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Actor-Critic Reinforcement Learning for Control
With Stability Guarantee

Minghao Han , Lixian Zhang , Jun Wang, and Wei Pan

Abstract—Reinforcement Learning (RL) and its integration with
deep learning have achieved impressive performance in various
robotic control tasks, ranging from motion planning and navigation
to end-to-end visual manipulation. However, stability is not guaran-
teed in model-free RL by solely using data. From a control-theoretic
perspective, stability is the most important property for any control
system, since it is closely related to safety, robustness, and reliability
of robotic systems. In this letter, we propose an actor-critic RL
framework for control which can guarantee closed-loop stability
by employing the classic Lyapunov’s method in control theory.
First of all, a data-based stability theorem is proposed for stochastic
nonlinear systems modeled by Markov decision process. Then we
show that the stability condition could be exploited as the critic
in the actor-critic RL to learn a controller/policy. At last, the
effectiveness of our approach is evaluated on several well-known
3-dimensional robot control tasks and a synthetic biology gene
network tracking task in three different popular physics simulation
platforms. As an empirical evaluation on the advantage of stability,
we show that the learned policies can enable the systems to recover
to the equilibrium or way-points when interfered by uncertainties
such as system parametric variations and external disturbances to
a certain extent.

Index Terms—Reinforcement learning, stability, lyapunov’s
method.

I. INTRODUCTION

R EINFORCEMENT learning is promising to highly non-
linear control robotic systems with large state and ac-

tion space [1]. Until recently, significant progress has been
made by combining advances in deep learning with reinforce-
ment learning. Impressive results are obtained in a series of
high-dimensional robotic control tasks where sophisticated and
hard-to-engineer behaviors can be achieved [2]–[5]. However,
the performance of an RL agent is by large evaluated through
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trial-and-error and RL could hardly provide any guarantee for
the reliability of the learned control policy.

Given a control system, regardless of which controller design
method is used, the first and most important property of a system
needs to be guaranteed is stability, because an unstable control
system is typically useless and potentially dangerous [6]. A
stable system is guaranteed to converge to the equilibrium or
reference signal and it could recover to these targets even in the
presence of parametric uncertainties and disturbances [7]. Thus
stability is closely related to the robustness, safety, and reliability
of the robotic systems.

The most useful and general approach for studying the stabil-
ity of robotic systems is Lyapunov’s method [8], which is dom-
inant in control engineering [9], [10]. In Lyapunov’s method,
a scalar “energy-like” function called Lyapunov function L is
constructed to analyze the stability of the system. The controller
is designed to ensure that the difference of Lyapunov function
along the state trajectory is negative definite for all time instants
so that the state goes in the direction of decreasing the value
of Lyapunov function and eventually converges to the equilib-
rium [11], [12]. In learning methods, as the dynamic model is
unknown, the “energy decreasing” condition has to be verified by
trying out all possible consecutive data pairs in the state space,
i.e., to verify infinite inequalities Lt+1 − Lt < 0. Obviously,
the “infinity” requirement is impossible thus making the direct
exploitation of Lyapunov’s method impossible.

In this letter, we propose a data-based stability theorem and an
actor-critic reinforcement learning algorithm to jointly learn the
controller/policy and a Lyapunov critic function both of which
are parameterized by deep neural networks, with a focus on
stabilization and tracking tasks in robotic systems. The contri-
bution of our letter can be summarized as follows: 1) a novel
data-based stability theorem where only one inequality on the
expected value over the state space needs to be evaluated; 2) a
sample approximation of the stability condition proposed above
is exploited to derive an actor-critic algorithm to search for a
controller with asymptotic stability guarantee (in the number of
data points); 3) we show through experiments that the learned
controller could stabilize the systems when interfered by un-
certainties such as unseen disturbances and system parametric
variations of a certain extent. In our experiment, we show that
the stability guaranteed controller is more capable of handling
uncertainties compared to those without such guarantees in non-
linear control problems including classic CartPole stabilization
tasks, control of 3D legged robots and manipulator, and reference
tracking tasks for synthetic biology gene regulatory networks.
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A. Related Works

In model-free reinforcement learning, stability is rarely ad-
dressed due to the formidable challenge of analyzing and de-
signing the closed-loop system dynamics in a model-free man-
ner [13], and the associated stability theory in model-free RL
remains as an open problem [13], [14].

