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ABSTRACT
Given access to the vertex set 𝑉 of a connected graph 𝐺 = (𝑉 , 𝐸) and an oracle that given two vertices 𝑢, 𝑣 ∈ 𝑉 ,
returns the shortest path distance between 𝑢 and 𝑣, how many queries are needed to reconstruct 𝐸? Firstly, we
show that randomized algorithms need to use at least 1

200
Δ𝑛 logΔ 𝑛 queries in expectation to reconstruct 𝑛-vertex

trees of maximum degree Δ. The best previous lower bound (for graphs of bounded maximum degree) was an
information-theoretic lower bound of Ω(𝑛 log 𝑛∕ log log 𝑛). Our randomized lower bound is also the first to break
through the information-theoretic barrier for related query models, including distance queries for phylogenetic trees,
membership queries for learning partitions, and path queries in directed trees. Secondly, we provide a simple deter-
ministic algorithm to reconstruct trees using Δ𝑛 logΔ 𝑛 + (Δ + 2)𝑛 distance queries. This proves that our lower bound
is optimal up to a multiplicative constant. We extend our algorithm to reconstruct graphs without induced cycles of
length at least 𝑘 using 𝑂Δ,𝑘(𝑛 log 𝑛) queries. Our lower bound is therefore tight for a wide range of tree-like graphs, such
as chordal graphs, permutation graphs, and AT-free graphs. The previously best randomized algorithm for chordal
graphs used 𝑂Δ(𝑛 log2𝑛) queries in expectation, so we improve by a (log 𝑛)-factor for this graph class.

1 | Introduction

The distance query model has been introduced [1]. In this model, only the vertex set 𝑉 of a hidden graph 𝐺 = (𝑉 , 𝐸)
is known, and the aim is to reconstruct the edge set 𝐸 via distance queries to an oracle. For a pair of vertices (𝑢, 𝑣) ∈
𝑉 2, the oracle answers the shortest path distance between 𝑢 and 𝑣 in 𝐺. The algorithm can select the next query based
on the responses of earlier queries. If there is a unique graph consistent with the query responses, the graph has been
reconstructed.

For a graph class  of connected graphs, we write 𝑛 for the 𝑛-vertex graphs in . We say an algorithm reconstructs 
if for every graph 𝐺 ∈  the distance profile obtained from the queries is unique to 𝐺 within . Let 𝑓 (𝐺, 𝐴) denote the
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FIGURE 1 | To distinguish the tree on the left from all possible labelings of the tree on the right, Ω(𝑛2) queries are needed.

number of queries that a deterministic algorithm 𝐴 takes until it has reconstructed the graph 𝐺 ∈ . The query com-
plexity of an algorithm 𝐴 is defined as a function 𝑓 ∶ ℕ → ℕ where 𝑓 (𝑛) is the maximum number of queries that 𝐴

takes on an input graph 𝐺 ∈ 𝑛, i.e., 𝐷(𝑛) = max𝐺∈𝑛
𝑓 (𝐺, 𝐴). A randomized algorithm is a probability distribution 𝜋

over algorithms and its query complexity given by the expected number of queries 𝑅(𝑛) = max𝐺∈𝑛
𝔼𝐴∼𝜋[𝑓 (𝐺, 𝐴)]. The

(randomized/deterministic) query complexity for reconstructing a graph class is now given by the complexity of the best
(randomized/deterministic) algorithm.

Of course, by asking the oracle the distance between every pair (𝑢, 𝑣) of vertices in 𝐺, we can completely reconstruct
the edge set as 𝐸 = {{𝑢, 𝑣}|𝑑(𝑢, 𝑣) = 1}. This implies a trivial upper bound of

(|𝑉 |
2

)
on the query complexity. Unfortu-

nately, this upper bound can be tight. For example, the clique 𝐾𝑛 is difficult to distinguish from 𝐾𝑛 minus an edge: If
the missing edge is {𝑢, 𝑣}, then the only query answer that is different is then one for the pair (𝑢, 𝑣). Thus, all pairs need
to be queried before 𝐾𝑛 is reconstructed. The core of this problem is in fact high-degree vertices [2] (see Figure 1) and
therefore we will restrict our attention to connected 𝑛-vertex graphs of maximum degree Δ, as has also been done in
earlier work.

The best known lower bound (for bounded degree graphs) is from Reference [3]: By an information-theoretic argument,
ΩΔ(𝑛 log 𝑛∕ log log 𝑛) queries are needed to reconstruct 𝑛-vertex trees of maximum degree Δ. Let us consider Δ = 10 to
sketch the idea of the proof. We use that the class  of 𝑛-vertex graphs of maximum degree 10 and diameter at most log 𝑛

has size Ω(2𝑛 log 𝑛). For any algorithm distinguishing graphs from  in 𝑁 queries, no two distinct graphs from  can get
the same responses to the first 𝑁 queries. The diameter condition, ensures that (for graphs in ) every query answer is
an element of {0, … , ⌊log 𝑛⌋} and therefore can be encoded using at most log(log 𝑛 + 1) bits. Concatenating the answers
to the first 𝑁 queries, and using that the number of possible strings needs to be at least the number of graphs in the class,
we find 2𝑁 log(log 𝑛+1) = Ω(2𝑛 log 𝑛). This implies 𝑁 = Ω(𝑛 log 𝑛∕ log log 𝑛).

Improving on such an information-theoretic lower bound is often difficult. More generally, randomized query complexity
is infamously difficult to pinpoint: For example, state-of-the-art results are also far from tight bounds for the recursive
majority function [4–6]. In the setting of the evasiveness conjecture, the oracle can answer adjacency queries (“given 𝑢, 𝑣,
is {𝑢, 𝑣} ∈ 𝐸?”) instead of distance queries. It has been shown already in 1975 [7] that for any fixed non-trivial monotone
graph property of the graph (such as “does 𝐺 have a triangle”), any deterministic algorithm needsΘ(𝑛2) on 𝑛-vertex graphs.
At the same time, the best randomized query lower bound Ω(𝑛4∕3(log 𝑛)1∕3) from Reference [8] is far from the best upper
bound of 𝑂(𝑛2). Even seemingly simple questions such as estimating the average degree of a graph using vertex degree
queries require new probabilistic tools to achieve tight bounds [9, 10].

For 𝑛-vertex trees of maximum degree Δ, we achieve the correct dependency on 𝑛 and Δ for both the randomized and
deterministic query complexity using distance queries. Our first result towards this is the following lower bound.

Theorem 1.1. Let Δ ⩾ 2 and 𝑛 = 2𝑐Δ𝑘 be integers, where 𝑐 ∈ [1,Δ) and 𝑘 ⩾ 50(𝑐 ln 𝑐 + 3) is an integer. Any randomized
algorithm requires at least 1

50
Δ𝑛 logΔ 𝑛 queries to reconstruct 𝑛-vertex trees of maximum degree Δ + 1.

Note that for any 𝑛 ⩾ 2, there is a unique (𝑐, 𝑘) ∈ [1,Δ) × ℤ⩾0 with 𝑛∕2 = 𝑐Δ𝑘 so the only assumption in our lower bound
is that 𝑛 is sufficiently large compared toΔ. Our result allowsΔ to grow slowly with 𝑛 (e.g.,Δ = 𝑂((log 𝑛)𝛼)with 𝛼 ∈ (0, 1)).
Moreover, we allow Δ to be larger for specific values of 𝑛 (e.g., 𝑂(𝑛1∕150) for 𝑐 = 1). We made no attempt to optimize the
constant and slightly lowered the constant in the abstract to state the result for trees of maximum degree Δ instead of
Δ + 1.
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This removes the (1∕ log log 𝑛) factor compared to the information-theoretic lower bound. Moreover, we achieve both the
correct dependence on 𝑛 and the correct dependency on Δ (namely Δ∕ logΔ) for the term in front of 𝑛 log 𝑛. This is shown
by our following result.

Theorem 1.2. For all Δ ⩾ 4, there exists a deterministic algorithm to reconstruct trees of maximum degree at most Δ on
𝑛 vertices using Δ𝑛 logΔ 𝑛 + (Δ + 2)𝑛 queries.

For the class of trees of maximum degree 3, the algorithm from Theorem 1.2 for maximum degree Δ = 4 is still optimal
up to a multiplicative constant (by our Theorem 1.1 applied with Δ = 3).

Theorems 1.1 and 1.2 show both the deterministic and randomized distance query complexity of 𝑛-vertex trees of max-
imum degree Δ are Θ(Δ𝑛 logΔ 𝑛) for various ranges of Δ. However, we expect that the randomized complexity will be
slightly lower in terms of the multiplicative constant. Towards this, we also show that randomness can be exploited in our
algorithm of Theorem 1.2 to use 1

2
Δ𝑛 logΔ 𝑛 + (Δ + 1 + log 𝑛)𝑛 queries in expectation.

Our algorithm extends to chordal graphs and beyond. A graph is called 𝑘-chordal if it has no induced cycles of length at
least 𝑘 + 1. This gives an extension of chordal graphs (which are 3-chordal graphs). No (randomized nor deterministic)
algorithms were previously known with 𝑜(𝑛3∕2) query complexity for 𝑘-chordal 𝑛-vertex graphs for 𝑘 ⩾ 5.

Theorem 1.3. There exists a deterministic algorithm to reconstruct 𝑛-vertex 𝑘-chordal graphs of maximum degree at most
Δ using 𝑂Δ,𝑘(𝑛 log 𝑛) queries.

Since permutation graphs and AT-free graphs are known to be 5-chordal and 6-chordal respectively (see [11, 12]), our
results pinpoint the (randomized and deterministic) query complexity for those graph classes to ΘΔ(𝑛 log 𝑛).

1.1 | Previous Algorithms and New Algorithmic Insight

Kannan, Mathieu, and Zhou [3, 13] designed a randomized algorithm with query complexity 𝑂Δ(𝑛3∕2), where the subscript
denotes the constant may depend on Δ and 𝑂(𝑓 (𝑛)) is a short-cut for 𝑂(𝑓 (𝑛) polylog(𝑛)). In the same article, they give ran-
domized algorithms for chordal graphs and outerplanar graphs with a quasi-linear query complexity 𝑂Δ(𝑛 log3 𝑛). Rong,
Li, Yang, and Wang [14] improved the randomized query complexity for chordal graphs to 𝑂Δ(𝑛 log2 𝑛). Their algorithm
only requires a weaker type of oracle and applies to graphs without induced cycles of length at least 5. Our algorithm
extends the class of graphs and shaves off a log 𝑛-factor, achieving the best possible dependence on 𝑛 by our Theorem 1.1.
Low chordality has also been used in other works for designing efficient algorithms (e.g., routing schemes [15], computing
maximal independent sets or maximal packings, etc. [16, 17]).

Most known algorithms with quasi-linear query complexity in the distance oracle setting are randomized, with a recent
work giving a linear deterministic algorithm for interval graphs from Rong, Li, Yang, and Wang [14] as a notable exception.

We provide a new approach for exploiting separators, which also extends to various “tree-like” graphs. Our algorithm,
restricted to the class of trees, is surprisingly simple: We compute a Breadth First Search (BFS) tree starting from a vertex
𝑣0 and then inductively reconstruct the tree up to layer 𝑖. For each vertex in layer 𝑖 + 1, we use balanced separators to
“binary search” its parent in layer 𝑖. The algorithm and its analysis are given in Section 3.1, and we extend it to 𝑘-chordal
in Section 3.2 using structural graph theory insights.

1.2 | Lower Bound Technique

To prove our lower bounds, we first restrict our attention to reconstructing the labeling of the leaves of one particular
tree. This reduces some “noise” and reduces the problem to its core. We prove a lower bound on the number of queries
needed to reconstruct this labeling, and so the lower bound holds for any graph class that contains (all labelings of) this
particular tree.

Our tree of interest is 𝑇Δ,𝑘 depicted in Figure 2. It is the rooted tree of depth 𝑘 + 1 where the root (labeled by the empty
string) has degree Δ, all vertices at layers 1, … , 𝑘 − 1 have degree Δ + 1, and all vertices on layer 𝑘 have degree 2. Since
the structure of the tree is fixed, what remains to be reconstructed is the labeling of the vertices. We moreover fix the
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FIGURE 2 | An example of the tree 𝑇Δ,𝑘 for Δ = 3 and 𝑘 = 2 is depicted with labels. The “?’s denote that the labels of the leaves are
what needs to be reconstructed.

labels of all internal nodes, where the label of 𝑣 incorporates information about the path from 𝑣 to the root. We prove the
following key lemma.

