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SUMMARY

Patients with colorectal cancer are frequently presented with liver metastases for which
(partial) resection is often the best therapy. However, the future remnant liver, the re-
maining part of the liver after resection, should allow adequate liver function to avoid liver
failure. This thesis presents novel methods for the accurate voxel-wise estimation of the
future remnant liver’s function based on pharmacokinetic modeling of dynamic contract-
enhanced (DCE) MRI.

The methods comprise a variety of novel techniques for DCE-MRI of the liver: 1) 4D
registration of the DCE series; 2) delineation of the liver, the liver vasculature and the liver’s
anatomical segments; 3) pharmacokinetic (PK) modeling of the perfusion based on the
intra-cellular contrast agent Gd-EOB-DTPA (Primovist); 4) assessment of the relation be-
tween DCE-MRI and hepatobiliary scintigraphy (HBS).

Spatial alignment of the voxels in the 4D DCE-MRI is an important requirement for PK
modeling. We exploit the proximity of deformation fields to sequentially register images
in an ordered fashion. The global liver displacement helps in predicting the deformation
‘tendency’ along the time axis. The deformation tendency allows us to obtain a better
starting point for the registration. Such a method aims to start the registration optimiza-
tion close to the optimum and avoid getting trapped in a local minimum.

We apply a liver-specific contrast agent, due to which the liver shows a higher signal
intensity than the surrounding organs. Maximal contrast is achieved by subtracting the
registered first image of the series from the last image. Subsequently, the liver is delineated
based on the resulting “contrast” volume by means of a level set approach. For identify-
ing the liver vasculature, a region growing method is applied to identify the hepatic vein
(HV), the portal vein (PV) and inferior vena cava (IVC) from the liver. Differing from con-
ventional region growing methods, it calculates the Pearson correlation between the time
intensity curves (TICs) of a seed and all voxels and regards the correlation as a distance
measurement. After the identification of the liver vasculature, skeletons of the vessels are
regarded as landmarks to partition functional liver segments. Finally the liver partitioning
is achieved according to the Couinaud classification.

We propose an improved pharmacokinetic model, which we named COS-FLAC to as-
sess the liver DCE MRI data. Two novelties are introduced in the PK modeling. First, the ar-
terial input function proposed by Orton is integrated into Sourbron’s dual inlet PK model.
This enables that the arrival times of contrast from the portal vein and the hepatic artery
are separately included in the model and estimated simultaneously with the PK model pa-
rameters. Secondly, the deformation and displacement of the liver is estimated and used
to correct for changes in signal intensity such as the ones caused by B1-inhomogeneities.

Finally, DCE-MRI perfusion parameter liver uptake rate (Ki) derived from our COS-
FLAC model is correlated with the liver’s uptake rate of 99mTc-mebrofenin (MUR) in HBS.
Strong correlations are found between uptake parameters derived from DCE-MRI and
HBS for both total and FRL function (Pearson r = 0.70, P = 0.001 and r = 0.89, P < 0.001

ix



x SUMMARY

respectively). There is a strong agreement between the functional share determined with
both modalities (ICC = 0.944, 95%-CI: 0.863-0.978, n = 20). There is a significant nega-
tive correlation between liver aminotransferases and bilirubin for both MUR and Ki. The
results indicate that DCE-MRI with Gd-EOB-DTPA has the potential to measure similar
functional information in the liver as HBS with 99mTc-mebrofenin.
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2 1. INTRODUCTION

1.1. THE LIVER

Liver

Gall
Bladder

Appendix

Spleen
Stomach

Colon

Small
Intestine

Bladder

(a) (b)

Figure 1.1: (a) Abdominal anatomy [1]; (b) The blood supply of the liver [2].

T HE liver is the largest gland in the human body and normally weighs 1.44–1.66 kg [3]. It
is located in the right upper quadrant of the abdominal cavity, below the diaphragm,

and partially hidden behind the rib cage. The liver is surrounded by multiple vital organs,
including the stomach that lies on its left, the gallbladder is just below the edge of the liver,
and the small and large intestines travel along its lower border, see Fig. 1.1(a). The liver
consists of two parts, a bigger right lobe and a smaller left one, see Fig. 1.1(b).

The liver is responsible for several important functions, including but not limited to
detoxification, converting substances, storage, and production of essential proteins for
body functioning. It produces bile that helps with fat digestion, has a very important role
in immunity, and produces clotting factors to prevent bleeding [4].

A difference that distinguishes liver from other organs is its unique blood supply; see
Fig. 1.1(b). Particularly, the liver receives blood from the hepatic artery and hepatic portal
vein. The hepatic artery carries oxygen-rich blood from the aorta, whereas the portal vein
carries blood rich in digested nutrients from the entire gastrointestinal tract and also from
the spleen and pancreas. The portal vein supplies approximately 75% of the liver’s blood.

Because of its rich, dual blood supply, the liver is a common site for metastatic dis-
ease. Liver metastases often arise from primary tumors in organs such as colon, breast,
lung, pancreas and stomach [5]. Computed tomography (CT) [6] is clinically used to de-
termine the presence/absence of hepatic metastases and provide a gross estimate of liver
tumor burden due to its wide availability and high scan efficiency. However, magnetic
resonance imaging (MRI) using liver-specific contrast media is increasingly performed in
patients with known hepatic malignancy (primary or secondary) when liver resection is
being considered [7]. Dynamic contrast-enhanced (DCE) MRI enables accurate identifi-
cation of the number and locations as well as characterization of liver metastases [8]. As
such, surgeons can determine whether the patient is suitable to receive a liver resection.

Liver diseases and cancers may have a large influence on liver function which is im-
portant information for the surgeon. Several methods have been proposed to evaluate
the liver function. Conventional tests include but are not limited to the Child-Pugh Score
[9, 10], ICG (Indocyanine Green) Clearance test [11], 99mTc-GSA (Galactosyl Serum Albu-
min) Scintigraphy [12] and the 99mTc-mebrofenin Hepatobiliary Scintigraphy [13]. A limi-
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tation of the aforementioned methods is that they can only evaluate the total liver function
and some of them even rely on ionizing radiation. Recently, DCE-MRI with Gd-EOB-DTPA
(a gadolinium based, liver specific contrast agent) has been proposed as a useful test to as-
sess liver function, offering liver function test without radiation burden [14–17].

1.2. MAGNETIC RESONANCE IMAGING (MRI)
1.2.1. SPIN DYNAMICS

M AGNETIC resonance imaging is a medical imaging technique used in radiology to
form images of the anatomy and of the physiological processes of the body in both

health and disease [18]. Essentially, MRI is based on the fact that in an external mag-
netic field, the intrinsic angular momentum (spin) of a (Hydrogen) proton precesses at
the "Larmor frequency" [19] around the external magnetic field’s main axis. The Larmor
frequency is proportional to the magnitude of the external field [20] and in the case of MRI
lies in the range of radio frequency (about 10-300 MHz, according to the applied magnetic
field). The spins will resonate when they are subjected to an oscillating electromagnetic
field of the same frequency as their Larmor frequency. From a macroscopic perspective,
the magnetization vector will tip away from the external magnetic field axis by a certain
flip angle α, where the time-integral of the amplitude of the RF-pulse determines the size
of the flip angle.

The transverse component of the precessing spins generate an oscillating electromag-
netic field, which, according to Faraday’s law of induction, can induce an electromotive
force in a receive coil placed nearby. Before applying the RF-pulse, the transverse compo-
nents of the spins have an arbitrary phase, and as a result, the transverse components of
the net magnetization are zero, i.e. no signal is detected. After the RF-pulse is applied, the
net transverse magnetization is no longer zero, which means a signal can be detected.

1.2.2. T1, T2 AND T2
∗ RELAXATION TIMES

After spins have been excited by an RF-pulse, they will gradually relax back to their equi-
librium state. Three independent mechanisms are involved in this process. First, energy
is exchanged between the hydrogen nuclei and their surroundings (the "lattice"). This
process is called spin-lattice interaction [21]. From a macroscopic perspective, this mech-
anism causes the longitudinal component of the net magnetization Mz to recover to equi-
librium in an exponential fashion. A time constant known as T1-relaxation time character-
izes this recovery, which is defined as the time it takes for the longitudinal magnetization
to recover approximately 63% [1-(1/e)] of its initial value after being flipped into the mag-
netic transverse plane by a 90° radiofrequency pulse.

Second, the spins also exchange energy among each other. This process is called spin-
spin interaction [21]. It causes the relative phase of individual nearby spins to disperse,
which results in the transverse components of the net magnetization Mx y decaying to
zero. This is again an exponential process, characterized by the T2-relaxation time. i.e.
the time it takes for the magnetic resonance signal to irreversibly decay to 37% (1/e) of its
initial value after tipping the longitudinal magnetization towards the magnetic transverse
plane by a 90° radiofrequency pulse.

Third, spins may experience static fluctuations in magnetic field strength, due to global
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variation in the B0 field, or susceptibility effects. As a consequence, these spins will pre-
cess with a slightly varying frequency. Similar to the spin-spin interaction, this causes
the individual spins to dephase, again resulting in an exponential decay of the transverse
magnetization. This is characterized by the relaxation time T ′

2. Since the T2 and T ′
2 effects

both affect the transverse magnetization, they are often combined into one value known
as T2

∗:

1

T2
∗ = 1

T2
+ 1

T ′
2

(1.1)

1.2.3. TYPICAL MRI SCANNER AND SEQUENCES
If the external field is made to spatially vary along one or more dimensions, then the Lar-
mor frequencies of the proton spins in the object are, in turn, spatially varying. This prin-
ciple enables the localization of the spins by means of frequency-based spatial-encoding.
As such, it is possible to visualize the internal structures of bodies in a non-invasive man-
ner based on the fact that different tissues in the body have different T1 and T2 relaxation
times. With this idea, Lauterbur and Mansfield acquired the first MR image in 1973 [21]
and were awarded the Nobel Prize in 2003 for their discoveries concerning "magnetic res-
onance imaging" [22].

(a)

Sagittal Pane Coronal Pane

Transverse Pane

(b)

Figure 1.2: (a) A typical MRI scanner [23]; (b) T1-weighted MR images of the liver in three orthogonal planes.

A typical clinical MRI scanner is based on the aforementioned idea. It consists of a
large superconducting magnet (usually cylindrical) with a radiofrequency generating sys-
tem and magnetic field gradient coils as represented in Fig. 1.2(a). Inside the tunnel var-
ious coils can be placed to receive the signal generated by the body in response to the
applied radiofrequency. Unlike Computed Tomography (CT), which makes use of X-rays,
MRI only adopts electromagnetic waves at low, non-ionizing energies to acquire the im-
age, and as such does not expose patients to ionizing radiation.

The timing and order of applying RF-pulses, applying gradient fields, and reading the
MR signal, is called a sequence. The gradient echo sequence (described below) is one of
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the most basic sequences, and can provide images whose contrast depends on the local
Proton Density (PD), T1 and T2

∗. The amount of T1 and T2
∗ weighting can be chosen by

simply tuning the repetition time and echo time of the sequence, respectively.
The Fast Spoiled Gradient Echo (FSPGR) sequence (also known as T1 weighted Fast

Field Echo - FFE, or Fast Low Angle Shot – FLASH on scanners from different manufac-
turers) is a fast sequence that produces T1 weighted images. The FSPGR sequence is a
gradient echo sequence with very short TR and TE (in the order of several ms) where,
before each RF-pulse is applied, any transverse magnetization remaining from the pre-
vious repetition is removed, or ‘spoiled’. This is done by either applying a gradient, which
dephases the spins, or by applying each successive RF-pulse in a randomized direction,
which prevents build-up of transverse magnetization.

After a number of repetitions, the recovery of the longitudinal magnetization via the
T1 relaxation process is exactly countered by the reduction of the longitudinal compo-
nent caused by the application of the RF-pulse. This is called the steady state case, during
which the signal generated by the spins is given by:

S = N sin(α)
1−exp(−TR /T1)

1−cos(α)exp(−TR /T1)
exp

(−TE /T ∗
2

)
(1.2)

This sequence has a very short repetition time, and therefore facilitates a high tempo-
ral resolution. For this reason, and for its T1-weighting, the FSPGR sequence is commonly
used for Dynamic Contrast Enhanced MRI. Typical MR images acquired on a 3T MRI scan-
ner via a 3D FSPGR sequence can be seen in Fig. 1.2(b).

1.3. DYNAMIC CONTRAST ENHANCED MRI

O VER the past decades, Dynamic Contrast Enhanced MRI (DCE-MRI) has been widely
used for assessing properties of the perfusion in organs. DCE-MRI starts with an in-

travenous injection of a contrast agent. After that, a series of 3D T1-weighted images is
acquired in several minutes, resulting in a 3D+t dataset. The time-dependent change in
the measured signal intensity determined by the contrast agent is used as an indicator for
tissue integrity.

1.3.1. CONTRAST AGENTS
The contrast agents used for DCE-MRI are gadolinium-based; they consist of a molecule
(the chelate) encapsulating an otherwise toxic gadolinium ion. The strongly paramagnetic
gadolinium ion can interact with the hydrogen contained in a water molecule and short-
ens the spin-lattice (T1) relaxation time. When applying a suitable T1-weighted imaging
sequence, this process leads to an increase of the signal intensity in the tissues where the
gadolinium has leaked and, hence, to an increase of the image contrast of certain tissues
[24]. Common contrast agents used in DCE-MRI can be seen in Table 1.1 [25].

Most contrast agents in Table 1.1 are gadolinium-based contrast agents (GBCA) that
are excreted by glomerular filtration in the kidneys instead of hepatobiliary system to a
large extend. For example, Gd-BOPTA has a predominantly renal excretion (95%-97%) and
low hepatobiliary excretion (3%-5%). Alternatively, Gd-EOB-DTPA, a liver-specific GBCA,

1In Europe it is named Primovist, and Eovist in the USA.
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Table 1.1: Common contrast agents.

Trade Name Generic Name Acronym Manufacturer

Gadovist Gadobutrol Gd-DO3A-butrol Bayer
Primovist / Eovist1 Gadoxetic acid, disodium Gd-EOB-DTPA Bayer

Resovist Ferucarbotran SH U 555 A Bayer
Prohance Gadoteridol Gd-HP-DO3A Bracco

Multihance Gadobenate dimeglumine Gd-BOPTA Bracco
Dotarem Gadoterate meglumine Gd-DOTA Guerbet

has 50% hepatocytic uptake and biliary excretion in the normal liver [14]. It can not only
diffuse in the extracellular space but also is actively transported into functioning hepa-
tocytes and subsequently excreted into the bile [15]. The hepatocyte uptake and biliary
excretion of Gd-EOB-DTPA mainly occur via the organic anion transporting polypeptides
OATP1B1 and OATP1B3 located at the sinusoidal membrane and the multidrug resistance-
associated proteins MRP2 at the canalicular membrane, respectively. Such characteristics
make that Gd-EOB-DTPA behaves similarly to non-specific GBCA during the initial dy-
namic phase, and adds substantial information during the hepatobiliary phase, improv-
ing the detection and characterization of focal liver lesions and diffuse liver disease. In
summary, the advantages of Gd-EOB-DTPA-enhanced MR imaging include absence of
ionizing radiation, combined anatomical and functional assessment, and the ability to
quantitatively assess hepatic perfusion and function [16][17]. For this reason, Gd-EOB-
DTPA (Primovist® Bayer B.V., Mijdrecht, The Netherlands) is applied in this thesis.

1.3.2. HOW DCE-MRI WORKS

In Fig. 1.3 it is shown how, for each voxel in the Field of View (FOV), the signal intensity
is plotted as a function of time, generating what is known as the Time Intensity Curve
(TIC). The TIC reflects how the concentration of the contrast agent in the image voxels
(tissue) changes following its delivery through the blood supply. Different profiles of TICs
correspond to different physiological properties of tissues. Several enhancement types of
TIC have been observed, see Fig. 1.4 [26]. A more comprehensive study of TICs can be
done by applying proper pharmacokinetic models, in which the parameters to estimate
reflect physiological properties of tissues.

Pharmacokinetic modeling is a mathematical modeling technique for predicting the
absorption, distribution, metabolism and excretion (ADME) of synthetic or natural chem-
ical substances in humans and other animal species. In DCE-MRI, it refers to formulating
a model that describes how the MRI signal changes as a result of the tissue’s reaction to
the contrast agent. Quantitative parameters that are directly related to the intrinsic physi-
ological properties of tissues can be extracted when fitting the pharmacokinetic model to
the measured DCE-MRI data, i.e. TICs in the organs being studied. Generally speaking,
the complete model includes a physiological (pharmacokinetic) component (e.g. how the
contrast agent behaves in the tissues), and a physical component (i.e., how the contrast
agent affects the MRI signal). Several pharmacokinetic models haven been proposed to
model various tissue types, different organs, and types of contrast agent [27].
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… … …

Before GBCA Injection Arterial Phase Portal Venous Phase Hepatic Phase

Time

Figure 1.3: Different TIC profiles of healthy liver tissue and liver tumors.

Type I Type II Type III Type IV Type V 

Figure 1.4: Diagram shows classification for subjective assessment of time–signal intensity curves: Type I, no en-
hancement; Type II, gradual increase of enhancement; Type III, rapid initial enhancement followed by a plateau
phase; Type IV, rapid initial enhancement followed by a washout phase; And type V, rapid initial enhancement
followed by sustained late enhancement.

1.3.3. DCE-MRI OF THE LIVER

In contrast to all other organs, DCE MRI of the liver can be done with a specially developed
Gd-based contrast agent that, contrary to all the other Gd-contaning contrast media, is
metabolized by the cells. The dynamics of these liver specific contrast agents in the liver
differs therefore from those in all other organs.

In Fig. 1.3, the TIC of healthy liver tissue (the green line) shows a rapid initial en-
hancement followed by sustained late enhancement, which reflects that Gd-EOB-DTPA
molecules leak into the extravascular-extracellular space (EES) and then are taken up by
hepatocytes. However, the TIC of liver tumor type A (the orange line) shows an initial fast
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uptake, then followed by no uptake in the hepatocytes. This profile indicates that the tu-
mor might be highly vascularized. Moreover, the TIC of liver tumor type B (the red line)
shows only very limited signal enhancement, which implies the tissue in the tumor does
not take up the contrast agent.

(a) (b) (c)

(d) (e) (f)

Figure 1.5: (a) A post-contrast DCE-MR image with three region of interest (ROI) delineated, which represent
healthy liver tissue (green), tumor type I (orange) and type II (red), respectively. (b)-(f) represent PKM parame-
ter maps which are overlaid on image (a). (b) and (c) are FA and FV , i.e. the arterial and venous plasma flows,
respectively (in milliliters per minute per 100 mL). (d) shows KI , the liver uptake rate (in per minute). (e) repre-
sents extravascular extracellular compartment KI (in milliliters per 100 mL). (f) stands for TA , the time delay of
the Gd-EOB-DTPA‘s arrival between in the aorta and liver (in second).

Table 1.2: Values of measured parameters for healthy liver tissue and tumors. The numbers present the mean
value and the standard deviation (std).

Normal liver tissue Tumor type I Tumor type II

FA (ml/min/100ml) 3.814 (0.882) 25.054 (5.529) 11.148 (12.311)
FV (ml/min/100ml) 38.502 (11.229) 70.617 (65.428) 5.683 (14.948)

K I (/100/min) 12.123 (1.973) 7.933 (1.827) 3.368 (2.841)
VE (ml/100ml) 0.526 (0.059) 0.354 (0.077) 0.201 (0.157)

TA (sec) 7.934 (2.359E-14) 4.623 (1.807) 3.047 (3.253)

With the help of pharmacokinetic modeling, TICs such as in Fig. 1.3 can be mod-
eled and several pharmacokinetic model (PKM) parameters are estimated. Here the same
DCE-MR image as in Fig. 1.3 is adopted for illustration; see Fig. 1.5(a). Besides, Fig. 1.5(a)
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- 1.5(f) show all the parameters that a liver PKM is able to estimate.
In order to quantitatively assess perfusion and function with Gd-EOB-DTPA, three re-

gions of interest (ROI’s) including different type of tissues are manually delineated in Fig.
1.5(a). Mean and standard derivation values of each perfusion parameters are summa-
rized in Table 1.2. Significant difference between the normal liver tissue and tumors re-
garding each perfusion parameter is observed.

1.3.4. STUDY PROTOCOL

Volume 1-10
Dt = 2.2 s

Volume 82-98
Dt = 30 s

Volume 99-108
Dt = 60 s

Time

Volume 11-81
Dt = 2.2 s

……

108 Volumes, 20 Minutes

128 Pixels

128
Pixels

44
Pixels

3 3 5 mm3

…

Contrast
Agent

Injection

0                                   22 s                                 ~ 3 min                       ~ 12 min              ~ 20 min

Figure 1.6: The DCE-MRI scanning protocol in our project.

