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ABSTRACT Tensor decomposition methods for signal processing applications are an active area of research. Real
data are often low-rank, noisy, and come in a higher-order format. As such, low-rank tensor approximation methods
that account for the high-order structure of the data are often used for denoising. One way to represent a tensor in a
low-rank form is to decompose the tensor into a set of orthonormal factor matrices and an all-orthogonal core tensor
using a higher-order singular value decomposition. Under noisy measurements, the lower bound for recovering the factor
matrices and the core tensor is unknown. In this paper, we exploit the well-studied constrained Cramér-Rao bound
to calculate a lower bound on the mean squared error of the unbiased estimates of the components of the multilinear
singular value decomposition under additive white Gaussian noise, and we validate our approach through simulations.

INDEX TERMS Cramér-Rao bound, performance analysis and bounds, tensor-based signal processing, higher-order

singular value decomposition, low multilinear rank.

I. INTRODUCTION
The study and application of tensors has been an active area of
research in various domains, ranging from machine learning [1],
biomedical signal processing [2] to large-scale optimization and data
compression [3]. In many applications, the data tensor exhibits low-
rank characteristics and is frequently contaminated by noise [4]. In
this paper, we consider the problem of estimating the components
that make up a low multilinear rank tensor from noisy measurements.
A standard generalization of matrix rank for tensors does not
exist. Many standard matrix rank definitions lead to different notions
of rank for tensors. For example, the rank related to the canonical
polyadic decomposition (CPD) is the smallest number of rank-one
tensors that sum up to the tensor, similar to the smallest number of
rank-one matrices that sum up to a matrix. Border rank generalizes
the description of the set of ranks less than or equal to R matrices
as an algebraic variety [5]. Different matricizations of a tensor will
lower bound the tensor rank, such as grouping the first and the
last two orders of a fourth-order tensor or the Koszul-Young flat-
tenings [6]. The N different matricizations for an Nth-order tensor,
commonly known as the mode-n unfoldings, can be considered as
a generalization of modal ranks, i.e., the column and row rank of

a matrix. The multilinear rank of a tensor is then an N-tuple with
elements defined by the rank of each mode-n unfolding [7]. We focus
on such low multilinear rank tensors, the root of which can be traced
back to the Tucker decomposition [8].

Any tensor can be expressed as the product of a core tensor and a
set of factor matrices, which together constitute the Tucker decom-
position [8]. This decomposition is not unique in its unconstrained
form: the factor matrices can be right-multiplied by any invertible
matrices, provided the core tensor is adjusted accordingly, i.e., mul-
tiplied by their inverse, to yield the same reconstructed tensor. To
resolve this ambiguity, the authors in [7] proposed the higher-order
singular value decomposition (HOSVD) by introducing structural
constraints, specifically, the all-orthogonality of the core tensor and
the orthonormality of the factor matrices. A numerical procedure
for computing the HOSVD components is the multilinear singular
value decomposition (MLSVD). The factor matrices are obtained by
applying the singular value decomposition (SVD) to each mode-n
unfolding of the tensor, taking the left singular vectors as the factor
matrices. The all-orthogonal core tensor is then computed by mul-
tiplying the tensor by the transposes of the factor matrices along
the corresponding modes. When the singular values in each mode-n
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unfolding are distinct and ordered, the HOSVD of a real-valued
tensor is unique up to a sign ambiguity [7].

According to the Eckart-Young theorem [9], the best low-rank ap-
proximation of a matrix can be obtained through the truncated SVD
if we consider the Frobenius norm on the residual error. An analo-
gous extension to the high-order case is not possible for HOSVD.
The truncated multilinear singular value decomposition (tr-MLSVD)
does not guarantee the best (Rj, R,, ..., Ry) multilinear rank ap-
proximation of a tensor for both noisy and noiseless cases [10].
Higher-order orthogonal iteration (HOOI) improves the estimation
by alternating updates of the factor matrices. Note that in both the
matrix and the tensor case, noise can perturb the singular values,
singular vectors, and the HOSVD factors, respectively [11], [12]. An
important question remains: How well can any unbiased estimator
recover the true HOSVD components?