Recently, Lyapunov analysis is used in model-free RL to
solve control problems with safety constraints [15], [16]. In [15],
the Lyapunov-based approach for solving constrained Markov
decision processes is proposed with a novel way of constructing
the Lyapunov function through linear programming. In [16],
the above results were further generalized to continuous control
tasks. Even though Lyapunov-based methods were adopted in
these results, neither of them addressed the stability of the
system. In this letter, the sufficient conditions for a dynamic
system being stable are derived. Furthermore, it is shown that
these conditions can be verified through sampling and ensured
through model-free learning.

Other interesting results on the stability of learning-based con-
trol systems are reported in recent years. In [17], an initial result
is proposed for the stability analysis of deterministic nonlinear
systems with optimal controller for infinite-horizon discounted
cost, based on the assumption that discount is sufficiently close
to 1. However, in practice, it is rather difficult to guarantee the op-
timality of the learned policy unless certain assumptions on the
system dynamics are made [18]. Furthermore, the exploitation
of multi-layer neural networks as function approximators [19]
only adds to the impracticality of this requirement. In this letter,
it is shown that it is sufficient to ensure stability by satisfying
the Lyapunov criterion that is evaluated on samples and thus
one is exempt from finding the optimal/suboptimal solutions.
In [20], local stability of Lipschitz continuous dynamic systems
is analyzed by validating the “energy decreasing” condition on
discretized points in the subset of state space with the help
of a learned model (Gaussian process). Nevertheless, the dis-
cretization technique may become infeasible as the dimension
and space of interest increases, limiting its application to rather
simple and low-dimensional systems. In this letter, the proposed
method is applicable to the general class of stochastic dynamic
systems modeled by MDP and does not need to learn a model
for stability analysis and controller design.

II. PROBLEM STATEMENT

In this letter, we focus on the stabilization and tracking tasks
for systems modeled by Markov decision process (MDP). The
state of a robot and its environment at time t is given by the state
st ∈ S ⊆ Rn, where S denotes the state space. The robot then
takes an action at ∈ A ⊆ Rm according to a stochastic policy
π(at|st), resulting in the next state st+1. The transition of the
state is modeled by the transition probability P (st+1|st, at).
In both stabilization and tracking tasks, there always is a cost
function c(st, at) to measure how good or bad a state-action pair
is.

In stabilization tasks, the goal is to find a policy π such that
the norm of state ‖st‖ goes to zero eventually, where ‖ · ‖ de-
notes the Euclidean norm. In this case, cost function c(st, at) =

EP (·|st,at)‖st+1‖. In tracking tasks, we divide the state s into two
vectors, s1 and s2, where s1 is composed of elements of s that
are aimed at tracking the reference signal r, while s2 contains
the rest. The reference signal could be the desired velocity, path
and even the picture of grasping an object in a certain pose. For
tracking tasks, c(st, at) = EP (·|st,at)‖s1t+1 − r‖.

From a control perspective, both stabilization and tracking
tasks are related to the asymptotic stability of the closed-loop
system (or error system) under π, i.e., starting from an initial
point, the trajectories of state always converge to the origin or
reference trajectory. Let cπ(st) � Ea∼πc(st, at) denote the cost
function under the policy π, the definition of stability studied in
this letter is given as follows.

Definition 1: The stochastic system is said to be stable in
mean cost if limt→∞ Estcπ(st) = 0 holds for any initial con-
dition s0 ∈ {s0|cπ(s0) ≤ b}. If b is arbitrarily large then the
stochastic system is globally stable in mean cost.

The above definition is equivalent to the mean square sta-
bility [21], [22] when the cost c is chosen to be the norm of
the state; it is also equivalent to the partial stability [23], [24]
when c(st, at) = EP (·|st,at)‖s1t+1 − r‖. Thus the stabilization
and tracking tasks can be collectively summarized as finding a
policy π such that the closed-loop system is stable in mean cost
according to Definition 1.

Before proceeding, some notations are to be defined.
ρ(s0) denotes the distribution of starting states. The
closed-loop transition probability is denoted as Pπ(s

′|s) �∫
A π(a|s)P (s′|s, a)da. We also introduce the closed-loop

state distribution at a certain instant t as P (s|ρ, π, t),
which could be defined iteratively: P (s′|ρ, π, t+ 1) =∫
S Pπ(s

′|s)P (s|ρ, π, t)ds,∀t ∈ Z+ and P (s|ρ, π, 0) = ρ(s).