Lemma 1.4. Let Δ ⩾ 2, 𝑘 ⩾ 150 be positive integers. Consider a labeling of the tree 𝑇Δ,𝑘 with 𝑁 = Δ𝑘 leaves, where only
the labels of the leaves are unknown. Any randomized algorithm requires at least 1

11
Δ𝑁 logΔ 𝑁 queries in expectation to

reconstruct the labeling.

Lemma 1.4 above only applies to specific values of 𝑁 for readability purposes. An extended version is given in Section 4,
which is needed to obtain a lower bound of all values of 𝑁 in our applications of the lemma.

What remains for reconstruction in the lemma is to assign each leaf to its parent (after that, all adjacencies are deter-
mined). So the problem above reduces naturally to the problem of reconstructing a bijection 𝑓 ∶ [Δ]𝑘 → [Δ]𝑘, which
is the viewpoint we will take. (We use the short-cut [𝑚] = {1, … , 𝑚}.) To model this, we define two new reconstruc-
tion problems and oracles. We present next the simplest one, as we think it is natural and could be studied in its own
right.

The aim is to reconstruct a bijective function 𝑓 ∶ [Δ]𝑘 → [Δ]𝑘 (where 𝑁 = Δ𝑘 = Θ(𝑛)). The reader should see 𝑓 as the
function that maps the label of a leaf to the label of its parent in 𝑇Δ,𝑘. We show that reconstructing 𝑓 with distance queries is
deeply linked with reconstructing 𝑓 with the help of a new oracle, the coordinate oracle. This oracle answers the following
two types of coordinate queries, where we use 𝑥𝑖 to denote the 𝑖th coordinate of 𝑥 ∈ [Δ]𝑘:

1. “is 𝑓 (𝑎)𝑖 = 𝑓 (𝑎′)𝑖?” for 𝑎, 𝑎′ ∈ [𝑛] and 𝑖 ∈ [𝑘], and

2. “is 𝑓 (𝑎)𝑖 = 𝑗?” for 𝑎 ∈ [𝑛], 𝑗 ∈ [Δ] and 𝑖 ∈ [𝑘].

Interestingly, instead of the usual number of queries, we can link the complexity of our original problem to the number
of NO answers given by the coordinate oracle. The reduction goes via another function reconstruction problem with a
more involved type of queries (see Section 4).

1.3 | Applications to Other Settings

The coordinate oracle presented above is of independent interest. Using the key lemma or intermediate results in this new
setting, we deduce improved randomized lower bounds for various related reconstruction problems randomized lower
bounds for other query models (see Section 4.4 for further details):

• betweenness queries in graphs [18] (also called separator queries [19]),

• path queries in directed graphs [20–22],

• membership queries for learning a partition [23–25],

• leaf-distance queries in phylogenetic trees [23, 26–29],

• comparison queries in tree posets [30].

Previous work in these settings found deterministic lower bounds or used information-theoretic arguments to obtain
weaker randomized lower bounds. Our lower bound often matches the complexity of randomized algorithms in these
settings, thereby settling those randomized query complexities (up to a multiplicative constant) as well.

4 of 22 Random Structures & Algorithms, 2025
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1.4 | Roadmap

In Section 2, we set up our notation and give the relevant definitions. In Section 3, we present our deterministic algorithms
for trees and 𝑘-chordal graphs, obtaining new upper bounds. In Section 4, we prove a matching randomized lower bound
and discuss further applications of this lower bound. In Section 5 we conclude with some open problems.

2 | Preliminaries

In this paper, all graphs are simple, undirected, and connected except when stated otherwise. All logarithms in this paper
are base 2, unless mentioned otherwise, where ln = log𝑒. For an integer 𝑛 ⩾ 1, we write [𝑛] = {1, … , 𝑛}.

For a graph 𝐺 and two vertices 𝑎, 𝑏 ∈ 𝑉 (𝐺), we denote by 𝑑𝐺(𝑎, 𝑏) the length of a shortest path between 𝑎 and 𝑏. For
𝐺 = (𝑉 , 𝐸), 𝐴 ⊆ 𝑉 and 𝑖 ∈ ℕ, we denote by 𝑁⩽𝑖

𝐺
[𝐴] = {𝑣 ∈ 𝑉 |∃𝑎 ∈ 𝐴, 𝑑𝐺(𝑣, 𝑎) ⩽ 𝑖}. We may omit the superscript when

𝑖 = 1. We write 𝑁𝐺(𝐴) = 𝑁𝐺[𝐴] ⧵ 𝐴 and use the shortcuts 𝑁𝐺[𝑢], 𝑁𝐺(𝑢) for 𝑁𝐺[{𝑢}], 𝑁𝐺({𝑢}) when 𝑢 is a single vertex.
We may omit the subscript when the graph is clear from the context.

2.1 | Distance Queries

We denote by QUERY𝐺(𝑢, 𝑣) the call to an oracle that answers 𝑑𝐺(𝑢, 𝑣), the distance between 𝑢 and 𝑣 in a graph 𝐺. For two
sets 𝐴, 𝐵 of vertices, we denote by QUERY𝐺(𝐴, 𝐵) the |𝐴| ⋅ |𝐵| calls to an oracle, answering the list of distances 𝑑𝐺(𝑎, 𝑏) for
all 𝑎 ∈ 𝐴 and all 𝑏 ∈ 𝐵. We may abuse notation and write QUERY𝐺(𝑢, 𝐴) for QUERY𝐺({𝑢}, 𝐴) and may omit 𝐺 when the
graph is clear from the context.

For a graph class  of connected graphs, we say an algorithm reconstructs the graphs in the class if for every graph 𝐺 ∈ 
the distance profile obtained from the queries does not belong to any other graph from . The query complexity is the
maximum number of queries that the algorithm takes on an input graph from , where the queries are adaptive. For a
randomized algorithm, the query complexity is given by the expected number of queries (with respect to the randomness
in the algorithm).

2.2 | Tree Decomposition

A tree decomposition of a graph 𝐺, introduced by [31], is a tuple (𝑇 , (𝐵𝑡)𝑡∈𝑉 (𝑇 )) where 𝑇 is a tree and 𝐵𝑡 is a subset of 𝑉 (𝐺)
for every 𝑡 ∈ 𝑉 (𝑇 ), for which the following conditions hold.

• For every 𝑣 ∈ 𝑉 (𝐺), the set of 𝑡 ∈ 𝑉 (𝑇 ) such that 𝑣 ∈ 𝐵𝑡, is non-empty and induces a subtree of 𝑇 .

• For every 𝑢𝑣 ∈ 𝐸(𝐺), there exists a 𝑡 ∈ 𝑉 (𝑇 ) such that {𝑢, 𝑣} ⊆ 𝐵𝑡.

2.3 | Balanced Separators

For 𝛽 ∈ (0, 1), a 𝛽-balanced separator of a graph 𝐺 = (𝑉 , 𝐸) for a vertex set 𝐴 ⊆ 𝑉 is a set 𝑆 of vertices such that the
connected components of 𝐺[𝐴 ⧵ 𝑆] are of size at most 𝛽|𝐴|.
One nice property of tree decompositions is that they yield 1

2
-balanced separators.

Lemma 2.1 ([31]). Let 𝐺 be a graph, 𝐴 ⊆ 𝑉 (𝐺) and (𝑇 , (𝐵𝑡)𝑡∈𝑉 (𝑇 )) a tree decomposition of 𝐺. Then there exists 𝑢 ∈ 𝑉 (𝑇 )
such that the bag 𝐵𝑢 is a 1

2
-balanced separator of 𝐴 in 𝐺.

In fact, for trees (of treewidth 1), we can always find a 1
2
-balanced separator of size 1 (i.e., a single vertex). We refer to such

a separator as a vertex separator or separating vertex.

3 | Improved Algorithm for Distance Reconstruction

This section presents our deterministic algorithms for the class of trees and 𝑘-chordal graphs. The lower bounds are given
in Section 4.

5 of 22
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3.1 | Optimal Algorithm for Tree Reconstruction

We first describe our algorithm for reconstructing trees, as it encapsulates most of the algorithmic ideas, while being fairly
simple.

Theorem 1.2. For all Δ ⩾ 4, there exists a deterministic algorithm to reconstruct trees of maximum degree at most Δ on
𝑛 vertices using Δ𝑛 logΔ 𝑛 + (Δ + 2)𝑛 queries.

Proof. Let 𝑇 be a tree on 𝑛 vertices, and let Δ be the maximum degree of 𝑇 . Our algorithm starts as follows. We pick an
arbitrary vertex 𝑣0 ∈ 𝑉 (𝑇 ) and will consider (for the analysis) the input tree 𝑇 as rooted in 𝑣0. We call QUERY(𝑣0, 𝑉 (𝑇 ) ⧵
{𝑣0}). We define the 𝑖thlayer of 𝑇 as 𝐿𝑖 = {𝑣 ∈ 𝑉 (𝑇 )|𝑑(𝑣0, 𝑣) = 𝑖}. We proceed to reconstruct the graph induced by the
first 𝑖 layers by induction on 𝑖.

Note that 𝑇 [𝐿0] = ({𝑣0}, ∅) is immediately reconstructed. We fix an integer 𝑖 ⩾ 1 and assume that the first 𝑖 − 1 layers are
fully reconstructed (i.e., we discovered all the edges and non-edges of 𝑇 [𝐿0 ∪ · · · ∪ 𝐿𝑖−1]). Let 𝑇1 = 𝑇 [𝐿0 ∪ · · · ∪ 𝐿𝑖−1] be
the already reconstructed subtree. We show how to reconstruct the edges between the (𝑖 − 1)th layer and the 𝑖thlayer. Note
that this suffices to reconstruct all the edges (since in a tree, edges can only be between consecutive layers).

Choose an arbitrary vertex 𝑣 ∈ 𝐿𝑖. We first show that we can find the parent of 𝑣 in 𝐿𝑖−1 using 𝑂(Δ log 𝑛) queries and then
describe how to shave off an additional (logΔ) factor.

The procedure goes as follows. As 𝑇1 is a tree, it admits a 1
2
-balanced separator of size 1. Let 𝑠1 be a vertex for which

{𝑠1} forms such a separator. We ask first QUERY(𝑣, 𝑁[𝑠1]), where the neighborhood is taken in 𝑇1. As 𝑇1 is a tree, there
is a unique path between any two vertices. Therefore, for 𝑤 ∈ 𝑁(𝑠1), the distance 𝑑(𝑣, 𝑤) = 𝑑(𝑣, 𝑠1) − 1 if 𝑤 lies on the
shortest path from 𝑣 to 𝑠1 and 𝑑(𝑣, 𝑠1) + 1 otherwise. From this, we can infer the neighbor 𝑥 of 𝑠1 that is the closest to 𝑣 as
the one for which the answer is smallest (or find that 𝑠1 is adjacent to 𝑣 and finish). Moreover, the unique path from 𝑠1 to
𝑣 lives in the connected component 𝑇2 of 𝑇1 ⧵ {𝑠1} that contains 𝑥. In particular, 𝑇2 contains the parent of 𝑣 (see Figure 3).

We can repeat this process and construct two sequences (𝑇𝑗)𝑗∈ℕ and (𝑠𝑗)𝑗∈ℕ, where 𝑇𝑗+1 is the connected component of
𝑇𝑗 ⧵ {𝑠𝑗} containing the parent of 𝑣, and 𝑠𝑗 ∈ 𝑉 (𝑇𝑗) is chosen so that {𝑠𝑗} is a 1

2
-balanced separator of 𝑇𝑗 . Once 𝑇𝓁 contains

less than Δ + 1 vertices for some 𝓁 or the vertex 𝑠𝓁 is identified as the parent of 𝑣, we finish the process1. By definition of
1
2
-balanced separator,

∀𝑗 ∈ [𝓁 − 1], |𝑇𝑗+1| ⩽ |𝑇𝑗|∕2 and thus 𝓁 ⩽ log 𝑛

If the process finished because 𝑇𝓁 has at most Δ vertices, we use at most Δ additional queries via QUERY(𝑇𝓁 , 𝑣). We infer
the parent of 𝑣 from the result. For each 𝑗 ⩽ 𝓁, we use at most Δ + 1 queries to reconstruct 𝑇𝑗+1 from 𝑇𝑗 . Hence, we use
𝑂(Δ log 𝑛) queries in total.