The Cramér-Rao bound (CRB) [13] is a statistical tool to study
the performance of an unbiased estimator. Under certain regular-
ity conditions, the CRB provides a lower bound on the asymptotic
performance of locally unbiased estimators. In the presence of ad-
ditional constraints, the authors in [14] introduced the constrained
Cramér-Rao bound (CCRB) that lower bounds the error covariance
for constrained, unbiased estimators when the unconstrained model
has a nonsingular Fisher information matrix (FIM). This is further
generalized in [15], where the authors introduced the CCRB without
assuming a full rank FIM [16]. In [17], the trace of the pseudo-inverse
of the singular FIM is shown to be the minimum achievable MSE
given the optimal constraints. We call this bound the oracle bound,
since it requires the optimal constraints that make the FIM invertible
in the reduced space [18]. The OB is used as a performance bound
in various applications, for example, blind channel estimation [19],
reference-free clock synchronization [20], and phase estimation [21].
We incorporate the constraints and assumptions that create a unique
HOSVD and aim to calculate a lower bound for estimating the noise-
less factor matrices and the all-orthogonal core tensor.

The CRB is calculated for a CPD in [22] and further explored
in [1]. In [23], the CCRB of a coupled CPD is calculated. In [24],
the CCRB of the delayed exponential fitting problem using HOSVD
is explored. In this paper, we present the CCRB for the HOSVD of
a real tensor under additive white Gaussian noise (WGN). We as-
sume the multilinear ranks are known and there is a unique HOSVD
decomposition. We compare our proposed bound with HOOI and
tr-MLSVD, which are well-suited for signals in the presence of
WGN.

The layout of the paper is as follows. In Section II, tensor notation
and tensor preliminaries are introduced. In Section III, the signal
model is introduced, and the problem is formulated. In Section IV
and Section V, the CRB and the CCRB are introduced. The sup-
plementary material for calculating the bounds can be found in the
Appendix. In Section VI, we compare the CRB and CCRB with
HOOI and tr-MLSVD through simulation. Finally, we conclude the
chapter in Section VIII.

Il. TENSOR NOTATION AND PRELIMINARIES

Vectors are represented by lowercase boldface letters such as b.
Matrices are represented by boldface letters such as U" and I. The
numbers given as superscripts in parentheses are used to refer to
the different matrices that share a similar property. For example,
the three-factor matrices of the HOSVD for a third-order tensor are
denoted by UV, U® and U® [7]. The (i\, i, )th entry of A € R1*2

is represented with (A);, ;,, while the i>th column is represented with
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(A);,. Tensors are represented by underlined boldface letters such
as Y. We use several operations and decompositions using tensors,
which are explained in the following paragraph.

The mode-n unfolding of YeRi*>N is Y, €
RIv<t-hi-thivi-Iv - The mode-n product of tensor Y € RN
and a matrix UeR>" vyields a tensor Y x,U=Ce
RVl xhie1 >IN with the property C(,y = U Y ,. The grouping
of indices l]lN:l|+(lz—1)I|++(lN—1)111N_1
results in (vec(Y)); 7w = (i ip,...iy- For more information
regarding tensor notations, we refer to [3].

The HOSVD of a low multilinear rank tensor Y e R/*/2x-xIy
yields 8§ x, UV ... xy UM where § € RRi*<R2x>Rx jg called the
all-orthogonal core tensor and U™ e R/"*R» are column-wise or-
thonormal factor matrices. The column-wise orthonormality of

the factor matrices can be expressed as U™ U™ = 1. The all-
orthogonality property can be expressed using the diagonal structure
of the mode-n unfoldings of the core tensor multiplied by its trans-
poseforn € {1, ..., N}. Define £ as the diagonal matrix that holds
the squared and ordered mode-n singular values on the diagonal and
zeros elsewhere. The all-orthogonality of the core tensor can then be
expressed as the diagonal

S(n) S(n)T = E(n) s (1)
forn € {1, ...N}. The multilinear ranks (R ..., Ry) are the number
of columns of the column-wise orthonormal factor matrices U™ for

nef{l,...,N}.