The DCE-MRI scanning protocol of our project is illustrated in Fig. 1.6. Our data
were acquired on a 3T Philips Ingenia whole-body scanner (Philips Healthcare, Best, The
Netherlands) via a 3D FSPGR (or T1-w FFE) sequence. The acquisition parameter settings
were TE /TR = 2.3/3.75 ms, FA = 15°, matrix size = 128×128×44, voxel size = 3×3×5 mm3,
acquisition time = 2.141 s for each volume; sampling interval (between images) was 2.141
s for volumes 1-81, 30 s for volumes 82-98, and 60 s for volumes 99-108. The total imag-
ing time was approximately 20 minutes. Subjects held their breath during the acquisition
of volumes 13-22, 33-42, 61-70 and 79-108. Upon acquisition of dynamic 11 (i.e. 21 sec-
onds after the start of the DCE acquisition), a bolus of Gd-EOB-DTPA (Primovist®, Bayer
B.V., Mijdrecht, The Netherlands) at a standard dose of 0.025 mmol/kg (i.e, 0.1 mL/kg)
was administered at 2 mL/s and flushed with 20 mL of saline at the same rate through an
antecubital intravenous cannula, see Fig. 1.6.

1.4. CHALLENGES

C ANCER which has spread from other organs to the liver, the so-called liver metastasis,
is more common than primary liver cancer [28]. Patients with liver metastases of a

primary colorectal cancer are often treated with (partial) resection. However, the future
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remnant liver, the remaining part of the liver after resection, should allow adequate liver
function to avoid liver failure. Therefore, accurate estimation of the future remnant liver’s
function is a crucial step before liver surgery. This assessment now includes a volumetric
characterization, which is relatively easy to perform but is less important than the func-
tional status of the future remnant liver, i.e. hepatocyte extraction function. Although
DCE-MRI is able to assess the hepatocyte extraction function in a voxel-wise manner, it
still remains challenging in many cases.

1.4.1. REGISTRATION

Movement of the liver during the acquisition procedure (that lasts about 20 minutes) is
one of the most important challenges.

Image registration is the process of achieving spatial correspondence of partially over-
lapping images acquired by one or more modalities at a single or multiple time points
[29]. In DCE-MRI, image registration is important because misalignment of the dynamic
images would severely affect the subsequent quantification of the vascular integrity based
on pharmacokinetic models (PKMs). However, image registration in abdominal DCE-MRI
is challenging because the liver always shows a mixed motion pattern, including transla-
tion and deformation due to respiration, cardiac contractions and bowel peristalsis. Reg-
istration algorithms tend to get trapped into local minima easily [30]. Moreover, since
the signal intensity varies in different dynamic images due to the enhancement effect of
contrast agents, finding correspondences between voxels is inherently complicated [31].
Therefore, image registration is a far from trivial preprocessing step in order to obtain re-
liable results.

1.4.2. SEGMENTATION

When analyzing the liver function, the future remnant liver has to be segmented from 3D
abdominal MRI volumes. However, the liver is usually wedge-shaped and becomes even
more irregularly-shaped when liver tumors are present. Furthermore, the liver’s signal in-
tensity is not very different from adjacent organs in T1-weighted MR images. Especially,
when the spatial resolution is low, the border of the liver might be blurry due to partial
volume effects [32]. These two issues hinder segmentation algorithms such as active con-
tours [33]. Therefore, liver segmentation is often a challenging task before estimating the
liver function.

In fact, a refined segmentation of the liver is desired. During liver surgery, resection of
lesions inevitably goes at the expense of healthy liver tissue. To reduce this loss as much
as possible and to limit the mortality rates after surgery, the Couinaud classification of
liver anatomy was introduced [34]. This classification system partitions the liver into eight
segments, each with an independent circulatory system. The partitioning result guides the
surgeon to resect only that segment in which the tumor is localized, without damaging the
liver parenchyma of adjacent segments [35]. Accurately partitioning the liver according to
Couinaud’s classification of liver anatomy would contribute to make better surgery plans
but remains challenging since the spatial resolution of DCE-MR images is low.
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1.4.3. PHARMACOKINETIC MODELING
Accurate pharmacokinetic models applied to DCE-MRI data enable reliable quantifica-
tion of the vascular integrity in tissues. Tofts’ model [36] is one of the most popular PKMs
used over the last decades. It assumes that a voxel of tissue is comprised of three compart-
ments: cells, plasma and interstitial space. The contrast agent arrives through the blood
plasma, and it will diffuse into the interstitial space through pores in the capillary walls,
driven by the difference in contrast agent concentration. Eventually, the contrast agent
will diffuse out of the tissues again, finally to be excreted by the kidneys. However, this
model is no longer valid in the liver because of two issues. The first one is that the liver
has two vascular inputs whereas the Tofts’ model only considers a single input; The sec-
ond one is that the intra-cellular contrast agent Gd-EOB-DTPA can enter into hepatocytes
whereas the Tofts’ model the cells do not interact with the contrast agent. Although Sour-
bron et al. [17] tried to solve the aforementioned two issues by modifying the Tofts’ model,
limitations still remain in his model.

The first limitation is that Sourbron’s model lacks of modeling of the input functions
from two blood supply. Simply adopting the raw discrete time series of the blood supply
as the input functions would introduce unpredicted error when estimating the kinetic pa-
rameters. The second limitation comes from B1-inhomogeneity. As a DCE-MRI scan of the
liver with this contrast agent typically takes 20 minutes, during which the liver experiences
large displacement due to breathing, the signal intensity of the liver can be affected by B1-
inhomogeneities. Park et al. [37] and Sengupta et al. [38] conducted a simulation and
an experimental study respectively to show that a small degree of B1-inhomogeneity can
cause a significant error in estimating pharmacokinetic parameters in DCE-MRI. There-
fore, accurate pharmacokinetic modeling on liver is very challenging.

In this thesis new MR image analysis methods are developed to predict the functional
status of the future remnant liver based on DCE-MRI. This will be combined with quanti-
tative, MRI-based methods that allow segmental assessment of liver function.

1.5. THESIS OUTLINE

I N chapter 2, a registration method called autocorrelation of local image structure (ALOST)
[31] is extended. Particularly, an explicit segmentation of liver is introduced into the

ALOST technique, in order to emphasize our region of interest during registration. We
verify the liver mask extraction method and evaluate the registration performance of the
proposed framework compared to the original ALOST approach.

In chapter 3, we present two novel frameworks for registration of DCE-MRI series of
the liver. Both frameworks rely on an initial segmentation of the liver. Essentially, these
two frameworks target to bring the registration close to the global optimum. The pro-
posed methods were verified by using the root mean square error (RMSE) of fitting Sour-
bron’s pharmacokinetic model to the signal in the liver, the mean target registration error
(MTRE) of synthetically induced deformations, as well as the dice coefficient (DC) and
mean surface distance (MSD) of the liver segmentation.

In chapter 4, we present an improved pharmacokinetic model for the liver. This model
integrates vascular input functions and liver displacement to accelerate the fitting proce-
dure and correct for B1-inhomogeneity, respectively. We evaluate the model by using the
root mean square error (RMSE) of fitting it to the signal in the liver and three model se-
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lection techniques, namely, the Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC) and Information Complexity (ICOMP).

In chapter 5, we present a segmentation framework for partitioning the liver accord-
ing to Couinaud’s classification of liver anatomy based on 4D dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) data. These data have high temporal resolution,
but limited spatial resolution . We will show that our framework facilitates the segmenta-
tion of the liver vessels and in turn enables the segmentation of the eight liver segments.
The Average Symmetric Surface Distance (ASSD), the Modified Hausdorff Distance (MHD)
as well as the Dice Coefficient (DC) are adopted to evaluate the segmentation algorithm.

In chapter 6, a comparison study is conducted between DCE-MRI and Hepatobiliary
Scintigraphy (HBS), which is the golden standard in a clinical setting for evaluating the
liver function. The liver uptake rate is estimated from DCE-MRI using the pharmacoki-
netic model described in chapter 4. Meanwhile, the liver clearance rate is also extracted
from HBS. We correlate the aforementioned two key indicators based on a dataset of 20
patients.

Finally, chapter 7 gives the summary and discussion of the presented work, and also
proposes several future challenges.
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2
IMPROVED REGISTRATION OF

DCE-MR IMAGES OF THE LIVER

USING A PRIOR SEGMENTATION OF

THE REGION OF INTEREST

In Dynamic Contrast-Enhanced MRI (DCE-MRI) of the liver, a series of images is acquired
over a period of 20 minutes. Due to the patient’s breathing, the liver is subject to a substan-
tial displacement between acquisitions. Furthermore, due to its location in the abdomen,
the liver also undergoes marked deformation. The large deformations combined with vari-
ation in image contrast make accurate liver registration challenging.

We present a registration framework that incorporates a liver segmentation to improve the
registration accuracy. The segmented liver serves as region-of-interest to our in-house devel-
oped registration method called ALOST (autocorrelation of local image structure). ALOST is
a continuous optimization method that uses local phase features to overcome space-variant
intensity distortions. The proposed framework can confine the solution field to the liver and
allow for ALOST to obtain a more accurate solution. For the segmentation part, we use a
level-set method to delineate the liver in a so-called contrast enhancement map. This map
is obtained by computing the difference between the last and registered first volume from
the DCE series. Subsequently, we slightly dilate the segmentation, and apply it as the mask
to the other DCE-MRI volumes during registration. It is shown that the registration result
becomes more accurate compared with the original ALOST approach.

Published in Proc. SPIE, 9784, 978443 (2016) [1].
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2.1. INTRODUCTION

D YNAMIC Contrast-Enhanced MRI (DCE-MRI) is widely used to investigate the func-
tioning of many organs. Important parameters quantifying the capillary permeabil-

ity can be extracted from the time intensity data using pharmacokinetic models. However,
DCE-MRI of the abdomen is hindered by motion due to breathing, and the resulting dy-
namic images are not aligned to each other. Many algorithms have been proposed to solve
similar registration problems, e.g. based on normalized mutual information (NMI) [2] and
the modality independent neighborhood descriptor (MIND) [3]. However, the outcome of
these general approaches on DCE images can be inaccurate due to large spatial deforma-
tions and variations in the image contrast due to the inflow of contrast agent. A registra-
tion method called autocorrelation of local image structure metric (ALOST) [4] has been
shown to efficiently deal with contrast variations. Still, the problem remains challenging
due to the large magnitude of prevalent deformations.

In this paper, the focus is on liver imaging. We introduce an explicit segmentation of
the organ into the ALOST technique, in order to emphasize our region of interest during
registration. The segmentation is obtained by applying a level-set method to a so-called
contrast enhancement map. We will show that the initial segmentation improves the reg-
istration precision by restricting the search space.

In this paper we first briefly introduce the registration method ALOST, the liver seg-
mentation method and a model for determining the intracellular uptake rate of the con-
trast agent. Subsequently, we evaluate the liver mask extraction method and evaluate the
registration performance of the proposed framework compared to the original ALOST ap-
proach.

2.2. METHODOLOGY

2.2.1. REGISTRATION BY AUTOCORRELATION OF LOCAL IMAGE STRUCTURE

(ALOST)

T HE modality independent neighborhood descriptor (MIND) method [3] is a state-of-
the-art registration technique for multi-modal image registration. Essentially, it relies

on a patch-based descriptor of the structure in a local neighborhood:

M I N D (I ,x,r) = 1

n
exp

(
−Dp (I ,x,x+ r)

V (I ,x)

)
(2.1)

in which I is an image, r is an offset in neighborhood R of size R×R around position x and
n a normalization constant; Dp is the distance between two image patches (2p+1)d (with
image dimension d), measured by the sum of squared differences (SSD):

Dp (I ,x1,x2) =
∑

p∈P

(
I
(
x1 +p

)− I
(
x2 +p

))2 (2.2)

and V (I , x) is the mean of the patch distances in a small neighborhood N :

V (I ,x) = 1

num (N )

∑
n∈N

Dp (I ,x,x+n) (2.3)
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Recently, we have introduced a novel registration metric that relies on the monogenic
signal [5]. The monogenic signal is a generalization of the so-called analytic signal from
one to higher dimensions based on the Riesz transform. The analytic representation of a
signal applies the concept that negative frequency components of a 1-D, real-valued signal
are essentially superfluous due to the Hermitian symmetry of the Fourier Spectrum.

The monogenic signal is an efficient tool to describe the local image structure by means
of local phase. Particularly, the mean phase (MP), i.e. the average phase calculated over
several scales, serves as an identifier for the type of image feature. For example, a step
corresponds to φ = 0 and a peak to φ =π. Furthermore, it has been recognized that salient
features are perceived at points in an image where the Fourier components are in phase.
Several measures for phase congruency (PC) [6] have been developed expressing that if
all scale components are in phase, PC = 1; alternatively, if there is no coherence of phase,
then PC = 0.

The mean phase and phase congruency extracted from the monogenic signal share
the same advantage that they are insensitive to space-variant intensity distortions, e.g.
the intensity difference due to contrast enhancement and the MRI bias field. This ability
is what the MIND approach lacks [4]. Therefore, we have integrated MP and PC into MIND
to extract local image information into a descriptor called ALOST [4]:

ALOST (I ,x,r) = [M I N D (MP (I ) ,x,r) , M I N D (PC (I ) ,x,r)] (2.4)

Essentially, the registration is performed by minimizing the next energy function

E (w) = E ALOST (w)+αER (w) (2.5)

where α is a weighting coefficient that balances the two terms of our energy function:
1. Data term

E ALOST (w) =
∫
Ω

[
ALOSTm (x+w (x))− ALOST f (x)

]2dx (2.6)

2. Regularization term

ER (w) =
∫
Ω

[∇u (x)]2 + [∇v (x)]2 + [∇w (x)]2dx (2.7)

where w = [u,v ,w] is the 3D deformation field. The subscript m and f represent moving
and fixed images, respectively. Ω is the entire image for integration. More details on the
ALOST approach can be found in [4]. In this paper, the last volume in DCE-MRI was re-
garded as the fixed image. As such, the other volumes were registered to the fixed image
pair-wisely.

In our DCE-MRI scan, the total imaging time was approximately 20 minutes (more
details are given below). During imaging, we let the patient hold his/her breath, especially
around the time when the contrast agent arrived in the liver. We did this to limit images
distortion by intra-scan motion, as these images are crucial for accurate pharmacokinetic
imaging. However, we have observed that these images show large distortions compared
to images acquired during regular breathing, i.e. acquired at the beginning and the end of
the DCE series.

As ALOST could not cope with such distortion, we restrict the search space of the reg-
istration by using a prior segmentation of the liver as a region of interest.
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2.2.2. SEGMENTATION
The liver shows the strongest contrast enhancement at the end of the DCE series (consid-
ering a DCE-MRI sequences of 20 minutes). This is generally termed the hepatic phase, as
the uptake rate of the contrast agent into the liver cells reaches its maximum at that time.
Accordingly, subtraction of the registered first volume from the last volume yields an im-
age in which the liver is maximally “enhanced”, whereas other organs are suppressed:

C El i ver = Ipost − Ipr e (2.8)

Notice that the shape and location of the liver are more or less the same in the two
images since the patient is breathing rather shallowly at the very beginning and at the
end of the DCE series. Therefore, good registration accuracy can be achieved by applying
ALOST even without a mask.

In the C El i ver map, the liver is very clearly visible (e.g. Fig. 2.2(d))). We use a level-set
method to segment the liver in order to obtain the mask. Among several level-set meth-
ods, the geodesic [7] and the Chan-Vese [8] models are the benchmarks with respect to
boundary- and region-based methods. The hybrid method proposed by Y. Zhang et al.
[9] takes boundary as well as region information into consideration while minimizing the
next data term:

E
(
φ

)=−
∫
Ω

(
I −µ)

H
(
φ

)
dΩ+β

∫
Ω

g
∣∣∇H

(
φ

)∣∣dΩ (2.9)

where I is the image, g represents the gradient of the image, β is a weighting coefficient,
Ω is the entire image for integration, H(φ) is the Heaviside function, and µ is a parameter
that represents the lower bound of the gray-level in the segmented object. In this model,
an active contour is embedded implicitly as a constant set in a function defined in a higher
dimensional space. The function is called embedding function and denoted as φ. Essen-
tially, the first term integrates the (negated) intensity inside the segmented region and the
second term integrates the derivative along the boundary of the segmented region.

When the liver mask Ml i ver has been extracted, we dilate it somewhat (M di l ated
l i ver ) to

make sure that the liver boundary is included in the mask in most images.
In summary, our approach reduces to the following steps: (1) we register the first vol-

ume to the last one, and calculate the contrast enhancement via Eq. 2.8; (2) we segment
the liver in the C El i ver map and obtain the mask; (3) we dilate the mask somewhat, so
that the boundary of the liver is included in the mask (i.e. the most salient information);
(4) we apply the dilated mask to the entire image series, while optimizing Eq. 2.5. As such,
Eq. 2.5 is only evaluated over the a priori segmented region. We do so while registering
the entire DCE series to the last image since that image shows the largest contrast and has
been acquired during shallow breathing.

2.2.3. MODELED SIGNAL IN THE LIVER
In order to evaluate the benefit of our approach we will fit a model to the time-intensity
signal in the segmented region. The residual of the fit will be considered a measure of the
registration accuracy. Therefore, we adopt the liver model proposed by S. Sourbron et al.
[10], henceforth referred to as “the Sourbron model”. This dual-inlets two-compartment
uptake model was especially designed for the intracellular hepatobiliary contrast agent
Gadoxetate disodium (PrimovistTM, Bayer pharmaceutical). The diagram in Fig. 2.1 sketches
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the model. The arterial input function (AIF) and venous input function (VIF) are the dual
inlets since blood is supplied to the liver by the hepatic artery as well as the portal vein.
The AIF and VIF represent the contrast agent concentration in the blood plasma of the
hepatic artery and portal vein respectively. These were obtained by averaging the top three
time intensity curves having the highest contrast enhancement measured voxel-wise in
regions manually delineated in the aorta (cranially from the hepatic artery) and the por-
tal vein. TA and TV represent time delays and FA and FV are arterial and venous plasma
flows, respectively. Furthermore, in the gray rectangle denoting liver tissue, the left circle
represents the extracellular compartment and the right circle stands for the intracellular
compartment, i.e. corresponding to the hepatocytes. As such, VE is the extracellular vol-
ume and K I represents the uptake rate of the hepatocytes represented by a volume VI .

TA VE

TV

VIAIF

VIF

FA + FV

FA

FV

KI

Figure 2.1: The Sourbron model: a dual-inlets two-compartment uptake model for Primovist in the liver. The
AIF and VIF are dual inlets into the liver, representing the concentration of the contrast agent over time entering
from the hepatic artery and the portal vein. TA and TV are time delays. FA and FV are the arterial and venous
plasma flows, respectively (in mL per minute per 100 mL). In the gray rectangle representing the liver, the left
circle represents the extravascular extracellular compartment VE (in mL per 100 mL) and the right circle stands
for the hepatocyte compartment. KI (per minute) is the liver uptake rate.

Let CE and C I be the contrast agent concentrations in the extravascular, extracellular
compartment and hepatocytes, respectively. Defining C A and CV as the concentrations of
the AIF and VIF, the mass transport between the two compartments can be expressed as


VE

dCE

d t
(t ) = FAC A (t −TA)+FV CV (t −TV )− (FA +FV +K I )CE (t )

VI
dC I

d t
(t ) = K I CE (t )

(2.10)

and the solution for the total liver tissue concentration (CT =VE CE +VI C I ) is

CT (t ) =
[

TEδ (t )+ K I

FA +FV +K I

]
∗ e

− t
TE

TE
∗ [FAC A (t −TA)+FV CV (t −TV )] (2.11)

where * is the convolution operator and TE (VE /[FA +FV +K I ]) represents the extracellular
mean transit time.
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2.3. RESULTS

T HIS study included 8 patients diagnosed with colorectal liver metastasis (2), hepato-
cellular carcinoma (2) and benign (4). All scans were operated between December

2014 and May 2015. The final cohort (age range, 43 - 70 years; mean age, 59.8 years) in-
cluded 6 men (age range, 50–70 years; mean age, 61.2 years) and 2 women (age range, 43
- 48 years; mean age, 55.5 years). The study was approved by the ethical review board
of the Amsterdam University Medical Centers and registered under ID NL45755.018.13.
Informed consent was obtained from all individual participants included in the study.

DCE-MRI data were acquired on a 3T Philips Ingenia whole-body scanner via a 3D
SPGR sequence. The acquisition parameter settings were TE /TR = 2.3/3.75 ms, FA = 15°,
matrix size = 128×128×44, voxel size = 3×3×5 mm3, acquisition time = 2.141 s for each
volume; the sampling interval (between images) was 2.141 s for volumes 1-81, 30 s for
volumes 82-98 and 60 s for volumes 99-108. The total imaging time was approximately 20
minutes. Patients held their breath during the acquisition (about 3 s) of volumes 13-22,
33-42, 61-70 and 79-108. Upon acquisition of dynamic 11 (i.e. 21 seconds after the start of
the DHCE acquisition), a bolus of Gd-EOB-DTPA (Primovist®, Bayer B.V., Mijdrecht, The
Netherlands) at a standard dose of 0.025 mmol/kg (i.e, 0.1 mL/kg) was administered at 2
mL/s and flushed with 20 mL of saline at the same rate through an antecubital intravenous
cannula. In chapter 4, appendix 3 of section 4.5 shows how to convert DCE-MR signal to
tissue concentration.