III. DATA-BASED STABILITY ANALYSIS

In this section, we propose the main assumptions and a new
theorem for stability analysis of stochastic systems. We assume
that the Markov chain induced by policy π is ergodic with a
unique stationary distribution qπ ,

qπ(s) = lim
t→∞P (s|ρ, π, t)

as commonly exploited by many RL literature [25]–[28].
In Definition 1, stability is defined in relation to the set of

starting states, which is also called the region of attraction
(ROA). If the MSS system starts within the ROA, its trajectory
will be surely attracted to the equilibrium. To build a data-based
stability guarantee, we need to ensure that the states in ROA
are accessible for the stability analysis. Thus the following
assumption is made to ensure that every state in ROA has a
chance to be sampled as the starting state.

Assumption 1: There exists a positive constant b such that
ρ(s) > 0, ∀s ∈ {s|cπ(s) ≤ b}.

Our approach is to construct/find a Lyapunov function L :
S → R+ of which the difference along the state trajectory is
negative definite, so that the state goes in the direction of decreas-
ing the value of Lyapunov function and eventually converges
to the origin. The Lyapunov’s method has long been used for
stability analysis and controller design in control theory [29],
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but mostly exploited along with a known model so that the
energy decreasing condition on the entire state space could be
transformed into one inequality regarding model parameters [6],
[30]. In the following, we show that without a dynamic model,
this “infinity” problem could be solved through sampling and
sufficient conditions for a stochastic system to be stable in mean
cost are given.

Theorem 1: The stochastic system is stable in mean cost if
there exists a function L : S → R+ and positive constants α1,
α2 and α3, such that

α1cπ(s) ≤ L(s) ≤ α2cπ(s) (1)

Es∼μπ
(Es′∼Pπ

L(s′)− L(s)) ≤ −α3Es∼μπ
cπ(s) (2)

where

μπ(s) � lim
N→∞

1

N

N∑
t=0

P (st = s|ρ, π, t)

is the (infinite) sampling distribution.
Proof: The existence of the sampling distribution μπ(s)

is guaranteed by the existence of qπ(s). Since the se-
quence {P (s|ρ, π, t), t ∈ Z+} converges to qπ(s) as t ap-
proaches ∞, then by the Abelian theorem, the sequence
{ 1
N

∑N
t=0 P (s|ρ, π, t), N ∈ Z+} also converges and μπ(s) =

qπ(s). Combined with the form of μπ, (2) infers that∫
S

lim
N→∞

1

N

N∑
t=0

P (s|ρ, π, t)(EPπ(s′ |s)L(s
′)− L(s))ds

≤ −α3Es∼qπcπ(s) (3)

First, on the left-hand-side, L(s) ≤ α2cπ(s) for all s ∈ S ac-
cording to (1). Since the probability density functionP (s|ρ, π, t)
is (assumed to be) a bounded function on S for all t, thus there
exists a constant M such that

P (s|ρ, π, t)L(s) ≤Mα2cπ(s), ∀s ∈ S, ∀t ∈ Z+

Second, the sequence { 1
N

∑N
t=0 P (s|ρ, π, t)L(s), N ∈ Z+}

converges point-wise to the function qπ(s)L(s). According
to the Lebesgue’s Dominated convergence theorem [31], if a
sequence fn(s) converges point-wise to a function f and is
dominated by some integrable function g in the sense that,

|fn(s)| ≤ g(s), ∀s ∈ S, ∀n
Then we get

lim
n→∞

∫
S
fn(s)ds =

∫
S
lim
n→∞ fn(s)ds

Thus the left-hand-side of (3)∫
S

lim
N→∞

1

N

N∑
t=0

P (s|ρ, π, t)
(∫
S
Pπ(s

′|s)L(s′)ds′ − L(s)

)
ds

= lim
N→∞

1

N

(
N+1∑
t=1

EP (s|ρ,π,t)L(s)−
N∑
t=0

EP (s|ρ,π,t)L(s)

)

= lim
N→∞

1

N

(
EP (s|ρ,π,N+1)L(s)− Eρ(s)L(s)

)

Thus taking the relations above into consideration, (3) infers

lim
N→∞

1

N

(
EP (s|ρ,π,N+1)L(s)− Eρ(s)L(s)

