.5 and 2 meters.
Testing voxel sizes larger than 2 meters was thought to be unnecessary and impractical because they
reduce the number of points a lot. It also means that points with a distance of up to 2 meters between
them will be assigned to the same class since we later use the predicted class labels of the centre points
of the voxels to manually assign predicted class labels to all the points based on the nearest neighbour
approach. The results of these experiments can be found in Section 5.4.

(a) original (b) 0.5 meters

(c) 1 meter (d) 2 meters

Figure 4.7: Example results of the uniform point cloud sampling algorithm. (a) Original point cloud,
subsampled point cloud with (b) 0.5, (c) 1 and (d) 2 meters voxel size.

4.4.3 Feature selection experiments

The first strategy we followed to identify which features are the most informative and discriminating
ones was a visual inspection to check the variance and the range of values of the extracted features and
see if some objects of interest are highlighted. To do this, the values of the extracted features were stored
in CSV format and visualized through the Cloud Compare software.
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The second strategy we followed was to test the performance of Random forest models trained with a
different number of features. First, we trained the model using only the Z features and the eigenvalues of
the points. Then we added the normal vectors of the points, and later we started adding one by one the
eigen-based features to the feature vectors of the points. We observed each time how the performance
of the classification model had changed.

Our third strategy was to test the performance of Random forest models trained with different combi-
nations of features. As we already mentioned in our Chapter 3: Methodology, we focused on exper-
imenting with the spherical neighbourhood definition. Specifically, we conducted experiments to test
the effect that single-scale and multi-scale spherical neighbourhoods of various radii can have on the
performance of our classifier. We trained multiple models each time using features derived from 1, 2 or
3 different spherical neighbourhoods at the same time. Tests using features derived from more than 3
neighbourhoods or with very large radii have not been made because, in these cases, the computational
time increases considerably, making our model inefficient. These tests were mainly made to figure out
the optimal multi-scale representations that should be used to train our final model.

The fourth and final strategy we used was to compute the importances of the features of our Random
Forest model as the mean and standard deviation of the impurity within each tree. To compute these
importances, a method from the scikit-learn [Pedregosa et al., 2011] Python library was used. The results
of these experiments can be found in Section 5.6.

4.4.4 Training and testing data experiments

To test the effect that the size of training data can have on the performance of our classification model,
we trained and tested the model with different amounts of training data. Specifically, since our AHN3
training data were split into tiles of equal size, we trained seven different models using 1, 2, 3, 5, 10, 15
and 20 tiles during their training process and tested them with the same testing data. The testing data
were the tiles ranked 20th to 30th according to their feature diversity score. A comparison was made
between the evaluation classification metrics of their results (see Section 5.5).

To test the effect that different training and testing datasets can have on our classification model’s per-
formance, we trained and tested models using our three different datasets, namely AHN3, AHN4 and
DALES. Specifically, three different Random Forest models were trained using the same model hyperpa-
rameters, multi-scale spherical neighbourhoods, handcrafted features and parameters for our 3D point
cloud analysis algorithms. Each model used one of the three datasets as training data. Their perfor-
mance was evaluated on all three datasets, and a comparison was made between their classification
evaluation metrics (see Section 5.7).

4.4.5 Hyperparameter tuning

Hyperparameter optimization is an important and required step to get the most out of a machine learn-
ing model. To improve the classification accuracy of our Random Forest model, we tried to identify the
best set of hyperparameters to configure our model. One of the most common methods used to optimize
the hyperparameters of a machine learning model is grid search, which defines a search space as a grid
of hyperparameter values and evaluates every position in the grid. In our case, a small grid search was
implemented to test the effect of seven different hyperparameters on the performance of our Random
Forest model. The results of these experiments can be found in Section 5.3. The eight hyperparameters
that we tested are:

1. bootstrap: that refers to whether bootstrap samples are used when building trees. If not, the whole
dataset is used to build each tree.

2. max features : the maximum number of features to consider when looking for the best split.

3. min samples leaf: the minimum number of samples, in our case points, from the input data re-
quired to be at a leaf node.
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4. min samples split: the minimum number of samples, in our case points, from the input data that
must be placed in an internal node before that node is split.

5. max depth: the maximum depth of the tree.

6. criterion: that refers to the function used to measure the quality of a split. In our case, Gini
impurity or entropy.

7. n estimators: that corresponds to the number of trees in the forest.

8. oob score: that determines whether out-of-bag samples are used to estimate the generalization
score and is only available if bootstrap = True.

K-Fold Cross-Validation

For every combination of hyperparameters that was tested, a K-Fold Cross-Validation resampling pro-
cedure, with κ = 3, was used to evaluate the Random Forest models. K-Fold Cross-Validation has only
one parameter, the κ parameter that stands for a number of equal size groups that the data will be ran-
domly partitioned into. From those κ groups of data, one is used to validate the model while the others
are used as training data. The process is then repeated κ times to evaluate all possible combinations of
training and validation data, and their results are averaged to produce a single estimation [Wikipedia,
2021b].

Figure 4.8: K-Fold Cross-Validation [Wikipedia, 2021b].
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Chapter 5 provides the results of the experiments of the study. More specifically, in the following sec-
tions, we analyse and present the obtained results from the experiments we conducted to understand
how different local neighbourhood definitions, features, number of features, hyperparameters, data
sizes, and data environments can influence the performance of our classifier. We discuss the limitation
we faced and which approaches and parameters we believe are the best. Finally, comparisons are made
between our results and the results of previous works, and an application in presented.

5.1 Overview

Overall, the evaluation metrics of our classification results for some of our experiments are lower than
the results of previous works. This is mainly because of the high computational cost and time required
to analyse the point cloud datasets and prepare them for training and testing our Random Forest mod-
els. To tackle this problem, we used large voxel sizes for our uniform sampling algorithm and small
training data for some of our experiments to speed up the process. This led to having models that un-
derperform. Consequently, we focused more on comparing the results and presenting the difference
between their evaluation metrics. However, in some cases, we also provide the actual scores of their
evaluation metrics. In each experiment, we tried to use the best possible parameters that we could. Our
final model was trained and tested with the optimal parameters, hyperparameters and training and test-
ing data that provide a good trade-off between accuracy and efficiency. For the rest of our experiments,
however, these choices were made based on findings of previous works since we were still trying to
figure out the optimal ones through them. With the results of our experiments, we can provide answers
to all of the research questions addressed by this graduation project. It is also worth mentioning that
there were many failed attempts while trying to implement these experiments that really slowed down
the progress of the graduation project, especially while trying to analyse the training and testing data
with optimal parameters.

5.2 Feature diversity of the training and testing data

Before we began our experiments with the Random Forest models, we had to select the right data to be
used as training and testing data from the AHN3 and AHN4 datasets. As we discussed in the previous
chapters, to do that, we split the 25GN1 tile of the AHN3 and AHN4 datasets into 120 equally sized tiles
and followed a data diversification strategy to compute important information about them that helped
us decide which ones are the best. Table 5.1 provides a summary of the feature diversity scores Fm, the
number of classes, the percentages of points that belong to each class, and the number of points for the
first best 40 tiles out of the 120 tiles that were clipped from the 25GN1 tile of the AHN3 while table 5.2 for
the equivalent tiles from the 25GN1 tile of the AHN4 dataset. The features used to calculate the feature
diversity scores of the tiles were derived from 3 different spherical neighbourhoods with radii 2, 3 and 4
meters. In total, the variances of 24 features have been used for each tile. A uniform sampling algorithm
with a voxel size of 1 meter has been applied to the tiles before extracting their features.
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Table 5.1: Statistics of the first best 40 tiles clipped from the AHN3 dataset.