Commonly used mathematical notations are as follows. The Eu-
clidean norm is the square root of the dot product of a vector with
itself, which is shown by || - ||. The Kronecker product is shown with
®. The Kronecker delta §;;, is 1 when i; = i, and zero otherwise.
The trace of a matrix Tr(-) is the sum of the diagonals of that matrix.

We use selection matrices, permutation matrices, and matri-
ces that define indexing relations. E® € RR«(RatD/2xR: ang K™ €
RR«(Ba=D/2xR5 for p e {1, ..., N} are binary-valued matrices. For
ne{l,..., N}, the products E® vec(C™) and K" vec(C™) extract
the lower triangle and the strict lower triangle (excluding the di-
agonal) of C" e R**Rnrespectively. Permutation matrices P" e
RP*P forn € {1, ..., N} define a row-wise permutation between the
vectorizations of mode-» unfoldings and the vectorization of mode-1
unfolding, where D = ]_[nN: 1 I,. An example is the permutation ma-
trix P® that permutes the vectorization of the mode-2 unfolding of
Y. such that vectorization of the mode-1 unfolding of Y is obtained,
ie. vec(Y(y) = P? vec(Y (). The matrix P® can be generated by
first creating a square matrix of Os of size D x D and assigning
(P 57y = 1. As an example, we illustrate the structure of
the permutation matrix P in Fig. 1 for a tensor M €

An entry in the tensor Y is placed in different rows or columns
according to the indexing rules of the mode-n unfolding and
vectorization. We use the matrix G k%) ¢ RP/xD/I to define
an indexing relation between the i,th row of Y, and ixth row
of Yg) for ne{1,...,N} and k € {1,..., N}. Additionally, we
use G™in ¢ RP/*D to define the indexing relation between the
elements of the i,th row of Y, and vec(Y). To achieve this,
we introduce a new notation to describe a grouping with stride,
which is formulated as i;iy...ij_jij41...iy =1; +1i + (o —
Dh+--+ G —Dh.. . Lo+ G — DL Loy + -+ (i
- DL ... LIy ... Iyoy for jef{l,...,N}. For illustration,
consider the matrix GU¥1'%2) ¢ R25xN%5 that defines an indexing
correspondence between the i;th row of Y(;, and the ith row of
Y(;). The element (G) is 1, if ijiri3 = iriyi3 for iy, i, and

RZXZXZ

i1ipi3,iniyi3
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FIGURE 1. The structure of the P® matrix for a tensor M e
of the first mode unfolding of M.

™

R****2_ p permutes the vectorization of the second mode unfolding of M to the vectorization

™

™
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0]0{0[0]0f0[0]0]0O
N AN olololololofo]i]o
0(0]0{0]0]0[0]0[0
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FIGURE 2. The structure of the G":2:%3) matrix for a tensor M € R**>*>_ G has 1 at indices that are the same between the 2nd row of the mode-1
unfolding of M and the 3rd row of the mode-2 unfolding of the same tensor and 0 s elsewhere.

iz € {l,..., I} and zero otherwise. This is generated by creating
matrix of Os of size G € R25*!'5 and assigning (G);, 57 75 = |-
An example is G“*%3 which has 1 at indices that are the same
between the 2nd row of the mode-1 unfolding of a 3rd-order tensor
of size (3,3,3) and the 3rd row of the mode-2 unfolding of the same
tensor and Os elsewhere. Note that i; and i, are fixed and i3 belongs
to the set {l,...,/[s}. The matrix structure is illustrated in Fig.
Finally, 2. G ¢ RP/n*P can be created by initializing a matrix of
Os and assigning (G) =1.

i L1 AN T iy

1il. PROBLEM FORMULATION
In this paper, we aim to find the CCRB of the core tensor and the
factor matrices of a low multilinear rank tensor from a measurement
model with additive noise, which can be formulated by
Y=L+M, (@)
where L € RV is a deterministic low multilinear rank tensor,
and M € R/<Iv i assumed to be a zero-mean white Gaussian
noise tensor where each entry is independent and identically dis-
tributed with variance o%. The low multilinear rank tensor can be

1050

written as

LZSXIU(I)"'XNU(N), (3)
with orthonormal factor matrices U™ € Rx*R for n e {1,..., N}
and an all-orthogonal core tensor S € RF1**Rv yhere we assume
that the ranks R, are known forn € {1, ..., N}.