All algorithms were implemented in MATLAB (version R2015b; Mathworks, Natick,
USA). The nonlinear least-squares fitting routine lsqcurvefit was used to perform the model
fits; 19 cores were adopted for parallel computing on a HPC equipped with two Intel(R)
Xeon(R) CPU E5-2698 v4 clocked at 2.20GHz and 256GB RAM memory.

(a) (b) (c) (d)

Figure 2.2: (a) Pre-contrast image (the first volume); (b) Post-contrast image (the last volume); (c) the registered
image of (a) by ALOST without liver mask; (d) The C El i ver map.

Exemplary pre-contrast and post-contrast images are shown in Fig. 2.2(a) and Fig.
2.2(b), respectively. Obviously, the liver is highly enhanced in the post-contrast image.
Fig. 2.2(c) is the outcome of registering Fig. 2.2(a) to 2.2(b) by ALOST without applying
a mask. Actually, in Fig. 2.2(a) and 2.2(d) the location and shape of the liver are almost
the same since the patients breathed quietly at the very beginning and at the end of the
acquisition series. Fig. 2.2(d) is the C El i ver map, which is calculated by Eq. 2.8. In this
image, the liver is highlighted while the other organs in the abdomen display a very low
intensity.
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Fig 2.3 and 2.4 show the 3D liver mask (i.e. the segmentation) and 2D cross-sections of
the mask boundary overlaid on the C El i ver map. Clearly, the mask matches the liver very
well.

(a) (b) (c) (d)

Figure 2.3: 3D mask (segmentation) of the liver. (a) 3D view; (b) The front view; (c)Tthe top view; (d) The right
side view.

(a) (b) (c) (d)

Figure 2.4: Overlay of C El i ver map and the liver mask’s boundary. (a) Slice 36; (b) Slice 31; (c) Slice 27; (d) Slice
21.

(a) (b) (c) (d)

Figure 2.5: (a) Moving image; (b) Registered image by ALOST alone; (c) Registered image by ALOST supported by
the dilated liver mask; (d) Fixed image

The registration improvement by application of a mask is illustrated in Fig. 2.5. The
moving image and the fixed image are shown in Fig. 2.5(a) and 2.5(d), respectively. We
also drew the outline of the liver mask in 2.5(d) and copied it to the other sub figures to
facilitate the comparison. The registration result obtained by ALOST alone can be seen
in Fig. 2.5(b). Compared with the moving image, the liver in 2.5(b) is more similar to
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Fig. 2.5(d), but near the bottom of the liver mask, the mismatch, indicated by the red
arrow, shows that the registration is still off. Fig. 2.5(c) shows that ALOST supported by
the dilated liver mask produces a more accurate registration outcome.

(a) (b) (c) (d)

Figure 2.6: (a) Transverse plane of slice 34. (b)-(d) Intensity as a function of time along the red line: (b) Raw DCE
data (prior to registration); (c) ALOST registration without the dilated liver mask; (d) ALOST registration with the
dilated liver mask.

(a) (b) (c)

Figure 2.7: RMSE of fitting the liver model function to the intensity data from each pixel: (a) Raw DCE data; (b)
ALOST data without the dilated liver mask; (c) ALOST data with the dilated liver mask.

Furthermore, we chose another slice and selected a line segment through the liver to
investigate the intensity as a function of time, see Fig. 2.6(a). In Fig. 2.6(a)-2.6(d) the edge
of the dilated liver mask is also drawn for reference. Large fluctuations can be observed
over time along this line prior to registration, see Fig. 2.6(b). Most of the fluctuations
are compensated by ALOST, see Fig. 2.6(c), but some mismatches are still visible. The
most accurate outcome is generated by ALOST supported by the dilated liver mask, as
demonstrated in Fig. 2.6(d).

Fig. 2.7 shows the distribution of the root mean square error (RMSE) that remains after
fitting the Sourbron model to the time intensity curves (TICs). One can see that the RMSE
is huge when no registration is performed, see Fig. 2.7(a). In Fig. 2.7(b), produced by
ALOST registration without the liver mask, the RMSE is only large near the boundary of
the liver, where there is large fluctuation in signal intensity due to mis-registration. The
smallest RMSE is provided by ALOST registration supported by the dilated liver mask, see
Fig. 2.7(c). Notice that the RMSE is especially reduced near the edge of the liver.

Henceforth, we focus on investigating the registration performance near the liver bound-
ary. Therefore, the liver mask was eroded by a 26-connected 3×3×3 kernel and then sub-
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Figure 2.8: Box-and-whisker plots of the root mean squared error (RMSE) of the model fits at the liver boundary
prior to registration (DCE raw) and after registration without and with support of the dilated liver mask.

tracted from the original liver mask. As a result, a mask is obtained of the liver boundary.
Fig. 2.8 shows how the RMSE measure varies at the boundary of liver in the first patient
prior to registration and after registration without and with support of the dilated liver
mask.

Table 2.1: Evaluation of the registration performance on 8 abdominal DCE-MRI datasets by ALOST without and
with the support of the dilated liver mask. The performance was measured by the RMSE that remains after fitting
the Sourbron model to TICs near the liver boundary. The numbers report the mean value and the standard
deviation (std) between brackets. The numbers printed in boldface are the best result per row.

Case Raw DCE ALOST without Mask ALOST with Mask

1 0.0643 (0.0607) 0.0248 (0.0116) 0.0228 (0.0075)
2 0.0361 (0.0254) 0.0230 (0.0114) 0.0215 (0.0083)
3 0.0326 (0.0191) 0.0289 (0.0163) 0.0282 (0.0141)
4 0.0570 (0.0352) 0.0518 (0.0263) 0.0484 (0.0214)
5 0.0366 (0.0171) 0.0289 (0.0139) 0.0276 (0.0116)
6 0.0676 (0.0557) 0.0367 (0.0191) 0.0313 (0.0132)
7 0.0445 (0.0317) 0.0299 (0.0178) 0.0272 (0.0129)
8 0.0573 (0.0444) 0.0324 (0.0186) 0.0302 (0.0141)

Apparently, ALOST with support of the dilated liver mask achieves the smallest RMSE
value and standard deviation. The same approach applied to all 8 patients yields the out-
comes shown in Table 2.1. It demonstrates that ALOST with support of the dilated liver
mask achieves the best registration accuracy.

2.4. CONCLUSION

T HE framework proposed by us integrates a liver segmentation into the ALOST registra-
tion framework. This segmentation method was based on the so-called contrast en-

hancement map. The prior segmentation supports ALOST by restricting the search space.
The improved registration was demonstrated by better fits of the Sourbron model to the
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time intensity data after registration. The proposed framework can be easily adapted to
other DCE-MRI applications with different contrast agents provided that a segmentation
of the organ of interest is available.
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3
IMPROVED INITIALIZATION

FRAMEWORKS FOR 4D
REGISTRATION OF DCE-MR

IMAGES OF THE LIVER BASED ON A

PRIOR SEGMENTATION

Dynamic contrast-enhanced MRI (DCE-MRI) enables quantification of vascular integrity
based on pharmacokinetic modeling. Accurate alignment of the anatomical structures of
interest is a prerequisite, which is especially challenging in abdominal DCE-MRI. The regis-
tration of these images is problematic as the optimization can easily get trapped in a local
minimum.

In this paper, we propose a local and a global 4D registration frameworks aiming at re-
ducing the sensitivity to local minima in the registration of the liver. Liver segmentation is
incorporated into these frameworks to obtain the mean relative liver displacement. In the
local framework, we impose an ordering to the registration of dynamics by the distance in
the superior-inferior direction from a reference image. The images are sequentially regis-
tered to the reference image starting with the images with the shortest distance. Essentially,
the registration of one image is brought close to the solution by means of its registration
to the preceding image combined with the registration of the latter to the reference. In the
global framework, a linear relation between the mean relative liver displacement and the
displacement of individual points in the liver is initially asserted. It also targets to bring
the registration close to the global optimum by iteratively adjusting an initial registration
based on this assumed relation.

Submitted to IEEE Transactions on Biomedical Engineering.
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The proposed methods were compared to two state-of-the-art methods that also aim to
avoid local minima. The performance of the registration methods was quantitatively as-
sessed using the root mean square error (RMSE) of fitting Sourbron’s pharmacokinetic model
to the signal in the liver as well as the mean target registration error (MTRE) of synthetically
induced deformations. We found that the proposed frameworks outperformed the existing
methods in all but a minority of the cases.
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3.1. INTRODUCTION

D YNAMIC contrast-enhanced MRI (DCE-MRI) is a technique that can be used to assess
properties of the perfusion in organs such as the liver and kidneys [1]. Particularly,

pharmacokinetic models (PKM’s) enable quantification of the vascular integrity [2]. How-
ever, abdominal DCE-MRI is hindered by motion due to respiration, heart beating and
bowel peristalsis. The PKM analysis can be severely affected by misalignment of the dy-
namic images. Therefore, image registration is often a crucial preprocessing step in order
to obtain reliable results.

Typically, a registration method consists of three key parts: a deformation model, an
objective function and an optimization strategy [3]. An efficient optimization strategy is
pivotal since it helps the registration to converge to a global optimum instead of getting
trapped into one of many local minima. In this paper, we focus on registering DCE-MRI
data of the liver. This registration problem is challenging because the liver experiences
large displacement due to respiration.

We will introduce two novel registration frameworks that target convergence in the
global optimum. These frameworks integrate a state-of-the-art objective function with
new initialization strategies: a sequential, local one and a global one.

3.1.1. RELATED WORK
Many objective functions were previously proposed to determine the similarity between
two DCE-MRI images, e.g. mutual information (MI) [4], normalized gradient fields (NGF)
[5] and the modality independent neighborhood descriptor (MIND) [6]. Among these
methods, MIND is a state-of-the-art multi-modal registration technique that relies on the
concept of image self-similarity. MIND was shown to be robust against global intensity
variation between images, which makes it suitable to register DCE images. Particularly,
MIND had better registration performance than other state-of-the-art techniques such
as conditional mutual information (CMI) and normalized mutual information (NMI) [6].
More recently, an improved version of MIND was proposed called the self-similarity con-
text (SSC), which reduces the strong dependency of the original descriptor on the central
pixel of applied patches [7].

Optimization strategies can be divided into two categories: continuous and discrete
[3]. Continuous optimization typically deals with real-valued variables. The most of-
ten used continuous methods are gradient descent based, such as steepest descent [8],
conjugate gradient descent [9], Quasi-Newton [10] and Gauss-Newton [11]. Among those
techniques, Gauss-Newton method is widely applied since it avoids calculating second
derivatives and has good convergence speed [3]. However, all continuous methods are
sensitive to the initial condition and can get stuck in a local minimum. In order to avoid
this, discrete optimization methods adopt a global search. Many discrete optimization
approaches have been proposed, such as graph cuts [12], belief propagation [13] and lin-
ear programing [14]. Essentially, discrete optimization involves a reduction of the search
space to a limited, discrete number of potential solutions. The best solution of this discrete
search space is expected to lie close to the global optimum. Therefore, the method is espe-
cially suitable to deal with large deformations. Recently a dense displacement sampling
(DEEDS) in combination with a discrete optimization strategy based on belief propaga-
tion was proposed [15]. A dense stochastic displacement sampling was adopted on the
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similarity term to avoid local minima. Moreover, a sophisticated message passing tech-
nique contributed to finding the global solution.

While much research has focused on developing new continuous and discrete meth-
ods that involve two images, there has been relatively little attention for the registration of
4D DCE series.

Previously, modeling the periodic motion over time was used to support the registra-
tion of dynamics. For instance, Metz et al. [16] took both spatial and temporal smoothness
of the transformations into consideration using free-form B-spline deformation model.
Furthermore, Xu et al. [17] proposed a symmetric 4D registration algorithm that involves
forward and an inverse 4D B-spline functions to keep inverse consistency. Li et al. [18]
employed template selection and retrospective gating to compensate for respiratory and
peristaltic motions in abdominal DCE-MRI. A limitation of these methods is that the pa-
tients must be freely breathing while the images are acquired, which may lead to artifacts.
Additionally, the time interval between adjacent images must be sufficiently small for an
appropriate sampling during the breathing cycle to make sure that the B-spline fitting is
reliable.

In our DCE-MRI scans of the liver, the time sampling is not constant. At the very be-
ginning of the scan, the time interval is small, i.e. 2 s, in order to capture the rapid change
in signal during the inflow of the contrast agent. Subsequently, the time interval increases
to 60 s while the changes in signal intensity become smaller. Furthermore, the patients
were instructed to hold their breath during various stages of the scanning process. For
these reasons the aforementioned techniques are not applicable to our data.

Alternatively, some authors aimed to warp the registration problem into another do-
main or space to exploit the relation of images along the time axis. For instance, Hamm et
al. [19] implemented a geodesic registration on anatomical manifolds. A kNN graph was
constructed to find the shortest paths between all pairs of images. To do so, an initial pair-
wise registration step was taken to build the kNN graph. However, this is time-consuming,
especially for series consisting of a large number of images. Furthermore, Feng et al. [20]
relied on Robust Principal Component Analysis (RPCA) to register an image series resid-
ing on a low-dimensional manifold. Feng split the image series into low rank and sparse
components similar to Robust Data Decomposition Registration (RDDR) [21]. A limita-
tion of these methods is that they are purely 2D registration approaches. In order to reg-
ister 3D images, the registration has to be performed in a slice-by-slice fashion. As such
these method only hold as long as the scan slices are thick and/or the motion across the
slices is relatively small. In order to overcome this problem, Huizinga et al. [22] proposed
a PCA-based group-wise method to deal with 4D data. It is based on the assumption that
a low-dimensional signal model can describe intensity changes in quantitative MRI. Fur-
thermore, the group-wise formulation of this method avoids having to choose a reference
image in the 4D series, which should reduce registration bias. However, a shortcoming of
this method is its low time efficiency. As indicated by the author, by default 1000 itera-
tions and 2048 random coordinate samples were required for each resolution. As a result,
registering a 4D dataset took hours of computing time.
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3.1.2. OBJECTIVE

In this paper we present two novel frameworks for registration of DCE-MRI series of the
liver. Both frameworks rely on an initial segmentation of the liver. In the first we exploit the
proximity of deformation fields to sequentially register images in an ordered fashion. In
the second framework the global liver displacement helps in predicting the deformation
‘tendency’ along the time axis. The deformation tendency allows us to obtain a better
starting point for the registration. As such both methods aim to start registration close to
the optimum and avoid getting trapped in a local minimum. Both techniques rely on SSC
as the registration engine.

3.2. METHOD

3.2.1. OBJECTIVE FUNCTION

T HE self-similarity context (SSC) is a patch-based descriptor of the structure in a certain
neighborhood layout N , defined as:

SSC
(
I ,x,y

)= exp

[
−D

(
I ,x,y

)
V (I ,x)

]
x,y ∈ N (3.1)

in which I is an image, x and y are the center locations of two patches within N , and D is
the distance between the two image patches measured by the sum of squared differences
(SSD):

D (I ,x1,x2) =
∑

y∈N

[
I
(
x1 +y

)− I
(
x2 +y

)]2 (3.2)

and V (I , N ) is the mean of the patch distances in neighborhood N :

V (I , N ) = 1

num (N )

∑
x,y∈N

D
(
I ,x,y

)
(3.3)

The initial descriptor, MIND [6], included the distances of a center patch to its six con-
nected neighbors. Instead, the SSC operator is based on all distances in a six neighbor-
hood (with a Euclidean distance of

p
2 between them), while the central pixel is excluded

from N .

SSC registration can be described as

u∗ = argmin
u

{∑
x

[
1

|R|
∑
r∈R

|SSC (I ,x,r)−SSC (J ,x,r)|
]
+α|∇u (x)|2

}
(3.4)

where u = (u, v , w) is the deformation field and α the regularization parameter, i.e. a
coefficient that weighs the regularization term.

In this paper we follow the default setup as introduced in [7]: R = 3, N = N6, i.e. a
six-connected neighborhood, patch size D = 3, and the regularization coefficient α = 0.1.
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3.2.2. LIVER SEGMENTATION METHOD
We adopted the liver segmentation method that we proposed previously [23]. Essentially,
after the contrast agent (Gadoxetate disodium, PrimovistTM, Bayer) is injected, the signal
intensity in the liver will keep increasing due to accumulation of the contrast agent inside
the hepatocytes, reaching a peak in the hepatobiliary phase (∼20 min after the injection).
However, it is still difficult to segment the liver in the hepatobiliary phase, as shown in
Fig. 3.1(b), because the contrast with the surrounding organs is not very high. However,
as we apply a liver-specific contrast agent, the surrounding organs do show smaller en-
hancement. Maximal contrast is therefore achieved by registering the pre-contrast image
(the first image) to an image acquired in the hepatobiliary phase (post-contrast, the last
image), and obtain a liver contrast enhancement (CE) map by

C El i ver = Ihepatobi l i ar y phase − Ipr e contr ast (3.5)

(a) (b) (c) (d)

Figure 3.1: (a) Pre-contrast image (the first volume); (b) Post-contrast image (the last volume); (c) The registered
image of (a) by conventional registration; (d) The C El i ver map.

……

(u1, v1, w1)

(u2, v2, w2)
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(u2, v2, w2)

Figure 3.2: Schematic diagram illustrating how a coarse delineation of the liver is obtained: (1) The last volume
is registered to each other dynamic volume of the DCE-MRI series; (2) The obtained deformation field is applied
to warp the liver segmentation obtained from the contrast enhanced image to each time point.

Fig. 3.1(d) shows that the liver clearly stands out because surrounding structures are



3.2. METHOD

3

35

suppressed by the subtraction. Then, we apply a level-set approach [24] to segment the
liver resulting in a liver mask. Among several level-set methods, the geodesic [25] and
the Chan-Vese [26] models are benchmarks with respect to boundary- and region-based
methods. The hybrid method proposed by Y. Zhang et al. [24] takes boundary as well as
region information into consideration while minimizing this data term:

E
(
φ

)=−
∫
Ω

(
I −µ)

H
(
φ

)
dΩ+β

∫
Ω

g
∣∣∇H

(
φ

)∣∣dΩ (3.6)

where I is the image, g represents the gradient of the image, β is a weighting coefficient,
H(φ) is the Heaviside function, and µ is a parameter that represents the lower bound of
the gray-level in the segmented object. Essentially, the first term integrates the (negated)
intensity inside the segmented region and the second term integrates the derivative along
the boundary of the segmented region.

The obtained mask accurately segments the liver in the two registered images. Simul-
taneously, it facilitates a coarse segmentation of the liver in the other volumes of the DCE-
MRI series. To do so, the last image is registered to each dynamic volume individually.
Subsequently, the obtained transformations are applied to the liver mask to yield a liver
segmentation in each dynamic volume as shown in Fig. 3.2. Furthermore, the liver’s mean
relative displacement in a dynamic volume with respect to the last image is estimated by
the center of mass of the transformed liver mask.

3.2.3. FRAMEWORK I: THE SEQUENTIAL, LOCAL 4D REGISTRATION FRAME-
WORK

Because the registration of images with large (local) deformations is prone to getting trapped
in a local minimum, this framework aims to order the volumes in the sequence such that
adjacent volumes exhibit only small deformation. Subsequently, the volumes are regis-
tered in this order by using the previous deformation field as starting point.

The displacement of the liver is largest in the superior-inferior direction due to breath-
ing motion. Furthermore, since the liver’s motion is quasi-periodic and continuous in
this direction, pairs of dynamic volumes with comparable superior-inferior displacement
appear very similar. Therefore, we sort all dynamic volumes in ascending order of supe-
rior/inferior displacement resulting in two ordered strands: one in superior and one in
inferior direction.

One should observe that although our fixed image is the last image in the original DCE
series, it may show up anywhere in a sorted strand (see Fig. 3.3(a)). This is due to the
unpredictable phase of the breathing cycle – and hence the liver position – during which
the last image was acquired. After the initial ordering, the two strands are now once more
registered to the fixed image in an iterative way. In our explanation we focus on the images
with a displacement in the superior direction, i.e. the part on the left from the fixed image
in Fig. 3.3(a). The images with positive displacement are registered in the same way, but
in reverse order.

Let us refer to the fixed image as image m in the sorted series, see Fig. 3.3(b). Ini-
tially, image m −1 in the series is registered to the fixed image (m) yielding a transforma-
tion T (m −1,m). As explained above this registration is not sensitive to local minima in
the objective function. Subsequently, image m − 2 is registered to image m − 1 to yield



3

36
3. IMPROVED INITIALIZATION FRAMEWORKS FOR 4D REGISTRATION OF DCE-MR IMAGES

OF THE LIVER BASED ON A PRIOR SEGMENTATION

transformation T (m −2,m −1). Unfortunately, the concatenation of the transformations
T (m −2,m −1) and T (m −1,m) does not yield optimal registration of image m −2 to the
fixed image (m). This is due to the accumulation of small registration errors. However,
it does bring image m −2 close to the optimum. As such, it is good starting point for the
actual registration of image m −2. Next, T (m −3,m −2) is concatenated with the ensuing
transformation T (m −2,m) to register image m −3 and this scheme is repeated until all
images are registered to the fixed image.