Taking a closer look at the process, at any step 𝑗, we can choose the order on the queries QUERY(𝑣, 𝑤) for 𝑤 ∈ 𝑁(𝑠𝑗)
and may not need to perform all the queries. Given a subtree 𝑆 of 𝑇1 on 𝑏 ⩾ 1 vertices that contains the parent of 𝑣, we
now show how to find the parent of 𝑣 in 𝑓 (𝑏) = Δ logΔ 𝑏 + Δ + 1 queries (giving the desired improvement of a (logΔ)
factor). If 𝑆 has at most Δ + 1 vertices, we may simply QUERY(𝑣, 𝑆) and deduce the answer. Otherwise, let 𝑠 ∈ 𝑆 be a
1
2
-balanced separator for 𝑆. This has at least two neighbors since 𝑆 has at least Δ + 1 vertices. We order the connected

components of 𝑆 ⧵ {𝑠} by non-increasing size, and ask the queries in the same order: We start with QUERY(𝑣, 𝑤1) for 𝑤1,
the neighbor of 𝑠 which is in the largest component, then proceed to the neighbor of the second largest component, etc.
We terminate when we find two different distances or have queried all the neighbors. In particular, we never perform
QUERY(𝑣, 𝑠).

• If 𝑑(𝑣, 𝑤) for 𝑤 ∈ 𝑁(𝑠) are all the same then 𝑠 is the parent of 𝑣. We terminate and recognise 𝑠 as the parent of 𝑣. We
used at most Δ ⩽ 𝑓 (𝑏) queries.

• If we discover that 𝑑(𝑣, 𝑤) < 𝑑(𝑣, 𝑤′) for some 𝑤, 𝑤′ ∈ 𝑁(𝑠), then 𝑠 is not the parent of 𝑣. In fact, 𝑤 is the vertex from
𝑁[𝑠] closest to 𝑣, and we recursively perform the same procedure on the subtree 𝑆′ of 𝑆 ⧵ {𝑠} that contains 𝑤. Note
that 𝑆′ must contain the parent of 𝑣.

If we query 2 neighbors of 𝑠 before detecting the component containing the parent of 𝑣, our next subtree 𝑆′ satisfies |𝑆′| ⩽|𝑆|∕2 since {𝑠} is a 1
2
-balanced separator. If we query 𝑚 ⩾ 3 neighbors of 𝑠 before detecting the component containing
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FIGURE 3 | The subtree 𝑇2 contains the neighbor of 𝑣 on a shortest path to 𝑠1 and so contains the parent of 𝑣.

the parent of 𝑣, our next subtree 𝑆′ satisfies |𝑆′| ⩽ |𝑆|∕𝑚 since there are 𝑚 − 1 components of 𝑆 ⧵ {𝑠} that are at least as
large. Either way, we decrease the size of the tree by a factor of at least 𝑥 if we perform 𝑥 queries, where 𝑥 ∈ {2, … ,Δ}.

We show by induction on 𝑏 that the procedure described above uses at most 𝑓 (𝑏) = Δ logΔ 𝑏 + Δ + 1 queries. The claim
is true when 𝑏 ⩽ Δ + 1. By the discussion above, for 𝑏 ⩾ Δ + 2, the process either finishes in Δ queries or uses 𝑥 + 𝑓 (𝑏′)
queries for some 𝑏′ ⩽ 𝑏∕𝑥 and 𝑥 ∈ {2, … ,Δ}. It thus suffices to show that

𝑓 (𝑏∕𝑥) + 𝑥 ⩽ 𝑓 (𝑏) for all 𝑥 ∈ {2, … ,Δ}

By definition, 𝑓 (𝑏) − 𝑓 (𝑏∕𝑥) = Δ logΔ 𝑥. We show that Δ logΔ 𝑥 ⩾ 𝑥 for all 𝑥 ∈ {2, … ,Δ}. By analyzing the derivative of
Δ logΔ 𝑥 − 𝑥 on the (real) interval 𝑥 ∈ {2, … ,Δ}, we find that the minimum is achieved at 𝑥 = 2 or 𝑥 = Δ. Since Δ ⩾ 4,
the minimum is achieved at 𝑥 = Δ, as desired.

With the improved procedure, we can reconstruct the edge from 𝐿𝑗−1 to 𝑣 in at most Δ logΔ 𝑛 + Δ + 1 queries. Repeating
the same strategy to reconstruct the parent of every vertex, we obtain the edge set of 𝑇 in at most

(𝑛 − 1) + (𝑛 − 1)(Δ logΔ 𝑛 + (Δ + 1)) ⩽ Δ𝑛 logΔ 𝑛 + (Δ + 2)𝑛

queries. ◽

Even though we show in the next section that we cannot achieve a better dependency in (𝑛,Δ) using randomization, we
can improve the multiplicative constant.

Theorem 3.1. For any Δ ⩾ 4, there exists a randomized algorithm for reconstructing 𝑛-vertex trees of maximum degree
at most Δ using 1

2
Δ𝑛 logΔ +(Δ + 2 + log 𝑛)𝑛 queries in expectation.

Proof. The algorithm works similarly to the algorithm from Theorem 1.2. We define the same layers and inductively
reconstruct the graph induced on the first 𝑖 layers. We find the parent of a vertex 𝑣 ∈ 𝐿𝑖 via a similar sequence of separators
𝑠1, … , 𝑠𝑗 and trees 𝑇1 ⊇ 𝑇2 ⊇ · · · ⊇ 𝑇𝑗 . The key difference is that when we wish to learn the vertex in 𝑁[𝑠𝑗] closest to 𝑣,
then we perform QUERY(𝑣, 𝑤) for 𝑤 ∈ 𝑁[𝑠𝑗] in an order that is chosen at random. Suppose that |𝑇𝑗| = 𝑏. We apply the
following claim to the tree 𝑇𝑗 and the vertex 𝑠𝑗 (both of which the algorithm knows completely). ◽

Claim 3.2. Let 𝑇 be a tree and let 𝑡 ∈ 𝑉 (𝑇 ). Let 𝑎1, … , 𝑎𝑘 be the sizes of the components of 𝑇 ⧵ {𝑡} and let 𝑣1, … , 𝑣𝑘

denote the neighbors of 𝑠𝑗 in these components. There is a computable random order on 𝑣1, … , 𝑣𝑘 such that the expected
number of vertices placed before 𝑣𝑖 is at most 1

2
1
𝑎𝑖

(−𝑎𝑖 +
∑𝑘

𝑗=1𝑎𝑗) for all 𝑖 ∈ [𝑘].
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Proof. We generate the order by independently sampling 𝑋𝑖 ∼ 𝑈 [0, 𝑎𝑖] uniformly at random for all 𝑖 ∈ [𝑘], where [0, 𝑎𝑖]
denotes the set of real numbers between 0 and 𝑎𝑖. Almost surely, 𝑋𝜋(1) > · · · > 𝑋𝜋(𝑘) for some permutation 𝜋 on the support
[𝑘] and this gives us our desired random order.

We prove that the expected number of vertices placed before 𝑣1 is at most 1
2

𝑎2+···+𝑎𝑘

𝑎1
, and then the remaining cases will

follow by symmetry. Let 𝐼(𝑥1) denote the number of vertices placed before 𝑣1 given that 𝑋1 = 𝑥1, i.e., the number of
𝑖 ∈ {2, … , 𝑘} such that 𝑋𝑖 > 𝑥1:

𝐼(𝑥1) =
𝑘∑

𝑖=2
Bern

(
max

(
𝑎𝑖 − 𝑥1

𝑎𝑖

, 0
))

A Bernoulli random variable with probability 𝑝 has expectation 𝑝. The expected number of vertices placed before 𝑣1 is
hence

1
𝑎1 ∫

𝑎1

0
𝔼[𝐼(𝑥1)]𝑑𝑥1 =

𝑘∑
𝑖=2

1
𝑎1 ∫

min(𝑎1,𝑎𝑖)

0

(
1 −

𝑥1

𝑎𝑖

)
𝑑𝑥1

We now show for all 𝑖 ∈ [2, 𝑘] that the 𝑖th summand is at most 1
2

𝑎𝑖

𝑎1
, which implies that the number of vertices placed

before 𝑣1 is indeed at most 1
2

𝑎2+···+𝑎𝑘

𝑎1
. We compute

1
𝑎1 ∫

min(𝑎1,𝑎𝑖)

0

(
1 −

𝑥1

𝑎𝑖

)
𝑑𝑥1 =

min(𝑎1, 𝑎𝑖)
𝑎1

(
1 −

min(𝑎1, 𝑎𝑖)
2𝑎𝑖

)
When 𝑎𝑖 ⩽ 𝑎1, the expression simplifies to 𝑎𝑖

𝑎1

1
2

as desired. When 𝑎𝑖 ⩾ 𝑎1, the expression simplifies to 1 − 1
2

𝑎1
𝑎𝑖

which is at
most 1

2
𝑎𝑖

𝑎1
since

𝑎1𝑎𝑖 ⩽
1
2
𝑎2

𝑖
+ 1

2
𝑎2

1
◽

By the claim, if the parent of 𝑣 is in a component 𝑇𝑗+1 of 𝑇𝑗 − 𝑠𝑗 of size 𝑎, then we query at most 1
2
(𝑏 − 𝑎)∕𝑎 vertices

in expectation before we query the neighbor of 𝑠𝑗 in 𝑇𝑗+1. This means that for a size reduction of 𝑥 = 𝑏∕𝑎, we perform
approximately 1

2
𝑥 queries in expectation, compared to 𝑥 in our deterministic algorithm. Using linearity of expectation,

we will repeat a similar calculation to the one done in the proof of Theorem 1.2.

We show that we reconstruct the edge to the parent of 𝑣 using at most 1
2
Δ logΔ 𝑛 + Δ + 1 + log 𝑛 queries in expectation.

We show that once we have identified a subtree 𝑇𝑗 containing the parent of 𝑣 with |𝑇𝑗| = 𝑏, we use at most Δ logΔ 𝑏 + Δ +
1 + log 𝑏 queries in expectation to find the parent of 𝑣. Let 𝑠𝑗 be a 1∕2-balanced separator of 𝑇𝑗 . The first base case is given
when 𝑠𝑗 is the parent of 𝑣: In this case, we perform at most Δ queries (all neighbors of 𝑠𝑗) and find that 𝑠𝑗 is the parent.
The second base case is when |𝑇𝑗| = Δ + 1, in which case we query all distances between 𝑣 and 𝑇𝑗 and identify the parent
of 𝑣.

We now assume that 𝑏 ⩾ Δ + 2 and that the parent of 𝑣 is in a component 𝑇𝑗+1 of 𝑇𝑗 ⧵ 𝑠𝑗 . Let 𝑎 = |𝑇𝑗+1|. By the claim, we
query at most 1

2
(𝑏 − 𝑎)∕𝑎 vertices in expectation before we query the neighbor 𝑤 of 𝑠𝑗 in 𝑇𝑗+1. We still need to query the

distance from 𝑣 to 𝑤. If 𝑤 is the first vertex to be queried, then we need to query one more vertex. Since 𝑠𝑗 is a 1∕2-balanced
separator, this happens with probability at most 1∕2. So after at most 1

2
𝑏

𝑎
+ 1 in expectation, we find the neighbor of 𝑣 is in

𝑇𝑗+1 after which by induction we need another 1
2
Δ logΔ 𝑎 + Δ + 1 + log 𝑎 queries in expectation. In total, we use at most

1
2

𝑏

𝑎
+ 1 + 1

2
Δ logΔ 𝑎 + Δ + 1 + log 𝑎

in expectation. We find that 𝑏

𝑎
+ Δ logΔ 𝑎 ⩽ Δ logΔ 𝑏 for all Δ ⩾ 4 (same calculation as before) and log 𝑎 + 1 ⩽ log 𝑏 since

𝑎 ⩽ 𝑏∕2. So we used at most Δ logΔ 𝑏 + Δ + 1 + log 𝑏 queries in expectation, as claimed. ◽

3.2 | Optimal Algorithm for 𝒌-Chordal Graphs

Using additional structural analysis, we extend our algorithm from trees to 𝑘-chordal graphs: Graphs without induced
cycles of length at least 𝑘 + 1. In the simpler case of (3-)chordal graphs, (randomized) reconstruction from a quasi-linear

8 of 22 Random Structures & Algorithms, 2025
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number of queries was already known to be possible [13]. Besides extending the class of graphs, our algorithm shaves off
a (log 𝑛) factor and is now optimal in 𝑛 (the number of vertices of the input graph).

The core of the proof uses the same principles as for trees in Theorem 1.2: We reconstruct the edges of a vertex 𝑢 to
the previous layer, layer-by-layer and vertex-by-vertex. The two important ingredients are (1) a structural result on the
neighborhood of a vertex (see Claim 3.4) and (2) the existence of “nice” balanced separators on the already reconstructed
subgraph (see Claim 3.5). After removing the separator, we need to show that we can correctly determine the component
that contains the neighborhood of the vertex 𝑢 that we are currently considering. We also need to reconstruct the edges
within the layer, but this turns out to be relatively easy.

Theorem 1.3. There exists a deterministic algorithm to reconstruct 𝑛-vertex 𝑘-chordal graphs of maximum degree at most
Δ using 𝑂Δ,𝑘(𝑛 log 𝑛) queries.