no. tile Fm
no. of
classes other (%) building (%) ground (%) no. of

points
1 (7,3) 0.0433 3 53.2 12.8 34.1 4,563,251
2 (5,5) 0.043 3 39.5 33.7 26.8 3,017,251
3 (9,0) 0.0428 3 48.1 17.8 34.1 4,114,615
4 (7,2) 0.0428 3 46.5 19.4 34.2 4,519,839
5 (5,4) 0.0427 3 62 10.3 27.7 3,596,646
6 (3,2) 0.0425 3 70.9 0.5 28.6 4,681,849
7 (9,1) 0.0421 3 55.7 11.9 32.4 4,513,323
8 (8,0) 0.042 3 58.7 0.5 40.8 4,452,822
9 (9,9) 0.0419 3 59.3 20.7 20 4,856,019
10 (8,3) 0.0418 3 59 11.9 29.1 3,828,687
11 (1,2) 0.0418 3 60.3 12.7 27.1 5,332,243
12 (7,11) 0.0416 3 31.7 39.6 28.7 3,447,268
13 (4,4) 0.0414 3 70.6 3.7 25.7 4,375,794
14 (0,0) 0.0413 3 54.5 15.5 29.9 4,418,212
15 (6,6) 0.0413 3 51.4 18.1 30.4 4,204,809
16 (9,10) 0.0411 3 39.7 35.3 25 3,990,567
17 (7,4) 0.0411 3 43 25.2 31.8 3,734,563
18 (0,2) 0.0411 3 55.7 17.4 26.9 4,566,563
19 (6,10) 0.041 3 57.1 22.3 20.6 4,415,975
20 (9,8) 0.0409 3 46.1 16 37.9 3,860,100
21 (8,2) 0.0409 3 67.9 8.6 23.5 4,748,568
22 (4,6) 0.0408 3 43.4 31.8 24.8 3,808,372
23 (7,0) 0.0406 3 59.7 1.7 38.6 4,333,094
24 (6,8) 0.0405 3 47.2 31.6 21.2 4,720,536
25 (9,6) 0.0405 3 67.5 7.4 25.2 4,837,172
26 (9,7) 0.0405 3 57.4 18.4 24.2 4,421,793
27 (3,5) 0.0404 3 39.7 35.3 25 5,261,248
28 (6,4) 0.0404 3 40.6 19.5 39.9 3,634,286
29 (5,8) 0.0404 3 35.3 41.6 23.1 4,011,017
30 (8,1) 0.0404 3 62.2 6.6 31.2 3,975,009
31 (5,9) 0.0403 3 47.8 30.3 21.9 4,105,674
32 (5,7) 0.0403 3 44.5 29.7 25.8 3,592,834
33 (7,6) 0.0403 3 71.2 5.4 23.4 4,833,607
34 (1,3) 0.0403 3 37.4 29 33.6 4,717,004
35 (8,9) 0.0402 3 38.8 34 27.2 3,993,220
36 (3,4) 0.0402 3 68.7 9.5 21.8 6,029,536
37 (8,6) 0.0402 3 55.5 18.2 26.3 4,522,453
38 (4,9) 0.0401 3 39.2 34 26.8 3,140,716
39 (4,5) 0.0401 3 43.6 33.2 23.2 4,090,139
40 (5,10) 0.04 3 55.4 24.1 20.4 4,090,587
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Table 5.2: Statistics of the corresponding tiles clipped from the AHN4 dataset.

no. tile Fm
no. of
classes other (%) building (%) ground (%) no. of

points
1 (7,3) 0.0404 3 50.1 12.7 37.2 9,111,285
2 (5,5) 0.0413 3 35.7 30.8 33.5 7,805,095
3 (9,0) 0.0416 3 46.6 20 33.3 10,592,425
4 (7,2) 0.0385 3 44.5 18.5 37 9,981,479
5 (5,4) 0.0433 3 57.4 8.1 34.4 8,981,406
6 (3,2) 0.0405 3 68.2 0.4 31.4 10,298,226
7 (9,1) 0.0396 3 56.1 9.9 34 10,638,417
8 (8,0) 0.0393 3 56.8 0.5 42.7 8,990,897
9 (9,9) 0.0401 3 61.2 17.4 21.4 10,541,974

10 (8,3) 0.0406 3 54.5 15.7 29.8 9,755,432
11 (1,2) 0.0411 3 70.4 9.6 20 12,783,974
12 (7,11) 0.0376 3 34.2 36.8 29 7,731,449
13 (4,4) 0.0407 3 72.6 3.9 23.4 10,990,093
14 (0,0) 0.0406 3 61.8 10.9 27.2 9,351,733
15 (6,6) 0.0407 3 43.7 22.9 33.4 10,560,537
16 (9,10) 0.0401 3 37.3 40.6 22.1 10,489,806
17 (7,4) 0.0403 3 42.5 22.1 35.4 9,655,165
18 (0,2) 0.0414 3 68.3 13.5 18.3 12,015,153
19 (6,10) 0.0400 3 53.6 25.6 20.8 10,891,964
20 (9,8) 0.0386 3 44.5 20.8 34.7 10,971,698
21 (8,2) 0.0394 3 65.9 11.1 23.1 10,980,502
22 (4,6) 0.0405 3 41.9 35.1 23.1 10,801,701
23 (7,0) 0.0393 3 58.1 1.3 40.6 9,164,434
24 (6,8) 0.0401 3 42.6 38.6 18.8 12,174,899
25 (9,6) 0.0399 3 64 7.2 28.9 12,275,039
26 (9,7) 0.0393 3 59.6 16.9 23.6 9,885,090
27 (3,5) 0.0380 3 44.1 32.6 23.4 9,001,933
28 (6,4) 0.0384 3 28.2 29.9 41.8 9,747,800
29 (5,8) 0.0405 3 34.5 45.7 19.8 11,088,512
30 (8,1) 0.0383 3 60.1 6.7 33.3 9,082,421
31 (5,9) 0.0392 3 46.3 29.1 24.6 8,734,156
32 (5,7) 0.0395 3 45.9 25.2 28.9 9,435,695
33 (7,6) 0.0394 3 70.8 5.4 23.8 11,359,030
34 (1,3) 0.0406 3 43.4 25 31.6 9,574,920
35 (8,9) 0.0393 3 38 33.8 28.2 8,872,447
36 (3,4) 0.0392 3 68.3 9.4 22.4 12,349,350
37 (8,6) 0.0397 3 49.1 21.4 29.5 10,638,670
38 (4,9) 0.0385 3 34.6 34.8 30.6 7,382,931
39 (4,5) 0.0391 3 45.6 31.8 22.6 9,715,158
40 (5,10) 0.0393 3 53.3 26 20.7 11,331,886

5.3 Hyperparameters

For our experiments with the hyperparameters of our Random Forest classifier, the first 20 best tiles from
the AHN3 dataset, as shown in table 5.1, were used as training and testing data. A uniform sampling
algorithm with a voxel size of 2 meters has been applied on them, and features have been extracted from
3 different spherical neighbourhoods with radii 3, 4 and 5 meters. Since we had to train and test many
models for these experiments, a larger voxel size was used for our uniform sampling algorithm from
the data diversification experiments. As a result, the radii of the spherical neighbourhoods are larger as
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well. We used the default hyperparameters provided by the scikit-learn [Pedregosa et al., 2011] Python
library, and each time we changed the values for one of them to test the effect they have on the accuracy
of our model. Table 5.3 provides the default values for the eight hyperparameters that we tested. The
evaluation metric that we used to compare all classification results is the F1 score. The results of our
experiments indicate that the default hyperparameters are, in most cases, the optimal ones.

Table 5.3: Default values of the hyperparameters of the Random Forest Classifier.
Hyperparameter Value

n estimators 100
criterion Gini

max depth None
min samples split 2
min samples leaf 1

max features sqrt
bootstrap True
oob score False

5.3.1 Number of trees

The hyperparameter n estimators refers to the number of trees in the forest. Usually, the higher the
number of trees, the better the algorithm fits and learns from the data. A very small number may lead
to overfitting, but adding many trees can slow down the training process considerably and does not
significantly improve the performance. Thus, a balance must be found between accuracy and efficiency.
For this parameter, the values we tested are 1, 32, 64, 100, 128, 200, 250, 300 and 500 trees. Figure 5.1
illustrates the F1 score values for the models trained and tested with different numbers of trees.

Figure 5.1: F1 score vs the number of trees in the forest.
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As we can see in Figure 5.1, our experiments agree with the literature. The best performance is achieved
when the number of trees in the forest is close to 100. After 100 trees, the F1 score does not increase
significantly.

5.3.2 Depth of each tree in the forest

The parameter max depth refers to the depth of each tree in the forest. The higher the value, the deeper
the tree and the more splits it has. For this parameter, the values we tested are ranging from 1 to 32.
Figure 5.2 illustrates the F1 score values for the models trained and tested with different numbers of tree
depth.

Figure 5.2: F1 score vs the depth of each tree in the forest.

Looking at Figure 5.2 we see that the best performance is achieved when the depth of each tree in the
forest is close to 15. After 15, the F1 score stops increasing. We also notice that the train and test curves
have different trends. The larger the depth, the higher the F1 score for the training dataset. Eventually,
at some point, the F1 score becomes 1, and this happens because when the depth of each tree is very
large, the model overfits the training data.

5.3.3 Minimum number of samples required to split an internal node

The hyperparameter min samples split refers to the minimum number of points (samples) from the orig-
inal point cloud required to split an internal node. Its value can range from 1 to all of the samples at each
node. We tested its effect on the model for values from 10% to 100% of the samples. Figure 5.3 illustrates
the F1 score values for the models trained and tested with different values for the min samples split hy-
perparameter.
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Figure 5.3: F1 score vs the minimum number of samples required to split an internal node.