10 20 30 40 50 60 70 80 90 100

10

20
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40

Image Index

z

registration order registration order 

fixed image 

(a)

T(m-2, m) 
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… 
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1st  
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(m-2)th  
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image 

mth  

fixed image 

T(m-3, m-2) 
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Figure 3.3: Concept of registration framework I: (a) registration order; (b) the two registration steps for each
moving image.

3.2.4. FRAMEWORK II: THE GLOBAL 4D REGISTRATION FRAMEWORK
The second registration framework also relies on the liver mask’s mean relative displace-
ment albeit in a different manner. Furthermore, it also aims to initialize the registration of
dynamic volumes to the last volume close to the global optimum.

Therefore, we assert that the displacement of a point in the liver is in its first approxi-
mation linearly related to the mean relative liver displacement in each spatial dimension.
The displacement of liver points was already tentatively estimated by registering the last
volume to each previous dynamic (Fig. 3.2, top part). Furthermore, the liver’s mean rela-
tive displacement was obtained through the center of mass of the transformed liver mask
(Fig. 3.2, bottom part).

The concept of the registration framework is illustrated in Fig. 3.4. Orange dots rep-
resent the estimated displacement of a point in the liver (vertically) as a function of the
mean relative displacement of the liver mask (horizontally) in the superior-inferior direc-
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tion. The dot located in the origin corresponds to the last image in the 4D DCE series; dots
close to the origin represent images in which the liver mask is found to have small mean
relative displacement and vice versa.

Liver  

Displacement 

 Deformation 

Fields 

Robust Fitting Raw Points Corrected Points 

Figure 3.4: Concept of registration framework II: orange dots represent the mean relative displacement of the
liver in z-direction (horizontally) against the displacement of a single point in z direction (vertically), estimated
as illustrated in Fig. 3.2; the dashed red line is obtained by robust fitting to the orange dots; the offset of the
orange dots to the fitted line is added to the point’s initial displacement to improve the initial registration. The
same concept is applied to x and y directions. The pink liver shape stands for the liver mask from the last dy-
namic; the burgundy shape represents the liver segmentation in a particular dynamic. The green and blue dots
are exemplary points of which the initial deformations vectors are corrected.

In reality, the relation between the displacement of the points and the mean relative
liver displacement is not perfectly proportional. Particularly for dynamic volumes associ-
ated with large liver displacement the displacement of points shows large variation. This
is due to trappings in local minima and nonlinear deformation. Therefore, the dots in
Fig. 3.4 close to the origin are considered more reliable than the ones away from the ori-
gin. Accordingly, we adopted a robust approach to fit a line to the data from each point
in the liver mask (indicated by the dashed line) [27]. While doing so a higher weight was
attributed to points closer to the origin.

After robust fitting, the offset of a point from the fitted line is taken to adjust the ini-
tially estimated displacement of the point. Applying this to each point for each spatial
dimension is done to initialize the registration of the dynamic volume close to the global
optimum. This scheme is repeated several times, after which the final registration is per-
formed (notice that the iterations merely target to update the initial registration and are
not based on adjusted registrations).

Finally, the obtained deformation fields need to be inverted in order to have the entire
4D series registered to the last image (as all prior registrations concerned matching the
last DCE volume to the individual dynamics). To do so we adopted a simple fixed-point
approach of which more details can be found in [28].
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Figure 3.5: The correlation between the mean liver displacement and the displacements of points in x−, y− and
z−directions.

Fig. 3.5 shows the correlation (in color) between the mean liver displacement in the
three orthogonal directions for all points in the image that was also used in Fig. 3.1 Three
slices were arbitrarily chosen from the top, middle and bottom part of the liver. The con-
tour of the liver mask is superimposed for reference. Notice that red tints represent neg-
ative correlation and blue tints reflect positive correlation. One may observe that the
highest correlations are in superior-inferior (z) direction, a little bit lower correlations
in anterior-posterior (x) direction, and the weakest correlation is observed in medial-
lateral (y) direction. This is because the motion component due to breathing is smallest
in medial-lateral direction. Fig. 3.6 serves to confirm this. In Fig. 3.6, the robust fit-
ting between the mean liver mask displacement and a point’s displacement in x-, y- and
z-directions for three iterations is shown: (u0, v0, w0)i=1,2,3 are the initial point displace-

ments and (ui , vi , wi )i=1,2,3 represent the point displacements after the i th iteration. The
figure shows that the correlation magnitude in all three directions becomes higher with
increasing iteration number.

3.2.5. LIVER SIGNAL MODEL

In order to evaluate the benefit of our approach we will fit a pharmacokinetic model to the
time-intensity signal in the segmented region. The residual of the fit will be considered
as a measure for registration accuracy. Therefore, we adopt the liver model proposed by
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Figure 3.6: Robust fitting of a line to data from an arbitrarily selected point in the liver. The displacement of
this point is shown across the entire DCR series as a function of the mean relative liver displacement in x, y and
z-direction, for three iterations (from top to bottom). Above each subfigure Pearson’s correlation coefficient is
given, as well as the significance of the correlation.
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S. Sourbron et al. [2], henceforth referred to as “the Sourbron model”. This dual-inlets
two-compartment uptake model was especially designed for the intracellular hepatobil-
iary contrast agent Primovist. The diagram in Fig. 3.7 [2] illustrates the model. The arte-
rial input function (AIF) and venous input function (VIF) are the dual inlets representing
the contrast agent concentration in the blood plasma supplied to the liver by the hepatic
artery and the portal vein, respectively. These were obtained by averaging the top three of
most enhancing time intensity curves of all voxels in regions manually delineated in the
aorta (cranially from the hepatic artery) and the portal vein. TA and TV represent time
delays and FA and FV are arterial and venous plasma flows, respectively. Furthermore,
in the gray rectangle denoting liver tissue, the left circle represents the extracellular com-
partment and the right circle stands for the intracellular compartment, i.e. corresponding
to the hepatocytes. As such, VE is the extracellular volume and K I represents the uptake
rate of the hepatocytes represented by a volume VI ..

TA VE

TV

VIAIF

VIF

FA + FV

FA

FV

KI

Figure 3.7: Sourbron model: a dual-inlets two-compartment uptake model for Gadoxetate disodium in the liver.
The AIF and VIF are dual inlets into the liver, representing the concentration of the contrast agent over time
entering from the hepatic artery and the portal vein. TA and TV are time delays. FA and FV are the arterial and
venous plasma flows, respectively (in mL per minute per 100 mL). The gray rectangle represents the liver, the left
circle the extracellular compartment VE (in mL per 100 mL) and the right circle stands for the hepatocytes, i.e.
the intracellular compartment. KI (per minute) is the liver uptake rate.

Let CE and C I be the contrast agent concentrations in the extravascular, extracellular
compartment and hepatocytes, respectively. Defining C A and CV as the concentrations of
the AIF and VIF, the mass transport between the two compartments can be expressed as

VE
dCE

d t
(t ) = FAC A (t −TA)+FV CV (t −TV )− (FA +FV +K I )CE (t )

VI
dC I

d t
(t ) = K I CE (t )

(3.7)

and the solution for the total liver tissue concentration (CT =VE CE +VI C I ) is

CT (t ) =
[

TEδ (t )+ K I

FA +FV +K I

]
∗ e

− t
TE

TE
∗ [FAC A (t −TA)+FV CV (t −TV )] (3.8)

where * is the convolution operator, and TE (VE /[FA +FV +K I ]) represents the extracellu-
lar mean transit time..
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3.3. RESULT AND DISCUSSION

T HIS study included 11 patients diagnosed with colorectal liver metastasis (5), hepa-
tocellular carcinoma (2) and benign (4). All scans were operated between December

2014 and Sep 2015. The final cohort (age range, 43 – 76 years; mean age, 62.0 years) in-
cluded 6 men (age range, 50 – 70 years; mean age, 61.2 years) and 5 women (age range,
43 – 76 years; mean age, 63.0 years). The study was approved by the ethical review board
of the Amsterdam University Medical Centers and registered under ID NL45755.018.13.
Informed consent was obtained from all individual participants included in the study.

Abdominal DCE-MRI data were acquired on a 3T Philips Ingenia whole-body scanner
via a 3D SPGR sequence. The acquisition parameter settings were TE /TR = 2.3/3.75 ms,
FA = 15°, matrix size = 128×128×44, voxel size = 3×3×5 mm3, acquisition time = 2.141 s for
each volume; the sampling interval (between images) was 2.141 s for volumes 1-81, 30 s for
volumes 82-98 and 60 s for volumes 99-108. The total imaging time was approximately 20
minutes. Patients held their breath during the acquisition of volumes 13-22, 33-42, 61-70
and 79-108.

Table 3.1: Description of state-of-the-art methods to which the proposed frameworks are compared.

Type Description Acronym Parameter settings

State-of-the-art
methods

PCA-based group-wise
registration method

PCAG
FinalGridSpacingInPhysicalUnits = 4

NumberOfSpatialSamples = 1024

Dense displacement
sampling

DEEDS

-l 8 -s 1 -α 0.1 -r 50
-G 8x7x6x5x4x3x2x1
-L 8x7x6x5x4x3x2x1
-Q 1x1x1x1x1x1x1x1

Proposed
registration
frameworks

Sort volumes
according to

displacement
(framework I)

SVAD -α 0.1

Optimized starting
points by

robust fitting
(framework II)

OSPARF -α 0.1

The two proposed registration frameworks will be compared against two state-of-the-
art techniques, which are representative methods from different categories: group-wise
registration [22] and discrete matching [15]. Essentially, both methods also target to avoid
local minima, albeit in different ways. To achieve the best performance with a method, its
parameters were optimized by performing a parameter sweep. Accordingly, all data that
will be presented were obtained with the parameter setting that gave the lowest value for
the objective function of a method. Further details of the methods are presented in Table
3.1.
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3.3.1. EVALUATING THE REGISTRATION ACCURACY BY VISUAL INSPECTION
From the previously used data (Fig. 3.1) we selected the dynamic volume with the largest
mean liver displacement. We chose to do so since the liver in this volume likely contains
the largest deformation. Fig. 3.8 shows the outcome as this volume (raw moving image)
is registered to the last image from the series (fixed image), using the methods from Table
3.1. Three slices from top to bottom through the volume are shown, on which the outline
of the liver mask from the fixed image is superimposed to facilitate a visual comparison.
Clearly, the mask’s outline largely corresponds to the liver edge in the dynamic volume
after application of PCAG, SSC or DEEDS registration. However, some mismatch can still
be observed near the bottom of the liver as highlighted by the yellow arrows. In contrast,
the results obtained with SVAD and OSPARF show a visually better alignment between the
liver mask and the liver data signifying a better registration accuracy.

Fig. 3.9 visualizes the registration performance of the entire DCE series. As shown in
Fig. 3.9(a), we selected one voxel in the liver and drew three orthogonal lines through it in
x−, y− and z−directions, indicated in blue, red and green. The intensity along these lines
as a function of time is shown in Fig. 3.9(b), for the original volumes and after applying
each registration method. Prior to registration, large fluctuations are visible in the signal
over time due to breathing of the patient. The liver’s upper boundary appears especially
well registered by DEEDS, SVAD and OSPARF. Particularly near the lower edge of the liver
SVAD and OSPARF outperform the other methods, see the arrows pointing this out.

Sagittal Pane Coronal Pane

Transverse Pane

(a)
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3.3.2. EVALUATION OF REGISTRATION ACCURACY BY MODEL FIT ERROR

In order to evaluate the registration performance quantitatively, we fitted Sourbron’s liver
model [2] to the concentration-time curves (CTCs) converted from the time-intensity curves
(TICs) of each voxel in the liver. The residual of the fit (root mean square error, RMSE) was
considered as a measure for registration accuracy. More details about the implementation
of the model and fitting can be found in [2].

Fig. 3.10 shows the distribution of the RMSE after fitting Sourbron’s model to all voxels
inside the liver mask before and after registration using the methods from Table 3.1. Again
three slices from the top to the bottom through the liver were selected for illustration pur-
poses. It can be seen that PCAG and SSC yield regions with large RMSE at the edge of the
liver, especially in the middle images (see the sharp red edges). Such regions are smaller
with the DEEDS approach. The darker blue regions in the results from SVAD and OSPARF
indicate even better registration, while OSPARF appears to perform a little bit better than
SVAD.

Table 3.2: Average root mean square error (RMSE) and standard deviation (in brackets) after fitting Sourbron’s
model to all CTCs inside the liver mask for all patients in our dataset. Numbers with single underline are the
minima, i.e. best results, per patient; numbers with double underlines represent second best outcomes.

Case Initial PCAG SSC DEEDS+SSC SVAD+SSC OSPARF+SSC

1 0.0721 ± 0.0741 0.0226 ± 0.0195 0.0253 ± 0.0289 0.0268 ± 0.0351 0.0224 ± 0.0243 0.0213 ± 0.0245

2 0.0506 ± 0.0448 0.0245 ± 0.0255 0.0198 ± 0.0150 0.0187 ± 0.0113 0.0180 ± 0.0098 0.0170 ± 0.0105

3 0.0584 ± 0.0478 0.0343 ± 0.0263 0.0340 ± 0.0258 0.0351 ± 0.0267 0.0350 ± 0.0290 0.0315 ± 0.0245

4 0.0693 ± 0.0481 0.0492 ± 0.0304 0.0435 ± 0.0258 0.0423 ± 0.0250 0.0405 ± 0.0229 0.0404 ± 0.0233

5 0.0649 ± 0.0788 0.0270 ± 0.0171 0.0275 ± 0.0184 0.0284 ± 0.0191 0.0249 ± 0.0145 0.0242 ± 0.0144

6 0.0654 ± 0.0515 0.0340 ± 0.0267 0.0335 ± 0.0197 0.0337 ± 0.0199 0.0316 ± 0.0179 0.0300 ± 0.0166

7 0.0633 ± 0.0495 0.0329 ± 0.0280 0.0249 ± 0.0180 0.0254 ± 0.0156 0.0225 ± 0.0132 0.0222 ± 0.0132

8 0.0700 ± 0.0593 0.0389 ± 0.0400 0.0317 ± 0.0392 0.0301 ± 0.0318 0.0262 ± 0.0284 0.0264 ± 0.0349

9 0.0365 ± 0.0623 0.0192 ± 0.0134 0.0191 ± 0.0141 0.0195 ± 0.0132 0.0178 ± 0.0122 0.0177 ± 0.0120

10 0.0408 ± 0.0323 0.0266 ± 0.0167 0.0258 ± 0.0214 0.0263 ± 0.0244 0.0248 ± 0.0268 0.0241 ± 0.0205

11 0.0557 ± 0.0532 0.0455 ± 0.0558 0.0394 ± 0.0473 0.0373 ± 0.0439 0.0320 ± 0.0268 0.0331 ± 0.0361

Avg 0.0584 ± 0.0563 0.0329 ± 0.0298 0.0302 ± 0.0270 0.0302 ± 0.0263 0.0278 ± 0.0232 0.0271 ± 0.0233

Table 3.2 shows the average RMSE and standard deviation of all voxels in the liver mask
for each patient. OSPARF provides the smallest average RMSE in 9/11 patients and SVAD
is second best in 9/11 patients. The last row in the table shows the average result of all
patients. OSPARF ranks first and SVAD is the second best.

3.3.3. EVALUATION OF ACCURACY BY MEAN TARGET REGISTRATION ERROR

Synthetic MR images were generated by artificially deforming the fixed images of each
patient (last image of the DCE series). The artificial deformations were generated by av-
eraging the deformations fields of the five registration methods for each dynamic volume
and patient. As such, the ground truth is known, enabling to calculate the mean target
registration error for each point in the liver. We did so since it appeared not feasible to
reliably identify landmarks in these data. This was due to the low resolution of the data
and absence of highly characteristic points in or around the liver in our data. Eventually,
the artificially deformed fixed images were registered to the (undeformed) fixed images.

Table 3.3 collates the MTRE outcomes for each patient and registration method. It
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Table 3.3: Mean target registration error (MTRE) and corresponding standard deviation in the liver on synthetic
MRI data. Synthetic images were generated by artificially deforming the fixed images, i.e. last image in the DCE
series. Numbers with single underline are the best results per patient; Numbers with double underlines are
second best outcomes. The unit is mm.

Case Initial PCAG SSC DEEDS+SSC SVAD+SSC OSPARF+SSC

1 11.3973 ± 6.9890 2.3498 ± 1.3307 1.3558 ± 0.7180 1.2960 ± 0.7435 1.0603 ± 0.5761 1.1821 ± 0.6177

2 7.5174 ± 5.4657 3.4517 ± 2.0918 1.3509 ± 0.7049 1.3324 ± 0.7395 1.0893 ± 0.5988 1.2171 ± 0.5998

3 7.4822 ± 6.4074 3.2546 ± 2.4945 1.4064 ± 0.7120 1.3400 ± 0.6919 1.1106 ± 0.5683 1.3064 ± 0.6534

4 8.0321 ± 7.2211 3.3593 ± 2.5285 1.4247 ± 0.7131 1.3400 ± 0.7342 1.1543 ± 0.5812 1.3743 ± 0.6600

5 8.4332 ± 7.6378 1.9549 ± 1.4420 1.1797 ± 0.6579 1.1876 ± 0.6412 0.9744 ± 0.5095 1.1070 ± 0.5941

6 8.7288 ± 6.4925 2.2287 ± 1.3690 1.2975 ± 0.6806 1.2851 ± 0.7344 1.0637 ± 0.5808 1.1730 ± 0.6002

7 11.0906 ± 11.3667 2.3525 ± 1.8548 1.2163 ± 0.7121 1.3159 ± 0.7939 1.1283 ± 0.6689 1.1327 ± 0.6311

8 11.6533 ± 10.0273 4.0130 ± 3.3391 1.4070 ± 0.8157 1.2531 ± 0.6788 1.0589 ± 0.5535 1.2481 ± 0.6160

9 5.5437 ± 2.9003 2.7758 ± 1.4367 1.3022 ± 0.6239 1.2667 ± 0.6927 1.0691 ± 0.5209 1.3098 ± 0.6152

10 6.6298 ± 5.9773 2.7708 ± 2.0664 1.3100 ± 0.6525 1.2569 ± 0.6528 1.0859 ± 0.5444 1.2693 ± 0.6176

11 11.0175 ± 9.4377 5.2308 ± 4.7569 1.3939 ± 0.8006 1.3642 ± 0.8069 1.1263 ± 0.5664 1.3001 ± 0.6289

Avg 8.0234 ± 7.4431 2.9045 ± 2.4578 1.3269 ± 0.6905 1.2862 ± 0.6978 1.0622 ± 0.5583 1.2474 ± 0.6175

shows that SVAD and OSPARF perform best and second best on average. Furthermore,
we also performed this experiment while calculating the MTRE over the whole volume,
instead of over the liver only. The result can be seen in Table 3.3. OSPARF performs best
on 10/11 patients while SVAD is in the second place on 8/11 patients. The average perfor-
mance shows that OSPARF has the highest accuracy.

Table 3.4: Mean target registration error (MTRE) and corresponding standard deviation over the whole volume
on synthetic MRI data. Synthetic images were generated by artificially deforming the fixed images, i.e. last im-
age in the DCE series. Numbers with single underline are the best results per patient; Numbers with double
underlines are second best outcomes. The unit is mm.

Case Initial PCAG SSC DEEDS+SSC SVAD+SSC OSPARF+SSC

1 6.3576 ± 5.7787 2.9796 ± 2.2085 1.4499 ± 0.7980 1.3287 ± 0.7845 1.3368 ± 0.9809 1.1564 ± 0.6353

2 4.7964 ± 4.8542 2.6388 ± 2.4868 1.2468 ± 0.7184 1.2942 ± 0.7960 1.1578 ± 0.7281 1.0550 ± 0.6045

3 4.0032 ± 4.1393 2.0698 ± 1.8384 1.2041 ± 0.6935 1.2850 ± 0.7501 1.1718 ± 0.7309 1.0949 ± 0.6322

4 4.7965 ± 5.5607 2.7673 ± 3.1623 1.2448 ± 0.7688 1.2685 ± 0.8077 1.1996 ± 0.7782 1.1781 ± 0.6869

5 4.4344 ± 5.1465 2.0915 ± 1.9862 1.2431 ± 0.7253 1.2188 ± 0.7300 1.1837 ± 0.9309 1.0572 ± 0.6299

6 4.4992 ± 4.6482 2.0726 ± 1.7639 1.2397 ± 0.7000 1.2606 ± 0.7688 1.1465 ± 0.7388 1.0541 ± 0.6211

7 5.8003 ± 7.1173 2.6538 ± 2.9433 1.2988 ± 0.8340 1.3175 ± 0.7950 1.4200 ± 1.0202 1.1647 ± 0.7120

8 6.0004 ± 6.7081 3.1274 ± 3.2867 1.3214 ± 0.8464 1.2840 ± 0.8157 1.1694 ± 0.7646 1.1501 ± 0.6691

9 3.6446 ± 3.0243 1.9670 ± 1.6482 1.1227 ± 0.6145 1.2471 ± 0.7299 1.0949 ± 0.6326 1.1034 ± 0.6177

10 3.3359 ± 4.1887 1.8115 ± 1.9354 1.0678 ± 0.6613 1.1979 ± 0.7310 1.0572 ± 0.6507 0.9898 ± 0.6169

11 5.5793 ± 6.0905 3.1303 ± 3.5519 1.2956 ± 0.8034 1.3266 ± 0.8220 1.1404 ± 0.6531 1.1141 ± 0.6269

Avg 5.0263 ± 5.5703 2.5904 ± 2.6703 1.2755 ± 0.7605 1.3013 ± 0.7929 1.2099 ± 0.8072 1.1306 ± 0.6594

3.3.4. EVALUATION OF REGISTRATION ACCURACY BY DICE COEFFICIENT AND

MEAN SURFACE DISTANCE
The liver was outlined manually in the fixed volume (last image from the DCE series) and
in the dynamic volume with the largest liver placement. In this way we selected the mov-
ing volume in which the largest deformation was expected. A research fellow supervised
by an abdominal radiologist performed this task for each patient. Subsequently, the Dice
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Coefficient (DC) was calculated to express the overlap before and after registration. Fur-
thermore, the mean surface distance (MSD) between the outlines was also calculated. The
MSD was determined as the average shortest distance from outline points in the fixed im-
age to points in the moving image and vice versa.