During the proof, we will need the following definition. The treelength of a graph 𝐺 (denoted tl(𝐺)) is the minimal integer
𝓁 for which there exists a tree decomposition (𝑇 , (𝐵𝑡)𝑡∈𝑉 (𝑇 )) of 𝐺 such that 𝑑𝐺(𝑢, 𝑣) ⩽ 𝓁 for every pair of vertices 𝑢, 𝑣 that
share a bag (i.e., 𝑢, 𝑣 ∈ 𝐵𝑡 for some 𝑡 ∈ 𝑉 (𝑇 )). In particular, we will use the following result proved by Kosowski, Li, Nisse,
and Suchan [32].

Lemma 3.3 ([32]). For any 𝑘 ∈ ℕ, any 𝑘-chordal graph has treelength at most 𝑘.

Proof of Theorem 1.3. We start by fixing a vertex 𝑣0 and asking QUERY(𝑉 (𝐺), 𝑣0). From that, we reconstruct 𝐿𝑖 = {𝑣 ∈
𝑉 (𝐺)|𝑑(𝑣, 𝑣0) = 𝑖}. We write 𝐿⋈𝑖 = ∪𝑗⋈𝑖𝐿𝑗 for any relation ⋈ ∈ {⩽, <, >,⩾}.

The algorithm proceeds by iteratively reconstructing 𝐺[𝐿⩽𝑖] for increasing values of 𝑖. Note that since 𝐺 has degree at
most Δ there are at most Δ2Δ𝑘 vertices in 𝐿⩽2Δ𝑘, the vertices at distance at most 2Δ𝑘 from 𝑣0. We ask QUERY(𝐿⩽2Δ𝑘, 𝐿⩽2Δ𝑘)
which represent at most 𝑂Δ,𝑘(1) queries and allows us reconstruct completely the adjacencies inside 𝐿⩽2Δ𝑘.

Suppose that we reconstructed 𝐺1 ∶= 𝐺[𝐿⩽𝑖−1] for some 𝑖 ⩾ 2Δ𝑘 and we again want to reconstruct the two edge sets

𝐸𝑖−1,𝑖 = {𝑢𝑣 ∈ 𝐸(𝐺)|𝑢 ∈ 𝐿𝑖−1, 𝑣 ∈ 𝐿𝑖}

and
𝐸𝑖,𝑖 = {𝑢𝑣 ∈ 𝐸(𝐺)|𝑢, 𝑣 ∈ 𝐿𝑖}

We call 𝐻1 = 𝐺[𝐿⩽𝑖−1−𝑘] the core of 𝐺1. We need a lemma that implies that neighborhoods are not spread out too much
in 𝐺1.

Claim 3.4. For all 𝑢 ∈ 𝐿𝑖 and 𝑣, 𝑤 ∈ 𝑁(𝑢) ∩ 𝐿𝑖−1, 𝑑𝐺1
(𝑣, 𝑤) ⩽ Δ𝑘.

Proof. Let 𝑣, 𝑤 ∈ 𝑁(𝑢) ∩ 𝐿𝑖−1 and let 𝑃 be a shortest 𝑣𝑤-path in 𝐺1. If 𝑉 (𝑃 ) ∩ 𝑁(𝑢) = {𝑣, 𝑤}, then the vertex set 𝑉 (𝑃 ) ∪
{𝑢} induces a cycle in 𝐺, and so |𝑉 (𝑃 )| ⩽ 𝑘 (else the 𝑘-chordality would be contradicted). For the same reason, 𝑃 can have
at most 𝑘 − 1 consecutive vertices outside of 𝑁(𝑢). Since 𝑢 has at most Δ neighbors, it follows that 𝑑𝐺1

(𝑣, 𝑤) ⩽ Δ𝑘. ◽

Since 𝐺 has treelength at most 𝑘 by Lemma 3.3, it has a tree decomposition (𝑇 ′,′) such that all bags 𝐵′ ∈ ′ satisfy
𝑑𝐺(𝑢, 𝑣) ⩽ 𝑘 for all 𝑢, 𝑣 ∈ 𝐵′. In particular, the bags have size at most Δ𝑘 + 1.

Restricting this tree decomposition to 𝐺1 shows that 𝐺1 admits a tree decomposition (𝑇 ,) such that each 𝐵 ∈  has size
at most Δ𝑘 + 1 and 𝑑𝐺(𝑢, 𝑣) ⩽ 𝑘 for all 𝑢, 𝑣 ∈ 𝐵. When a bag 𝐵 ∈  contains at least one vertex 𝑣 of the core 𝐻1, then in
fact 𝐵 ⊆ 𝑉 (𝐺1) and 𝑑𝐺1

(𝑢, 𝑣) ⩽ 𝑘 for all 𝑢 ∈ 𝐵. In particular, 𝑑𝐺1
(𝑢, 𝑣) ⩽ 2𝑘.

We have already reconstructed 𝐺1, so in particular, we know 𝑁⩽𝑘[𝑣] for all 𝑣 ∈ 𝐻1. Therefore, we can construct such a
tree decomposition (𝑇 ,) of 𝐺1 such that each 𝐵 ∈  has size at most Δ𝑘 + 1 and for any bag 𝐵 ∈ , if 𝑣 ∈ 𝐻1 ∩ 𝐵, then
𝑑𝐺1

(𝑢, 𝑣) ⩽ 𝑘 for all 𝑢 ∈ 𝐵.

Fix 𝑢 ∈ 𝐿𝑖. We describe an algorithm to reconstruct 𝑁(𝑢) ∩ 𝐿𝑖−1. The algorithm recursively constructs a sequence of con-
nected graphs (𝐺𝑗)𝓁𝑗=0 and a sequence of separators (𝑆𝑗)𝓁𝑗=1 for some 𝓁 ⩽ ⌈log(𝑛)⌉, such that 𝑆𝑗 is a 1

2
-balanced separator

of 𝐺𝑗 , 𝑆𝑗 ⊆ 𝐿⩽𝑖−Δ𝑘−1 and 𝑁(𝑢) ∩ 𝐿𝑖−1 ⊆ 𝑉 (𝐺𝑗).
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We first prove the following claim that we use to find our sequence of separators (𝑆𝑗).

Claim 3.5. For 𝑛 large enough compared to Δ and 𝑘 and any set of vertices 𝐴 ⊆ 𝑉 (𝐺1) with |𝐴| ⩾ log 𝑛, there exists a
bag 𝐵 of 𝑇 such that 𝐵 is a 1

2
-balanced separator of 𝐴, and 𝐵 is contained in 𝐿⩽𝑖−Δ𝑘−1.

Proof. Let 𝑇 be rooted in a bag that contains 𝑣0. By Lemma 2.1, there is a bag 𝐵 of 𝑇 that forms a 1
2
-balanced separator

for 𝐴 (i.e., all connected components of 𝐺1[𝐴 ⧵ 𝐵] are of size at most |𝐴|∕2). We choose such a bag 𝐵 of minimum depth
(in 𝑇 ). We need to show 𝐵 is contained in 𝐿⩽𝑖−Δ𝑘−1.

If 𝐵 contains 𝑣0, then 𝐵 ⊆ 𝐺[𝐿⩽𝑘]. Since 𝑖 ⩾ 2Δ𝑘, we are done in this case.

Suppose now that 𝑣0 ∉ 𝐵 and let 𝐵′ be the parent of 𝐵. By definition, 𝐵′ is not a 1
2
-balanced separator of 𝐴. If 𝐵 contains a

vertex 𝑣 of 𝐿⩽𝑖−1−𝑘−Δ𝑘, then also 𝑣 ∈ 𝐿⩽𝑖−1−𝑘 = 𝑉 (𝐻1) and so all vertices of 𝐵 are at distance at most 𝑘 from 𝑣. This implies
that 𝐵 ⊆ 𝐿⩽𝑖−1−Δ𝑘, as desired.

If not, 𝐵 has no vertex in 𝐿⩽𝑖−1−𝑘−Δ𝑘 so 𝐵 ⊆ 𝐿>𝑖−(Δ+1)𝑘−1. Since 𝐺1 is connected, 𝐵 ∩ 𝐵′ ≠ ∅. The same diameter argument
gives that 𝐵′ ⊆ 𝐿>𝑖−(Δ+2)𝑘−1. If 𝐶 is a component of 𝐺1 ⧵ 𝐵′ that does not contain 𝑣0, then the shortest path from any
𝑣 ∈ 𝐶 to 𝑣0 in 𝐺1 (of length at most 𝑖) must go through 𝐵′ (at distance at least 𝑖 − (Δ + 2)𝑘 − 1 from 𝑣0). In particular, all
such components are contained in 𝑁 ((Δ+2)𝑘+1)(𝐵′) and so the total size is at most Δ(Δ+2)𝑘+1|𝐵′| = 𝑂𝑘,Δ(1). For 𝑛 sufficiently
large, this is at most 1

2
log 𝑛.

On the other hand, as 𝐵′ is not a 1
2
-balanced separator, there exist a component 𝐴′ of 𝐺1[𝐴 ⧵ 𝐵′] with |𝐴′| > |𝐴|∕2 and so|𝐴′| >

1
2

log 𝑛. We found above that 𝐴′ then must contain 𝑣0. Since 𝐵 does not contain 𝑣0, 𝐴′ is contained in the component
of 𝐺1[𝐴 ⧵ 𝐵] containing 𝑣0. This yields a contradiction with the fact that 𝐵 is a 1

2
-balanced separator of 𝐴. ◽

Suppose that we have defined 𝐺𝑗 for some 𝑗 ⩾ 1 and let us describe how to define 𝐺𝑗+1. If |𝐺𝑗| ⩽ log 𝑛, we ask
QUERY(𝑢, 𝑉 (𝐺𝑗)) and output 𝑁(𝑢) ∩ 𝑉 (𝐺𝑗). Otherwise, we let 𝑆𝑗 be the bag found in Claim 3.5 when applied to 𝐴 = 𝑉 (𝐺𝑗).
Then 𝑆𝑗 ⊆ 𝐿⩽𝑖−Δ𝑘−1 and it is a 1

2
-balanced separator of 𝐺𝑗 . Since it is a bag of 𝑇 and contained in 𝐻1, we find the size of the

bag is at most Δ𝑘 + 1 and 𝑑𝐺1
(𝑢, 𝑣) ⩽ 𝑘 for all 𝑢, 𝑣 ∈ 𝑆𝑗 . We ask QUERY(𝑁[𝑆𝑗], 𝑢) and let 𝐺𝑗+1 be a component of 𝐺𝑗 ⧵ 𝑆𝑗

that contains a vertex from arg min𝑥∈𝑁[𝑆𝑗 ] 𝑑𝐺(𝑥, 𝑢). Then, we increase 𝑗 by one and repeat the same procedure.

We now prove the correctness of the algorithm presented above.

We first argue that 𝑁(𝑢) ∩ 𝐿𝑖−1 is contained in a unique connected component of 𝐺𝑗 ⧵ 𝑆𝑗 . Since every separator is included
in 𝐿⩽𝑖−Δ𝑘−1, we find 𝑑𝐺1

(𝑢, 𝑆𝓁) ⩾ Δ𝑘 + 1 for all𝓁 ⩽ 𝑗. By Claim 3.4, all vertices in 𝑁(𝑢) ∩ 𝐿𝑖−1 are connected via paths in 𝐺1
of length at most Δ𝑘 and by the observation above, these paths avoid all separators so will be present in a single connected
component of 𝐺𝑗 ⧵ 𝑆𝑗 . The only thing left to prove is the following claim.

Claim 3.6. 𝐺𝑗+1 is the component of 𝐺𝑗 ⧵ 𝑆𝑗 that contains 𝑁(𝑢) ∩ 𝐿𝑖−1.

Proof. Let 𝑥 ∈ 𝑁[𝑆𝑗] such that 𝑑𝐺(𝑥, 𝑢) is minimized and let 𝐻𝑥 be the connected component of 𝑥 in 𝐺𝑗 ⧵ 𝑆𝑗 . We will
prove that 𝐻𝑥 contains 𝑁(𝑢) ∩ 𝐿𝑖−1. In particular, this implies that 𝐺𝑗+1 = 𝐻𝑥 (a priori, 𝐺𝑗+1 could be a different compo-
nent for another minimiser than 𝑥), so that 𝐺𝑗+1 contains 𝑁(𝑢) ∩ 𝐿𝑖−1, as desired.

Suppose towards a contradiction that 𝑁(𝑢) ∩ 𝐿𝑖−1 is instead contained in a different connected component 𝐻 . We will
find an induced cycle of length at least 𝑘 + 1, depicted in Figure 4.

Let 𝑃 be a shortest path in 𝐺 from 𝑥 to 𝑢.