The results of Figure 5.3 illustrate that out of all the percentages of samples that we tested, the best
performance is achieved when the minimum number of samples required to split an internal node is
10%. After 10%, the F1 score value starts to decrease considerably, levelling out close to 0 when the
value for min samples split is equal to or larger than 70%. The smaller the value of min samples split,
the better the performance of the model. The smallest value that it can get is 2 data points, which is the
default value.

5.3.4 Minimum number of samples required to be at a leaf node

The hyperparameter min samples lea f refers to the minimum number of points (samples) from the orig-
inal point cloud required to be at a leaf node. It is similar to the min samples split hyperparameter.
However, it concerns the leaves, in other words, the base of the tree. The value of this hyperparameter
can range from 1 to all of the samples at each node. We tested its effect on the model for values from
10% to 50% of the samples. Figure 5.4 illustrates the F1 score values for the models trained and tested
with different values for the min samples lea f hyperparameter.
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Figure 5.4: F1 score vs the minimum number of samples required to be at a leaf node.

The results of Figure 5.4 illustrate that out of all the percentages of samples that we tested, the best per-
formance is achieved when the minimum number of samples required to be at a leaf node is 10%. After
10%, the F1 score value starts to decrease considerably, following a downward trend as the percentage
of samples used is increased. The line graph levels out close to 0 when the value of min samples lea f
is equal to or larger than 40%. The smaller the value of min samples lea f , the better the performance of
the model. The smallest value that it can get is 1 data point, which is the default value.

5.3.5 Number of features to consider when looking for the best split

The parameter max f eatures refers to the number of features to consider when looking for the best split.
For this hyperparameter, the values we tested are 1, 3, 5, 8, 11, 14, 17, 20 and 23 features. In total, we
used 24 features to train and test the models. Figure 5.5 illustrates the F1 score values for the models
trained and tested with different values for the hyperparameter max f eatures.
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Figure 5.5: F1 score vs the number of features to consider when looking for the best split.

As we can see in Figure 5.5, our experiments agree with the literature. The best performance is achieved
when the number of features to consider when looking for the best split is close to the squared root of
the number of features used. The F1 score starts to decrease when using more than 5 features.

5.3.6 Splitting rule, bootstrap and out-of-bag samples

The bootstrap hyperparameter refers to whether bootstrap samples are used or not when building the
trees, and its value can be False or True. The criterion hyperparameter refers to the function used to
measure the quality of the splits, and its value can be Gini or entropy. For all the tests that we made, the
results for both values of these two hyperparameters were very similar. Because of this, we decided to
stick with the default values, which are bootstrap = True and criterion = Gini. Based on the literature,
the fact that the model’s accuracy was similar with and without bootstrap samples indicates that the
parameter that determines the sample size used to train each tree is set optimally. As to whether out-
of-bag samples should be used to estimate the generalization score, setting this hyperparameter to True
for our final model (see Section 5.8) slightly increased the accuracy of our model and notably reduced
its training time.

5.4 Density of the training data

Table 5.4 illustrates how much the overall accuracy, per class IoU, mean IoU, CCI, F1 score, training time,
RAM required, and the size of our classification model can be influenced by the voxel size of the uniform
sampling algorithm. Five different models have been trained using a different voxel size for the uniform
sampling algorithm each time. All of them were trained with the same 10 tiles corresponding to the first
10 best tiles, as shown in the table 5.1. The testing data that we used for these experiments are tiles 11
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to 20. The default hyperparameters were used to train the models (see Table 5.3). Eigen features from 2
different spherical neighbourhoods with radii 3 and 4 meters have been extracted.

Table 5.4: Comparison of the performance of Random Forest models that use different voxel size values
for the uniform sampling algorithm. The models were trained with the AHN3 dataset.

IoU (%)

voxel
size (m) OA (%) mean other building ground CCI (%) F1

score

no. of points
in the

training data

training
time

(minutes)

RAM
(GB)

model size
(KB)

0.5 89.70 79.07 78.63 72.07 86.51 99.56 0.90 19,654,135 187.79 33.7 14,581,904
1 89.04 78.03 77.32 71.46 85.31 99.59 0.89 6,644,360 73.41 8.3 5,638,778

1.5 87.45 75.07 82.09 63.39 79.73 99.08 0.87 3,034,839 33.85 4.6 3,299,808
2 87.41 74.42 73.29 65.21 84.75 99.14 0.87 1,648,188 14.94 2.7 1,946,693
- 86.41 73.64 76.66 62.46 81.81 99.09 0.86 42,144,302 460.34 59.9 24,501,065

Figure 5.6: Mean IoU vs the voxel size of the uniform sampling algorithm.

These results show that our classifier becomes more efficient if our training data have a smaller point
density. Not only is the runtime reduced but also the required amount of RAM and the size of the result-
ing trained model. Using a 1 meter voxel size did not reduce the accuracy of the classifier significantly.
It is important to note that the model trained without applying a uniform sampling algorithm on the
input point cloud (voxel size = -) performed worse than the rest. This highlights the importance of the
uniform sampling algorithm and having a point cloud with evenly distributed points. The raw AHN3
point cloud does not have a consistent point density. Thus, some of the local spherical neighbourhoods
have too many or too few points in them, resulting in features that are not discriminating and informa-
tive enough. However, it goes without saying that a higher point density yields better results, which is
proven by our results. The smaller the voxel size, the more points are used to train the model, and the
better the accuracy of our model. Overall, these results show that, in our case, using a 1 meter voxel size
for the uniform sampling algorithm provides a good trade-off between accuracy and efficiency.
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5.5 Size of the training data

Table 5.5 illustrates how much the overall accuracy, per class IoU, mean IoU, CCI, F1 score, training time,
RAM required and the size of our classification model can be influenced by the size of the training data.
Seven different models have been trained using a different number of training tiles from the AHN3
dataset, 1, 2, 3, 5, 10, 15 and 20 tiles. These correspond to the first 20 best tiles, as shown in table
5.1. The testing data that we used for these experiments are tiles 21 to 30. The default hyperparameters
were used to train the models (see Table 5.3). A uniform sampling algorithm with 1 meter voxel size has
been applied to the tiles before extracting their eigen features for 3 different spherical neighbourhoods
with radii 2, 3 and 4 meters.

Table 5.5: Comparison of the performance of Random Forest models trained using a different number
of training tiles from the AHN3 dataset.

IoU (%)
no. of

training
tiles

OA (%) mean other building ground CCI (%) F1
score

no. of points
in the

training data

training time
(minutes)

RAM
(GB)

model size
(KB)

1 87.21 75.26 76.63 66.93 82.21 99.47 0.87 662,595 6.74 1.1 569,095
2 88.42 77.93 78.39 72.47 82.93 99.77 0.88 1,178,285 15.48 1.9 1,154,913
3 88.82 78.59 78.67 73.53 83.57 99.79 0.89 1,777,401 25.82 2.9 1,618,543
5 88.54 78.05 78.71 72.28 83.17 99.74 0.89 2,976,008 30.15 4.4 2,668,248
10 89.27 79.17 78.99 73.92 84.58 99.76 0.89 6,644,360 80.04 9 5,496,317
15 89.34 79.41 79.02 74.56 84.64 99.79 0.89 10,159,167 96.38 13.8 8,378,902
20 89.27 79.36 79.24 74.54 84.32 99.80 0.89 13,290,986 129 24.4 11,704,444

Figure 5.7: Mean IoU vs the number of tiles used during the training process.

We observe that the larger the size of the training data, the better the performance of the classification
model. However, after 2 tiles, the difference is not significant. We also notice that the model trained with
5 tiles performed worse than the model trained with 3 tiles and the model trained with 20 tiles from the
one trained with 15 tiles. This also shows that the quality of the training data is crucial since the feature
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diversity score of the tiles used to train the model was slowly decreasing. We started from the best and
added the next best each time. We also observe that the less training data, the less the training time,
the required amount of RAM and the size of the resulting trained model. From the analysis of these
results, we can say that, in our case, using only 3 training tiles that are equal to an area of 0.75 squared
kilometres is enough to provide us with a decent performing model, and it is more efficient.

5.6 Handcrafted features

For all of the models that we tested, their calculated feature importances, based on the mean decrease
in impurity, show that with a great difference, the most important features are the two height features,
Znormalized and Zbelow. We trained and tested models using both of them or only one of them. Based
on these models’ results, we decided that it is best to use both during the training process. As for the
eigen-based features, their importance can vary depending on the sizes of the radii of the local spher-
ical neighbourhoods from which we extract them. For example, omnvivariance is a significant feature
when spherical neighbourhoods with large radii are used. In the case of spherical neighbourhoods with
small radii, however, it can reduce the performance of a model if it is included in the feature vector
of the points. It is also worth mentioning that another eigen-based feature was computed during our
initial experiments. This feature is eigentropy, but we decided to discard it since it always lowered the
performance of our model when we included it.