Table 3.5 and Table 3.6 summarize the assessments by DC and MSD respectively for
each registration method. OSPARF has the highest DC and lowest MSD on 6/10, cases and
SVAD in 4/10 cases. Both methods perform better than the existing registration methods
in both aspects on almost all patients. It is just the DEEDS approach that comes second
regarding DC on two patients.

Table 3.5: Dice Coefficient of manually annotated liver outlines between the dynamic volume with largest liver
mask displacement and the fixed image before and after registration. Numbers with single underline are the best
results per patient; Numbers with double underlines are second best outcomes.

Case Initial PCAG SSC DEEDS+SSC SVAD+SSC OSPARF+SSC

1 0.5245 0.8546 0.8262 0.8567 0.8696 0.8677

2 0.6072 0.8117 0.8672 0.8924 0.9039 0.8964

3 0.7454 0.8930 0.9047 0.9101 0.9113 0.9106

4 0.6077 0.8006 0.8714 0.8701 0.9028 0.9155

5 0.5076 0.8741 0.9069 0.9175 0.9280 0.9383

6 0.6918 0.8993 0.8933 0.9000 0.9028 0.9010

7 0.5641 0.8459 0.8762 0.8863 0.8945 0.8874

8 0.5541 0.8121 0.8680 0.8852 0.8864 0.8863

9 0.7846 0.8850 0.8931 0.8838 0.9018 0.9032

10 0.7192 0.8326 0.8649 0.8548 0.8672 0.8670

11 0.6686 0.7708 0.8501 0.8604 0.8623 0.8728

Avg 0.6341 0.8436 0.8747 0.8834 0.8937 0.8951

Table 3.6: Mean surface distance (mm) of manually annotated liver outlines between the dynamic volume with
largest liver mask displacement and the fixed image before and after registration. Numbers with single underline
are the best results per patient; Numbers with double underlines are second best outcomes.

Case Initial PCAG SSC DEEDS+SSC SVAD+SSC OSPARF+SSC

1 13.3993 4.6619 5.9355 4.6638 4.5296 4.6285

2 9.9083 6.1134 4.4018 3.7185 3.3343 3.6000

3 10.0374 4.8161 4.3861 4.1545 4.0737 4.1979

4 15.3564 8.4413 5.7826 5.9666 4.6430 4.1643

5 16.0148 4.7404 3.8315 3.2375 2.7697 2.5777

6 9.9854 3.7624 3.9875 3.5706 3.5092 3.6256

7 15.7158 5.6104 4.9210 4.5990 4.3421 4.4323

8 13.7681 6.2928 4.7429 4.2810 4.2259 4.3963

9 7.4760 4.3054 4.1581 4.5692 3.9757 3.9427

10 10.0095 6.3983 5.4182 5.8998 5.2488 5.2834

11 10.6872 7.5771 5.4479 5.0519 5.0366 4.7735

Avg 12.0326 5.7018 4.8194 4.5193 4.1535 4.1475

3.4. SUMMARY AND CONCLUSION
In this paper, two novel frameworks for 4D registration of DCE MRI data were proposed
to reduce the sensitivity of image registration methods to local minima in the objective
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function.
The first framework (SVAD) imposed an ordering to the images by increasing distance

in the superior-inferior direction with respect to a reference image. Subsequently, the im-
ages were sequentially registered to the reference image starting with the images with the
shortest distance. Hypothetically, the registration of an image was initialized close to the
global optimum by combining its registration to the preceding image with the registration
of the latter to the reference.

The second framework (OSPARF) assumed a linear relation between the mean relative
displacement of the liver and the displacement of individual points in the liver. It also
aimed to initialize the registration close to the global optimum by iteratively adjusting the
initial registration based on this asserted relation.

The proposed methods were compared to two state-of-art methods that also target to
avoid local minima. The performance of the registration methods was quantitatively as-
sessed using the fit error of a pharmacokinetic model (Table 3.2) and the target registration
error on synthetically deformed images (Table 3.3).

The proposed methods outperformed the existing methods in all but a minority of
cases. Furthermore, the OSPARF method appeared to have a slight edge over SVAD, al-
though the difference is not large.

There are several limitations of our work. First, the proposed methods relied on a seg-
mentation of the liver. A delineation of the organ of interest would also needed for any
other application and this might not always be a trivial task. In our work, the segmen-
tation was simplified to a large extent as a liver specific contrast agent was used. We do
consider developing a joint registration and segmentation method, i.e. do the registration
and segmentation simultaneously, in order to become less dependent on the quality of
the first and last image in the DCE series.

The second limitation is that the number of patients we have is rather small. Clearly,
evaluating the performance of registration on a large number of subjects would be even
more convincing, even though the number of dynamic volumes per patient is quite large.
Unfortunately, we are restricted to a small number of patients as our work is part of a pilot
study into the uptake rate of the contrast medium into the liver cells.

We hypothesize that our methods may also aid in the initialization of other registration
methods, if a measure of proximity can be defined for the data.
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4
A PHARMACOKINETIC MODEL WITH

SEPARATE ARRIVAL TIME FOR TWO

INPUTS AND COMPENSATING FOR

VARYING FLIP-ANGLE IN DCE-MRI
WITH GD-EOB-DTPA

Pharmacokinetic models facilitate assessment properties of the micro-vascularization based
on DCE-MRI data. However, accurate pharmacokinetic modeling in the liver is challenging
since it has two vascular inputs and is subject to large deformation and displacement due
to respiration.

We propose an improved pharmacokinetic model for the liver that (1) analytically models
the arrival-time of the contrast agent for both inputs separately; (2) implicitly compensates
for signal fluctuations that can be modeled by varying applied flip-angle e.g. due to B1-
inhomogeneity.

Orton’s AIF model is used to analytically represent the vascular input functions. The inputs
are independently embedded into the Sourbron model. B1-inhomogeneity-driven varia-
tion of flip-angles are accounted for to justify the voxel’s displacement with respect to a pre-
contrast image.

The new model was shown to yield lower root mean square error (RMSE) residues after
fitting the model to all but a minority of voxels compared to Sourbron’s approach. Fur-
thermore, it outperformed this existing model in the majority of voxels according to three
model-selection criteria.

Other types of pharmacokinetic models may also benefit from our approaches, since the
techniques are generally applicable.
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4.1. INTRODUCTION

D YNAMIC Contrast-Enhanced MRI (DCE-MRI) is a technique that can be applied to as-
sess properties of the micro-vascularization in organs such as the liver, breast, and

kidney [1][2]. Pharmacokinetic (PK) modeling in the liver is more challenging then the
rest of the body since the liver has two vascular inputs: the hepatic artery and the portal
vein Furthermore, contrary to standard Gd-based contrast media, the hepatobiliary con-
trast agent Gadoxetate disodium (PrimovistTM, Bayer pharmaceutical) is also taken up by
the hepatocytes. As such an additional compartment should be taken into account in a
pharmacokinetic model. Finally, the uptake rate of the hepatocytes is low and for this
reason DCE-MRI may take up to 20 minutes or more. During image acquisition the liver
can experience large deformations and displacements, which may significantly influence
the signal intensity (e.g. due to B1-inhomogeneity). These issues result in the fact that
accurate pharmacokinetic modeling in the liver is a far from trivial.

4.1.1. RELATED WORK

Quantitative analysis of liver function with MRI using Gd-EOB-DTPA in rabbits was first
proposed by Ryeom et al. [3] in 2004. Using a deconvolution technique, the estimated
hepatic extraction fraction (HEF) showed correlation with liver function measured through
the plasma’s retention rate after indocyane green injection. Subsequently, Nilsson et al. [4]
applied the same liver model to humans with a more efficient deconvolution technique
called truncated singular value decomposition (TSVD). However, this deconvolution ap-
proach regarded the hepatic artery as the sole input, and ignored the portal vein. A dual-
input one-compartmental model was already proposed in 2002, but this model focused
on extracellular contrast agents such as Gd-DTPA (Magnevist, Bayer Schering Pharma,
Berlin, Germany) [5]. By adding an intracellular compartment, Sourbron et al. [2] created
a dual-input, two-compartmental model that accounted for Gd-EOB-DTPA metaboliza-
tion by the hepatic cells in 2012. One limitation of Sourbron’s model is that it ignores the
extraction rate of hepatocytes, i.e. the efflux to the bile canaliculi. To solve this, Ulloa et
al. [6] modeled the transport of the contrast agent from the hepatocytes to the bile via
nonlinear Michaelis-Menten kinetics in humans. Georgiou et al. [8] tried to simplify the
efflux transport by a simple linear approximation. Recently, Ning et al. [9] correlated phar-
macokinetic parameters estimated from different models with a blood chemistry test. It
was found that the relative liver uptake rate estimated from the model without bile ef-
flux transport significantly correlated with direct bilirubin (r =-0.52, p=0.015), prealbumin
(r =0.58, p=0.015) and prothrombin time (r =-0.51, p=0.026). Furthermore, only insignifi-
cant correlations were found using the model with efflux transport. Accordingly, our work
regards Sourbron’s model [2] as the starting point, i.e. opting for a model without bile
efflux transport.

In Sourbron’s approach, the delay of the arterial input is empirically determined by
the best model fit over a discrete set of values. This might limit the accuracy of the PKM
parameter estimation and could restrict its applicability. Furthermore, the method does
not take the effects of liver motion on the signal intensity into account. Such motion not
only causes misalignment, which should be compensated for using image registration,
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but it may also induce other signal fluctuation, due to motion-induced time-varying B1-
inhomogeneity caused by the movement of the bowel in the field of view.

Previously, several papers investigated the influence of B1-inhomogeneity on phar-
macokinetic modeling. For example, Park et al. [10] and Sengupta et al [11] conducted
a simulation and an experimental study respectively showing that a small degree of B1-
inhomogeneity can cause a significant error in the estimated PKM parameters. Alterna-
tively, Van Schie et al. [12] combined variable flip angle (VFA) and Look-Locker (LL) se-
quences to obtain a B1-inhomogeneity map for DCE imaging. Such a B1-map may also be
obtained by means of the DREAM sequence [13]. Essentially, all these methods attempt
to correct the B1-inhomogeneity based on auxiliary sequences. However, this not only
makes the imaging even more time-consuming, it conventionally yields static B1-maps
whereas fluctuations due to motion remain hard to account for.

4.1.2. OBJECTIVE

In this paper we aim to improve the accuracy of pharmacokinetic modeling of liver DCE
MRI data. Therefore, two novelties are introduced in the PK modeling. First, the arterial
input function proposed by Orton is integrated into Sourbron’s PK model. This enables
that the arrival times of contrast from the portal vein and the hepatic artery are separately
included in the model and estimated simultaneously with the PK model parameters. Sec-
ondly, the deformation and displacement of the liver is estimated and used to correct for
changes in signal intensity such as the ones caused by B1-inhomogeneities.The effective-
ness of the new model will be assessed by several experiments.

4.2. MATERIALS AND METHODS

4.2.1. DATA ACQUISITION

T HIS study included 11 patients diagnosed with colorectal liver metastasis (5), hepa-
tocellular carcinoma (2) and benign (4). All scans were operated between December

2014 and Sep 2015. The final cohort (age range, 43 – 76 years; mean age, 62.0 years) in-
cluded 6 men (age range, 50 – 70 years; mean age, 61.2 years) and 5 women (age range,
43 – 76 years; mean age, 63.0 years). The study was approved by the ethical review board
of the Amsterdam University Medical Centers and registered under ID NL45755.018.13.
Informed consent was obtained from all individual participants included in the study.

DCE-MRI data were acquired on a 3T Philips Ingenia whole-body scanner at the AMC
by means of a T1-weighted 3D Spoiled Gradient Echo sequence. The x-axis of the data
corresponds to the anterior-posterior direction, the y-axis to the left-right direction and
the z-axis to the superior-inferior direction, as show in Fig. 4.1(a). The acquisition param-
eter settings were TE /TR = 2.30/3.75 ms, FA = 15°, matrix size = 128×128×44, voxel size =
3×3×5 mm3, acquisition time = 2.141 s for each volume; sampling interval (between im-
ages) was 2.141 s for volumes 1-81, 30 s for volumes 82-98, and 60 s for volumes 99-108.
The total imaging time was approximately 20 minutes. Volumes 1-19 were acquired in
the pre-contrast stage. Subjects held their breath during the acquisition of volumes 13-22,
33-42, 61-70 and 79-108. 11 subjects were included for this research.

In addition, dual refocusing echo acquisition mode (DREAM) images [13] were ac-
quired to quantify the extent of the B1-inhomogeneity before the DCE sequence was ac-
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quired. The acquisition parameter settings were matrix size = 64×64×30, voxel size = 8.28×8.28×8.80
mm3, nominal STEAM flip-angleα = 60°, nominal imaging flip-angleβ = 10°, T EST E = 1.06
ms, T EF I D = 2.30 ms, TR = 3.84 ms. Essentially, the DREAM sequence produces a map, in
which the value of every voxel represents the ratio between the real flip-angle and the pro-
grammed flip-angle. We will refer to it as the ‘zeta’ map.

4.2.2. IMAGE REGISTRATION AND LIVER SEGMENTATION
Image registration is required to achieve spatial correspondence between voxels of the
DCE-MRI data prior to PK modeling. In this work, each 4D DCE-MR dynamic is registered
to the last dynamic volume. In order to do so, we apply the registration framework Opti-
mized Starting Points by Robust Fitting (OSPARF). It is described in Chapter 3, in which
the registration kernel is the self-similarity context (SSC) method [14], which is a state-
of-the-art technique for multi-modal image registration. Essentially, it is a patch-based
descriptor of the structure in a certain neighborhood layout N , defined as:

SSC
(
I ,x,y

)= exp

[
−D

(
I ,x,y

)
V (I ,x)

]
x,y ∈ N (4.1)

in which I is an image, x and y are the center locations of two patches within N , and D is
the distance between the two image patches measured by the sum of squared differences
(SSD):

D (I ,x1,x2) =
∑

y∈N

[
I
(
x1 +y

)− I
(
x2 +y

)]2 (4.2)

and V (I , N ) is the mean of the patch distances in neighborhood N :

V (I , N ) = 1

num (N )

∑
x,y∈N

D
(
I ,x,y

)
(4.3)

The SSC operator is based on all distances in a six neighborhood (with a Euclidean
distance of

p
2 between them), while the central pixel is excluded from N .

SSC registration can be described as

u∗ = argmin
u

{∑
x

[
1

|R|
∑
r∈R

|SSC (I ,x,r)−SSC (J ,x,r)|
]
+α|∇u (x)|2

}
(4.4)

where u = (u, v , w) is the deformation field and α the regularization parameter, i.e. a
coefficient that weighs the regularization term.

In this paper we follow the default setup as introduced in [14]: R = 3, N = N6, i.e. a
six-connected neighborhood, patch size D = 3, and the regularization coefficient α = 0.1.

Furthermore, we segment the liver, defining our region of interest, using a segmenta-
tion method that we proposed previously [15]. As we apply a liver-specific contrast agent,
the surrounding organs show less signal enhancement than the liver. Maximal contrast is
achieved by subtracting the registered first image of the series from the last image. Sub-
sequently, the liver is segmented based on the resulting “contrast” volume by means of a
level set approach, which takes boundary as well as region information into consideration
[16]. More implementation details can be found in [15].
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The obtained mask coarsely segments the liver across the registered DCE series. Si-
multaneously, inverting the registration transformations and applying them to the liver
mask yield liver segmentations in each original dynamic. Finally, we subtract from each
deformation field the deformation field resulting from the registration of the first image
to the last one. We do this merely for practical reasons, so that all deformation fields are
relative to the first image in the series.

The liver’s mean relative displacement in a dynamic volume with respect to the first
image is estimated by the displacement of the liver mask’s center of mass, see Fig. 4.1.
The large displacements in some parts of the graph represent strong inhalation emanating
from the breath holds (during dynamics 13-22, 33-42, 61-70 and 79-108). Notice that, at
the same time, these large displacements coincide with abrupt offsets in the time intensity
curves: see the arrows in Fig. 4.1(c).

In Section Varying Applied Flip-angle Compensation we will show how the liver dis-
placements can be used to compensate for these intensity offsets.
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Figure 4.1: (a) Image coordinates; (b) Liver displacement curves in x, y and z directions; (c) The distribution of
time intensity curves (TICs) for all liver voxels. The black line is the mode.

4.2.3. INPUT FUNCTION MODELS
An arterial input function (AIF) represents the time-dependent arterial contrast agent (CA)
concentration, that is used in PK modeling of dynamic imaging data. The AIF is often
computed directly from the signal measured in an artery close to the tissue of interest.
The liver, however, has two inputs: the hepatic artery’s AIF and the portal vein’s venous
input function (VIF).

We assume that the profile of both input functions follows a slightly modified input
function model described by Orton et al. [17]. This model parametrizes an input function
as a sum of two functions, one describing the first passage of the bolus peak, and the other
describing the wash-out of CA in the tail of the input function [18].

The bolus peak CB (t ) is described by:

CB (t ) = aBµ
2
B e−µB t u (t ) , (4.5)

with u(t ) the unit step function. This function has been modified slightly with respect to
the one described by Orton et al., such that the area under the curve of CB (t ) is given by
the parameter aB , while µB only affects the decay rate.
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The tail of the AIF and VIF is expressed as a convolution between the bolus peak and a
body transfer function G(t), which is modeled as

G (t ) = aG e−µG t u (t ) , (4.6)

in which aG determines the starting level of this decay function and µG governs the decay
rate, which may reflect kidney functioning.

Thus, the complete input function is given by:

C I (t ) =CB (t )+CB (t )∗G (t )

= [
AB te−µB t + AG

(
e−µG t −e−µB t )]u (t ) ,

(4.7)

with

AB = aBµ
2
B

(
1− aG

µB −µG

)
,

AG = aB aGµ
2
B(

µB −µG
)2 .

which can be used to represent either the AIF or VIF.
The liver’s AIF and VIF were estimated by semi-automatically segmenting a homo-

geneous region in the aorta and the portal vein, respectively [15]. Subsequently, the top
three of most enhancing time intensity curves of the voxels in both regions were separately
averaged and converted into time concentration curves (CTC) assuming a nonlinear rela-
tionship between signal intensity and concentration of contrast agent [19]. Finally, the
input function parameters were estimated by fitting Orton’s model to these data. These
fits yield different parameters for AIF and VIF.

An advantage of our approach is that noise on the input function is suppressed, be-
cause a smooth, parameterized representation is fit to the data. However, not all features
contained in the original data may be represented, especially a second pass of the bolus
peak, which is not contained in Orton’s model. We considered this limitation acceptable
as, we could not visually identify a second peak corresponding to a second bolus pass in
the hepatic artery let alone in the portal vein for any data set.

Furthermore, the parameterized input functions can be analytically integrated in our
PKM (see below). As such, it allows for a continuous estimate of the time delay with which
the AIF and VIF arrive in a voxel under investigation.

4.2.4. SOURBRON’S MODEL
Sourbron et al. [2] developed a dual-inlets, two-compartment uptake model that was es-
pecially designed for the intracellular hepatobiliary contrast agent Primovist. The dia-
gram in Fig. 4.2 [2] illustrates the model. The arterial input function C A and venous input
function CV are the dual inlets representing the contrast agent concentration in the blood
plasma supplied to the liver by the hepatic artery and the portal vein, respectively. TA and
TV represent time delays and FA and FV are arterial and venous plasma flows, respec-
tively. Furthermore, in the gray rectangle denoting liver tissue, the left circle represents
the extracellular compartment and the right circle stands for the intracellular compart-
ment, i.e. corresponding to the hepatocytes. As such, VE is the extracellular volume and
K I represents the uptake rate of the hepatocytes represented by a volume VI .
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TA VE
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VIAIF

VIF

FA + FV
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Figure 4.2: Sourbron model: a dual-inlets two-compartment uptake model for Gadoxetate disodium in the liver.
The AIF and VIF are dual inlets into the liver, representing the concentration of the contrast agent over time
entering from the hepatic artery and the portal vein. TA and TV are time delays. FA and FV are the arterial
and venous plasma flows, respectively (in mL per minute per 100 mL). The gray rectangle represents the liver,
the left circle denotes the extracellular compartment VE (in mL per 100 mL) and the right circle stands for the
hepatocytes, i.e. the intracellular compartment. KI (per minute) is the liver uptake rate.