Let 𝑃 ′ be a path from 𝑢 to 𝑆𝑗 with all internal vertices in 𝐻 . Such a path exists since 𝐺𝑗 is connected.

Let 𝑃 ′′ be a shortest path in 𝐺 between a neighbor of 𝑥 in 𝑆𝑗 to the endpoint of 𝑃 ′ in 𝑆𝑗 . As 𝑆𝑗 is a bag contained in 𝐻1,
any two vertices in 𝑆𝑗 are within distance 𝑘 in 𝐺1. So 𝑃 ′′ ⊆ 𝐿⩽𝑖−2𝑘−2 (we may assume Δ ⩾ 4).

Let 𝑦 be the first vertex on the path 𝑃 (from 𝑥 to 𝑢) that lies in 𝐿𝑖 (such a vertex must exist since the path does not have
internal vertices in 𝑆𝑗 by choice of 𝑥 and since 𝐻𝑥 contains no neighbors of 𝑢).

10 of 22 Random Structures & Algorithms, 2025
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FIGURE 4 | This figure depicts a possible configuration in the proof of Claim 3.6 for which we end up with a contradiction by
finding a large induced cycle.

Let 𝑥1, … , 𝑥𝑘 be the 𝑘 vertices before 𝑦 in 𝑃 . Note that none of the 𝑥𝑖 can be adjacent to or part of 𝑃 ′ ∪ 𝑃 ′′ (since they are
in 𝐻𝑥 ∩ 𝐿⩾𝑖−𝑘). Let 𝐺′ be the graph obtained from 𝐺[𝑃 ∪ 𝑃 ′′ ∪ 𝑃 ′] by contracting 𝑃 ′′ ∪ 𝑃 ′ ∪ (𝑃 ⧵ {𝑥1, … , 𝑥𝑘}) to a single
vertex 𝑝. Note that the selected vertex set is indeed connected and that the resulting graph has vertex set {𝑥1, … , 𝑥𝑘, 𝑝}.
Since 𝑃 was a shortest path in 𝐺, the vertex set {𝑥1, … , 𝑥𝑘} still induces a path, and it suffices to argue about the adja-
cencies of 𝑝. Via edges of 𝑃 , the vertex 𝑝 is adjacent to 𝑥1 and 𝑥𝑘. If 𝑝 was adjacent to 𝑥𝑖 for some 𝑖 ∈ [2, 𝑘 − 1], then there
must be a vertex 𝑦 ∈ 𝑃 ′′ ∪ 𝑃 ′ ∪ (𝑃 ⧵ {𝑥1, … , 𝑥𝑘}) adjacent to 𝑥𝑖. But a case analysis shows this is not possible, because
the only vertices adjacent to 𝑥𝑖 in 𝑃 are 𝑥𝑖+1 and 𝑥𝑖−1 since 𝑃 is a shortest path; we already argued that 𝑦 ∉ 𝑃 ′ ∪ 𝑃 ′′. We
hence found an induced cycle of length 𝑘 + 1, a contradiction. ◽

We now show how to reconstruct all edges in 𝐸𝑖,𝑖 incident to 𝑢.

Claim 3.7. If 𝑥 ∈ 𝑁(𝑢) ∩ 𝐿𝑖−1 and 𝑦 ∈ 𝑁(𝑣) ∩ 𝐿𝑖−1 for some 𝑢𝑣 ∈ 𝐸𝑖,𝑖, then 𝑑𝐺[𝐿⩽𝑖−1](𝑥, 𝑦) ⩽ 2Δ𝑘.

Proof. Since |𝑁[{𝑢, 𝑣}]| ⩽ 2Δ, it suffices to prove that 𝑑𝐺1
(𝑥, 𝑦) ⩽ 𝑘 when the shortest path 𝑃 in 𝐺1 between 𝑥 and 𝑦

avoids other vertices from 𝑁[{𝑢, 𝑣}]. As we argued in Claim 3.4, this is true when 𝑥 or 𝑦 is a neighbor of both 𝑢 and 𝑣 (else
we create an induced cycle of length at least 𝑘 + 1). So we may assume that 𝑥 ∈ 𝑁(𝑢) ⧵ 𝑁(𝑣) and 𝑦 ∈ 𝑁(𝑣) ⧵ 𝑁(𝑢). But
now 𝑃 ∪ {𝑢, 𝑣} is an induced cycle of length at least 𝑘 + 1. ◽

Let 𝐺′
1 be the graph obtained from 𝐺1 by adding the vertices in 𝐿𝑖 and the edges in 𝐸𝑖,𝑖−1. Our algorithm already recon-

structed 𝐺′
1. If 𝑢𝑣 ∈ 𝐸𝑖,𝑖, then applying Claim 3.7 to vertices 𝑥, 𝑦 ∈ 𝐿𝑖−1 on the shortest paths from 𝑢, 𝑣 to the root 𝑣0

respectively, we find that 𝑑𝐺′
1
(𝑢, 𝑣) ⩽ 2Δ𝑘 + 2. For each 𝑢 ∈ 𝐿𝑖, we ask QUERY(𝑢, 𝑁⩽2Δ𝑘+2

𝐺′
1

(𝑢) ∩ 𝐿𝑖) and we record the ver-
tices 𝑣 for which the response is 1. Those are exactly the vertices adjacent to 𝑢. Per vertex 𝑢 ∈ 𝐿𝑖, this takes at most Δ2Δ𝑘+3

queries.

The query complexity of reconstructing 𝐸𝑖−1,𝑖 is 𝑂𝑘,Δ(log 𝑛|𝐿𝑖|) as there are at most log 𝑛 iterations (using the fact that
the (𝑆𝑗)𝑗 are 1

2
-balanced separators) and in each iteration we do 𝑂𝑘,Δ(log 𝑛) queries per vertex 𝑢 ∈ 𝐿𝑖. To reconstruct 𝐸𝑖,𝑖,

we use 𝑂𝑘,Δ(1) queries per vertex of 𝐿𝑖. Therefore, the total query complexity of the algorithm is
∑

𝑖 𝑂𝑘,Δ(|𝐿𝑖| log 𝑛) =
𝑂𝑘,Δ(𝑛 log 𝑛).

4 | Lower Bounds for Randomized Tree Reconstruction

In this section, we show that the algorithm presented in the previous section is optimal in terms of the dependency on 𝑛

and Δ, even when randomization is allowed.

Theorem 1.1. Let Δ ⩾ 2 and 𝑛 = 2𝑐Δ𝑘 be integers, where 𝑐 ∈ [1,Δ) and 𝑘 ⩾ 50(𝑐 ln 𝑐 + 3) is an integer. Any randomized
algorithm requires at least 1

50
Δ𝑛 logΔ 𝑛 queries to reconstruct 𝑛-vertex trees of maximum degree Δ + 1.

11 of 22
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Note that, for constant 𝑐, Δ could even be a small polynomial in 𝑛. Any “algorithm” is allowed to be randomized unless
specified to be deterministic.

4.1 | Reconstructing Functions From the Coordinate Oracle

To prove the lower bound, we reduce to a natural function reconstruction problem that could be of independent interest.
Let Δ ⩾ 3, 𝑘 ⩾ 1 and 𝑛 = 𝑐Δ𝑘 be integers, where 𝑐 ∈ [1,Δ).

Let 𝐴 = [𝑛] and 𝐵 = [Δ]𝑘. Suppose that 𝑓 ∶ 𝐴 → 𝐵 is an unknown function that we want to reconstruct. For 𝑏 ∈ 𝐵 and
𝑖 ∈ [𝑘], we write 𝑏𝑖 for the value of the 𝑖th coordinate of 𝑏.

The coordinate oracle can answer the following two types of queries:

• Type 1. QUERY𝑐
1(𝑎, 𝑏, 𝑖) for 𝑎 ∈ 𝐴, 𝑏 ∈ [Δ] and 𝑖 ∈ [𝑘] answers YES if 𝑓 (𝑎)𝑖 = 𝑏 and NO otherwise.

• Type 2. QUERY𝑐
2(𝑎, 𝑎′, 𝑖) for 𝑎, 𝑎′ ∈ 𝐴 and 𝑖 ∈ [𝑘] answers YES if 𝑓 (𝑎)𝑖 = 𝑓 (𝑎′)𝑖 and NO otherwise.

In the case of the coordinate oracle, we will count the number of queries for which the answer is NO instead of the number
of queries.

We say that 𝑓 ∶ 𝐴 → 𝐵 is a balanced function if for every 𝑏 ∈ 𝐵, |𝑓−1(𝑏)| = 𝑐 for some integer 𝑐 ⩾ 1.

Our main result on function reconstruction from a coordinate oracle is the following.

Theorem 4.1. Let Δ ⩾ 3, 𝑐 ⩽ Δ − 1 and 𝑘 ⩾ 50(𝑐 ln 𝑐 + 2) be positive integers and let 𝑛 = 𝑐Δ𝑘. Any algorithm recon-
structing 𝑓 ∶ [𝑛] → [Δ]𝑘 using the coordinate oracle, in the special case where 𝑓 is known to be a balanced function, has at
least 1

11
Δ𝑛𝑘 queries answered NO in expectation.

To prove Theorem 4.1, we first study the query complexity in the general case, when no restriction is put on 𝑓 . Using
Yao’s minimax principle [33], studying the expected complexity of a randomized algorithm can be reduced to studying
the query complexity of a deterministic algorithm on a randomized input.

Lemma 4.2 (Corollary of Yao’s minimax principle [33]). For any distribution 𝐷 on the inputs, for any randomized
algorithm 𝑀 , the expected query complexity of 𝑀 is at least the average query complexity of the best deterministic algorithm
for input distribution 𝐷.

We will apply Yao’s principle for 𝐷 the uniform distribution and the query complexity measuring the number of queries
answered NO. We combine this with the following lemma.

Lemma 4.3. Let 𝑛, 𝑘 andΔ be integers. For any deterministic algorithm 𝑅 using the coordinate oracle and 𝑓 ∶ [𝑛] → [Δ]𝑘

sampled u.a.r., the probability that 𝑅 reconstructs 𝑓 in at most 1
10
Δ𝑛𝑘 queries answered NO is at most 𝑒−

1
50

𝑛𝑘.

We first deduce our main theorem on function reconstruction from the two lemmas above.

Proof of Theorem 4.1. Let 𝑀 be a deterministic algorithm that reconstructs balanced functions using the coordinate
oracle. We first extend 𝑀 to an algorithm 𝑀 that reconstructs all functions (among all functions) while the number of
NO answers remains the same if the input is balanced. The algorithm 𝑀 first performs the same queries as 𝑀 does, until
it either has no balanced candidates or a single balanced candidate 𝑓 compatible with the answers so far. In the former
case, it reconstructs the function by brute-force. In the second case, it performs QUERY𝑐

1(𝑎, 𝑓 (𝑎)𝑖, 𝑖) for all 𝑎 ∈ 𝐴 and 𝑖 ∈ [𝑘]
to verify that indeed the input is 𝑓 . If the input is indeed 𝑓 , we have now distinguished 𝑓 among all functions (rather
than all balanced functions) without additional NO answers. If any of the queries answer NO, we again have no balanced
candidates left and may perform the brute-force approach again.

We will show that, when restricted to balanced functions, 𝑀 has an average query complexity (in terms of the number
of NO answers) greater than 1

11
Δ𝑛𝑘. Since 𝑀 has the same number of NO answers as 𝑀 on balanced inputs, it has the

same average query complexity as 𝑀 . Using Yao’s principle (Lemma 4.2), it then follows that any randomized algorithm
that reconstructs balanced functions has at least 1

11
Δ𝑛𝑘 queries answered NO in expectation.

12 of 22 Random Structures & Algorithms, 2025
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By Lemma 4.3, there are at most |𝐵|𝑛𝑒− 1
50

𝑛𝑘 functions 𝑓 ∶ 𝐴 → 𝐵 for which 𝑀 reconstructs 𝑓 in less than 1
10
Δ𝑛𝑘 queries.

On the other hand, the number of balanced functions from 𝐴 to 𝐵 is the following multinomial coefficient
(

𝑛

𝑐,… ,𝑐

)
= 𝑛!

(𝑐!)𝑛
.

In particular, there are at least
(

𝑛

𝑐,… ,𝑐

)
− (𝑛∕𝑐)𝑛𝑒−

1
50

𝑛𝑘 balanced functions for which 𝑀 requires at least 1
10
Δ𝑛𝑘 queries.