This section presents the results of our experiments with the handcrafted features and local neighbour-
hoods of the 3D points. For these experiments, the models were trained using only the first two tiles
from table 5.1. The testing data were tiles 11 to 20. The default hyperparameters were used to train the
models (see Table 5.3). A uniform sampling algorithm with 1 meter voxel size has been applied to the
tiles before extracting their eigen features from 3 different spherical neighbourhoods with radii 2, 3 and
4 meters. Table 5.6 shows the classification results of our experiments with the models we trained with
a different number of features and multi-scale representations. Table 5.7 shows the classification results
of our experiments with the models we trained with different numbers of features that were gradually
increased. We started from a base model trained only with 3 features, the 2 height features and den-
sity, and each time one of the eigen features was added to the training process to test its influence. For
these experiments, the features that we used were extracted from the spherical neighbourhoods of the
3D points with radius 2 meters.

Table 5.6: Comparison of the performance of models trained with different number of features derived
from different spherical neighborhoods. To train and test all seven models only 8.4 GB of RAM were
required.

IoU (%)

no. of
features

radii of
spherical

neighborhoods
OA (%) mean other building ground CCI (%) F1 score training time

(minutes)

10 2 86.34 72.74 72.49 61.95 83.77 98.91 0.86 7.17
10 3 86.91 74.39 73.19 66.92 83.06 99.41 0.87 5.62
10 4 87.16 75.29 72.85 70.28 82.72 99.62 0.87 5.41
17 2, 3 88.91 77.701 76.69 70.64 85.78 99.50 0.89 7.54
17 2, 4 89.68 79.29 78.13 73.50 86.23 99.65 0.90 7.46
17 3, 4 89.13 78.45 76.47 73.40 85.49 99.66 0.89 7.31
24 2, 3, 4 90.16 80.12 78.69 74.71 86.96 99.68 0.90 7.75

Looking at table,5.6 we notice that the more features we use, the higher the accuracy of our model.
Also, the largest radius provided the most informative and discriminating features since it has the best
results. However, the difference with the other radii is not very significant. Multi-scale representa-
tions performed better than single-scale representations, and their training time was not considerably
higher.
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Figure 5.8: Feature importances calculated based on the mean decrease in impurity.

Figure 5.8 presents the feature importances of the model trained with 24 features, the 2 height features,
density and the seven eigen features from 3 different spherical neighbourhoods of radii 2, 3 and 4. The
importances are calculated based on the mean decrease in impurity within each tree. Feature Zbelow has
the highest score followed by Znormalized and Surface Variation for the spherical neighbourhood with a
radius of 4 meters. Linearity has the lowest scores.

Table 5.7: Comparison of the performance of models trained with a different number of features derived
from a spherical neighbourhood of 2 meters. The first model was trained using only 3 features, the 2
height features and density, and each time one of the eigen features was added to the calculation. We
removed one of the 2 height features for the last two models to check if it is worth keeping both.

IoU (%)
no. of features features used for training OA (%) mean other building ground CCI (%) F1 score

3 Znormalized, Zbelow, Density 75.58 56.97 54.17 43.04 73.67 97.18 0.76

4 Znormalized, Zbelow, Density,
Omnivariance 80.68 64.23 63.49 51.72 77.49 98.27 0.81

5 Znormalized, Zbelow, Density,
Omnivariance, Anisotropy 82.78 67.45 66.93 55.90 79.51 98.62 0.83

6 Znormalized, Zbelow, Density,
Omnivariance, Anisotropy, Planarity 84.96 70.84 70.49 60.11 81.93 98.88 0.85

7 Znormalized, Zbelow, Density,
Omnivariance, Anisotropy, Planarity, Linearity 85.26 71.33 70.73 60.92 82.35 98.92 0.85

8
Znormalized, Zbelow, Density,

Omnivariance, Anisotropy, Planarity,
Linearity, Surface Variation

85.49 71.72 70.87 61.61 82.67 98.96 0.85

9
Znormalized, Zbelow, Density,

Omnivariance, Anisotropy, Planarity,
Linearity, Surface Variation, Sphericity

85.06 71.00 70.58 60.36 82.08 98.89 0.85

10

Znormalized, Zbelow, Density,
Omnivariance, Anisotropy, Planarity,

Linearity, Surface Variation,
Sphericity, Verticality

86.29 72.64 72.48 61.75 83.69 98.90 0.86

9
Zbelow, Density, Omnivariance,

Anisotropy, Planarity, Linearity,
Surface Variation, Sphericity, Verticality

86.04 72.04 71.62 60.79 83.72 98.78 0.86

9
Znormalized, Density, Omnivariance,

Anisotropy, Planarity, Linearity,
Surface Variation, Sphericity, Verticality

86.32 72.74 72.25 62.24 83.73 98.94 0.86

Looking at table 5.7, we notice that the more features we use, the higher the accuracy of our model. All
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eigen features have important information to offer and increased the performance of the model. The
results of the last 2 models show that keeping both height features does not increase the accuracy of our
model. The performance of the model that used only the Znormalized feature was a bit better.

5.7 Testing with other datasets

In the following subsections, we presented the classification results of the three different Random Forest
models that have been trained and tested using the AHN3, AHN4 and DALES datasets as training and
testing data. All possible combinations of training and testing datasets have been implemented to test
the effect that different datasets can have on our classification model. As far as the parameters of our 3D
point cloud analysis algorithms are concerned, we used a 1 meter voxel size for our uniform sampling
algorithm, and features have been extracted from three different spherical neighbourhoods with radii
2, 3 and 4 meters. For the models trained with the AHN3 and AHN4 datasets, only the first two tiles
from tables 5.1 and 5.2. Tiles 21-30 were used as testing data. The default hyperparameters were used
to train the models (see Table 5.3). We calculated all the classification metrics mentioned in the Chapter
3 Methodology as well as the confusion matrices.

Overall, we observe that our models perform worse when tested with different datasets than those
used to train them. The model trained with the DALES dataset provided the best classification results.
However, the training data of the DALES dataset is larger, and that is something that can influence the
accuracy of a model. If we look at the results individually, it performed worse when tested with the
other two datasets. The two models trained with the same AHN3 and AHN4 datasets have almost the
same results. This shows that the performance of a model is influenced by the differences between the
environments of the training and testing data.

5.7.1 Model trained with the AHN3 dataset

The following figures and table provide the classification results for the model trained the with AHN3
dataset. The mean IoU is almost the same when tested with the AHN3 and AHN4 datasets which is a
good sign that indicates that our model is stable. The model performed worse for the DALES dataset.
The building and ground class IoU dropped considerably in that case. This is probably because the
DALES dataset represents a different environment with buildings that can not be found in the AHN3
and AHN4 datasets. Looking at the confusion matrix, we notice that most misclassified building points
were classified as other points. The F1 scores of the three results, however, are comparable.

Table 5.8: Evaluation metrics of the Random Forest model trained with the AHN3 dataset and tested
with all other datasets.

IoU (%)
Testing
dataset OA (%) mean other building ground CCI (%) F1 score

AHN3 88.42 77.93 78.39 72.47 82.93 99.77 0.88
AHN4 88.16 77.27 72.42 75.44 83.94 99.69 0.88
DALES 80.31 64.51 70.58 51.43 71.53 98.67 0.81
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Figure 5.9: Confusion matrix of the classification result of the Random Forest model that was trained
with the AHN3 dataset and tested with the AHN3 dataset.

Figure 5.10: Confusion matrix of the classification result of the Random Forest model that was trained
with the AHN3 dataset and tested with the AHN4 dataset.
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Figure 5.11: Confusion matrix of the classification result of the Random Forest model that was trained
with the AHN3 dataset and tested with the DALES dataset.

5.7.2 Model trained with the AHN4 dataset

The following figures and table provide the classification results for the model trained with the AHN4
dataset. Similarly to the model trained with the AHN3 dataset, the mean IoU is almost the same when
tested with the AHN3 and AHN4 datasets, which is another good sign that our model is stable. The
model performed worse for the DALES dataset. The building and ground class IoU dropped consider-
ably in that case, probably for the same reason we mentioned for the model tested with the AHN3 dataset
since the two datasets are almost the same. The confusion matrix shows that most of the misclassified
building points were classified as other. The F1 scores of the three results are comparable, in this case as
well.

Table 5.9: Evaluation metrics of the Random Forest model trained with the AHN4 dataset and tested
with all other datasets.