We can now write the deterministic parameters of interest as
0 e R

0 = [(vec(U)" ..., (vec(U™M)NT, (vec(S)']", 4)
where Ny = Z;VZI IR, + ]_[i,vz | R, is the total size of the factor ma-
trices and the core tensor.

In the following sections, we introduce the CRB and calculate
the CCRB of @ (4) from the signal model (2), given the tensor
structure (3).

IV. CRAMER-RAO BOUND
Let f(Y; 6) be the likelihood of the observed data Y, given the model
parameters @. The log-likelihood In f(Y; @) can be written in three

VOLUME 6, 2025
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different ways. For each order n € {1, ..., N}, we will have

Yoy — Loy ”2 )

N
Inf(Y:0)=— (1—[1"> In(o+/27) — 2%2 |

n=1

which is the logarithm of the multiplication of zero-mean Gaussian
probability distribution functions. We take the partial derivative of
the log-likelihood with respect to each element of (4) and create the
FIM that is defined as

. . T
ﬂ(O):IE: <31nf(X,0)> <31nf(X,0)> }, ©)
a0 a0

with size RNo>*No,
The FIM is a matrix consisting of submatrices in the following
form

Quoyym Quoym  Lyog
Q(0) = ;o ' ‘ ‘ , 7
Ly yw Quvym  Lymwg
T T
SZU(])S szU(N) s Sz§§

where the submatrices divide the FIM according to the parts of
0. The FIM is a symmetric matrix. Therefore, only the upper or
lower triangle needs to be calculated. The partial derivatives and the
elements of the FIM are given in the Appendix from (21)—(24).

The CRB is the trace of the inverse of the Fisher information
matrix. Asymptotically, the mean squared error (MSE) of any locally
unbiased estimator is greater than or equal to the CRB, i.e.,

E[Jo-6"] =T (2®)") . ®)

where 0 is an estimate of the true parameter vector 6. The FIM (7)
is observed to be typically singular, and hence the inverse does not
exist [25]. In such cases, constraints can be incorporated into the FIM
to effectively reduce the parameter space and obtain a non-singular
information matrix over the constrained subspace. The minimum
achievable MSE under such optimal constraints is given by the Ora-
cle Bound (OB), which is defined as the trace of the pseudo-inverse
of the FIM [17], [18]

E[6-6]"] = Tr (260)) . ©)

where 8 is an estimate of the true parameter vector 6. Since the
optimal constraints are not known a priori, we can impose known
structural constraints, such as the orthonormality of factor matrices
and the all-orthogonality of the core tensor. This modified CRB or
constrained CRB can then be readily derived.

V. CONSTRAINED CRAMER-RAO BOUND

We have two constraints on the unknown parameters 6. First, the
factor matrices are orthonormal, which can be expressed for n €
{I,...,N}as

E™vec(U™ U™ _T) =0, (10)

which has R,(R, + 1)/2 independent equations. Second, the core
tensor is all-orthogonal. This condition implies that all off-diagonal
elements of S, Sz;,) forn € {1, ..., N} are zero, that is,

K"vec (S¢,) S{,) =0, (11

VOLUME 6, 2025

which has R,(R, — 1)/2 independent equations. Since both S, S(Tn)

and U™" U™ are symmetric matrices, we extract the strictly triangu-
lar and the triangular parts, respectively, using the selection matrices.
The selection matrices E™ and K™ are introduced in Section II. The
constraints in (10) and (11) are quadratic in the unknowns 6, since
each involves a bilinear form of either the factor matrices or the
unfolded core tensor. Nevertheless, these quadratic constraints can
be linearized around 6 through partial differentiation, which yields
C(0) that is used in the computation of the CCRB. The matrix C(6)
defines a linear map acting on perturbations of # and enables projec-
tion onto the constraint-consistent subspace. In total, there are N, =
SN Ry R+ 1)/2+ YN (R(R, — 1))/2 =" R number of
constraints.