)
≤ −α3 lim

t→∞EP (s|ρ,π,t)cπ(s) (4)

Since Eρ(s)L(s) is a finite value and L is positive definite, it
follows that

lim
t→∞EP (s|ρ,π,t)cπ(s) ≤ lim

N→∞
1

N

(
1

α3
Eρ(s)L(s)

)
= 0 (5)

Suppose that there exists a state s0 ∈ {s0|cπ(s0) ≤ b} and a
positive constant d such that limt→∞ EP (s|s0,π,t)cπ(s) = d, or
limt→∞ EP (s|s0,π,t)cπ(s) =∞. Since ρ(s0) > 0 for all start-
ing states in {s0|cπ(s0) ≤ b} (Assumption 1), it follows that
limt→∞ Est∼P (·|π,ρ)cπ(st) > 0, which is contradictory with
(5). Thus ∀s0 ∈ {s0|cπ(s0) ≤ b}, limt→∞ EP (s|s0,π,t)cπ(s) =
0. Thus the system is stable in mean cost by Definition 1. �

(1) directs the choice and construction of Lyapunov function,
of which the details are deferred to Section IV. (2) is called
the energy decreasing condition and is the major criterion for
determining stability.

Remark 1: This remark is on the connection to previous
results concerning the stability of stochastic systems. It should
be noted that the stability conditions of Markov chains have
been reported in [21], [32], however, of which the validation
requires verifying infinite inequalities on the state space if S
is continuous. On the contrary, our approach solely validates
one inequality (2) related to the sampling distribution μ, which
further enables data-based stability analysis and policy learning.

IV. ALGORITHM

In this section, we propose an actor-critic RL algorithm to
learn stability guaranteed policies for the stochastic system.
First, we introduce the Lyapunov critic function Lc and show
how it is constructed. Then based on the maximum entropy
actor-critic framework, we use the Lyapunov critic function in
the policy gradient formulation.

A. Lyapunov Critic Function

In our framework, the Lyapunov critic Lc plays a role in
both stability analysis and the learning of the actor. To enable
the actor-critic learning, the Lyapunov critic is designed to be
dependent on s and a and satisfies L(s) = Ea∼πLc(s, a) with
the Lyapunov function L(s), such that it can be exploited in
judging the value of (2). In view of the requirement above,
Lc should be a non-negative function of the state and action,
Lc : S ×A → R+. In this letter, we construct Lyapunov critic
with the following parameterization technique,

Lc(s, a) = fφ(s, a)
T fφ(s, a) (6)

where fφ is the output vector of a fully connected neural network
with parameter φ. This parameterization ensures the positive
definiteness ofLc(s, a), which is necessary sinceL(s) is positive
definite according to (1) and L(s) is the expectation of Lc(s, a)
over the distribution of actions.
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Theoretically, some functions, such as the norm of state
and value function, naturally satisfy the basic requirement of
being a Lyapunov function (1). These functions are referred
to as Lyapunov candidates. However, Lyapunov candidates are
conceptual functions without any parameterization, thus their
gradient with respect to the controller is intractable and are
not directly applicable in an actor-critic learning process. In
the proposed framework, the Lyapunov candidate acts as a
supervision signal during the training of Lc. During training,
Lc is updated to minimize the following objective function,

J(Lc) = ED

[
1

2
(Lc(s, a)− Ltarget(s, a))

2

]
(7)

where Ltarget is the approximation target related to the chosen
Lyapunov candidate, L(s) = Ea∼πLtarget(s, a) and D is the set
of collected transition pairs. In [15] and [20], the value function
has been proved to be a valid Lyapunov candidate where the
approximation target is

Ltarget(s, a) = c+max
a′

γL′c(s,
′ a′) (8)

where L′c is the target network parameterized by φ′ as typically
used in the actor-critic methods [19], [33].L′c has the same struc-
ture asLc, but the parameter φ′ is updated through exponentially
moving average of weights ofLc controlled by a hyperparameter
τ ∈ R(0,1), φ′k+1 ← τφk + (1− τ)φ′k.

In addition to value function, the sum of cost over a finite time
horizon could also be employed as Lyapunov candidate, which
is exploited in model predictive control literature [10], [34] for
stability analysis. In this case,

Ltarget(s, a) =

t+N∑
t

Ect (9)

Here, the time horizon N is a hyperparameter to be tuned, of
which the influence will be demonstrated in the experiment in
Section V.