The analytical solution of Sourbron’s model yielding the total contrast agent concen-
tration CT in a voxel is

CT (t ) = K I

FA +FV +K I

∫ t

0
[FAC A (τ−TA)+FV CV (τ−TV )]dτ

+ FA +FV

FA +FV +K I
e
− t

TE

∫ t

0
e

τ
TE [FAC A (τ−TA)+FV CV (τ−TV )]dτ,

(4.8)

where

TE = VE

FA +FV +K I
.

A derivation of this expression can be found in Appendix I.

4.2.5. THE COMBINED ORTON-SOURBRON (COS) MODEL

Since vascular input functions are the front-ends of Sourbron’s liver model, a comprehen-
sive model can be derived by inserting Eq. 4.7 into Eq. 4.8. This leads for the contrast
agent concentration in a voxel CT,I due to either AIF or VIF (i.e I ∈ {A,V } to:

CT,I (t ) = FI ∗u (t −TI ) {

+ AB
µB VE −K I

µB
(
FA +FV +K I −µB VE

) (t −TI )e−µB (t−TI )

−


+AB

(
µB VE −K I

)2 + (FA +FV )K I

µ2
B

(
FA +FV +K I −µB VE

)2

+AG
µB VE −K I

µB
(
FA +FV +K I −µB VE

)
e−µB (t−TI )

+ AG
µGVE −K I

µG
(
FA +FV +K I −µGVE

)e−µG (t−TI )
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+ (FA +FV )V 2
E

FA +FV +K I


+ AB(

FA +FV +K I −µB VE
)2

+ AG
(
µB −µG

)(
FA +FV +K I −µB VE

)(
FA +FV +K I −µGVE

)
e

− FA+FV +KI
VE

(t−TI )

+ K I

FA +FV +K I

(
AB

µ2
B

− AG

µB
+ AG

µG

)
},

(4.9)
in which Orton’s model parameters (µB ,µG ) are particular for either AIF or VIF; TI refers
to the time delay associated with the particular input function. A derivation of this expres-
sion can be found in Appendix II.

The final model is expressed as the sum of contributions from AIF and VIF:

CT (t ) =CT,A (t )+CT,V (t ) , (4.10)

in which CT , as before, models the total contrast agent concentration in a voxel.
Practically, we set the time delay for the portal vein (TV ) to be zero (as in [2]) since it is

smaller than the temporal resolution of our data (2.2 s). We do estimate the time delay of
the arterial input function (TA), which is larger as it is measured in the aorta, i.e. further
away from the liver.

4.2.6. VARYING APPLIED FLIP-ANGLE COMPENSATION
Fig. 4.1 shows the distribution of TICs for a particular patient. Several abrupt drops in
signal intensity may be observed that appear correlated with the liver’s displacement.

We hypothesize that this signal variation can be modeled as a deviation in the locally
applied flip-angle. In general, the signal intensity in a voxel emanating from a gradient
echo sequence, neglecting T ∗

2 decay, and assuming the spins are in the steady state, is
given by:

S (α,T1) = N (H)sin(α)
1−e

− T R
T1

1−cos(α)e
− T R

T1

, (4.11)

where N (H) is the local proton density, multiplied by an arbitrary factor (the scaling fac-
tor used by the scanner), T1 the spin-lattice relaxation time, α the flip-angle and TR the
repetition time.

Furthermore, the Relative Signal Intensity (RSI) in a voxel while the contrast agent is
flowing in can be expressed as:

RSI (α,T1) = S (α,T1)

S (α0,T10)
=

si n (α) 1−e
− T R

T1

1−cos(α)e
− T R

T1

si n (α0) 1−e
− T R

T10

1−cos(α0)e
− T R

T10

, (4.12)

in which α0 is the presumed flip-angle in the voxel prior to contrast administration (we
assume 15°, i.e. the scan protocol); T10 the spin-lattice relaxation time before contrast
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arrives, T1 the actual spin-lattice relaxation time and α the actually perceived flip-angle
during the dynamic scan, which is assumed to be varying due to liver movement in the
FOV.

The contrast agent concentration CT can be expressed as a function of α, T1 and the
RSI as (see Appendix III):

CT (α,T1) = 1

R

− 1

T R
ln


1−cos(α0)e

− T R
T10

1−e
− T R

T10

−RSI (α,T1)

1−cos(α0)e
− T R

T10

1−e
− T R

T10

−RSI (α,T1)cos(α0)

− 1

T10

 , (4.13)

with R the relaxivity of the applied contrast agent (for Gd-EOB-DTPA at 3T, R = 7 s-1mM-1l
[20]).

Consequently, the error in the calculated contrast agent concentration due to deviat-
ing flip-angle (e.g. caused by B1-inhomogeneity) is:

∆CT (α,T1) =CT (α,T1)−CT (α0,T1) . (4.14)

The intrinsic T1 value of the liver prior to contrast injection is around 800 ms [21],
while we estimate that the effective T1 can be as small as 300 ms after contrast injection.
Fig. 4.3(a) shows ∆CT for this range of T1 values as well as for flip angle deviations vary-
ing from -3° to +3°. Essentially, the graph demonstrates that the error in CT is non-linearly
dependent on T1 for any given deviation in flip-angle. However, normalizing through divi-
sion by RSI(α,T1) yields profiles that are independent of T1 for every flip-angle deviation,
see Fig. 4.3(b). Furthermore, the distance between the profiles reflects that there is an
approximately linear relation between ∆CT and the applied flip-angle.
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Figure 4.3: (a) Error in the contrast agent concentration due to a deviation in flip-angle (e.g. due to B1 inhomo-
geneity) as a function of T1 value; (b) Error in contrast agent concentration after normalization by the relative
signal intensity.

Assuming that there is a linear relation between the displacement of the liver and the
change of flip-angle, we model the contrast agent concentration in a voxel as:

CT
′ (t ) =CT (t )+ [

αRSI (t ) βRSI (t ) γRSI (t )
][
∆u (t ) ∆v (t ) ∆w (t )

]T
, (4.15)
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in which C ′
T (t ) is the measured, uncorrected contrast agent concentration in a voxel;

CT (t ) is the combined Orton-Sourbron (COS) model, see Eq. 4.10; α, β and γ are pro-
portionality constants that need to be estimated and RSI(t ) is the relative signal intensity
with respect to the one in the pre-contrast stage, i.e. S(α,T1−post )/S(α,T1−pr e ).

Thus, by fitting Eq. 4.15 to the concentration curves we have not only parameterized
the arrival time in Sourbron’s model (through the COS approach), but also included an
implicit varying flip-angle correction (FLAC). Henceforth, we will refer to this as our COS-
FLAC approach.

4.2.7. EXPERIMENTAL SETUP

COMPARISON BETWEEN SOURBRON’S MODEL AND THE COS MODEL

We first ran a numerical experiment to compare the accuracy and time efficiency of Sour-
bron’s original approach and the proposed COS technique.

Therefore, the liver’s AIF and VIF were obtained in each of our 11 patient both numer-
ically and estimated as described above by fitting Orton’s model. After that, Sourbron’s
model as well as our COS model were applied to extract the PK model parameters in each
liver voxel.

Subsequently, both the numerical and analytical AIFs and VIFs were adopted as ground
truth. Furthermore, the PKM parameters from the Sourbron and COS models were aver-
aged to yield true model parameters for each voxel, from which noise-free tissue con-
centration curves were generated via Eq. 4.8. Thereafter, synthetic AIFs and VIFs were
generated by adding noise to ground-truth AIFs and VIFs of each patient. The standard
deviation of this added noise was equal to the root mean square of the residuals of Orton’s
model fit (performed separately for AIF and VIF). In the same way, noisy tissue concentra-
tion curves were generated by adding noise to the ground truth tissue curves. Finally, we
fitted both PK models to the noisy synthetic data and compared the estimated PK model
parameters with the ground truth. The nonlinear least-squares fitting routine lsqcurve-
fit in MATLAB (version R2015b; Mathworks, Natick, USA) was used to perform the model
fits; 19 cores were adopted for parallel computing on a HPC equipped with two Intel(R)
Xeon(R) CPU E5-2698 v4 clocked at 2.20GHz and 256GB RAM memory.

RELATION BETWEEN DISPLACEMENT AND PROGRAMMED FLIP-ANGLE DEVIATIONS

Eq. 4.15 assumed that a difference from the true contrast agent is linearly related to the
displacement of a liver voxel. Furthermore, the difference (∆CT ) was modeled to linearly
relate to the deviation from the programmed flip-angle (Fig. 4.3).

To assess the validity of this, the zeta-map from the DREAM sequence, representing the
deviation from the programmed flip angle, was geometrically aligned to the first dynamic.
Observe that the displacement of a liver voxel in any DCE image is given by the registration
transformation that is relative to the first dynamic. Subsequently, the difference in zeta
value over the displacement vector (∆zeta) was correlated to the displacement across all
dynamics. The strength of the correlation was assessed by Pearson’s correlation coefficient
and the significance of the correlation was determined.

THE COS-FLAC MODEL WITH AND WITHOUT RSI WEIGHTING

Models of increasing complexity, from the COS-model up to the COS-FLAC model with
RSI weighting, were fit to the data of the 11 subjects described 4.2. The root mean square
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error (RMSE) of the residue that remains after fitting the COS and the COS-FLAC models
to the signal were determined in order to quantitatively assess the performance. However,
increasing degrees of freedom by adding parameters to a model generally leads to de-
creased smaller RMSE of the fit residue. To evaluate whether the added parameters truly
contributed to a better fit, three model-selection criteria were applied: Akaike’s informa-
tion criterion (AIC) [22], the Bayesian information criterion (BIC) [23], and Information
Complexity (ICOMP) [24].

4.3. RESULTS

4.3.1. COMPARISON BETWEEN SOURBRON’S MODEL AND THE COS MODEL

T ABLE 4.1 shows absolute values of the fitted model parameters for Sourbron’s model,
the COS model and the ground truth. Furthermore, Table 4.2 show the mean differ-

ence between the ground truth and estimated PK model parameters (as well as corre-
sponding standard deviations) for Sourbron’s model and the COS model. It shows that the
COS model achieved smaller mean difference and standard deviation on four PK model
parameters out of five. Additionally, the COS model was fitted more than 7 times faster
than Sourbron’s model due to the analytical representation of AIF and VIF.

Table 4.1: Comparison between Sourbron’s model (discrete AIF) and COS model (analytical AIF) in terms of esti-
mating PK model parameters on synthetic data. The numbers report the mean values of fitted model parameters
and corresponding standard deviation (between brackets).

Original Sourbron’s model COS model Ground truth

FA (ml / min / 100ml) 15.658 (12.363) 13.124 (12.743) 13.287 (12.285)
FV (ml / min / 100ml) 38.660 (27.696) 72.402 (58.868) 56.855 (45.519)

KI (/ 100 / min) 8.161 (5.003) 8.078 (4.318) 7.656 (4.026)
VE (ml / 100 ml) 0.452 (0.236) 0.407 (0.190) 0.429 (0.214)

TA (sec) 5.941 (2.902) 5.417 (3.449) 5.634 (3.166)

Table 4.2: Comparison between Sourbron’s model (discrete AIF) and COS model (analytical AIF) in terms of es-
timating PK model parameters and time efficiency on synthetic data. The numbers report the mean difference
from the ground truth and corresponding standard deviation (between brackets). The numbers printed in bold-
face are the best outcomes per row.

Original Sourbron’s model COS model

∆FA (ml / min / 100ml) 2.058 (3.983) -0.096 (2.297)
∆FV (ml / min / 100ml) -17.318 (29.495) 6.965 (23.260)
∆KI (/ 100 / min) 0.407 (1.407) 0.339 (0.704)
∆VE (ml / 100 ml) 0.005 (0.047) -0.011 (0.038)

∆TA (sec) 0.172 (1.409) 0.073 (1.330)
Computation time (min) 145.855 19.455
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4.3.2. RELATION BETWEEN DISPLACEMENT AND PROGRAMMED FLIP-ANGLE

DEVIATIONS

Table 4.3 collates the mean correlation coefficients averaged over all liver voxels for each
patient. Additionally, the mean p-values (and associated standard deviations) of the cor-
relations are given. The mean p-values demonstrate that the correlations are highly sig-
nificant. Furthermore, the correlation coefficients indicated a moderate to strong linear
relationship [26]. This supports the validity of the assumed linear relation between dis-
placement and deviation in flip angle.

Table 4.3: Mean Pearson correlation coefficients (and associated standard deviation) of the correlations between
the displacement and the deviation from the applied flip-angle over all liver voxels as well as the mean p-values
(and standard deviation) of these correlations stratified by patient number.

Case Correlation coefficients P-values

1 0.742 (0.220) 7.71E-10 (5.06E-09)
2 0.554 (0.260) 1.61E-05 (7.21E-05)
3 0.675 (0.271) 1.29E-07 (7.24E-07)
4 0.536 (0.277) 1.81E-04 (7.13E-04)
5 0.621 (0.272) 1.86E-06 (9.15E-06)
6 0.677 (0.190) 9.47E-11 (5.02E-10)
7 0.851 (0.169) 3.48E-08 (1.99E-07)
8 0.798 (0.197) 1.41E-09 (8.50E-09)
9 0.542 (0.263) 4.52E-05 (1.86E-04)

10 0.732 (0.226) 7.82E-10 (4.64E-09)
11 0.840 (0.142) 2.80E-12 (1.99E-11)

Overall 0.655 (0.275) 7.86E-07 (4.10E-06)

4.3.3. THE COS-FLAC MODEL WITH AND WITHOUT RSI WEIGHTING
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The signal intensity in the liver of one patient was already shown in Fig. 4.1(c). Fig.
4.4 illustrates how models (red) of increasing complexity, from COS up to the COS-FLAC
model with RSI weighting, fit to the concentration curve (blue) from an exemplary voxel.
Insets show zoom-ins of the initial part of the graphs, containing most of the breath holds.
In Fig. 4.4(a) merely the combined Orton-Sourbron (COS) model was fitted. The model
does not fit to the strong fluctuations of the first part of the concentration curve. In Fig.
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Figure 4.4: Fitting results (red) of different models to the concentration-time curve (C ′
T (t ), blue) extracted from

a single voxel. (a) Combined Orton-Sourbron (COS) model; (b) COS model with varying flip-angle correction
(FLAC) but without the RSI weighting term in Eq. 4.15; (c) COS-FLAC model including the RSI weighting term;
(d) Pure concentration-time curve (CT (t )) recovered from (c). All sub-plots show zoom-ins of the initial part of
the curves, i.e. 0 – 200 s.

4.4(a), we fitted the COS model with varying flip-angle correction (FLAC) model but with-
out the RSI weighting term. Clearly, an improved fitting result was achieved compared
with Fig 4 (a). However, some parts of the concentration curve are slightly off, see the yel-
low arrows in Fig. 4.4(b). Fig. 4.4(c) shows that the full COS-FLAC model including the
RSI weighting term achieved an even better fit. For reference, Fig. 4.4(c) shows the mere
concentration part CT from Eq. 4.15 taken from the fit in Fig. 4.4(c).

Table 4.4: Average root mean square error (RMSE) of the residue that remains after fitting the COS and COS-FLAC
models with and without RSI weighting term. The numbers are the mean value and the standard deviation (std)
averaged over all liver voxels. The best results are printed in boldface.

Case COS COS-FLAC without RSI weighting COS-FLAC with RSI weighting

1 1.902E-02 (4.334E-03) 1.496E-02 (3.652E-03) 1.461E-02 (3.678E-03)
2 1.600E-02 (5.355E-03) 1.160E-02 (3.100E-03) 1.129E-02 (3.089E-03)
3 2.664E-02 (1.117E-02) 2.054E-02 (7.739E-03) 2.012E-02 (7.579E-03)
4 4.260E-02 (1.740E-02) 3.523E-02 (1.441E-02) 3.491E-02 (1.441E-02)
5 2.206E-02 (5.618E-03) 1.952E-02 (4.966E-03) 1.929E-02 (4.927E-03)
6 2.975E-02 (1.176E-02) 2.059E-02 (6.565E-03) 1.948E-02 (5.886E-03)
7 2.192E-02 (9.294E-03) 1.111E-02 (3.280E-03) 1.067E-02 (3.325E-03)
8 2.500E-02 (9.045E-03) 1.890E-02 (6.708E-03) 1.826E-02 (6.708E-03)
9 1.688E-02 (4.040E-03) 1.411E-02 (3.953E-03) 1.406E-02 (3.984E-03)

10 2.338E-02 (5.071E-03) 2.033E-02 (4.746E-03) 2.005E-02 (4.728E-03)
11 3.243E-02 (9.060E-03) 1.916E-02 (5.164E-03) 1.802E-02 (5.152E-03)

Overall 2.515E-02 (1.047E-02) 1.868E-02 (7.446E-03) 1.819E-02 (7.319E-03)

The mean RMSEs of fitting in all 11 patients is collated in Table 4.4. It shows that the
COS-FLAC model with RSI weighting term achieved the lowest RMSE, which is signifi-
cantly better than the COS model and the COS-FLAC model without RSI weighting term (p
<0.001, assessed by paired t-tests). Henceforth the, COS-FLAC model refers to the model
including the RSI weighting term.

Table 4.5 shows the scores that PK models get according to three model selection cri-
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-852.679
(51.460)

-908.107
(57.626)

98.615
-839.268
(51.460)

-886.650
(57.626)

93.292
-853.657
(51.386)

-911.632
(57.138)

99.716

2
-893.338
(78.885)

-963.347
(62.107)

97.817
-879.927
(78.885)

-941.890
(62.107)

90.685
-894.220
(79.409)

-968.002
(62.020)

99.388

3
-776.654
(103.998)

-833.659
(92.809)

98.159
-763.243
(103.998)

-812.201
(92.809)

91.089
-780.678
(104.698)

-841.156
(93.754)

99.499

4
-673.668
(94.404)

-712.605
(94.814)

95.422
-660.351
(94.404)

-691.297
(94.814)

82.586
-674.465
(94.602)
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(93.913)

98.769

5
-820.607
(58.029)

-848.015
(57.665)

94.591
-807.197
(58.029)

-826.558
(57.665)

79.425
-820.605
(58.159)

-851.622
(57.673)

98.952

6
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(91.726)

-848.749
(68.966)
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(91.726)

-827.292
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(84.557)
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-781.997
(83.835)

-838.812
(84.557)

91.634
-794.805
(83.843)
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(84.349)

99.047

9
-878.362
(54.731)

-917.277
(64.419)

97.159
-864.951
(54.731)

-895.820
(64.419)

88.554
-879.493
(55.079)

-922.729
(64.564)

99.458

10
-808.133
(48.258)

-840.045
(53.112)

96.209
-794.722
(48.258)

-818.588
(53.112)

84.253
-809.190
(48.543)

-844.428
(53.273)

98.985

11
-738.370
(67.289)

-863.216
(66.717)

99.083
-724.959
(67.289)

-841.759
(66.717)

96.129
-736.598
(67.654)

-868.164
(66.278)

99.616

O
verall

-794.126
(101.212)

-860.240
(100.905)

97.397
-780.728
(101.198)

-838.802
(100.882)

89.380
-794.990
(101.466)

-864.651
(100.638)

99.300
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teria as well as the percentage of voxels in which these criteria favored the COS-FLAC
model over the mere COS approach. The proposed COS-FLAC technique was considered
to yield a better fit in the majority of voxels across all subjects according to all three model-
selection methods (p <0.001, assessed by paired t-tests).

4.4. DISCUSSION

I N this paper, we proposed an improved pharmacokinetic model for DCE-MRI of the
liver. The novelties of our work comprise: (1) analytically modeling the arrival-time

of the contrast agent in a voxel; (2) compensation for effects that allowing for a breath-
dependent B1-induced variation of the experienced flip-angle in each voxel.

Orton’s model was adopted to represent the liver’s input functions (hepatic artery and
portal vein) and embed them into Sourbron’s model. The combined Orton and Sourborn
(COS) model was shown to enhance the fitting accuracy as well as the efficiency of the
model fitting (see Table 4.2). The poorer performance of Sourbron’s original approach is
due to the discretized delay of the arterial input and determining the best model fit over a
set of delay values.

A potentially deviating flip-angle was modeled to linearly relate to the displacement
of a liver voxel with respect to the first image. We referred to the approach combining
both novelties as the COS-FLAC model. The validity of our approach is supported by the
moderate to strong linear correlation between displacement and deviation in flip angle.

The COS-FLAC model was quantitatively assessed by the root mean square error (RMSE)
of the residue that remains after fitting the model to the signal in every voxel of the liver.
We found that the COS-FLAC model achieved significantly lower RMSE than the COS ap-
proach. Furthermore, three model complexity criteria showed that the COS-FLAC model
outperformed the COS model in the vast majority of voxels. These findings confirm that
a small degree of B1-inhomogeneity can have a marked effect on the estimation of PKM
parameters, c.f. [10][11].

One might argue that the COS approach would suffice in voxels in which there is no
deviation in flip-angle. This might explain why, according to the model selection criteria,
there are still some voxels in which this simpler model appears sufficient. At the same
time, the large number of voxels in which the COS-FLAC approach is favored, emphasizes
to our opinion its importance.