The partial derivative of ¢() with respect to the unknown 6 yields

ac(0)

CO) = ——,
() 307‘

(12)

where C(0) € R¥>*No_ The matrix C(@) consists of several submatri-
ces in the following form

Chr 0 0 0
o .0 :
0 0 Cuw 0
ceH=| 0 0 0 Cs,, (13)
0 0 0 Cs,P?
L0 0 0 Cs, PY]

The elements of the submatrices in (13) are described in (26) in
the Appendix. The submatrix Cyum € RF®RatD/2xIRn i the partial
derivative of (10) with respect to (vec(U™))" for n € {1,...,N}
and the submatrix Cs,, € Rf®=1/ 2xTTh=1 R s the partial derivative
of (11) with respect to (vec(S,)))" for n € {1,..., N}. The partial
derivatives Cs, are calculated in (27), however the vec(S,) for
n e {2,...,N} are not consistent with the vec(S(;)) = vec(S). Due
to the indexing difference between the vectorization of the different
unfoldings of S, we use the permutation matrices P

We define V as a matrix whose columns form an orthonormal ba-
sis for the null space of C(#), which can be found through SVD [26].
The CCRB [15] can then be calculated by

E[fo-of]=T((ViR@®V)), (14)
where 2(0) is the Fisher information matrix defined in (6). The
CCRB only exists if N, > Ny — rank(2(#)) and the constraints are
linearly independent, which are sufficient conditions for the inverse
of VI Q(0) V to exist as the constrained FIM then becomes full-rank.
The matrix on the right-hand side in (14) becomes the OB if the
columns of V form an orthonormal basis for the null space of the FIM
in (9). With unknown parameters, we do not know constraints that
give such a V. Since OB has a larger parameter space, including those
provided in (10) and (11), the OB is smaller than the CCRB [17],
that is,

Tr (20)) = Tr ((VIROV) ) . (15)
The rank of the constrained FIM is equal to the dimension of the
manifold of Tucker tensors as provided in Theorem 3.6 in [27],
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TABLE 1. The Summary of the Scenarios and the Condition Number of
Constrained FIM Introduced in Section VI

Multilinear Mode-n Singular ~ Condition Number
Ranks Value Separation of VI Qo) V
Scenario 1 (3,3,3,3,3,3,3) d=2 2103
(3,3,3,3,3.3) d=2 3.103
(3,3,3,3,3) d=2 4-103
(3,3,3,3) d=2 6-103
Scenario 2 (5,5,5.5) d=2 2.103
(5,5,5,5) d=1 8-103
(5,5,5,5) d=0.5 20 - 103
(5,5,5,5) d=0.25 72103
10
8
61
41
21
1 2 3 4 5
In

FIGURE 3. Mode-n singular values of the 4th-order tensors with multiline-
ar rank (5,5,5,5) generated in Scenario 2 as described in Section VI.

that is,

16)

N N N
]Vé _’[VL = :E::Ihlen + I_Ilqn - :E::Ieﬁ9
n=1 n=1

n=1

which confirms that (VT €(0) V) is of full rank and the inverse exists.

VI. SIMULATION

In this section, we analyze the performance of existing low multilin-
ear rank tensor estimation methods, tr-MLSVD [7] and HOOI [10],
against the computed lower bounds. We make sure that the simu-
lated tensors have unique mode-n singular values by following [28],
where a tensor that satisfies the prescribed mode-n singular values
is generated. Specifically, we select mode-n singular values that are
separated by ad € {2, 1, 0.5, 0.25} in each mode, that is,

VED, =B, =d, an

forne{l,...,N}and i, € {2,...,1,}. We investigate two scenar-
ios. For both scenarios, we fix the squared sum of the mode-n
singular values to 200, that is,

Tr(Z™) = Tr(Se Sy’ ) = 200. (18)

for n € {1, ..., N} and generate equally spaced singular values ac-
cording to the desired multilinear ranks defined therein.