IoU (%)
Testing
dataset OA (%) mean other building ground CCI (%) F1 score

AHN3 88.39 77.88 78.37 72.38 82.89 99.76 0.88
AHN4 88.16 77.27 72.44 75.44 83.92 99.69 0.88
DALES 80.38 64.61 70.59 51.59 71.65 98.69 0.81
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Figure 5.12: Confusion matrix of the classification result of the Random Forest model that was trained
with the AHN4 dataset and tested with the AHN3 dataset.

Figure 5.13: Confusion matrix of the classification result of the Random Forest model that was trained
with the AHN4 dataset and tested with the AHN4 dataset.
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Figure 5.14: Confusion matrix of the classification result of the Random Forest model that was trained
with the AHN4 dataset and tested with the DALES dataset.

5.7.3 Model trained with the DALES dataset

The following figures and table provide the classification results for the model trained with the DALES
dataset. The mean IoU, in this case, is similar for all testing data. The model performed better when
tested with the DALES dataset. As for the other two datasets, their mean IoU dropped slightly compared
to the previous two cases. The confusion matrices show that the model mostly misclassifies other points
as ground. The F1 scores of the three results are very close. A possible reason why this model performed
better than the other two is that the DALES training dataset is larger. However, the other two models
were a lot more efficient since they were trained with a point cloud covering an area of 0.5 squared
kilometres. As for the DALES dataset, each tile is equal to an area of 0.5 squared kilometres, and it
has 29 training tiles in total. The previous experiments we made showed us how much the size of the
training data could influence the performance of our model. It is a good trade-off between accuracy,
stability and efficiency.

Table 5.10: Evaluation metrics of the Random Forest model that was trained with the DALES dataset
and tested with all other datasets.

IoU (%)
Testing
dataset OA (%) mean other building ground CCI (%) F1 score

AHN3 86.58 74.53 75.93 67.12 80.56 99.58 0.86
AHN4 86.11 73.49 69.80 69.37 81.29 99.59 0.86
DALES 89.75 79.41 79.62 73.07 85.55 99.67 0.90
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Figure 5.15: Confusion matrix of the classification result of the Random Forest model that was trained
with the DALES dataset and tested with the AHN3 dataset.

Figure 5.16: Confusion matrix of the classification result of the Random Forest model that was trained
with the DALES dataset and tested with the AHN4 dataset.
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Figure 5.17: Confusion matrix of the classification result of the Random Forest model that was trained
with the DALES dataset and tested with the DALES dataset.

5.8 Final model

Based on the observation we made from all of the experiments that we conducted, our final model was
trained using 13 features, the two height features, Znormalized and Zbelow, density, Verticality, Surface
Variation and Planarity from three different spherical neighbourhoods with radii 2, 3 and 4 metes and
Linearity from a spherical neighbourhood with radius 4 meters. In some of the previously mentioned
experiments, the Znormalized feature seems better than the Zbelow feature, while in others, the opposite. In
the end, we decided to keep both since it does not increase the training time and the required amount
of RAM considerably. Moreover, we also trained models without one of the 2 features, and their results
were worse than the model that both of them. The hyperparameters that were used to train the model
are:n estimators = 100, criterion = Gini, max depth = 15, min samples split = 2, min samples lea f = 1,
max f eatures = sqrt, bootstrap = True and oob score = True. A uniform sampling algorithm with
a voxel size of 1 meter was applied to the training and testing data. The best three tiles from tables
5.1 were used as training data while the rest, 4 to 40, were used as testing data. Training of model
lasted 12.45 minutes and required 1.1 GB of RAM. The final model has a size of 229,494 kilobytes (KB).
However, we understand that these numbers can vary depending on the implementation. In our case,
parallel computing was not implemented to speed up the data analysis process due to some difficulties
and limitations we faced with some Python packages and the HPC cluster of TU Delft.

Our final model was first trained using 24 different features. These are the eigen-based features we pre-
viously mentioned in Chapter 3 Methodology from three different spherical neighbourhoods with radii
2, 3 and 4 metes, the two height features, Znormalized and Zbelow, and density. However, we decided that
it was best to test each feature’s effect on our final model now that different training and testing data are
used and the hyperparameters were optimized. The mean permutation importances for 10 permuta-
tions were calculated for all 24 features as shown in Figure 5.18 while Table 5.11 provides the evaluation
metrics of the models trained and tested using different numbers of features. Each time the feature with
the lowest permutation importance score was excluded from the feature vector of the points, and the
model was trained and tested again. Permutation importances are more costly to calculate. However,
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they overcome limitations of the impurity-based feature importances, and thus, they are more reliable.
This approach is an iterative process for every feature used to train the model. To put it simply, for
each feature, it is observed how random re-shuffling (permutations) of its values influences the perfor-
mance of the model. From the results of Table 5.11 we see that our model actually performs better when
features with low permutation importances are discarded. The model using only 13 features yield the
highest mean IoU and building IoU. The performance of our model started to decrease when less than 13
features were used to train it.

Overall, our final model managed to achieve an F1 score of 0.90 and a mean IoU score of 0.79 across all
testing tiles. Table 5.12 provides the overall evaluation metrics of the final model when tested for all the
tiles of the AHN3 dataset that we clipped, and figure 5.19 shows the confusion matrix of the classification
result for all points in all the 37 tiles. Figure 5.20 presents the 3 tiles used to train our model, tiles
(7,3), (5,5) and (9,0). These 3 tiles cover an area of 0.75 squared kilometres in total, which was enough to
classify accurately the 37 tiles, which are equal to an area of 9.25 squared kilometres. Figure 5.21 presents
the ground truth class labels and predictions for 3 of the tiles with the lowest evaluation metrics, tiles
(4,9), (6,4) and (8,0). Figures 5.22, 5.23 and 5.24 show a closer look at the problematic areas of those 3
tiles, while Figure 5.25 shows some of the most common problems related to buildings that can be found
in the predictions of all of our testing tiles.

Figure 5.18: Permutation importances of the 24 features used to train our final model. Each feature was
permuted 10 times.
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Table 5.11: Evaluation metrics of the models trained with different numbers of features and the optimal
hyperparameters. All 24 features were used to train the first model, and each time, the feature with
the lowest importance score, based on Figure 5.18, was removed and the model was trained and
evaluated again.

IoU (%)
no. of features feature removed OA (%) mean other building ground CCI (%) F1 score

24 - 89.72 79.50 79.88 72.98 85.65 99.66 0.90
23 Linearity (2m) 89.73 79.52 79.91 73.01 85.64 99.67 0.90
22 Omnivariance (2m) 89.75 79.57 79.94 73.09 85.67 99.67 0.90
21 Omnivariance (4m) 89.76 79.60 79.94 73.18 85.67 99.67 0.90
20 Anisotropy (2m) 89.79 79.65 80.01 73.26 85.69 99.68 0.90
19 Linearity (3m) 89.78 79.65 80.01 73.27 85.68 99.68 0.90
18 Omnivariance (3m) 89.80 79.69 80.03 73.36 85.69 99.68 0.90
17 Sphericity (2m) 89.81 79.72 80.08 73.40 85.69 99.68 0.90
16 Anisotropy (3m) 89.82 79.73 80.11 73.41 85.69 99.68 0.90
15 Sphericity (4m) 89.84 79.74 80.08 73.40 85.75 99.68 0.90
14 Anisotropy (4m) 89.81 79.72 80.02 73.40 85.73 99.68 0.90
13 Sphericity (3m) 89.83 79.75 80.08 73.44 85.72 99.68 0.90
12 Linearity (4m) 89.78 79.68 80.08 73.34 85.62 99.68 0.90
11 Planarity (2m) 89.74 79.61 79.99 73.26 85.58 99.68 0.90
10 Planarity (3m) 89.64 79.43 79.87 73.00 85.42 99.68 0.90
9 Planarity (4m) 89.26 78.69 79.22 71.79 85.07 99.62 0.89
8 Surface Variation (2m) 89.16 78.49 78.58 71.68 85.20 99.61 0.89
7 Surface Variation (3m) 88.80 77.78 77.79 70.61 84.93 99.56 0.89
6 Surface Variation (4m) 86.71 73.51 73.27 62.90 84.37 98.96 0.86
5 Verticality (3m) 85.93 72.11 72.18 60.62 83.54 98.79 0.86
4 Verticality (2m) 82.87 67.21 67.08 54.30 80.25 98.33 0.86