The choice of the Lyapunov candidate plays an important role
in learning a policy. Value function evaluates the infinite time
horizon and thus offers a better performance in general but is
rather difficult to approximate because of significant variance
and bias [35]. On the other hand, the finite horizon sum of cost
provides an explicit target for learning a Lyapunov function, thus
inherently reduces the bias and enhances the learning process.
However, as the model is unknown, predicting the future costs
based on the current state and action inevitably introduces vari-
ance, which grows as the prediction horizon extends. In prin-
ciple, for tasks with simple dynamics, the sum-of-cost choice
enhances the convergence of learning and robustness of the
trained policies, while for complicated systems the choice of
value function generally produces better performance. In this
letter, we use both value function and sum-of-cost as Lyapunov
candidates. Later in Section V, we will show the influence of
these different choices upon the performance and robustness of
trained policies.

B. Lyapunov Actor-Critic Algorithm

In this subsection, we will focus on how to learn the controller
in a novel actor-critic framework called Lyapunov Actor-Critic
(LAC), such that the inequality (2) is satisfied. The policy
learning problem is summarized as the following constrained
optimization problem,

find πθ (10)

s.t. ED(Lc(s,
′ fθ(ε, s′))− Lc(s, a) + α3c) (11)

− ED log(π(a|s)) ≥ Ht (12)

where the stochastic policy πθ is parameterized by a deep neural
network fθ that is dependent on s and a Gaussian noise ε. The
constraint (11) is the parameterized inequality (2), which can
be evaluated through sampling. One may be curious why in
the second term of (13), only one Lyapunov critic is explicitly
dependent on the stochastic policy, while the other dependent
on the samples of the action. First, note that this estimator is
also unbiased estimation of (2), although the variance may be
increased compared to replacingawith fθ(s). From a more prac-
tical perspective, having the second Lyapunov critic explicitly
dependent on θ will introduce a term in the policy gradient that
updates θ to increase the value ofL(s), which is contradictory to
our goal of stabilization. (12) is the minimum entropy constraint
borrowed from the maximum entropy RL framework to improve
the exploration in the action space [33], and Ht is the desired
bound. Solving the above constrained optimization problem is
equivalent to minimizing the following objective function,

J(θ) = E(s,a,s,′c)∼D[β(log(πθ(fθ(ε, s)|s)) +Ht)

+ λ(Lc(s,
′ fθ(ε, s′))− Lc(s, a) + α3c)] (13)

where β and λ are Lagrange multipliers that control the relative
importance of constraint (11) and (12).

In the actor-critic framework, the parameters of the policy
network are updated through stochastic gradient descent of (13),
which is approximated by

∇θJ(θ) = β∇θ log(πθ(a|s))
+ β∇a log(πθ(a|s))∇θfθ(ε, s)

+ λ∇a′Lc(s,
′ a′)∇θfθ(ε, s

′) (14)

The value of Lagrange multipliersβ and λ are adjusted by gra-
dient ascent to maximize the following objectives respectively
while being clipped to be positive,

J(β) = βED[log πθ(a|s) +Ht]

J(λ) = λED[Lc(s
′, fθ(s′, ε))− Lc(s, a) + α3c]

During training, the Lagrange multipliers are updated by

λ← max(0, λ + δ∇λJ(λ))

β ← max(0, β + δ∇βJ(β))

where δ is the learning rate. The pseudo-code of the proposed
algorithm is shown in Algorithm 1.
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Algorithm 1: Lyapunov-Based Actor-Critic (LAC).
Require: Maximum episode length N and maximum

update steps M
repeat

Sample s0 according to ρ
for t = 1 to N do

Sample a from πθ(a|s) and step forward
Observe s′, c and store (s, a, c, s′) in D

end for
for i = 1 to M do

Sample mini-batches of transitions from D and
update Lc, π, Lagrange multipliers with (7), (14)

end for
until (11) is satisfied

V. EXPERIMENT

In this section, we illustrate five simulated robotic control
problems to demonstrate the general applicability of the pro-
posed method. First of all, the classic control problem of Cart-
Pole balancing from control and RL literature [36] is illustrated.
Then, we consider more complicated high-dimensional con-
tinuous control problems of 3D robots, e.g., HalfCheetah and
FetchReach, using MuJoCo physics engine [37], a multi-joint
Swimmer robot [38], and a full quadruped (Minitaur) simulated
by PyBullet platform [39]. Last, we extend our approach to
control autonomous systems in the cell, i.e., molecular synthetic
biological gene regulatory networks (GRN). Specifically, we
consider the problem of reference tracking for two GRNs [40].