This means that the average query complexity of 𝑀 is at least(
𝑛

𝑐,… ,𝑐

)
− (𝑛∕𝑐)𝑛𝑒−

1
50

𝑛𝑘(
𝑛

𝑐,… ,𝑐

) 1
10

Δ𝑛𝑘 =
𝑛! − (𝑐!)𝑛(𝑛∕𝑐)𝑛𝑒−

1
50

𝑛𝑘

𝑛!
1

10
Δ𝑛𝑘 ⩾ 1

11
Δ𝑛𝑘

since,

(𝑐!)𝑛(𝑛∕𝑐)𝑛𝑒−
1

50
𝑛𝑘 =

(
𝑛

𝑒

)𝑛(𝑒𝑐!
𝑐

𝑒−
1

50
𝑘
)𝑛

⩽ 𝑛𝑛𝑒−
51
50

𝑛 ⩽ 1
100

𝑛!

using for the first inequality that 𝑘 ⩾ 50(𝑐 ln 𝑐 + 2) and for the second that 𝑛 ⩾ 251. ◽

Proof of Lemma 4.3. Let 𝑅 be a deterministic algorithm that uses the coordinate oracle to reconstruct functions. Let
𝐹𝑡 denote the set of possible functions 𝑓 ∶ 𝐴 → 𝐵 that are consistent with the first 𝑡 queries done by 𝑅. (This depends on
the input function 𝑔 ∶ 𝐴 → 𝐵, but we leave this implicit.) For 𝑎 ∈ 𝐴 and 𝑖 ∈ [𝑘], let

𝐽 𝑡
𝑎,𝑖

= {𝑗 ∈ [Δ]|𝑓 (𝑎)𝑖 = 𝑗 for some 𝑓 ∈ 𝐹𝑡}

Note that all values 𝑗1, 𝑗2 ∈ 𝐽 𝑡
𝑎,𝑖

are equally likely in the sense that there is an equal number of 𝑓 ∈ 𝐹𝑡 with 𝑓 (𝑎)𝑖 = 𝑗1 as
with 𝑓 (𝑎)𝑖 = 𝑗2. The algorithm 𝑅 will perform the same 𝑡 queries for all 𝑓 ∈ 𝐹𝑡. In particular, if 𝑔 ∶ 𝐴 → 𝐵 was chosen
uniformly at random, then after the first 𝑡 queries all 𝑓 ∈ 𝐹𝑡 are equally likely (as input function) and in particular 𝑔(𝑎)𝑖
is uniformly distributed over 𝐽 𝑡

𝑎,𝑖
, independently of the sets 𝐽 𝑡

𝑎′,𝑖′
for (𝑎′, 𝑖′) ≠ (𝑎, 𝑖). This is the part for which we crucially

depend on the fact that we allow all functions 𝑓 ∶ 𝐴 → 𝐵 and not just bijections (where there may be dependencies
between the probability distributions of 𝑔(𝑎) and 𝑔(𝑎′) for distinct 𝑎, 𝑎′ ∈ 𝐴).

We say that the 𝑡th query of the algorithm is special if

• it is a Type 1 query QUERY𝑐
1(𝑎, 𝑏, 𝑖) and |𝐽 𝑡

𝑎,𝑖
| ⩾ Δ∕2, or

• it is a Type 2 query QUERY𝑐
2(𝑎, 𝑎′, 𝑖) and either |𝐽 𝑡

𝑎,𝑖
| or |𝐽 𝑡

𝑎′,𝑖
| is at least Δ∕2.

Let 𝑇 denote the number of NOanswers to special queries that 𝑅 does to the coordinate oracle until it has reconstructed
the input function. We let 𝑌𝑖 = 1 if the answer of the 𝑖th special query is YES, and 0 otherwise. So

∑𝑇

𝑖=1𝑌𝑖 denotes the
number of special queries with answer YES.

At the start of the algorithm 𝐽 0
𝑎,𝑖

= [Δ] for all 𝑎 ∈ 𝐴 and 𝑖 ∈ [𝑘]. Thus, to reconstruct the function, the pair (𝑎, 𝑖) is either
(1) involved in a special query with answer is YES or (2) involved in Δ∕2 special queries for which the answer is NO.
Since any query involves at most two elements of 𝐴, we deduce that

|𝐴|𝑘∕2 = 𝑛𝑘∕2 ⩽

(
𝑇 −

𝑇∑
𝑖=1

𝑌𝑖

)
2
Δ

+
𝑇∑

𝑖=1
𝑌𝑖

We aim to prove that if 𝑔 ∶ 𝐴 → 𝐵 is sampled uniformly at random, then with high probability 𝑇 = 𝑇 (𝑔) ⩾ 1
10
Δ𝑛𝑘. To do

so, we consider a simplified process and a random variable 𝜏 which is stochastically dominated by 𝑇 (i.e., for any 𝑥 ∈ ℝ+,
ℙ(𝑇 ⩽ 𝑥) ⩽ ℙ(𝜏 ⩽ 𝑥)). Let us consider an infinite sequence of i.i.d. random variables 𝑋1, 𝑋2, 𝑋3, … ∼ Bernouilli(2∕Δ).
Note that

𝐻(𝑡) =

(
𝑡 −

𝑡∑
𝑖=1

𝑋𝑖

)
2
Δ

+
𝑡∑

𝑖=1
𝑋𝑖 =

(
1 − 2

Δ

) 𝑡∑
𝑖=1

𝑋𝑖 +
2𝑡

Δ

is increasing in 𝑡. Let 𝜏 be the first integer 𝑡 for which 𝐻(𝑡) ⩾ 1
2
𝑛 logΔ 𝑛.

13 of 22
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If 𝑔 is sampled uniformly at random, then the 𝑗th special query (say involving 𝑎 ∈ 𝐴 and 𝑖 ∈ [𝑘] with |𝐽 𝑡
𝑎,𝑖
| ⩾ Δ∕2) has

answer YES with probability
ℙ(𝑌𝑖 = 1) ⩽ 2

Δ
= ℙ(𝑋𝑖 = 1)

This is because all values of 𝐽 𝑡
𝑎,𝑖

are equally likely for 𝑔(𝑎)𝑖 (and independent of the value of 𝑔(𝑎′)𝑖 or 𝑏𝑖 for 𝑏 ∈ 𝐵 and
𝑎′ ∈ 𝐴). This inequality holds independently of the values of (𝑌1, … , 𝑌𝑖−1). This implies that, for any 𝑡 ∈ ℕ+ and any
𝑥 ∈ ℝ+,

ℙ

(
𝑡∑

𝑖=1
𝑋𝑖 ⩽ 𝑥

)
⩽ ℙ

(
𝑡∑

𝑖=1
𝑌𝑖 ⩽ 𝑥

)

Therefore,

ℙ

((
1 − 2

Δ

) 𝑡∑
𝑖=1

𝑋𝑖 +
2𝑡

Δ
⩽ 𝑥

)
⩽ ℙ

((
1 − 2

Δ

) 𝑡∑
𝑖=1

𝑌𝑖 +
2𝑡

Δ
⩽ 𝑥

)

From this we can conclude that ℙ(𝑇 ⩽ 𝑥) ⩽ ℙ(𝜏 ⩽ 𝑥), thus 𝑇 stochastically dominates 𝜏.

If 𝜏 ⩽ 1
10
Δ𝑛𝑘, then using the definition of 𝜏 we find that(

1
10

Δ𝑛𝑘 −
𝜏∑

𝑖=1
𝑋𝑖

)
2
Δ

+
𝜏∑

𝑖=1
𝑋𝑖 ⩾

1
2
𝑛𝑘

which implies
𝜏∑

𝑖=1
𝑋𝑖 ⩾

(
1 − 2

Δ

) 𝜏∑
𝑖=1

𝑋𝑖 ⩾
3

10
𝑛𝑘

Let 𝑥 = 1
10
Δ𝑛𝑘. We compute 𝔼

[∑𝑥

𝑖=1𝑋𝑖

]
= 2

Δ
𝑥 = 1

5
𝑛𝑘. Using Chernoff’s inequality (see, e.g., [34]). we find

ℙ(𝜏 ⩽ 𝑥) ⩽ ℙ

(
𝑥∑

𝑖=0
𝑋𝑖 ⩾

(
1 + 1

2

)1
5
𝑛𝑘

)
⩽ exp

(
−
(1

2

)2 1
5
𝑛𝑘∕

(
2 + 1

2

))

Since 1
2

1
2

1
5

2
5
= 1

50
, this proves ℙ(𝑇 ⩽ 𝑥) ⩽ ℙ(𝜏 ⩽ 𝑥) ⩽ 𝑒−

1
50

𝑛𝑘. In particular, the probability that at most 1
10
Δ𝑘 queries are

used is at most 𝑒−
1

50
𝑛𝑘, as desired. ◽

4.2 | Reconstructing Functions From the Word Oracle

Let once again 𝐴 = [𝑛] and 𝐵 = [Δ]𝑘. We next turn our attention to reconstructing functions 𝑓 ∶ 𝐴 → 𝐵 from a more com-
plicated oracle that we use as a stepping stone to get to distance queries in trees. For 𝑏 ∈ 𝐵, we write 𝑏[𝑖,𝑗] = (𝑏𝑖, 𝑏𝑖+1, … , 𝑏𝑗).
It will also be convenient to define 𝑏∅ as the empty string. The word oracle can answer the following two types of
questions.

Type 1. QUERY𝑤
1 (𝑎, 𝑏) for 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, answers the largest 𝑖 ∈ {0, … , 𝑘} with 𝑓 (𝑎)[1,𝑖] = 𝑏[1,𝑖].

Type 2. QUERY𝑤
2 (𝑎, 𝑎′) for 𝑎, 𝑎′ ∈ 𝐴, answers the largest 𝑖 ∈ {0, … , 𝑘} with 𝑓 (𝑎)[1,𝑖] = 𝑓 (𝑎′)[1,𝑖].

By studying the number of queries for the word oracle and the number of NO answers for the coordinate oracle, we can
link the two reconstruction problems as follows.

Lemma 4.4. For all positive integers Δ, 𝑘 and 𝑛, for any algorithm 𝑀 using the word oracle that reconstructs functions
𝑓 ∶ 𝐴 → 𝐵 in at most 𝑞(𝑓 ) queries in expectation, there exists an algorithm 𝑀 ′ using the coordinate oracle that reconstructs
functions 𝑓 ∶ [𝑛] → [Δ]𝑘 such that at most 𝑞(𝑓 ) queries are answered NO in expectation.

Proof. Given an algorithm 𝑀 using the word oracle, we build a new algorithm 𝑀 ′ using the coordi-
nate oracle. We do so query-by-query. If 𝑀 asks QUERY𝑤

1 (𝑎, 𝑏), then 𝑀 ′ performs a sequence of queries
QUERY𝑐

1(𝑎, 𝑏1, 1), QUERY𝑐
1(𝑎, 𝑏2, 2), … , QUERY𝑐

1(𝑎, 𝑏𝑖+1, 𝑖 + 1), where 𝑖 ∈ {0, … , 𝑘 − 1} is the largest for which 𝑓 (𝑎)[1,𝑖] =

14 of 22 Random Structures & Algorithms, 2025
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FIGURE 5 | Example of the tree 𝑇𝑐,Δ,𝑘 constructed in the proof of Theorem 1.1 for Δ = 4, 𝑐 = 2 and 𝑘 = 2 with the labeling 𝓁 of the
internal nodes.

𝑏[1,𝑖]. Note that the sequence indeed simulates a query of the word oracle, yet the coordinate oracle answers NO at most
once (on the (𝑖 + 1)th query).

Queries of Type 2 can be converted analogously. This way, for every input 𝑓 , the natural “coupling” of the randomness in
𝑀 and 𝑀 ′ ensures that the number of NO answers to 𝑀 ′ is stochastically dominated by the number of queries to 𝑀 . In
particular, the expected number of NO answers given by 𝑀 ′ is upper bounded by 𝑞(𝑓 ), the expected number of queries
to 𝑀 . ◽

Lemma 4.4 and Theorem 4.1 now give the following result.

Corollary 4.5. Let Δ ⩾ 3, 𝑐 ⩽ Δ − 1 and 𝑘 ⩾ 50(𝑐 ln 𝑐 + 2) be positive integers. Let 𝑛 = 𝑐Δ𝑘. Any algorithm reconstruct-
ing 𝑓 ∶ [𝑛] → [Δ]𝑘 using the word oracle, in the special case where 𝑓 is known to be balanced, needs at least 1

11
Δ𝑛𝑘 queries

in expectation.

4.3 | Reducing Tree Reconstruction to Function Reconstruction

To prove Theorem 1.1 we consider a specific tree 𝑇𝑐,Δ,𝑘 (with 𝑐 ⩽ Δ): The tree of depth 𝑘 + 1 where each node at depth at
most 𝑘 − 1 has exactly Δ children and each node at depth 𝑘 has exactly 𝑐 children (see Figure 5). Theorem 1.1 is an almost
direct consequence of the following lemma.