Figure 5.19: Confusion matrix of the classification result of our final Random Forest model.
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Table 5.12: Overview of the evaluation metrics of our final model for all AHN3 tiles.
IoU (%)

no. tile OA (%) mean other building ground CCI (%) F1 score
1 (7,3) - - - - - - -
2 (5,5) - - - - - - -
3 (9,0) - - - - - - -
4 (7,2) 87.67 75.96 76.19 69.56 82.14 99.65 0.88
5 (5,4) 92.18 81.34 85.52 68.56 89.95 98.96 0.92
6 (3,2) 92.15 61.55 87.35 9.60 87.70 78.07 0.93
7 (9,1) 90.93 81.04 81.78 75.08 86.27 99.74 0.91
8 (8,0) 87.80 56.43 81.16 5.13 82.99 76.67 0.90
9 (9,9) 92.32 85.44 83.87 84.07 88.38 99.95 0.92
10 (8,3) 89.85 76.78 84.82 59.86 85.66 98.14 0.90
11 (1,2) 94.40 87.31 83.91 84.83 93.18 99.80 0.94
12 (7,11) 89.92 78.90 66.31 81.13 89.26 98.86 0.90
13 (4,4) 92.92 74.37 88.92 44.43 89.75 93.97 0.93
14 (0,0) 90.43 78.88 76.89 71.87 87.88 99.43 0.90
15 (6,6) 90.78 80.79 80.46 74.22 87.68 99.63 0.91
16 (9,10) 88.96 79.19 72.12 81.87 83.59 99.68 0.89
17 (7,4) 86.74 74.65 75.94 65.98 82.03 99.41 0.86
18 (0,2) 88.06 75.13 81.17 60.11 84.12 98.48 0.88
19 (6,10) 89.00 79.62 78.76 77.01 83.11 99.92 0.89
20 (9,8) 86.62 71.96 71.34 60.45 84.08 98.70 0.87
21 (8,2) 91.49 78.96 88.04 62.98 85.86 98.37 0.91
22 (4,6) 90.03 81.19 75.79 81.35 86.42 99.77 0.90
23 (7,0) 85.52 55.49 77.27 8.24 80.97 79.84 0.87
24 (6,8) 90.68 82.80 78.94 83.03 86.43 99.89 0.91
25 (9,6) 93.73 84.39 89.47 73.77 89.93 99.33 0.94
26 (9,7) 90.89 82.65 81.35 80.32 86.27 99.92 0.91
27 (3,5) 90.16 81.13 72.31 84.67 86.40 99.52 0.90
28 (6,4) 84.33 67.92 67.72 54.20 81.85 98.12 0.84
29 (5,8) 89.30 79.41 70.02 82.66 85.55 99.43 0.89
30 (8,1) 81.56 61.39 72.92 38.34 72.92 95.67 0.82
31 (5,9) 90.97 83.15 78.67 83.33 87.44 99.85 0.91
32 (5,7) 89.30 79.50 74.22 77.20 87.10 99.62 0.89
33 (7,6) 90.18 68.58 87.25 33.76 84.73 91.14 0.90
34 (1,3) 91.03 80.41 69.43 83.49 88.32 99.20 0.91
35 (8,9) 91.96 83.75 74.10 87.89 89.25 99.44 0.92
36 (3,4) 91.95 81.61 86.28 71.13 87.43 99.32 0.92
37 (8,6) 88.40 76.06 83.13 62.50 82.54 98.79 0.88
38 (4,9) 85.56 73.40 66.07 72.73 81.42 99.46 0.86
39 (4,5) 89.66 80.72 76.24 80.17 85.76 99.81 0.90
40 (5,10) 89.92 81.06 81.10 76.52 85.54 99.83 0.90

89.82 79.75 80.09 73.47 85.69 99.69 0.90
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(a) tile (7,3) - class labels (b) tile (7,3) - Znormalized

(c) tile (5,5) - class labels (d) tile (5,5) - Znormalized

(e) tile (9,0) - class labels (f) tile (9,0) - Znormalized

Figure 5.20: Visualization of the class labels and Znormalized features of the 3 best tiles used as training
data for our final model.
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(a) tile (4,9) ground truth (b) tile (4,9) predictions

(c) tile (6,4) ground truth (d) tile (6,4) predictions

(e) tile (8,0) ground truth (f) tile (8,0) predictions

Figure 5.21: Visualization of the ground truth values and predictions for some of the tiles with the lowest
evaluation metrics.
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Figure 5.22: Zoom in at predictions of tile (4,9).

Figure 5.23: Zoom in at predictions of tile (6,4).

67



5 Results and discussion

Figure 5.24: Zoom in at predictions of tile (8,0).

The problematic areas of the tiles (4,9), (6,4) and (8,0) that are shown in the figures 5.22, 5.23 and 5.24
seem to be caused by the wrong values of the height features of their points. The heigh features are the
most important features for our model, and they influence its performance a lot. We observe that tall
objects like cranes are misclassified as buildings. The model is not able to distinguish between them.
Not only that, they influence the height features of their surrounding points as well. For example, in tile
(4,9) and (6,4), cranes are misclassified as buildings. Moreover, a circle of misclassified ground points
as buildings is visible around the crane in tile (6,4). It is clear that this has to do something with the
cylindrical neighbourhood of 50 meters used to extract the heigh features of the points. We suspect that
because points with very high Z values are close to those ground points, their Z features have higher
values than the other ground points around them. Thus, the model decides to classify them as buildings
since this is the main characteristic that distinguishes the ground from the buildings. As for the tile (8,0),
we see that the ground changes to higher altitude sharply, and for similar reasons, some ground points
are misclassified as buildings. Using a higher radius for our cylindrical neighbourhoods or additional
features and training data that would help the model distinguish buildings from the ground better could
probably yield better results for such problematic areas.

Figure 5.25 presents three more cases where buildings were misclassified as ground and other. As far
as the problems related to the other class are concerned, the objects that mostly cause errors to the
predictions of our model are trees. In case 1, we see that very short parts of buildings are misclassified
as ground. In case 2, we observe how very small buildings that are very close to trees are misclassified
as other. Finally, the problem shown in case 3 seems to be related to the height, surface variation and
planarity values of the points. The flat roof of a building is misclassified as ground even though its
corners are correctly classified as building.
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(a) Case 1: ground truth (left) and predicted (right) labels. Low parts of a tall building misclassified as ground and
other.

(b) Case 2: ground truth (left) and predicted (right) labels. Small building parts under vegetation, that are separate
from the main tall building part, misclassified as ground and other.

(c) Case 3: ground truth (left) and predicted (right) labels. Flat roof surface of a building misclassified as ground
even though the edges of the building are correctly classified.

Figure 5.25: Problems related to classifying buildings.
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5.9 Comparison with Deep Learning algorithms on the DALES
dataset

To compare the performance of our proposed methodology with other deep learning models, we trained
and tested a Random Forest model with the DALES dataset using all the available classes. The compar-
ison was made based on the results provided in the work of Varney et al. [2020]. Table 5.13 provides
the OA, mean IoU, per class IoU and CCI for the KPConv [Thomas et al., 2019], PointNet++ [Qi et al.,
2017b], ConvPoint [Boulch, 2020], SuperPoint [Landrieu and Simonovsky, 2018], PointCNN [Li et al.,
2018] and ShellNet [Zhang et al., 2019] deep learning algorithms and for our simpler Random Forest
machine learning algorithm. The same hyperparameters, features and voxel size for our uniform sam-
pling algorithm were used with our final model. Figure 5.26 provides an Algorithm Performance Map
across the six tested benchmark deep learning algorithms we previously mentioned and our Random
Forest Classifier.

Table 5.13: Overview of different deep learning methods on the DALES dataset as presented by Varney
et al. [2020] compared to our Random Forest Classifier. The overall accuracy, mean IoU, per class
IoU and CCI for each category are reported. KPConv outperforms all other methods on the DALES
dataset. Our proposed method has the lowest mean IoU score.

IoU

Method OA mean ground buildings cars trucks poles power
lines fences vegetation CCI

KPConv 0.978 0.811 0.971 0.966 0.853 0.419 0.75 0.955 0.635 0.941 0.951
PointNet++ 0.957 0.683 0.941 0.891 0.754 0.303 0.4 0.799 0.462 0.912 0.905
ConvPoint 0.972 0.674 0.969 0.963 0.755 0.217 0.403 0.867 0.296 0.919 0.852
SuperPoint 0.955 0.606 0.947 0.934 0.629 0.187 0.285 0.652 0.336 0.879 0.846
PointCNN 0.972 0.584 0.975 0.957 0.406 0.048 0.576 0.267 0.526 0.917 0.798
ShellNet 0.964 0.574 0.96 0.954 0.322 0.396 0.2 0.274 0.6 0.884 0.822

RFC 0.890 0.451 0.860 0.720 0.059 0.000 0.202 0.817 0.149 0.799 0.721

Figure 5.26: Algorithm Performance Map across six tested benchmark algorithms and our Random For-
est Classifier. Axis CCI represents the uniformity of the algorithms while axis Mean IoU their correct-
ness.
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The results show that deep learning methods perform better than our model. The only benefit of our
approach is that it is simpler and easier to understand, and possibly more efficient. It required 14.5 GB
of RAM to train the model, and the training process lasted 121.84 minutes. The final model has a size
of 2,278,256 KB. It is also worth noting that the difference is not that significant for some of the classes
compared to some of the deep learning methods. In fact, our model performed better than ShellNet,
PoinCNN, SuperPoint, and PointNet++ for the power lines. In general, the IoU for all classes besides
ground, building and vegetation is very low. Our model was unable to distinguish mostly trucks, cars
and fences. The difference in OA is less than 10% compared to KPConv that outperformed all the other
algorithms. However, the mean IoU is a lot less, almost half of KPConv.