The proposed method is evaluated for the following aspects:
� Convergence: does the proposed training algorithm con-

verge with random parameter initialization and does the
stability condition (2) hold for the learned policies;

� Performance: can the goal of the task be achieved or the
cumulative cost be minimized;

� Stability: if (2) hold, are the closed-loop systems stable
indeed and generating stable state trajectories;

� Robustness: how do the trained policies perform when
faced with uncertainties unseen during training, such as
parametric variation and external disturbances;

� Generalization: can the trained policies generalize to fol-
low reference signals that are different from the one seen
during training.

We compare our approach with soft actor-critic (SAC) [33],
one of the state-of-the-art actor-critic algorithms that outperform
a series of RL methods such as DDPG [19], PPO [42] on the
continuous control benchmarks. The variant of safe proximal
policy optimization (SPPO) [16], a Lyapunov-based method, is
also included in the comparison. The original SPPO is developed
to deal with constrained MDP, where safety constraints exist. In
our experiments, we modify it to apply the Lyapunov constraints
on the MDP tasks and see whether it can achieve the same
stability guarantee as LAC. In CartPole, we also compare with
the linear quadratic regulator (LQR), a classical model-based
optimal control method for stabilization. For both algorithms,
the hyperparameters are tuned to reach their best performance.

Fig. 1. Cumulative control performance comparison. The Y-axis indicates the
total cost during one episode and the X-axis indicates the total time steps in
thousand. The shadowed region shows the 1-SD confidence interval over 10
random seeds. Across all trials of training, LAC converges to stabilizing solution
with comparable or superior performance compared with SAC and SPPO.

The outline of this section is as follows. In Section V-A, the
performance, and convergence of LAC are demonstrated and
compared with SAC. In Section V-B, a straight forward demon-
stration of stability is made by comparing with the baseline
method. In Section V-C, the ability of generalization and robust-
ness of the trained policies are evaluated and analyzed. Finally,
in Section V-D, we show the influence of choosing different
Lyapunov candidates upon the performance and robustness of
trained policies.

The hyperparameters of LAC and the detailed experiment
setup are deferred to Appendix [43]. The code for reproduction
can be found in our GitHub repository.1

A. Performance

In each task, both LAC, SAC, and SPPO are trained 10 times
with random initialization, average total cost, and its variance
during training are demonstrated in Fig. 1. In the examples
(a)-(c) and (e), SAC and LAC perform comparably in terms of
the total cost at convergence and the speed of convergence, while
SPPO could converge in Cartpole, FetcheReach, and Swimmer.
In GRN and CompGRN (see Fig. 1(d) and Fig. S9(b) in the
supplementary material), SAC is not always able to find a policy
that is capable of completing the control objective, resulting
in the bad average performance. In the Minitaur example (see
Fig. 1(f)), SAC and SPPO can only converge to suboptimal

1https://github.com/hithmh/Actor-critic-with-stability-guarantee
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Fig. 2. State trajectories over time under policies trained by LAC and SAC
in the GRN and CompGRN. In each experiment, the policies are tested over
20 random initial states and all the resulting trajectories are displayed above.
The X-axis indicates the time and Y-axis shows the concentration of the target
protein— Protein 1.

solutions. On the contrary, LAC performs stably regardless of
the random initialization. As shown in Fig. 1, LAC converges
stably in all experiments.

B. Evaluation of Stability

In this part, further comparison between the stability-assured
method (LAC) and that without such guarantee (SAC) is made,
by demonstrating the closed-loop system dynamic with the
trained policies. A distinguishing feature of the stability assured
policies is that it can force and sustain the state or tracking
error to zero. This could be intuitively demonstrated by the state
trajectories of the closed-loop system.

We evaluated the trained policies in the GRN and CompGRN
and the results are shown in Fig. 2. In our experiments, we
found that the LAC agents stabilize the systems well. All the
state trajectories converge to the reference signal eventually (see
Fig. 2(a) and (c)). On the contrary, without stability guarantee,
the state trajectories either diverge (see Fig. 2(b)), or continu-
ously oscillate around the reference trajectory (see Fig. 2(d)).