In the first scenario, the effect of the order on CCRB, OB, and
MSE is observed. We increase the order of the tensor from 4 to 7,
without changing the rank or the singular value distribution in each
order. The setup of Scenario 1 is summarized in Table 1, and the
mode-n singular values are plotted in Fig. 3. In the second scenario,

1052

the effect of the distribution of the mode-n singular values on CCRB,
OB, and MSE is analyzed. Therefore, we fixed the multilinear ranks
and the order of the tensor, and changed the distance between each
consecutive mode-n singular values using d € {2, 1, 0.5, 0.25}.

The CCRB and OB are calculated using (14) and (9) for an SNR
range of {0, 5, 10, 15, 20, 25, 30} dB. The following steps are taken
to achieve a given SNR. Each element of the noise tensor M is sam-
pled from a normal distribution. The scaling factor is then obtained
by the ratio of the norm of L to the norm M scaled by an SNR-related
parameter, i.e.,

7= Vv [M-m[” )

where M and L are tensors where each element is assigned as the
mean of M and L, respectively. The resulting o is used consecutively
to scale each entry of M. This is a standard practical approach for
SNR control, though it introduces a small theoretical discrepancy
with the unconstrained Gaussian model (2) as each entry of M is
now dependent on each other through the denominator in (19).

The CCRB and OB are compared with the estimates from
HOOI [10] and tr-MLSVD [7], which are averaged over 10* Monte
Carlo simulations. The tolerance of HOOI is set to 107, the maxi-
mum iteration is set to 2000, and it is initialized with the tr-MLSVD.
The true ranks are used to truncate in tr-MLSVD. Define the estimate

of the true vector at the rth Monte Carlo iteration as 8. The mean
squared error is calculated by
| 104 o N
At
MSE = 1 > o —0” , (20)

for both estimators after fixing the trivial ambiguities and enforc-
ing all-orthogonality of the core tensor estimates of tr-MLSVD and
HOOI. We fix the sign ambiguity and permutation ambiguity by
using the Hungarian algorithm. The sign of the estimated singular
vector and the corresponding slice of the estimated core tensor are
flipped, accordingly. We enforce all-orthogonality of the estimated
core tensor by applying an additional MLSVD decomposition and
absorbing the rotation into the estimated factor matrices.

VII. RESULTS

The results are plotted for the two scenarios in Figs. 4 and 5, re-
spectively. In Fig. 4, we can observe that as the orders increase,
the distance between the OB and the CCRB decreases, and a tight
connection between the estimates and the CCRB is observed for
all SNRs. As the order decreases, a deviation from the CCRB is
observed for both estimators, which can be seen in the bottom right
subplots of Figs. 4 and 5. The effect of the gap between the con-
secutive mode-n singular values on the CCRB is shown using gaps
from the setd € {2, 1, 0.5, 0.25}. We see that as the gaps decrease, a
deviation of the MSE of estimates from the CCRB is observed, and
the distance between OB and the CCRB increases.

We tabularized the summary of the two scenarios in Table 1
along with the condition number of the constrained FIM (14) for
the tensors that are generated. Increasing the tensor order leads to
a reduction in the condition number, indicating that the estimation
problem becomes better conditioned. Similarly, greater separation
between consecutive mode-n singular values also results in a lower
condition number. In well-conditioned cases, such as those shown in
the top left subplots of Figs. 4 and 5, the CCRB approaches the oracle
bound (OB) closely.
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FIGURE 4. The CCRB, OB, and the MSE between the true parameters of interest 6 and § obtained by HOOI and tr-MLSVD for tensors in Scenario 1, where
the distribution between the mode-n singular values is fixed and the order is changed. The CCRB, OB, and MSE are defined in (14), (9), and (20),

respectively. The setup of Scenario 1 is described in Table 1.
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FIGURE 5. The CCRB, OB, and the MSE between the true parameters of interest § and 8 obtained by HOOI and tr-MLSVD for tensors in Scenario 2, where
the order is fixed but the gap between the consecutive mode-n singular values is changed. The CCRB, OB, and MSE are defined in (14), (9), and (20),

respectively. The setup of Scenario 2 is described in Table 1.