5.10 Additional experiments with the MLP algorithm on the AHN3
dataset

The scikit-learn Python library [Pedregosa et al., 2011] provides modules that include multiple other ma-
chine learning and deep learning algorithms for classification tasks, such as the MLP supervised learning
algorithm. Adjusting our code to use the MLP algorithm instead of the Random Forest classifier was very
easy and simple, and thus, some additional smaller experiments were made to test its performance on
the AHN3 dataset. The same features and training and testing data were used for these experiments as
the ones used for our final Random Forest model (see section 5.8). As far as the hyperparameters of
the MLP algorithm are concerned, we experimented with seven of them and tried to identify their op-
timal values in order to improve the performance of the algorithm. These seven hyperparameters are
the learning rate schedule for weight updates, the solver for weight optimization, the activation func-
tion for the hidden layers, the maximum number of iterations the solver can do if convergence is not
reached, the number of neurons in the hidden layers, the size of minibatches for stochastic optimizers
and the number of hidden layers. The following figures present the results of the grid search that was
conducted on these seven hyperparameters. Multiple models were trained and tested for each hyperpa-
rameter, changing their values each time while using the default values for the rest as indicated in Table
5.14.

Table 5.14: Default values of the hyperparameters of the MLP algorithm.
Hyperparameter Value

learning rate constant
solver adam

activation relu
max iter 200

hidden layer sizes 100
batch size auto

no. of hidden layers 1
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Figure 5.27: F1 score vs the learning rate specification.

Figure 5.27 shows that the model performs better when an adaptive learning rate is used. In this case,
adaptive means that if the training loss does not decrease, the learning rate is reduced.

Figure 5.28: F1 score vs the solver function.

Figure 5.28 shows that the model performs better when adam is used as the solver for weight optimiza-
tion. Adam refers to a stochastic gradient-based optimizer proposed by Kingma and Ba [2014].
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Figure 5.29: F1 score vs the activation function.

Figure 5.29 shows that the model performs better when the logistic sigmoid activation function is used
that returns f (x) = 1/(1 + exp(−x)).

Figure 5.30: F1 score vs the maximum number of iterations.

In Figure 5.30 we observe that the model performs better when the maximum number of iterations the
solver iterates if convergence is not reached, is 100.
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Figure 5.31: F1 score vs the number of neurons in the hidden layer.

In Figure 5.31 we observe that the model performs better when the number of neurons in the hidden
layer is 150.

Figure 5.32: F1 score vs the batch size.

In Figure 5.32 we observe that the optimal batch size is 100.
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Figure 5.33: F1 score vs the number of hidden layers in the MLP.

In Figure 5.33 we observe that the optimal number of hidden layers to have is 2. Having more than that
leads to overfitting. The F1 score of training data increases considerably while the F1 score of the testing
data starts to decrease.

Table 5.15: Overview of the Random Forest classifier and MLP on the AHN3 dataset.
IoU (%)

method OA (%) mean other building ground CCI (%) F1 score training time
(minutes)

RAM
(GB)

model size
(KB)

RFC 89.82 79.75 80.09 73.47 85.69 99.69 0.90 12.45 1.1 229,494
MLP 88.25 76.79 79.58 67.70 83.10 99.44 0.88 72.26 0.79 598

Table 5.15 presents the evaluation metrics of the final Random Forest and MLP models when trained and
tested with the best 40 AHN3 tiles and with the optimal hyperparameter values. The results provided in
Table 5.15 indicate that the Random Forest classifier performed slightly better than the MLP algorithm.
The per-class IoU is similar for both methods. The IoU of the ground class was the highest, followed by
the IoU of the other class and finally the IoU of the building class. What is interesting is the difference
between their computation costs and time and the size of their resulting trained models. The training
time of the Random Forest classifier was significantly lower than the MLP. However, the MLP algorithm
required less GB of RAM to train the model, and the size of its resulting trained model is much smaller.
Overall, the Random Forest classifier performed better and was more efficient in terms of computation
time, while the MLP was more efficient in terms of computation cost.

5.11 Potential application

Our final model has classified some of our testing tiles very accurately. Tile (1,2) is one of those tiles with
an F1 score of 0.94 (see section 5.8 Table 5.12 no. 11). In this section, we illustrate the LOD1 3D city models
that were created for tile (1,2) (Figure 5.34) using both the ground truth and predicted class labels of its
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points, and we compare them. To create the models of the buildings, their polygon footprints were used.
They were downloaded via a WFS service from the web service of 3D BAG1 by the 3D geoinformation
research group of TU Delft. Polygons that intersect the boundaries of the tile were not used. The ground
surface was created using only the ground points from the classified point cloud. A uniform sampling
algorithm was applied on the first with a voxel size of 5 meters. Table 5.16 provides an overview for
the roof and ground surface heights that were calculated from the ground truth and predicted classified
point clouds for 40 buildings found in tile (1,2) as well as for those extracted from the polygons derived
from the web service of 3D BAG.

Looking at the height values of Table 5.16 we see that the values that we calculated for the roof surfaces
of the buildings from our predicted classified point cloud are, in most cases, almost the same as the other
two. As for the heights calculated for the ground surfaces of the buildings, we notice a few centimetres
difference between the three values. This is also because we used a different method to extract those
heights. In our case, we considered ground points as well because, in many cases, our model classifies
low building facade points as ground. Consequently, considering only the building points resulted into
very high ground surface values. Finally, looking at Figures 5.34a and 5.34b we see that the misclassified
ground points create a lot of unwanted spikes on our ground surface.

(a) tile (1,2) - ground truth (b) tile (1,2) - predicted

Figure 5.34: Visualization of the ground truth and predicted class labels of the testing tile (1,2).

1https://3dbag.nl/en/viewer

76

https://3dbag.nl/en/viewer


5.11 Potential application

Table 5.16: Comparison of the ground truth and predicted building roof and ground surface heights
derived from the AHN3 point cloud with the heights stored in the attributes of the polygons derived
from the web service of 3D BAG by the 3D geoinformation research group of TU Delft. h dak 50p
and h dak min are elevations above sea level (NAP) at roof level, calculated as the median and min-
imum of all elevation points on the corresponding roof part. Ground truth and predicted building
heights were calculated as the median of all building elevation points inside the corresponding poly-
gon. Ground truth and predicted ground heights were calculated as the 10th percentile of all ground
elevation points inside the buffered area by 0.5 meters of the corresponding polygon.

no. building roof surface building ground surface
ground truth predicted h dak 50p ground truth predicted h dak min

1 10.782 10.783 10.784 -0.654 -0.661 -0.640
2 10.744 10.744 10.742 -0.798 -0.796 -0.822
3 10.813 10.813 10.816 -0.757 -0.762 -0.735
4 10.888 10.887 10.888 -0.729 -0.697 -0.728
5 1.854 1.851 1.858 -0.752 -0.701 -0.817
6 24.627 24.636 24.632 -0.780 -0.739 -0.788
7 24.738 24.738 24.745 -0.670 -0.656 -0.680
8 1.744 1.745 1.743 -0.823 -0.807 1.681
9 10.813 10.813 10.820 -0.771 -0.774 -0.789