C. Empirical Evaluation on Robustness and Generalization

It is well-known that over-parameterized policies are prone to
become overfitted to a specific training environment. The ability
of generalization is the key to the successful implementation of
RL agents in an uncertain real-world environment. In this part,
we first evaluate the robustness of policies in the presence of
parametric uncertainties and process noise. Then, we test the ro-
bustness of controllers against external disturbances. Finally, we
evaluate whether the policy is generalizable by setting different
reference signals. To make a fair comparison, we removed the
policies that did not converge in SAC and only evaluate the ones
that perform well during training. During testing, we found that
SPPO appears to be prone to variations in the environment, thus
the evaluation results are contained in Appendix [43].

Fig. 3. LAC and SAC agents in the presence of dynamic uncertainties. The
solid line indicates the average trajectory and shadowed region for the 1-SD
confidence interval. In (a) and (b), the pole length is varied during the inference.
In (c) and (d), three parameters are selected to reflect the uncertainties in gene
expression. The X-axis indicates the time and Y-axis shows the angle of the pole
in (a), (b) and concentration of target protein in (c), (d), respectively. The dashed
line indicates the reference signal. The line in orange indicates the dynamic in
the original environment. For each curve, only the noted parameter is different
from the original setting.

1) Robustness to Dynamic Uncertainties: In this part, during
the inference, we vary the system parameters and introduce
process noises in the model/simulator to evaluate the algorithm’s
robustness. In CartPole, we vary the length of pole l. In GRN,
we vary the promoter strength ai and dissociation rate Ki.
Due to stochastic nature in gene expression, we also introduce
uniformly distributed noise ranging from [−δ, δ] (we indicate the
noise level by δ) to the dynamic of GRN. The state trajectories
of the closed-loop system under LAC and SAC agents in the
varied environment are demonstrated in Fig. 3.

As shown in Fig. 3(a), (c), the policies trained by LAC are very
robust to the dynamic uncertainties and achieve high tracking
precision in each case. On the other hand, though SAC performs
well in the original environment (Fig. 3(b), (d)), it fails in all of
the varied environments.

2) Robustness to Disturbances: An inherent property of a
stable system is to recover from perturbations such as external
forces and wind. To show this, we introduce periodic external
disturbances with different magnitudes in each environment and
observe the performance difference between policies trained by
LAC and SAC. We also include LQR as the model-based base-
line. In CartPole, the agent may fall over when interfered by an
external force, ending the episode in advance. Thus in this task,
we measure the robustness of controllers through the death-rate,
i.e., the probability of falling over after being disturbed. For
other tasks where the episodes are always of the same length
and we measure the robustness of controller by the variation
in the cumulative cost. Under each disturbance magnitude, the
policies are tested for 100 trials and the performance is shown
in Fig. 4.

As shown in Fig. 4, the controllers trained by LAC outperform
SAC and LQR to a great extent in CartPole and GRN (lower
death rate and cumulative cost). In HalfCheetah, SAC and LAC
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Fig. 4. Performance of LAC, SAC, SPPO and LQR in the presence of persis-
tent disturbances with different magnitudes. The X-axis indicates the magnitude
of the applied disturbance. The Y-axis indicates the death rate in CartPole
(a) and the cumulative cost in other examples (b) (d). All of the trained policies
are evaluated for 100 trials in each setting.

are both robust to small external disturbances while LAC is more
reliable to larger ones. In FetchReach, SAC and LAC perform
reliably across all of the external disturbances. The difference
between SAC and LAC becomes obvious in GRN, Swimmer,
and Minitaur, where the dynamics are more vulnerable to the
external disturbances. In all of the experiments, SPPO agents
could hardly sustain any external disturbances.

3) Generalization Over Different Tracking References: In
this part, we introduce four different reference signals that are
unseen during training in the GRN: sinusoids with periods of
150 (brown) and 400 (blue), and the constant reference of 8
(red) and 16 (green). We also show the original reference signal
used for training (skyblue) as a benchmark. Reference signals are
indicated in Fig. 5 by the dashed line in respective colors. All of
the trained policies are tested for 10 times with each reference
signal. The average dynamics of the target protein are shown
in Fig. 5 with the solid line, while the variance of dynamic is
indicated by the shadowed area.