Lemma 1.4. Let Δ ⩾ 2, 𝑘 ⩾ 150 be positive integers. Consider a labeling of the tree 𝑇Δ,𝑘 with 𝑁 = Δ𝑘 leaves, where only
the labels of the leaves are unknown. Any randomized algorithm requires at least 1

11
Δ𝑁 logΔ 𝑁 queries in expectation to

reconstruct the labeling.

Proof. We consider 𝑇 = 𝑇𝑐,Δ,𝑘 and let 𝐿 be the set of leaves of 𝑇 , and let 𝑃 be the set of parents of the leaves. The tree 𝑇

has 𝑛 =
∑𝑘

𝑖=0Δ
𝑖 + 𝑐Δ𝑘 nodes and 𝑁 = 𝑐Δ𝑘 leaves. Let 𝑝 ∶ 𝐿 → 𝑃 be the bijection that sends each leaf to its direct parent.

We label internal nodes as follows. The root is labeled ∅ (the empty string) and if a node 𝑣 has label 𝓁 and has Δ children,
then we order the children 1, … ,Δ and we label the child 𝑖 with label obtained from concatenation 𝓁 + (𝑖). We put such
labels on all internal nodes.

Let 𝐼 denote the set of internal nodes and let 𝓁(𝑣) denote the label of 𝑣 ∈ 𝐼 . Let 𝑓 ∶ 𝐿 → [Δ]𝑘 be the bijection that sends
a leaf 𝑢 ∈ 𝐿 to the label 𝓁(𝑝(𝑢)) ∈ [Δ]𝑘 of its direct parent.

We consider the trees that have a fixed labeling (as described above) for a node in 𝐼 and every possible permutation of the
labeling of the leaves. All possible bijections 𝑓 ∶ 𝐿 → [Δ]𝑘 appear among the trees that we are considering. To reconstruct
the tree, we in particular recover the corresponding bijection 𝑓 . Distance queries between internal vertices always give
the same response and can be ignored. We show that the other queries are Type 1 and Type 2 queries in disguise.

• For 𝑎 ∈ 𝐿 and 𝑏 ∈ 𝐼 the distance between 𝑎 and 𝑏 is given as follows. Let 𝑧 ∈ 𝐼 be the nearest common ancestor of 𝑎

and 𝑏, and say 𝑧 has depth 𝑖 and 𝑏 has depth 𝑗. The distance between 𝑎 and 𝑏 is 1 + (𝑘 − 𝑖) + (𝑗 − 𝑖). The values of 𝑘 and
𝑗 do not depend on 𝑓 but the value of 𝑖 is exactly given by max{𝑠 ∶ 𝑓 (𝑎)[0,𝑠] = 𝑏[0,𝑠]}, the answer to the corresponding
type 1 query of (𝑎, 𝑏) to the word oracle. To be precise, since 𝑏 may have a length shorter than 𝑖, the query QUERY𝑤

1 (𝑎, 𝑏′)
where 𝑏′

𝑠
= 𝑏𝑠 for all 𝑠 ∈ [|𝑏|] and 𝑏′

𝑠
= 0 otherwise, gives the desired information.
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• For 𝑎, 𝑎′ ∈ 𝐿, the distance between 𝑎 and 𝑎′ is given by 2(1 + (𝑘 − 𝑖)) for 𝑖 the answer of a Type 2 QUERY𝑤
2 (𝑎, 𝑎′) to the

word oracle.

This shows that we reduce an algorithm to reconstruct the labeling of the leaves from 𝑞 distance queries to an algorithm
that reconstructs functions 𝑓 ∶ 𝐿 → [Δ]𝑘 from 𝑞 queries to the word oracle. By Theorem 4.1, since 𝑘 ⩾ 50(𝑐 ln 𝑐 + 2), we
need at least 1

11
Δ𝑁𝑘 queries. ◽

We are now ready to deduce the main result of this section.

Theorem 1.1. Let Δ ⩾ 2 and 𝑛 = 2𝑐Δ𝑘 be integers, where 𝑐 ∈ [1,Δ) and 𝑘 ⩾ 50(𝑐 ln 𝑐 + 3) is an integer. Any randomized
algorithm requires at least 1

50
Δ𝑛 logΔ 𝑛 queries to reconstruct 𝑛-vertex trees of maximum degree Δ + 1.

Proof. Let Δ, 𝑛 ⩾ 2 be integers. We write 𝑛 = 2𝑐Δ𝑘 for 𝑐 ∈ [1,Δ) and 𝑘 an integer. (When 𝑛∕2 ⩾ 1, there is a unique pair
(𝑐, 𝑘) ∈ [1,Δ) × ℤ⩾0 with 𝑛∕2 = 𝑐Δ𝑘.)

Suppose that 𝑘 ⩾ 50(𝑐 ln 𝑐 + 3). In particular, Δ ⩾ 2 implies 𝑘 ⩾ ⌊logΔ 𝑛 − 1⌋. The tree 𝑇 = 𝑇⌊𝑐⌋,Δ,𝑘 considered in
Lemma 1.4has maximum degree Δ + 1, 𝑁 = ⌊𝑐⌋Δ𝑘 leaves and 𝑛′ =

∑𝑘

𝑖=0Δ
𝑖 + ⌊𝑐⌋Δ𝑘 vertices, where

𝑛∕4 ⩽ 𝑁 ⩽ 𝑛′ ⩽ 2𝑐Δ𝑘 = 𝑛

For Δ ⩾ 2 and 𝑐 ⩾ 1, if 𝑛 ⩾ 2Δ50(𝑐 ln 𝑐+3) then 𝑁 ⩾ 𝑛

4
⩾ Δ50(𝑐 ln 𝑐+2). So we may apply Lemma 1.4 and find that at least

1
11

Δ𝑁⌊logΔ 𝑁 − 1⌋ ⩾ 1
44

Δ𝑛(logΔ 𝑛 − 4)

queries are required. As logΔ 𝑛 ⩾ 150, we find that this is at least 1
50
Δ𝑛 logΔ 𝑛. ◽

Corollary 4.6. Any randomized algorithm requires at least 1
50
Δ𝑛 logΔ 𝑛 distance queries to reconstruct 𝑛-vertex trees of

maximum degree Δ + 1 ⩾ 3 if 𝑛 ⩾ 2Δ50(Δ lnΔ+3).

4.4 | Randomized Lower Bounds for Related Models

We next show that our result implies various other new randomized lower bounds. Although we state these results with
a weaker assumption on 𝑛 for readability reasons, we remark that our more precise set-up (allowing Δ to be a small
polynomial in 𝑛 for specific values of 𝑛) also applies here.

4.4.1 | Betweenness Queries

A betweenness query answers for three vertices (𝑢, 𝑣, 𝑤) whether 𝑣 lies on a shortest path between 𝑢 and 𝑤. Using three
distance queries to (𝑢, 𝑤), (𝑢, 𝑣) and (𝑣, 𝑤), you can determine whether 𝑣 lies on a shortest path between 𝑢 and 𝑤, so
the betweenness oracle is weaker (up to multiplicative constants). It has been shown in Reference [18] that random-
ized algorithms can obtain a similar query complexity for betweenness queries as was obtained for distance queries by
[3]. Moreover, a randomized algorithm for 4-chordal graphs has been given that uses a quasi-linear number of queries
to a betweenness oracle [35]. A deterministic algorithm using 𝑂(Δ𝑛3∕2) betweenness queries has been given for trees,
as well as an Ω(Δ𝑛) lower bound [19]. Our randomized lower bound from Theorem 1.1 immediately extends to this
setting.

Corollary 4.7. Any randomized algorithm requires at least 1
150

Δ𝑛 logΔ 𝑛 betweenness queries to reconstruct 𝑛-vertex trees
of maximum degree Δ + 1 ⩾ 3 if 𝑛 ⩾ 2Δ50(Δ lnΔ+3).

4.4.2 | Path and Comparison Queries

Given two nodes 𝑖, 𝑗 in a directed tree, a path query answers whether there exists a directed path from 𝑖 to 𝑗. Improving
on work from Reference [22], it was shown in Reference [21] that any algorithm needs Ω(𝑛 log 𝑛 + 𝑛Δ) to reconstruct a

16 of 22 Random Structures & Algorithms, 2025
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directed tree on 𝑛 nodes of maximum degree Δ. When we consider a directed rooted tree in which all edges are directed
from parent to child, then path queries are the same as ancestor queries: Given 𝑢, 𝑣 in a rooted tree, is 𝑢 an ancestor of
𝑣? We apply this to the tree 𝑇𝑐,Δ,ℎ from Lemma 1.4 for which the labels of all internal vertices are fixed, but the labels of
the leaves are unknown. Path queries (𝑢, 𝑣) only give new information if 𝑣 is a leaf and 𝑢 is an internal vertex. But this
is weaker than distance queries, since we can obtain the same information by asking the distance between 𝑢 and 𝑣. This
means that we can redo the calculation from the proof of Theorem 1.1 (applying Lemma 1.4) to lift the lower bound to
path queries.

Corollary 4.8. Any randomized algorithm requires at least 1
50
Δ𝑛 logΔ 𝑛 path queries to reconstruct 𝑛-vertex directed trees

of maximum degree Δ + 1 ⩾ 3 if 𝑛 ⩾ 2Δ50(Δ lnΔ+3).

A randomized algorithm using 𝑂(𝑛 log 𝑛) path queries on bounded-degree 𝑛-vertex trees has been given in Reference [21],
but their dependency on Δ does not seem to match our lower bound. We remark that, besides query complexity, works on
path queries such as [21, 22, 36] have also studied the round complexity (i.e., the number of rounds needed when queries
are performed in parallel).

The same ideas apply to lift our lower bound to one for reconstructing tree posets (𝑇 , >) from comparison queries, which
answer, for given vertices 𝑢, 𝑣 of the tree, whether 𝑢 < 𝑣, 𝑣 < 𝑢 or 𝑢||𝑣.

Corollary 4.9. Any randomized algorithm requires at least 1
50
Δ𝑛 logΔ 𝑛 comparison queries to reconstruct 𝑛-vertex tree

posets of maximum degree Δ + 1 ⩾ 3 if 𝑛 ⩾ 2Δ50(Δ lnΔ+3).

This improves on the lower bound of Ω(Δ𝑛 + 𝑛 log 𝑛) from Reference [30] and matches (up to a (𝐶 logΔ) factor) the query
complexity of their randomized algorithm.

4.4.3 | Membership Queries for Reconstructing Partitions

The (𝑛, 𝑘)-partition problem was introduced by King, Zhang and Zhou [23]. Given 𝑛 elements which are parti-
tioned into 𝑘 equal-sized classes, the partition needs to be determined via queries of the form “Are elements 𝑎 and
𝑏 in the same class?”. They used the adversary method to prove Ω(𝑛𝑘) queries are needed by any deterministic
algorithm. Liu and Mukherjee [25] studied this problem phrased as learning the components of a graph via mem-
bership queries (which answer whether given vertices lie in the same component or not) and provide an exact deter-
ministic lower bound of (𝑘 − 1)𝑛 −

(
𝑘

2

)
for deterministic algorithms. It indeed seems natural that randomized algo-

rithms need 𝛼𝑘𝑛 queries for some constant 𝛼 in this setting. Nonetheless, the best lower bound for a randomized
algorithm seems to be the information-theoretic lower bound of Ω(𝑛 log 𝑘). Our next result remedies this gap in the
literature.

Corollary 4.10. Let 𝜀 > 0. Any randomized algorithm requires at least 1
11

𝑛𝑘 membership queries to solve the
(𝑛, 𝑘)-partition problem if 𝑛 ⩾ 𝑘1+𝜀 is sufficiently large.

Proof. Since we plan to apply Lemma 4.3, we will write Δ = 𝑘.

First, note that we can see the (𝑛,Δ)-partition problem using membership queries as reconstructing a balanced function
using only Type 2 queries to the coordinate oracle. Formally, if 𝑓 ∶ [𝑛] → [Δ] is the function which associates an element
𝑎 ∈ [𝑛] to the index 𝑖 ∈ [Δ] of the part that contains 𝑎 (out of the Δ parts in the partition), then a membership query
between 𝑎, 𝑎′ ∈ [𝑛] is exactly equivalent to the coordinate query QUERY𝑐

2(𝑎, 𝑎′) applied the function 𝑓 . Once we recon-
structed the partition, we can retrieve the index of each part using Δ2 = 𝑜(𝑛Δ) queries of Type 1 to the coordinate oracle.
Therefore, it suffices to show that at least 1

11
Δ𝑛 queries are needed in expectation to reconstruct a balanced function using

the coordinate oracle.