10 1.824 1.821 1.801 -0.714 -0.713 -0.700
11 10.869 10.868 10.871 -0.905 -0.899 -0.898
12 42.518 43.919 44.106 -0.915 -0.913 -0.964
13 1.861 1.854 1.862 -0.693 -0.672 1.798
14 10.895 10.895 10.894 -0.729 -0.731 -0.741
15 1.846 1.840 1.845 -0.697 -0.636 -0.675
16 1.809 1.814 1.798 -0.711 -0.711 -0.626
17 10.866 10.866 10.868 -0.621 -0.618 -0.610
18 10.747 10.747 10.748 -0.690 -0.685 -0.655
19 13.686 13.683 13.691 -0.581 -0.578 -0.550
20 1.845 1.842 1.846 -0.684 -0.622 -0.664
21 24.609 24.612 24.614 -0.853 -0.786 -0.823
22 10.808 10.807 10.807 -0.868 -0.868 -0.955
23 45.030 45.033 45.048 -0.634 -0.634 -0.633
24 10.746 10.746 10.748 -0.675 -0.651 -0.645
25 10.909 10.909 10.908 -0.667 -0.641 -0.669
26 1.401 1.525 1.408 -0.788 -0.719 -0.843
27 10.918 10.917 10.918 -0.809 -0.809 -0.743
28 1.849 1.885 1.820 -0.714 -0.707 -0.707
29 1.733 1.733 1.733 -0.888 -0.876 -0.865
30 10.889 10.889 10.893 -0.705 -0.674 -0.779
31 45.053 45.065 45.054 -0.630 -0.630 -0.584
32 10.888 10.887 10.884 -0.591 -0.589 10.793
33 10.818 10.818 10.818 -0.898 -0.887 -0.906
34 10.768 10.768 10.768 -0.799 -0.795 -0.839
35 1.745 1.748 1.745 -0.818 -0.800 -0.785
36 10.779 10.779 10.782 -0.713 -0.714 -0.716
37 1.746 1.746 1.748 -0.821 -0.797 1.685
38 10.764 10.765 10.767 -0.682 -0.679 -0.680
39 10.808 10.808 10.808 -0.906 -0.894 -0.877
40 1.842 1.846 1.843 -0.686 -0.642 -0.616
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Figures 5.34a and 5.34b present the resulting LOD1 3D city models. The two models were stored in
CityJSON format and their geometry structure was validated using the val3dity2 and the ”validate”
function of the cjio3 Python package.

Figure 5.35: LOD1 3D city model derived from the ground truth classified point cloud.

Figure 5.36: LOD1 3D city model derived from the predicted classified point cloud.

2https://github.com/tudelft3d/val3dity
3https://github.com/cityjson/cjio
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6 Conclusions

In this final chapter, we review the proposed methodology and the research questions of this graduation
project to assess the degree in which they have been addressed and make some conclusions. We also
recommend some future work with respect to the limitations of our proposed methodology and discuss
a potential application of our work.

6.1 Research overview

This thesis study proposes an automatic approach to accurately assign a class label to the 3D points of
point cloud datasets. With our proposed methodology, we managed to train a Random Forest classifica-
tion model that classifies points into three classes, namely other, building and ground, and that achieved
a mean IoU of 0.79 and an F1 score of 0.90 when train and tested with the AHN3 dataset. Our model per-
formed worse on the DALES dataset than other deep learning models we mentioned in the previous
chapter. However, its results are comparable, considering its simplicity. Moreover, in some cases, the
IoU for the poles and power lines classes was higher than for some of the deep learning methods that we
compared our model with. Finally, our proposed methodology mostly focused on separating building,
ground and other (mostly vegetation) points, and for those classes, it performed decently. The python
scripts of this project can be found in a GitHub repository1.

In Chapter 1: Introduction, six research questions were stated. For each question, a short answer is
provided, based on the degree the question was finally addressed, and they are supported by evidence,
which has been presented in previous chapters.

How well will existing machine learning algorithms perform when classifying a point cloud into three classes,
namely ground, buildings and other, if we train and test them with the AHN3 dataset?

As we have seen from our experiments, with the proper point cloud analysis, the right parameters,
handcrafted features and training data as described in our proposed methodology, an existing machine
learning algorithm like the Random Forest Classifier can achieve an F1 score of 0.9 when trained and
tested with the AHN3 dataset. However, our method suffers from some limitations. In our initial experi-
ments, our method could not distinguish water points and bridges from the ground. Thus, we decided
to include them in the ground class. Moving forward, additional features may be needed to help the
algorithm distinguish better between these classes of points.

What features of the 3D points should be included in the training and testing processes of the machine learning
algorithms to improve their performance?

To achieve models with great performance, one should definitely include features related to the Z co-
ordinate of the 3D points. Both height features that we used in the research were proven important.
Including both of them in our final model increased its accuracy. The eigen-based features we mention
in this thesis can provide important discriminating information about points if calculated for multi-scale
representations. From our experiments, we found that the most important ones were surface variation,
anisotropy and verticality.

How accurately will the trained models perform when tested with datasets other than the AHN3 dataset?

The results of our experiments show that if models are tested with datasets that represent environments
other than the ones they were trained with, their accuracy will decrease. In our experiments, three dif-
ferent datasets were tested, the AHN3, AHN4 and DALES datasets. Since the AHN3 and AHN4 training

1https://github.com/MPa-TUDelft/Semantic-segmentation-of-the-AHN-dataset-with-the-Random-Forest-Classifier
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and testing tiles we used are very similar, the models we trained with one of these datasets did not
underperform when tested with the other. Their evaluation metrics were almost the same. When tested
with a different dataset like the DALES dataset, however, we see from the results of our experiments
that their accuracy dropped a bit. The quality of the training data plays an important role in the sta-
bility of the model. For a model to provide good results, it needs to be applied to a dataset of similar
characteristics.

How large does the training dataset needs to be for the models to perform well?

Using a very large training dataset does not necessarily mean more accuracy. This is what our exper-
iments have proven. At some point, the accuracy does not increase considerably. The quality of the
training data is also important. The tiles with the highest feature diversity scores provided our model
with enough information to classify the rest accurately. Furthermore, using more training data signifi-
cantly increases the time and memory required to train a model. From our final results, we can see that
a training dataset equal to an area of .75 squared kilometres was enough to produce a model that can
achieve an F1 score of 0.9 for a testing dataset equal to an area of 9.25 squared kilometres.

In case the trained models underperform for LiDAR datasets with low point densities, what is the minimum point
cloud density required for the trained models to perform well?

The larger the point density of the training data, the better the performance of a classifier will be. How-
ever, this increases the time and memory required to train a model. From our experiments, we found
that a point cloud with a point density of 1 point per 1 cubic meter can produce efficiently a classification
model that can achieve an F1 score above 0.85 for any input testing dataset with point density equal or
larger to that.

Do deep learning algorithms outperform profoundly simpler machine learning algorithms?

Looking at the results of previous works, deep learning algorithms definitely outperform simpler ma-
chine learning algorithms like the Random Forest Classifier. From our results and the findings of previ-
ous works, we can say that if trained with the right data and handcrafted features, that difference can
be smaller than 10% in terms of overall accuracy.

6.2 Future work

Based on our proposed methodology’s limitations and new questions raised during our experiments,
we would like to recommend some future work in this final section of this thesis. These recommenda-
tions aim to improve our proposed methodology further and incorporate it into applications such as
automatic building reconstruction methods. In the future, we would like to explore and recommend
continuing this research in the following directions:

• Machine Learning algorithms: For this graduation project, we only tested one machine learning
algorithm, the Random Forest Classifier. Other machine learning algorithms, such as Support
Vector Machines and Adaboost, could be tested to compare their performance and efficiency. Also,
we would like to implement an automatic method that selects which features are the best to train
these machine learning models.

• Deep Learning algorithms: Nowadays, new deep learning methods for point cloud classification
are constantly being developed, surpassing each time some of their predecessors in efficiency and
accuracy. In our future work, we would mainly focus on implementing and testing these algo-
rithms. Some attempts have already been made to apply some of these deep learning algorithms
on our datasets, but they were unsuccessful due to their complexity and requirements (i.e. pow-
erful GPU, Linux operating system).

• Point cloud classification labels: As of right now, our method only classifies a point cloud in three
different categories of points, namely ground, building and other. In the future, we would like to
test the ability of our method to semantically segment a point cloud into additional classes like
vehicles, high vegetation, low vegetation and others, that can be found in an urban environment.
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• Point cloud analysis: An additional processing step for further automatization would make our
method much more user-friendly and allow its incorporation in applications, such as urban scene
reconstruction. For example, separating the building points from the rest of the point cloud and
analysing them to further segment them into individual building points would help reconstruct
3D city models. We will consider involving that in our future work.

6.2.1 Further improvement of our proposed methodology

A processing step that could be added to our proposed methodology to potentially improve the perfor-
mance of our resulting classification models is to oversegment our input point cloud into superpoints.
Superpoints are geometrically simple and meaningful shapes found in the input point cloud and consist
of an informative and diverse set of points that are assumed to be semantically homogeneous. Overseg-
mentation of point clouds is the 3D equivalent of oversegmenting images into superpixels, which have
been successfully used to develop supervised superpixels oversegmentation approaches. Superpoints
are exploited by some deep learning architectures to semantically segment point clouds with high accu-
racy [Shi et al., 2021; Landrieu and Simonovsky, 2018; Landrieu and Boussaha, 2019].
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