VIIl. DISCUSSION AND CONCLUSION
In this paper, we introduced a lower bound on the mean squared
error of the unbiased estimates of the components of HOSVD under
additive WGN using CCRB. Asymptotically, for high SNRs and high
Monte Carlo simulations, we showed through simulation that the
HOOI and tr-MLSVD converge fairly close to the CCRB. In the
non-asymptotic case, a deviation is observed from the CCRB. The
SNR in which the convergence occurs is dependent on the condition
number of VI () V, which is shown in Table 1. If the condition
number is high, both estimators get close to the CCRB in higher
SNRs. Such a case occurs when the singular values of the true
tensor are close to each other, and the order of the true tensor is
low. For well-conditioned scenarios, the OB and CCRB get close to
each other, which suggests that the theoretical gain provided by any
constraints beyond those presented in (10) and (11) will be marginal.
We have observed that the MSE of the estimates can lie between
CCRB and OB in low SNRs if the condition number is high. This
can be seen in Fig. 5. Both tr-MLSVD and HOOI fail to hold the
constraint (11) in the non-asymptotic region. In the noisy setting,
the off-diagonals of the truncated core tensor are not zero. The lack
of this restriction can explain their better performance compared
to CCRB in Fig. 5. The authors in [29] introduce the CCRB us-
ing Lehman-unbiasedness, which is a weaker restriction than the

VOLUME 6, 2025

unbiasedness definition in [15], which might further improve the
bound in the non-asymptotic region.

The two estimators that are used in this paper do not enforce all-
orthogonality into the low-rank approximation. Note that although
the HOSVD core is all-orthogonal, the truncation step, which re-
moves columns, rows, and fibers of the core, may render the new
trMLSVD core not all-orthogonal. Although we apply an additional
MLSVD operation such that the tr-MLSVD core is all-orthogonal,
inherently the estimators does not incorporate such a constraint. The
HOOI estimates L by minimizing || Y — L ||?>, with the constraint
that L has a low multilinear rank, which is the mean squared es-
timate of a low-rank approximation. Similar to the tr-MLSVD, the
all-orthogonality of the core tensor is not enforced during estimation.

Additionally, the unbiasedness assumption of the CCRB is vio-
lated for both HOOI and tr-MLSVD. When a matrix is perturbed,
its eigenvectors and eigenvalues change, and the magnitude of
this change depends on the noise power and the spectral gap be-
tween the eigenvalues [30]. While classical perturbation theory,
such as in [31] and references therein, shows that subspace esti-
mates (e.g., eigenvectors) may be asymptotically unbiased under
high SNR and well-separated eigenvalues, this assumption does
not always hold in finite-sample scenarios. In particular, when
eigenvalues are closely spaced or repeated, the SVD becomes
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non-unique due to rotational ambiguity among the corresponding
eigenvectors.

In the multilinear case, although the mode-n unfoldings are
processed independently, the resulting components (factor matri-
ces and the core tensor) are assembled jointly. Therefore, noise-
induced perturbations in each unfolding can influence the overall
decomposition and estimation accuracy. This effect is more diffi-
cult to characterize analytically than in the matrix case and has
been noted in multilinear perturbation studies [12]. Our simula-
tions confirm this, showing that the MSE of the estimates can
fall below the CCRB, which is indicative of estimator bias. For
well-separated mode-n singular values and high SNR scenarios,
the estimates from tr-MLSVD and HOOI lie fairly close to the
CCRB, indicating an unbiased estimation regime. Thus, while
asymptotic unbiasedness is theoretically valid under ideal condi-
tions, in general, tensor decomposition can often deviate from this
assumption.

Another reason the MSE of the estimates can lie between the
CCRB and OB could be due to the sign ambiguity resolution ex-
plained in Section VI. In cases where the mode-n singular values
are not well-separated and the SNR is low, using the sign of the
true factor matrices to fix the sign ambiguity decreases the MSE.
The convention of HOSVD is to order the mode-n singular values
according to the norm of the slices. After the clean tensor is corrupted
with noise, such an ordering of the estimated factors may not be
the best way to align with the true factors. Especially in low SNR
scenarios, the ordering of the noisy mode-n singular values might
change, and the corresponding resolution to fix the sign ambiguity
might fail.