There are several limitations of our work. A first limitation is that the number of sub-
jects is rather small. Clearly, evaluating the performance of the method on a larger number
of subjects would be more convincing. Unfortunately, we are restricted to a small number
of subjects as our work is part of a pilot study into the uptake rate of the contrast medium
into liver cells.

A second limitation is the lack of a reference standard. Obtaining the true pharmacoki-
netic tissue parameters under realistic measurement circumstances is a highly complex,
still unsolved issue.

4.5. CONCLUSION
Our work primarily targeted to improve pharmacokinetic modeling for DCE-MRI of the
liver. However, other types of pharmacokinetic models may also benefit from our ap-
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proaches, since the techniques are generally applicable.
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APPENDIX 1: DERIVATION OF SOURBRON’S MODEL
Sourbron’s model:

VE
dCE (t )

d t
= FAC A (t −TA)+FV CV (t −TV )− (FA +FV +K I )CE (t )

VI
dC I (t )

d t
= K I CE (t )

CT (t ) =VE CE (t )+VI C I (t )

, (4.16)

where
FA : Arterial plasma flow (mL/min/100 mL)
FV : Venous plasma flow (mL/min/100 mL)
TA : Arterial delay (sec)
TV : Venous delay (sec)
K I : Uptake rate (per min)
VE : Extracellular volume (mL/100 mL)
VI : Hepatocyte volume (mL/100 mL)
TE : Extracellular mean transit time (sec)

The first equation in Sourbron’s model

VE
dCE (t )

d t
= FAC A (t −TA)+FV CV (t −TV )− (FA +FV +K I )CE (t ) . (4.17)

According to

TE = VE

FA +FV +K I
, (4.18)

Eq. 4.17 can be rearranged as

dVE CE (t )

d t
= FAC A (t −TA)+FV CV (t −TV )− VE CE (t )

TE
. (4.19)

The equation is of the type

d y (t )

d t
+k (t ) y (t ) =Q (t ) , (4.20)

whose general solution is
y (t ) = y (a)e−A(t ) +e−A(t )

∫ t

0
Q (u)e−A(u)du

A (t ) =
∫ t

0
k (u)du

, (4.21)

where a is arbitrary. In our case, a = 0, y(a) = y(0) = 0.
Substitution of 

y (t ) =VE CE (t )

k (t ) = 1

TE
Q (t ) = FAC A (t −TA)+FV CV (t −TV )

, (4.22)
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into Eq. 4.21 leads to

CE (t ) = 1

VE
e
− t

TE

∫ t

0
Q (u)e

u
TE du. (4.23)

Now consider the third equation in Sourbron’s model

CT (t ) =VE CE (t )+VI C I (t ) . (4.24)

Obtaining the derivatives of both sides

dCT (t )

d t
=VE

dCE (t )

d t
+VI

dC I (t )

d t
. (4.25)

Substituting the first and second equations of Sourbron’s model

dCT (t )

d t
=FAC A (t −TA)+FV CV (t −TV )− (FA +FV +K I )CE (t )+K I CE (t )

=Q (t )− (FA +FV )CE (t ) .
(4.26)

The solution is

CT (t ) =
∫ t

0
[Q (t )− (FA +FV )CE (t )]d t . (4.27)

Substituting Eq. 4.18 and Eq. 4.23 into Eq. 4.27

CT (t ) =
∫ t

0

[
Q (t )− FA +FV

VE
e
− t

TE

∫ t

0
Q (u)e

u
TE du

]
d t

=
∫ t

0

[
Q (t )− FA +FV

FA +FV +K I

1

TE
e
− t

TE

∫ t

0
Q (u)e

u
TE du

]
d t

=
∫ t

0
Q (t )d t − FA +FV

FA +FV +K I

1

TE

∫ t

0
e
− t

TE

(∫ t

0
Q (u)e

u
TE du

)
d t

=
∫ t

0
Q (t )d t + FA +FV

FA +FV +K I

∫ t

0

(∫ t

0
Q (u)e

u
TE du

)
de

− t
TE

=
∫ t

0
Q (t )d t + FA +FV

FA +FV +K I


[(∫ t

0
Q (u)e

u
TE du

)
e
− t

TE

]∣∣∣∣t

0

−
∫ t

0
e
− t

TE d

(∫ t

0
Q (u)e

u
TE du

)


=
∫ t

0
Q (t )d t + FA +FV

FA +FV +K I


(∫ t

0
Q (u)e

u
TE du

)
e
− t

TE

−
∫ t

0
e
− t

TE Q (t )e
t

TE d t


=

∫ t

0
Q (t )d t + FA +FV

FA +FV +K I

(
e
− t

TE

∫ t

0
Q (u)e

u
TE du −

∫ t

0
Q (t )d t

)
= K I

FA +FV +K I

∫ t

0
Q (t )d t + FA +FV

FA +FV +K I
e
− t

TE

∫ t

0
Q (u)e

u
TE du,

(4.28)

where
Q (t ) = FAC A (t −TA)+FV CV (t −TV ) .
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APPENDIX 2: DERIVATION OF COMBINED ORTON-SOURBRON

MODEL
The AIF is described as:

COr ton (t ) =CB (t )+CB (t )∗G (t )

= [
AB te−µB t + AG

(
e−µG t −e−µB t )]u (t ) ,

(4.29)

where 
AB = aBµ

2
B

(
1− aG

µB −µG

)
AG = aB aGµ

2
B(

µB −µG
)2

.

The solution of Sourbron’s model is

CT = K I

FA +FV +K I

∫ t

0
[FAC A (τ−TA)+FV CV (τ−TV )]dτ

+ FA +FV

FA +FV +K I
e
− t

TE

∫ t

0
e

τ
TE [FAC A (τ−TA)+FV CV (τ−TV )]dτ.

(4.30)

Mainly there are two kinds of integrals inside
A (t ) =

∫ t

0
FI C I (τ−TI )dτ

B (t ) =
∫ t

0
e

τ
TE FI C I (τ−TI )dτ

, (4.31)

where I denotes either AIF (C A) and VIF (CV ). Now A and B :

A (t ) =
∫ t

0
FI C I (τ−TI )dτ

=
∫ t−T0

0
FI C I (τ)dτ

= FI

∫ t−T0

0

[
AB te−µBτ+ AG

(
e−µGτ−e−µBτ

)]
dτ

= FI


− AB

µB
(t −T0) e−µB (t−TI ) +

(
AG

µB
− AB

µ2
B

)
e−µB (t−TI )

− AG

µG
e−µG (t−TI ) + AB

µ2
B

− AG

µB
+ AG

µG

 .

(4.32)

B (t ) =
∫ t

0
e

τ
TE FI C I (τ−TI )dτ

= FI

∫ t

0

{
e

τ
TE

[
AB te−µB (τ−TI ) + AG

(
e−µG (τ−TI ) −e−µB (τ−TI ))]}dτ.
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= FI



AB TE

1−µB TE
(t −T0)e

1
TE

−µB (t−TI ) − AB T 2
E(

1−µB TE
)2 e

t
TE

−µB (t−TI )

− AG TE

1−µB TE
e

t
TE

−µB (t−TI ) + AG TE

1−µG TE
e

1
TE

−µG (t−TI )

+ AG TE e
TI
TE

1−µB TE
− AG TE e

TI
TE

1−µG TE
+ AB T 2

E e
TI
TE(

1−µB TE
)2



= FI



+ AB TE

1−µB TE
(t −T0)e

t
TE

−µB (t−TI )

− TE

1−µB TE

(
AB TE

1−µB TE
+ AG

)
e

t
TE

−µB (t−TI ) + AG TE

1−µG TE
e

t
TE

−µG (t−TI )

+TE

(
AG

1−µB TE
− AG

1−µG TE
+ AB TE(

1−µB TE
)2

)
e

TI
TE


.

(4.33)

Substituting Eq. 4.32 and Eq. 4.33 into Eq. 4.30 we can obtain

CT = K I

FA +FV +K I

∫ t

0
[FAC A (τ−TA)+FV CV (τ−TV )]dτ

+ FA +FV

FA +FV +K I
e
− t

TE

∫ t

0
e

τ
TE [FAC A (τ−TA)+FV CV (τ−TV )]dτ

= K I

FA +FV +K I

∑
I=A,V

FI


− AB

µB
(t −T0) e−µB (t−TI ) +

(
AG

µB
− AB

µ2
B

)
e−µB (t−TI )

− AG

µG
e−µG (t−TI ) + AB

µ2
B

− AG

µB
+ AG

µG


I

+ FA +FV

FA +FV +K I
e
− t

TE
∑

I=A,V
FI



+ AB TE

1−µB TE
(t −T0)e

t
TE

−µB (t−TI )

− TE

1−µB TE

(
AB TE

1−µB TE
+ AG

)
e

t
TE

−µB (t−TI )

+ AG TE

1−µG TE
e

t
TE

−µG (t−TI )

+TE

(
AG

1−µB TE
− AG

1−µG TE
+ AB TE(

1−µB TE
)2

)
e

TI
TE


I

= K I

FA +FV +K I

∑
I=A,V

FI


− AB

µB
(t −T0) e−µB (t−TI ) +

(
AG

µB
− AB

µ2
B

)
e−µB (t−TI )

− AG

µG
e−µG (t−TI ) + AB

µ2
B

− AG

µB
+ AG

µG


I
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+ FA +FV

FA +FV +K I

∑
I=A,V

FI



+ AB TE

1−µB TE
(t −TI )e−µB (t−TI )

− TE

1−µB TE

(
AB TE

1−µB TE
+ AG

)
e−µB (t−TI )

+ AG TE

1−µG TE
e−µG (t−TI )

+TE

(
AG

1−µB TE
− AG

1−µG TE
+ AB TE(

1−µB TE
)2

)
e
− t−TI

TE


I

= ∑
I=A,V

FI



+
[
− K I

FA +FV +K I

AB

µB
+ FA +FV

FA +FV +K I

AB TE

1−µB TE

]
(t −TI )e−µB (t−TI )

+


K I

FA +FV +K I

(
AG

µB
− AB

µ2
B

)

− FA +FV

FA +FV +K I

TE

1−µB TE

(
AB TE

1−µB TE
+ AG

)
e−µB (t−TI )

+
[
− K I

FA +FV +K I

AG

µG
+ FA +FV

FA +FV +K I

AG TE

1−µG TE

]
e−µG (t−TI )

+ K I

FA +FV +K I

(
AB

µ2
B

− AG

µB
+ AG

µG

)

+ FA +FV

FA +FV +K I
TE

(
AG

1−µB TE
− AG

1−µG TE
+ AB TE(

1−µB TE
)2

)
e
− t−TI

TE


I

= ∑
I=A,V

FI



+
[
− K I

FA +FV +K I

AB

µB
+ FA +FV

FA +FV +K I

AB

1/TE −µB

]
(t −TI )e−µB (t−TI )

+


+ K I

FA +FV +K I

(
AG

µB
− AB

µ2
B

)

− FA +FV

FA +FV +K I

1

1/TE −µB

(
AB

1/TE −µB
+ AG

)
e−µB (t−TI )

+
[
− K I

FA +FV +K I

AG

µG
+ FA +FV

FA +FV +K I

AG

1/TE −µG

]
e−µG (t−TI )

+ K I

FA +FV +K I

(
AB

µ2
B

− AG

µB
+ AG

µG

)

+ FA +FV

FA +FV +K I

(
AG

1/TE −µB
− AG

1/TE −µG
+ AB(

1/TE −µB
)2

)
e
− FA+FV +KI

VE
(t−TI )


I
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= ∑
I=A,V

FI



+


− K I

FA +FV +K I

AB

µB

+ FA +FV

FA +FV +K I

AB VE

FA +FV +K I −µB VE

 (t −TI )e−µB (t−TI )

+



+ K I

FA +FV +K I

(
AG

µB
− AB

µ2
B

)

− FA +FV

FA +FV +K I

VE

FA +FV +K I −µB VE

∗
(
+ AB VE

FA +FV +K I −µB VE
+ AG

)


e−µB (t−TI )

+


− K I

FA +FV +K I

AG

µG

+ FA +FV

FA +FV +K I

AG VE

FA +FV +K I −µGVE

e−µG (t−TI )

+ K I

FA +FV +K I

(
AB

µ2
B

− AG

µB
+ AG

µG

)

+ FA +FV

FA +FV +K I
VE



+ AG

FA +FV +K I −µB VE

− AG

FA +FV +K I −µGVE

+ AB VE(
FA +FV +K I −µB VE

)2


e
− FA+FV +KI

VE
(t−TI )


I

= ∑
I=A,V

FI



+AB
µB VE −K I

µB
(
FA +FV +K I −µB VE

) (t −TI )e−µB (t−TI )

−


+AB

(
µB VE −K I

)2 + (FA +FV )K I

µ2
B

(
FA +FV +K I −µB VE

)2

+AG
µB VE −K I

µB
(
FA +FV +K I −µB VE

)

e−µB (t−TI )

+AG
µGVE −K I

µG
(
FA +FV +K I −µGVE

)e−µG (t−TI )

+ FA +FV

FA +FV +K I
V 2

E

∗


+AB

1(
FA +FV +K I −µB VE

)2

+AG

(
µB −µG

)(
FA +FV +K I −µB VE

)(
FA +FV +K I −µGVE

)
e

− FA+FV +KI
VE

(t−TI )

+ K I

FA +FV +K I

(
AB

µ2
B

− AG

µB
+ AG

µG

)


I

.

(4.34)
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Note: a unit step function u(t −TI ) should be added to Eq. 4.34.
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APPENDIX 3: DERIVATION FROM SIGNAL INTENSITY TO TISSUE

CONCENTRATION
In DCE-MRI, the signal in steady state is given by (neglecting T ∗

2 effect):

S (T1) = N (H)sin(α)
1−e

− T R
T1

1−cos(α)e
− T R

T1

, (4.35)

where N (H) is the local proton density multiplied by an arbitrary factor, T1 the spin-lattice
relaxation time, α the flip-angle and TR the repetition time.

The Relative Signal Intensity (RSI) in a voxel can be calculated as

RSI (T1) = S (T1)

S (T10)

= 1−e
− T R

T1

1−cos(α)e
− T R

T1

1−cos(α)e
− T R

T10

1−e
− T R

T10

= 1−E

1−cos(α)E
F,

(4.36)

in which 
E = e

− T R
T1

F = 1−cos(α)e
− T R

T10

1−e
− T R

T10

.

Solving for E yields:

E = F −RSI (T1)

F −cos(α)RSI (T1)
. (4.37)

Expanding E and solving for 1/T1(t ):

1

T1
=− 1

T R
ln

(
F −RSI (T1)

F −cos(α)RSI (T1)

)
. (4.38)

Next, the concentration of contrast agent can be computed from T1:

1

T1 (t )
= 1

T0
+RCt (t ) , (4.39)

with R the relaxivity of the applied contrast agent.
Solving C ′

T (t ):

CT (t ) = 1

R

(
1

T1 (t )
− 1

T10

)
= 1

R

(
− 1

T R
ln

(
F −RSI (T1)

F −cos(α)RSI (T1)

)
− 1

T10

)

= 1

R

− 1

T R
ln


1−cos(α)e

− T R
T10

1−e
− T R

T10

−RSI (T1)

1−cos(α)e
− T R

T10

1−e
− T R

T10

−cos(α)RSI (T1)

− 1

T10

 .

(4.40)

which is as same as Eq. 4.13 in the manuscript.
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5
A HYBRID SEGMENTATION METHOD

FOR PARTITIONING THE LIVER

BASED ON 4D DCE-MR IMAGES

The Couinaud classification of hepatic anatomy partitions the liver into eight functionally
independent segments. Detection and segmentation of the hepatic vein (HV), portal vein
(PV) and inferior vena cava (IVC) plays an important role in the subsequent delineation of
the liver segments.

To facilitate pharmacokinetic modeling of the liver based on the same data as delineat-
ing the liver segments, a 4D DCE-MR scan protocol was selected. This yields images with
high temporal resolution but low spatial resolution. Since the liver’s vasculature consists of
many tiny branches, segmentation of these images is challenging. The proposed framework
starts with registration of the 4D DCE-MRI series followed by region growing from manu-
ally annotated seeds in the main branches of key blood vessels in the liver. It calculates the
Pearson correlation between the time intensity curves (TICs) of a seed and all voxels. A max-
imum correlation map for each vessel is obtained by combining the correlation maps for all
branches of the same vessel through a maximum selection per voxel. The maximum corre-
lation map is incorporated in a level set scheme to individually delineate the main vessels.
Subsequently, the eight liver segments are segmented based on three vertical intersecting
planes fit through the three skeleton branches of HV and IVC’s center of mass as well as a
horizontal plane fit through the skeleton of PV.

Our segmentation regarding delineation of the vessels is more accurate than the results of
two state-of-the-art techniques on five subjects in terms of the average symmetric surface
distance (ASSD) and modified Hausdorff distance (MHD). Furthermore, the proposed liver
partitioning achieves large overlap with manual reference segmentations (expressed in Dice
Coefficient) in all but a small minority of segments (mean values between 87% and 94% for
segments 2-8). The lower mean overlap for segment 1 (72%) is due to the limited spatial
resolution of our DCE-MR scan protocol.
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DCE-MR IMAGES

5.1. INTRODUCTION

D URING liver surgery, resection of lesions inevitably goes at the expense of healthy liver
tissue. To reduce this loss as much as possible and to limit the mortality rates after

surgery, the Couinaud classification of liver anatomy was introduced [2]. This classifica-
tion system partitions the liver into eight segments such that each of them has an inde-
pendent circulatory system. It targets resecting only that segment in which the tumor is
localized, without damaging the liver parenchyma of adjacent segments [3].

Conventionally, radiologists apply the Couinaud classification by manually annotating
vessels in the liver, which is tedious, time-consuming and prone to errors. Accurate auto-
matic methods for segmenting vessels are desired to improve the time efficiency. Several
segmentation methods have been proposed, especially for computed tomography (CT)
images which have relatively high spatial resolution [4][5]. However, the problem remains
unsolved when it comes to magnetic resonance (MR) images, which is likely related to the
lower spatial resolution of MR compared to CT imaging.

In this paper, we introduce a segmentation framework partitioning the liver accord-
ing to Couinaud’s classification of liver anatomy based on 4D dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) data. These data have high temporal resolution,
but limited spatial resolution. We will show that our framework facilitates the segmenta-
tion of the liver vessels and in turn enables the segmentation of the eight liver segments.

5.2. METHODOLOGY

T HIS study included 5 patients diagnosed with colorectal liver metastasis (3), hepato-
cellular carcinoma (1) and benign (1). All scans were operated between December

2014 and Sep 2015. The final cohort (age range, 65–76 years; mean age, 64.8 years) in-
cluded 3 men (age range, 50–70 years; mean age, 61.7 years) and 2 women (age range,
63–76 years; mean age, 69.5 years). The study was approved by the ethical review board
of the Amsterdam University Medical Centers and registered under ID NL45755.018.13.
Informed consent was obtained from all individual participants included in the study.

DCE-MRI data were acquired on a 3T Philips Ingenia whole-body scanner via a 3D
SPGR sequence. The x-axis of the data corresponds to the anterior-posterior direction, the
y-axis to the left-right direction and the z-axis to the superior-inferior direction. The ac-
quisition parameter settings were TE /TR = 2.3/3.75 ms, FA = 15°, matrix size = 128×128×44,
voxel size = 3×3×5 mm3, acquisition time = 2.141 s for each volume; sampling interval (be-
tween images) was 2.141 s for volumes 1-81, 30 s for volumes 82-98, and 60 s for volumes
99-108. The total imaging time was approximately 20 minutes.

5.2.1. REGISTRATION
To achieve spatial correspondence between corresponding voxels of the data, each 4D
DCE-MR image series is registered to the last dynamic volume. In order to do so, we ap-
ply the registration framework Optimized Starting Points by Robust Fitting (OSPARF). It is
described in Chapter 3, in which the registration kernel is the self-similarity context (SSC)
method [6], which is a state-of-the-art technique for multi-modal image registration. Es-
sentially, it is a patch-based descriptor of the structure in a certain neighborhood layout

Published in Proc. SPIE, 10574, 1057434 (2018) [1].
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N , defined as:

SSC
(
I ,x,y

)= exp

[
−D

(
I ,x,y

)
V (I ,x)

]
x,y ∈ N (5.1)

in which I is an image, x and y are the center locations of two patches within N , and D is
the distance between the two image patches measured by the sum of squared differences
(SSD):

D (I ,x1,x2) =
∑

y∈N

[
I
(
x1 +y

)− I
(
x2 +y

)]2 (5.2)

and V (I , N ) is the mean of the patch distances in neighborhood N :

V (I , N ) = 1

num (N )

∑
x,y∈N

D
(
I ,x,y

)
(5.3)

The SSC operator is based on all distances in a six neighborhood (with a Euclidean
distance of

p
2 between them), while the central pixel is excluded from N .

SSC registration can be described as

u∗ = argmin
u

{∑
x

[
1

|R|
∑
r∈R

|SSC (I ,x,r)−SSC (J ,x,r)|
]
+α|∇u (x)|2

}
(5.4)

where u = (u, v , w) is the deformation field and α the regularization parameter, i.e. a
coefficient that weighs the regularization term.