Applying Lemma 4.3 with 𝑘 = 1, we find that when 𝑓 is sampled uniformly at random (among all functions 𝑔 ∶ [𝑛] → [Δ]),
the probability that a given randomized algorithm uses less than 1

10
𝑛Δ queries is at most 𝑒−

1
50

𝑛. In particular, the number
of balanced functions reconstructed in less than 1

10
𝑛Δ queries is upper bounded by Δ𝑛𝑒−

1
50

𝑛. We compare this number to

the total number
(

𝑛

𝑛∕Δ,… ,𝑛∕Δ

)
= 𝑛!

(𝑛∕Δ)!Δ
of balanced functions:
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Δ𝑛𝑒−
1

50
𝑛

𝑛!
(𝑛∕Δ)!Δ

⩽ Δ𝑛𝑒−
1

50
𝑛 (2𝜋𝑛∕Δ)Δ∕2(𝑛∕(𝑒Δ)𝑛√

2𝜋𝑛(𝑛∕𝑒)𝑛
𝑒Δ∕(12𝑛∕Δ)

= 1√
2𝜋𝑛

(2𝜋𝑛∕Δ)Δ∕2 exp(Δ2∕(12𝑛) − 𝑛∕50)

Here we used that for all 𝑛 ⩾ 1, √
2𝜋𝑛(𝑛∕𝑒)𝑛 < 𝑛! <

√
2𝜋𝑛(𝑛∕𝑒)𝑛𝑒1∕(12𝑛)

Since Δ ⩽ 𝑛1∕(1+𝜖) for some 𝜖 > 0, the fraction tends to 0, so in particular becomes smaller than 1
100

when 𝑛 is sufficiently
large (depending on 𝜖). This implies that the expected number of queries to reconstruct a Δ-balanced function is at least
99

100
1

10
Δ𝑛 ⩾ 1

11
𝑛Δ. By the discussion at the start, we find the same lower bound for the (𝑛,Δ)-partition problem. ◽

The same lower bound holds when queries of the form “Is element 𝑎 in class 𝑖?” are also allowed. We expect that our
methods can be adapted to handle parts of different sizes and that our constant 1

11
can be easily improved.

Randomized algorithms have been studied in a similar setting by Lutz, De Panafieu, Scott, and Stein [24] under the name
active clustering. They provide the optimal average query complexity when the partition is chosen uniformly at random
among all partitions. They also study the setting in which a partition of 𝑛 items into 𝑘 parts is chosen uniformly at random
and allow queries of the form “Are items 𝑖 and 𝑗 in the same part?”. However, there is a key difference: The set of answers
the algorithm receives needs to distinguish the partition from any other partition (including those with a larger number
of parts). In this setting, the following algorithm is optimal. Order the items 1, … , 𝑛. For 𝑖 = 1, … , 𝑛, query item 𝑖 to
items 𝑗 = 1, … , 𝑖 in turn if the answer to the query “Are items 𝑖 and 𝑗 in the same part?” is not yet known. It follows from
Reference [24, Lemma 9] that this algorithm has the lowest possible expected number of queries. The expected number
of queries used is at most

(1 + 2 + 3 + · · · + 𝑘)1
𝑘

𝑛 = 𝑘 + 1
2

𝑛

In particular, for 𝑖 = Ω(log 𝑛) queries, with high probability, there are items in 𝑘 different parts among the first 𝑖 − 1 items.
Since the number of parts is not “known,” the algorithm will use 𝑘 queries for item 𝑖 if it is in the “last part,” and so
the complexity is ( 𝑘+1

2
+ 𝑜(1))𝑛 as 𝑛 → ∞. The same algorithm would use ( 𝑘+1

2
− 1

𝑘
+ 𝑜(1))𝑛 queries when the number of

parts may be assumed to be at most 𝑘, in which case queries “to the last part” are never needed. So, the assumption on
whether the number of parts is known changes the query complexity. Together with the parts “being known to be exactly
balanced,” this introduces additional dependencies in the (𝑛, 𝑘)-partition problem that our analysis had to deal with.

4.4.4 | Phylogenetic Reconstruction

This setting comes from biology. Reconstructing a phylogenetic tree has been modeled via what we call leaf-distance
queries (similarity of DNA) between leaves of the input tree [23, 27, 37]. Although very similar, the query complexities
of the phylogenetic model and the distance query model on trees are not directly related. In the phylogenetic model, the
set of leaves is already known, and the leaf-distance queries are only possible between leaves. Moreover, we consider a
phylogenetic tree to be reconstructed once we know all the pairwise distances between the leaves. For example, if the
input tree is a path on 𝑛 vertices, then in the phylogenetic setting we receive only two leaves and are finished once we
query their distance, whereas in the distance reconstruction setting it takes Ω(𝑛) queries to determine the exact edge set.

Improving on various previous works [26, 28, 29], King, Zhang, and Zhou [23, Theorem 32] showed that any deter-
ministic algorithm reconstructing phylogenetic trees of maximum degree Δ with 𝑁 leaves needs at least Ω(Δ𝑁 logΔ 𝑁)
leaf-distance queries. Deterministic algorithms achieving this complexity are also known [27].

For randomized algorithms, the previous best lower bound was the information-theoretic lower bound of
Ω(𝑁 log 𝑁∕ log log 𝑁). We provide the following randomized lower bound from Lemma 1.4, which is tight up to a mul-
tiplicative constant.

Theorem 4.11. Let Δ ⩾ 2, 𝑐 ⩽ Δ − 1 and 𝑘 ⩾ 50(𝑐 ln 𝑐 + 2) be positive integers. Let 𝑁 = 𝑐Δ𝑘. Any randomized
algorithm reconstructing phylogenetic trees of maximum degreeΔ + 1 with 𝑁 leaves needs at least 1

20
Δ𝑁 logΔ 𝑁 leaf-distance

queries in expectation.
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Proof. Let 𝑇 = 𝑇𝑐,Δ,𝑘 be the tree considered in Lemma 1.4 with 𝑁 leaves.

Suppose, towards a contradiction, that we could obtain the pairwise distances between the leaves of this tree in
1

20
Δ𝑁 logΔ 𝑁 leaf-distance queries in expectation. We show that, from this, we can recover the labels of the leaves of 𝑇

using only Δ2𝑁 ⩽ 1
30
Δ𝑁 logΔ 𝑁 additional distance queries, contradicting Lemma 1.4 since 1

20
+ 1

50
⩽ 1

11
and logΔ 𝑁 ⩾

𝑘 ⩾ 50.

We proceed by induction on 𝑘, the depth of the tree 𝑇 . When 𝑘 = 0, 𝑇𝑐,Δ,0 is a star with 𝑐 leaves. There is nothing to prove,
as the parent of each leaf is known to be the root. Suppose 𝑘 ⩾ 1, and that the claim has already been shown for smaller
values of 𝑘. We define an equivalence relation on the set of leaves: For 𝑢1, 𝑢2 ∈ 𝐿, 𝑢1 ∼ 𝑢2 if and only if 𝑑(𝑢1, 𝑢2) < 2𝑘. This
is an equivalence relation with Δ equivalence classes, as 𝑑(𝑢1, 𝑢2) < 2𝑘 if and only if 𝑢1 and 𝑢2 have a child of the root as
common ancestor.

Let 𝑢1, 𝑢2, … , 𝑢Δ be arbitrary representatives of each of the Δ equivalence classes. (Note that we can select these since
we already know the distances between the leaves.) Let 𝑟 denote the root of 𝑇 . We ask QUERY(𝑢𝑖, 𝑁(𝑟)) for all 𝑖 ∈ [Δ].
From this, we can deduce the common ancestor among the children of the root for each of the classes. It is the unique
neighbor of 𝑟 lying on a shortest path from 𝑢𝑖 to 𝑟. Let 𝑉𝑖 denote the set of all the leaves that have the 𝑖th neighbor of 𝑟 as
common ancestor. We also define 𝑇𝑖 to be the subtree rooted in the 𝑖th neighbor of 𝑟. We remark that it is now sufficient
to solve Δ subproblems of reconstructing 𝑇𝑖 knowing each 𝑉𝑖 leaf matrix. By the induction hypothesis, each subprob-
lem is solvable in |𝑉 (𝑇𝑖)|Δ2 = 𝑁−1

Δ
Δ2 = (𝑁 − 1)Δ queries. Therefore, in total this algorithm uses (𝑁 − 1)Δ2 + Δ2 = Δ2𝑁

distance queries. ◽

5 | Open Problems

We presented new algorithms for reconstructing classes of graphs with bounded maximum degree from a quasi-linear
number of distance queries and gave a new randomized lower bound of 1

200
Δ𝑛 logΔ 𝑛 for 𝑛-vertex trees of maximum degree

Δ. This lower bound is now also the best lower bound for the class of bounded degree graphs, while the best-known
randomized algorithm uses 𝑂Δ(𝑛3∕2) queries [13]. The main open question is to close the gap between our lower bound
and this upper bound. In particular, it would be interesting to see if the quasi-linear query complexity achieved for various
classes of graphs can be extended to all graphs of bounded maximum degree.

Problem 5.1. Does there exist a randomized algorithm that reconstructs an 𝑛-vertex graph of maximum degree Δ
using 𝑂Δ(𝑛) distance queries in expectation?

From a more practical viewpoint, studying the query complexity of reconstructing scale-free networks is of high impor-
tance as it is the class of graphs that best describes real-world networks like the Internet. Graphs in this class have vertices
of large degree; therefore, recent theoretical works (including this one) do not directly apply. In particular, not even an
𝑜(𝑛2) algorithm is known in this setting.

Problem 5.2. How many distance queries are needed for reconstructing scale-free networks?

We showed in this paper that deterministic algorithms with good query complexity exist for specific classes of graphs. One
of the classes of graphs that does not fit in the scope of this paper but is known to have an efficient randomized algorithm
is the class of bounded degree outerplanar graphs [3]. Note that outerplanar graphs also have a nice separator structure.
For example, there is always a 1

2
-balanced separator which induces a path (see, e.g., [38, Proposition 6]).

Problem 5.3. Does there exist a deterministic algorithm that reconstructs an 𝑛-vertex outerplanar graph of maximum
degree Δ in 𝑂Δ(𝑛) distance queries?

We provided various randomized lower bounds in Section 4 that are tight up to a multiplicative constant. We expect that
determining the exact constant for the optimal expected number of queries for reconstructing 𝑛-vertex trees of maximum
degree Δ for the entire range of (𝑛,Δ) may be complicated. We believe that for deterministic algorithms, when 𝑛 is large
compared to Δ (and takes particularly nice forms, e.g., 1 + Δ + · · · + Δ𝑘 for some integer 𝑘 ⩾ 1), determining the correct
constant could be achievable (yet would require new ideas). In particular, our simple algorithm may be even optimal up
to an additive constant. We set the following challenge towards this.
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Problem 5.4. Is there a constant 𝑐 >
1
2

such that for all Δ ⩾ 3, there are infinitely many values of 𝑛 for which any
deterministic algorithm that reconstructs 𝑛-vertex trees of maximum degree Δ needs at least 𝑐Δ𝑛 logΔ 𝑛 queries?

We showed that the randomized and deterministic query complexities have the same dependence on 𝑛 and Δ, and in that
sense, randomness does not help much. If the answer to the question above is positive, it shows that randomness does at
least make some difference.

A lower bound for trees immediately implies a lower bound for any class containing trees (such as 𝑘-chordal graphs),
but a better lower bound could hold for bounded-degree graphs. In our algorithm for 𝑘-chordal graphs, we did not try to
optimize the dependency on the maximum degree Δ and 𝑘, and the dependency on 𝑘 can probably be improved upon. If
one believes the answer to Problem 5.1 to be positive, then the dependency on 𝑘 should be at most poly-logarithmic. It
would be interesting to see if some dependency on 𝑘 is needed. To ensure the lower bound needs to exploit cycles due to
our Δ𝑛 logΔ 𝑛 algorithm for trees, we pose the following problem.

Problem 5.5. Is it true that for some fixed values of 𝑘 and Δ and all 𝑛 sufficiently large, any algorithm reconstructing
𝑘-chordal graphs on 𝑛 vertices of maximum degree Δ requires at least 106Δ𝑛 logΔ 𝑛 queries?

Finally, we believe the problems of reconstructing functions from the coordinate or the word oracle are of independent
interest. There are various variations that can be considered to which our methods may extend. For example, it is also
natural to consider (bijective) functions 𝑓 ∶ 𝐴 → 𝐵 where both 𝐴 and 𝐵 are the same product of sets of different sizes
(e.g., 𝐴 = 𝐵 = [𝑎1] × [𝑎2] × · · · × [𝑎𝑘]).
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Graphs in Quasipolynomial Time,” in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (Association
for Computing Machinery (ACM), 2021), 330–341.
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