As shown in Fig. 5, the policies trained by LAC could gener-
alize well to follow previously unseen reference signals with low
variance (dynamics are very close to the dashed lines), regardless
of whether they share the same mathematical form with the one
used for training. On the other hand, though SAC tracks the
original reference signal well after the training trials without
convergence being removed (see the sky-blue lines), it is still
unable to follow some of the reference signals (see the brown
line) and possesses larger variance than LAC.

Fig. 5. State trajectories under policies trained by LAC and SAC when tracking
different reference signals. The solid line indicates the average trajectory and
shadowed region for the 1-SD confidence interval. The X-axis indicates the time
and Y-axis shows the concentration of protein to be controlled. Dashed lines in
different colors are the different reference signals: sinusoid with a period of 150
(brown); sinusoid with a period of 200 (sky-blue); sinusoid with a period of 400
(blue); constant reference of 8 (red); constant reference of 16 (green).

Fig. 6. Influence of different Lyapunov candidates. In (a), the Y-axis indicates
cumulative cost during training and the X-axis indicates the total time steps in
thousand. (b) shows the death-rate of policies in the presence of instant impulsive
force F ranging from 80 to 150 Newton.

D. Influence of Different Lyapunov Candidates

As an independent interest, we evaluate the influence
of choosing different Lyapunov candidates in this part.
First, we adopt candidates of different time horizon N ∈
{5, 10, 15, 20,∞} to train policies in the CartPole example
and compare their performance in terms of cumulative cost
and robustness. Here, N =∞ implies using value function
as the Lyapunov candidate. Both of the Lyapunov critics are
parameterized as (6). For evaluation of robustness, we apply an
impulsive force F at 100th instant and observe the death-rate of
trained policies. The results are demonstrated in Fig. 6.

As shown in Fig. 6, both choices of Lyapunov candidates
converge fast and achieve comparable cumulative cost at con-
vergence. However, in terms of robustness, the choice ofN plays
an important role. As observed in Fig. 6(b), the robustness of the
controller decreases as the time horizon N increases. Besides,
it is interesting that LQR is more robust than SAC when faced
with instant impulsive disturbance.

VI. CONCLUSIONS AND DISCUSSIONS

In this letter, we proposed a data-based approach for analyz-
ing the stability of discrete-time nonlinear stochastic systems
modeled by Markov decision process, by using the classic Lya-
punov’s method in control theory. By employing the stability
condition as a critic, an actor-critic algorithm is proposed to
learn a controller/policy to ensure the closed-loop stability in
stabilization and tracking tasks. We evaluated the proposed
method in various examples and show that our method achieves

Authorized licensed use limited to: TU Delft Library. Downloaded on November 11,2020 at 12:14:35 UTC from IEEE Xplore.  Restrictions apply. 



6224 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

not only comparable or superior performance compared with the
state-of-the-art RL algorithm but also outperforms impressively
in terms of robustness to uncertainties such as model parameter
variations and external disturbances. For future work, it might be
interesting to extend this method to constrained Markov decision
process in which state and action constraints are considered.
Also, to quantify the robustness induced by the stability will be
investigated.

REFERENCES

[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274, 2013.

[2] J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy
gradients,” Neural Netw., vol. 21, no. 4, pp. 682–697, 2008.

[3] S. Löckel, J. Peters, and P. Van Vliet, “A probabilistic framework for
imitating human race driver behavior,” IEEE Robot. Autom. Lett., vol. 5,
no. 2, pp. 2086–2093, Apr. 2020.

[4] Y. Zhu et al., “Target-driven visual navigation in indoor scenes using deep
reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Autom., 2017,
pp. 3357–3364.

[5] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates,” in Proc.
IEEE Int. Conf. Robot. Autom., 2017, pp. 3389–3396.

[6] J.-J. E. Slotine, et al., Applied Nonlinear Control. vol. 199. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1991.

[7] M. Vidyasagar, Nonlinear Systems Analysis. vol. 42. Philadelphia, PA,
USA: SIAM, 2002.

[8] A. M. Lyapunov, “The general problem of the stability of motion (in
Russian),” Ph.D. Dissertation, Univ. Kharkov, Kharkiv, Ukraine, 1892.
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