We propose additional directions for future work. The constrained
and the unconstrained FIM given in (14) and (7) can get fairly large
with increasing ranks and orders. We have not conducted a study to
invert the matrices efficiently. Matrix inversion lemma, such as the
one used in [1], can be used to invert the FIM in a less expensive
way. The CCRB is calculated assuming that the noise is WGN. Only
the log-likelihood in (21) depends on the noise type. Given that
the unbiasedness and the regularity conditions hold, the constrained
Cramér-Rao bound can be calculated for other additive noise types.
The subspace spanned by the factor matrices is commonly used in
signal processing applications [32], [33]. If the subspaces are of
interest, the intrinsic Cramér-Rao bound [34] can be readily extended
to a higher-order case.

Many low-rank tensor decomposition methods, such as
HOOI [10] t--MLSVD [7], or algorithms based on optimization
on manifolds [35] [27], provide theoretical upper bounds to the
low-rank approximation problem. We introduced the CCRB as
an information-theoretic lower bound for the low multilinear
rank approximation problem. More significantly, we identify the
condition number of V7 (#)V as a metric that explains how the
locally unbiased estimators closely approach the CCRB, particularly
in non-asymptotic and high condition number regimes. In such
regions, the OB and CCRB are separated, suggesting that there are
constraints other than (10) and (11), which could yield a lower MSE.
We leave the investigation of more optimal estimation techniques in
the non-asymptotic regions as future work.

APPENDIX

Let e, € R, e, € R®, and ey € RIL=1% be the basis vectors
that have 1 located at i,, r, and r; +-- -+ (ry — 1)Ry ...Ry_;, re-
spectively, and Os elsewhere. We can then write the partial derivative
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of In f(Y; @) with respect to the elements of @ as

dInf(Y;0) _ 1

el Y, — L, U(N)®~-'®U(n+l)
a(U(”))i,,.r,, ( (n) ( ))(

525

® U(n—l) R ® U(l)) S(Tn) e, ,

dnf;6) 1 r UM ... UL

2 S

(vec(Y) — vec(L)) . (21)

The submatrices of the FIM in (7) are defined forn € {1, ..., N} as
B [9In f(X;0)dIn f(X;0)]
L aU™),,, U™, |

[01n f(X;6)dIn f(X;6)]
L a(U("))in‘rn B(E)rl AAAAA v J

[01ln f(X;6) dIn f(Y; 6)]

Ry v )iy e =

(Ruon gy 7y = E

(Rs )y 7 = E

(22)

L OS)y. oy 08y
For the submatrices in the diagonal of the FIM in (7), we have the
following expressions after simplifications forn € {1,..., N},
1
Ly y) )i 77 = ;efn S Sty €58 »
1
(gﬁﬁ)rl.“n\/ TN ;(Srlrl e Srnr,, . (23)
Forne{l,...,N}, ke {l,...,N}, and k > n, we have the cross

partial derivatives of the factor matrices in the sub-diagonals of the
FIM in (7) with the elements

(g v®) i 7w
— %erTn S(,,)(U(M ® - ® urth ®U(n71) e® U(l))T
o
G(n;in.k:ik)
UV - @UeU V... US| e, . (24

Additionally, we have the cross partial derivatives of factor matrices
and the core tensor of the FIM (7) forn € {1, ..., N} as

(QU(”>§)EYW
= %efn S(,,)(U(N) Q- ueth ®U(n—1) ® U(I))T

G(ﬂ;in)(U(N) R U(l))er1.-«rN :

(25)
Finally, the partial derivatives of the constraints given in (13) with
respect to the factor matrices have the columns described with

T
(Cym)— = EMvec (U(") e,e + e,ne;U“’)) ,

Infn

(20)

and the partial derivatives of the constraints given in (13) with re-
spect to the mode-n unfoldings of the core tensor have the columns
described with

T
(Cs,, Iy = K™vec (S<n) e e

Tledn—1Tut 1IN Cry

T T
+ernemsm>) ; 27

forn € {1, ..., N}. The matrices E™, K™, P, and G are described
in Section II.
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