In this paper we follow the default setup as introduced in [6]: R = 3, N = N6, i.e. a
six-connected neighborhood, patch size D = 3, and the regularization coefficient α = 0.1.

5.2.2. SEGMENTATION OF THE HEPATIC VASCULATURE

Seeds in the hepatic vein 

Seeds in the portal vein 

Seeds in the Inferior vena cava 

Figure 5.1: Locations of seed points in the hepatic vein (HV) including right, middle and left hepatic veins; portal
vein (PV), including right and left portal veins; and inferior vena cava (IVC).

The Couinaud classification partitions the liver in functionally independent segments
based on the vasculature. Our method resembles this standard method, but relies on
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a semi-automatic segmentation of the key liver vessels. Specifically, a region growing
method is applied to the 4D MR images to segment the main blood vessels as well as the
liver. It adopts Pearson correlation between the time intensity curves (TICs) as distance
metric [7]. Therefore, seeds are manually placed in the main branches of the liver’s vas-
culature: hepatic vein (HV), portal vein (PV), and in the inferior vena cava (IVC), see Fig.
5.1 [8]. Since the blood in each main vessel has taken a different route through the human
body, the TIC from each seed point is different. From each such seed the TIC is correlated
with the entire 4D volume of TIC curves.

Subsequently, the maximum correlation is determined over the correlation maps for
key vessel (HV, PV and IVC). As such, for each key vessel a separate maximum correla-
tion map is obtained. Thereafter, the hybrid levelset segmentation method proposed by
Y. Zhang et al. [9] is separately applied to the three maximum correlation maps. It takes
boundary as well as region information into consideration while minimizing the next data
term

E
(
φ

)=−
∫
Ω

(
I −µ)

H
(
φ

)
dΩ+β

∫
Ω

g
∣∣∇H

(
φ

)∣∣dΩ (5.5)

where I is the image, g represents the gradient of the image, β is a weighting coefficient,
H(φ) is the Heaviside function, and µ is a parameter that represents the lower bound of
the gray-level in the segmented object. The level set method is initiated by small spheres
placed at the seed points. As such, a region growing method is applied to segment the
branches of the hepatic vein (HV), portal vein (PV) and inferior vena cava (IVC). In addi-
tion, the first dynamic image is subtracted from the last dynamic image of the registered
DCE-MRI series. Subsequently, the liver is segmented based on the resulting “contrast”
volume by means of a level set approach [10].

All algorithms were implemented in MATLAB (version R2015b; Mathworks, Natick,
USA). For the region growing method, three parameters, including the seed point, correla-
tion threshold, maximum search distance were set for each case; For the level set method,
three parameters, including the starting point, µ andβwere set for each case. The detailed
setting can be seen in the appendix 1 and 2.

5.2.3. DEFINITION OF HEPATIC SEGMENTS
In order to delineate the liver segments, skeletons representing the vessels are obtained
by parallel medial axis thinning as described in Ref. [11]. Example skeletons of the hepatic
vein (HV), portal vein (PV) and inferior vena cava (IVC) are shown in Fig. 5.2(a) and Fig.
5.3(a). The partitioning of the liver is carried out according to Couinaud’s classification
using intersegmental planes [12]. For the vertical partitioning, i.e. along the scan’s z-axis,
three planes spanned by the three main branches of HV were defined respectively. They
can be generally expressed as

Ax +B y = 1 (5.6)

In Fig. 5.2(a), the HVs and the IVC are projected onto the xy-plane. For each HV
branch, Eq. 5.6 is fit through the projected skeleton points and the IVC’s center of mass.
These are depicted by the red dashed points and green cross-shaped point in Fig. 5.2(a),
respectively. As such, the liver is divided into four lobes as shown in Fig. 5.2(b).

The skeleton of the PV is shown in Fig. 5.3(a). A horizontal plane fit through the PV’s
skeleton divides the superior and inferior liver lobes, as show in Fig. 5.3(b).
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(a) (b)

Figure 5.2: (a) The skeletons of left, middle, right HVs and IVC obtained by thinning the segmented structures.
The red and green dashed points represent the coordinates of HVs and IVC projected onto the xy-plane. The
green, cross-shaped symbol denotes the IVC’s projected center of mass; (b) The three vertical planes dividing
the liver into four parts; the lobes labeled a-d are defined as right posterior section, right anterior section, left
medial section and left lateral section, respectively.
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Figure 5.3: (a) The skeleton of the PV; (b) liver partitioning by fitting a horizontal plane.

In Couinaud’s classification, the first segment is roundish and located around the re-
gion between the HV and IVC. However, the border between segment 1 and the other seg-
ments is not visible in our DCE-MR images due to the low spatial resolution. Therefore,
the combination of half a sphere and cylinder is adopted to model the shape of segment
1. The modeling procedure is illustrated in Fig. 5.4. In the horizontal resection plane, an
inscribing sphere is defined centered at the projected IVC’s center of mass and with a ra-
dius equal to the distance between the IVC’s center of mass and the nearest point on the
PV skeleton. Subsequently, a cylinder with the same radius as the sphere extends from the
sphere in the positive y-direction. The cylindrical segment thus delineated is truncated by
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Figure 5.4: Modeling of liver segment 1. (a) An inscribing sphere is defined centered at the IVC’s projected center-
of-mass (on the horizontal plane from Fig. 5.3), whose radius is determined by the nearest point of the PV skele-
ton. The sphere was extended by a cylindrical segment of the same radius in the positive y-direction. The red
and purple solid lines indicate the half (of the sphere and cylinder) that is kept while the dashed lines correspond
to the half that is removed; (b) the illustration of the kept half sphere and cylinder. Their combination is the final
model to identify liver segment 1.

the border of the liver mask obtained as described below Eq. 5.5. The extended sphere is
also truncated by the vertical plane as indicated in Fig. 5.4(a).

Table 5.1: Conditions delineating the liver segments. A and B: constant parameters for each plane definition. L:
left, R: right, LHV: left hepatic vein, MHV: middle hepatic vein, RHV: right hepatic vein, PV: portal vein, IVC’s CM:
IVC’s center of mass in the horizontal resection plane. rmi n : the distance between IVC’s center of mass and the
nearest point on PV’s skeleton.

Segment Defining Conditions

1 x2 + y2 + z2 < r 2
min | y2 + z2 < r 2

min & x < xIV C ′sC M
2 ALHV x +BLHV y > 1 & z > zPV
3 ALHV x +BLHV y > 1 & z < zPV
4 ALHV x +BLHV y < 1 & AM HV x +BM HV y < 1
5 ARHV x +BRHV y < 1 & AM HV x +BM HV y > 1 & z < zPV
6 ARHV x +BRHV y > 1 & z < zPV
7 ARHV x +BRHV y > 1 & z > zPV
8 ARHV x +BRHV y < 1 & AM HV x +BM HV y > 1 & z > zPV

Table 5.1 summarizes the conditions to define the eight liver segments. Each segment
consists of voxel points (x, y , z), which satisfy the corresponding conditions. The first
segment was calculated and excluded before the other segments were determined.

5.3. RESULTS

F IG. 5.5 shows the correlation map for each branch of the hepatic vein. Note that each
branch obtains the highest correlation in its individual map. As a result, the maximum

selection map gets the highest contrast of the hepatic vein from a global point of view. The
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portal vein and inferior vena cava are processed in the same way.

Figure 5.5: The first three columns: Correlation maps in three slices of the left, middle and right hepatic veins,
respectively; Last column: The HV maximum correlation map composed by voxel-based maximum selection of
correlation maps in the first three columns.

Figure 5.6: The segmentation of hepatic vein, portal vein and inferior vena cava in one subject. (a) 3D view; (b)
top view; (c) front view; (d) side view.

Fig. 5.6 shows the segmentation of the three key vessels from the liver as obtained by
the aforementioned level set method. The vessels were also segmented by means of two
state-of-the-art techniques, based on respectively a vesselness enhancement filter (VEF)
[13] and a diffusion enhancing filter (DEF) [5]. An experienced radiologist manually de-
lineated the vessels, which served as the reference standard. The accuracy of the semi-
automatic methods was evaluated by means of the average symmetric surface distance
(ASSD) and modified Hausdorff distance (MHD) on data of five subjects as shown in Table
5.2. The ASSD and MHD were calculated according to the following equations:

ASSD =
∑

a∈A
min
b∈M

‖a −b‖+ ∑
b∈M

min
a∈A

‖a −b‖
2(NA +NM )

(5.7)
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M HD (A,B) = max

{
1

NA

∑
a∈A

min
b∈B

‖a −b‖,
1

NB

∑
b∈B

min
a∈A

‖a −b‖
}

(5.8)

Table 5.2: Average symmetric surface distance (ASSD) and modified Hausdorff distance (MHD) of vessels seg-
mented from five clinical cases with the proposed hybrid method and two standard techniques compared to
manually annotated reference segmentations. VEF stands for a method based on a vesselsness enhancement
filter; DEF represents a diffusion enhancement filter (DEF) based technique. The numbers printed in boldface
are the best result per row. All measures are in mm.

Metric ASSD MHD

Method VEF DEF Ours VEF DEF Ours

Case 1 6.004 5.246 4.206 8.496 6.145 4.254
Case 2 6.351 6.155 5.580 9.668 8.885 6.894
Case 3 6.619 7.769 6.560 9.883 9.409 6.808
Case 4 9.069 6.123 5.271 14.327 8.410 7.828
Case 5 7.534 9.201 6.399 12.142 13.392 7.616

Average 7.115 6.899 5.603 10.903 9.248 6.680

After segmentation of the key vessels, the functional liver segments are delineated by
applying the method described in Sec. 5.2.3. In Fig. 5.7, the eight segments of five subjects
are visualized. Additionally, the proposed segmentations are compared with manual ones,
which are annotated under the supervision of one experienced radiologist in Table 5.3. It
shows that the proposed segmentation method achieves good results in all but a small
minority of cases, particularly concerning segment 1.

Table 5.3: The Dice Coefficient (DC) of volumetric overlap between the result of the proposed method and the
manual segmentation.

DC (%) Segment 1 Segment 2 Segment 3 Segment 4

Case 1 79.25 92.89 91.34 86.40
Case 2 77.34 87.85 64.44 92.44
Case 3 68.84 92.40 95.19 85.81
Case 4 59.49 89.36 90.28 91.24
Case 5 76.88 96.23 94.54 95.03

Average 72.36 91.75 87.16 90.18

DC (%) Segment 5 Segment 6 Segment 7 Segment 8

Case 1 86.76 93.68 90.95 77.90
Case 2 91.72 85.84 92.83 94.26
Case 3 92.35 88.70 93.84 91.27
Case 4 92.34 90.40 96.42 95.06
Case 5 93.67 92.38 96.01 93.42

Average 91.37 90.20 94.01 90.38
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5.4. SUMMARY AND CONCLUSION

T HE hybrid segmentation method proposed by us for partitioning the liver from DCE-
MRI images consists of two steps. In the first step, a region growing method is applied

to segment the branches of the hepatic vein (HV), the portal vein (PV) and inferior vena
cava (IVC) from the liver. In the second step, skeletons of these segmented vessels are
regarded as landmarks to partition functional liver segments. Comparison with state-of-
the art methods shows that our method produces more accurate segmentations of the
vessels in the liver. Moreover, our segmentations of functional liver segment have large
overlap (measured through the Dice Coefficient) with a manually annotated reference.
The proposed segmentation method can easily be adapted to other DCE-MRI or DCE-CT
applications with low spatial resolutions.
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APPENDIX 1: SETTINGS OF THE REGION GROWING METHOD

Table 5.4: Settings of the region growing method for 5 patients.

Case Vessel
Seed point

(x, y, z)
Correlation
threshold

Maximum search
distance

1

Hepatic Vein
60, 58, 30 0.9 40
62, 44, 31 0.9 40
71, 41, 31 0.9 40

Portal Vein
65, 34, 24 0.8 30
71, 40, 24 0.92 20

Inferior Vena Cava
69, 53, 32 0.8 30
73, 51, 27 0.8 30

2

Hepatic Vein
60, 62, 27 0.8 40
66, 52, 28 0.8 40
75, 49, 28 0.8 40

Portal Vein
69, 40, 22 0.9 40
75, 42, 22 0.9 40

Inferior Vena Cava
68, 59, 31 0.9 30
70, 56, 24 0.9 30

3

Hepatic Vein
60, 49, 36 0.8 40
62, 41, 36 0.8 40
75, 37, 36 0.8 40

Portal Vein
59, 42, 27 0.9 50
77, 37, 28 0.9 40

Inferior Vena Cava
72, 49, 37 0.9 30
72, 47, 23 0.9 30

4

Hepatic Vein
53, 56, 28 0.9 40
61, 46, 28 0.9 40
72, 39, 27 0.9 40

Portal Vein
51, 48, 22 0.8 40
63, 34, 22 0.8 40

Inferior Vena Cava
66, 52, 33 0.8 30
70, 53, 26 0.8 30

5

Hepatic Vein
57, 53, 32 0.9 40
58, 42, 32 0.9 40
67, 38, 32 0.9 40

Portal Vein
46, 47, 23 0.8 40
62, 42, 22 0.8 40

Inferior Vena Cava
65, 51, 33 0.8 30
66, 51, 22 0.8 30
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APPENDIX 2: SETTINGS OF THE LEVEL SET METHOD

Table 5.5: Settings of the level set method for 5 patients.

Case Vessel
Starting point

(x, y, z)
µ β

1
Hepatic Vein 67, 55, 31 0.89 1
Portal Vein 61, 47, 24 0.93 1/30

Inferior Vena Cava 70, 53, 31 0.9 1/20

2
Hepatic Vein 64, 57, 27 0.92 1/20
Portal Vein 69, 40, 22 0.9 1/20

Inferior Vena Cava 69, 53, 22 0.85 1/20

3
Hepatic Vein 65, 50, 37 0.9 1/20
Portal Vein 72, 33, 29 0.92 1/20

Inferior Vena Cava 74, 49, 33 0.92 1

4
Hepatic Vein 62, 54, 30 0.94 1
Portal Vein 61, 33, 26 0.84 1/10

Inferior Vena Cava 65, 53, 36 0.7 1/50

5
Hepatic Vein 56, 53, 33 0.92 1/10
Portal Vein 61, 42, 24 0.85 1/5

Inferior Vena Cava 67, 53, 39 0.8 1/50
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6
COMPARISON BETWEEN DYNAMIC

GADOXETATE-ENHANCED MRI AND
99MTC-MEBROFENIN

HEPATOBILIARY SCINTIGRAPHY

WITH SPECT FOR QUANTITATIVE

ASSESSMENT OF LIVER FUNCTION

Objectives

To compare Gd-EOB-DTPA dynamic hepatocyte specific contrast-enhanced MRI (DHCE-
MRI) with 99mTc-mebrofenin hepatobiliary scintigraphy (HBS) as quantitative liver func-
tion tests for the preoperative assessment of patients undergoing liver resection.

Materials and Methods

Patients undergoing liver surgery and preoperative assessment of future remnant liver (FRL)
function using 99mTc-mebrofenin HBS were included. Patients underwent DHCE-MRI. To-
tal liver uptake function was calculated for both modalities: mebrofenin uptake rate (MUR)
and Ki respectively. The FRL was delineated with both SPECT-CT and MRI to calculate the
functional share. Blood samples were taken to assess biochemical liver parameters.

Results

A total of 20 patients were included. The HBS-derived MUR and the DHCE-MRI derived
mean Ki correlated strongly for both total and FRL function (Pearson r = 0.70, P = 0.001 and
r = 0.89, P < 0.001 respectively). There was a strong agreement between the functional share
determined with both modalities (ICC = 0.944, 95% -CI: 0.863-0.978, n = 20). There was
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a significant negative correlation between liver aminotransferases and bilirubin for both
MUR and Ki.

Conclusions

Assessment of liver function with DHCE-MRI is comparable with that of 99mTc-mebrofenin
HBS and has the potential to be combined with diagnostic MRI imaging. This can therefore
provide a one-stop-shop modality for the preoperative assessment of patients undergoing
liver surgery.

Published in European Radiology, 0938-7994 (2019) [1].
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6.1. INTRODUCTION

S URGICAL resection remains the only curative treatment in patients with primary and
metastatic liver tumors and is presently performed with limited morbidity and mortal-

ity [2, 3]. However, extended liver resection still comes with the risk of posthepatectomy
liver failure (PHLF) with incidence reported between 0.7 and 9.1% [4]. An insufficient fu-
ture remnant liver (FRL) is one of the most important risk factors for the development of
PHLF. The current management of PHLF is merely supportive and has a mortality rate of
over 80% [5, 6]. Therefore, preoperative assessment liver function is crucial in order to
minimize the risk of developing PHLF.

Computed tomography (CT) volumetry is considered in many centers as the reference
standard to assess FRL sufficiency. Essentially, it exploits the liver volume as an indirect
measure for the liver function [7–9]. Depending on the quality of liver parenchyma, sepa-
rate cutoff values are used to determine resectability [10]. However, liver function does
not always correlate with volume and functional capacity may not be homogeneously
distributed throughout the liver, especially in patients with impaired liver parenchyma
[11]. Furthermore, the quality of liver parenchyma is not always determined preopera-
tively through liver biopsy, making estimation of FRL function based on CT volumetry
alone unreliable [11].

Several quantitative dynamic liver function tests are currently used to assess hepatic
uptake and excretory function. This can be done with hepatobiliary scintigraphy (HBS)
using technetium-99m (99mTc) labelled iminodiacetic acid (IDA) derivates of which me-
brofenin is the most hepatocyte specific [12]. This lidocaine analogue is taken up by the
hepatocytes and is excreted in the bile canaliculi without undergoing any biotransforma-
tion [13]. The hepatic uptake is facilitated by the same mechanisms as other endo- and
exogenous substances (e.g. bilirubin and hormones), making it a favorable agent to as-
sess liver uptake and excretory function [14]. Because HBS provides a direct quantita-
tive measure of the uptake function, it can be used in both patients with healthy or im-
paired liver parenchyma (e.g. steatosis, hepatitis and fibrosis) using the same cutoff value
for the uptake rate (2.7 %/min/m2) [11]. Furthermore, HBS is combined with SPECT-CT
which provides information on the regional distribution of liver function, enabling a more
anatomical evaluation of FRL function [15].

HBS has proven to predict the risk of PHLF in a mixed series of patients undergoing
major liver resection and is part of standard practice for the preoperative assessment of
patients undergoing liver resection in our center [11, 16–18]. Even though HBS provides
simultaneous morphologic (visual) and physiologic (functional) information of the liver, it
is not suitable for diagnostic purposes due to the relatively low spatial resolution. Patients
undergo additional imaging for diagnostic purposes.

Alternatively, MRI with ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-
DTPA; Primovist®) as a contrast agent for evaluation of liver function was first performed
in 1993 [19]. Subsequently, multiple studies showed correlation with liver function in both
animal models and humans [20–25]. Gd-EOB-DTPA shares pharmacokinetic properties
with mebrofenin, as both are taken up by hepatocytes and are excreted in the bile canali-
culi without undergoing biotransformation. Furthermore, dynamic contrast-enhanced
MRI (DCE-MRI) with gadolinium-based contrast agents allows accurate depiction of be-
nign or malignant liver lesions [26–28]. Pharmacokinetic models (PKM) have been de-
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veloped that facilitate the estimation of the uptake rate of the contrast agent based on
DHCE-MRI with Gd-EOB-DTPA on a per voxel basis [29–31]. Diagnostic MRI followed
by DHCE-MRI therefore potentially provides a detailed, one-stop-shop modality for both
diagnostic purposes as well as accurate determination of FRL function.

The aim of this study is to compare Gd-EOB-DTPA-enhanced DHCE-MRI with 99mTc-
mebrofenin HBS as liver function tests for the preoperative assessment of patients under-
going liver resection. We hypothesize that the liver function determined by DHCE-MRI
correlates with 99mTc-mebrofenin HBS.

6.2. MATERIALS AND METHODS

6.2.1. PATIENTS

P ATIENTS diagnosed with one or more liver lesions and who were scheduled for 99mTc-
mebrofenin HBS as part of the preoperative workup were included in this prospec-

tive observational pilot study. Patients with general contraindications for MRI, chronic
renal insufficiency, known or family history of congenital prolonged QT-syndrome, cur-
rent use of cardiac repolarization time prolonging drugs (such as class 3 anti-arrhythmic
drugs), history of arrhythmia after the use of cardiac repolarization time prolonging drugs
and history of allergic reaction to gadolinium-containing compounds were excluded from
participation. As this was a pilot study, no formal sample size calculation was performed.
The study was approved by the ethical review board of the Amsterdam University Medical
Centers and registered under ID NL45755.018.13. Informed consent was obtained from
all individual participants included in the study.

6.2.2. HEPATOBILIARY SCINTIGRAPHY

All patients underwent HBS to evaluate total and FRL function prior to resection as de-
scribed previously [11, 15]. Briefly, patients were imaged in supine position using a large
field of view dual-head SPECT-CT camera (Siemens Symbia T16, Munich, Germany). Dy-
namic acquisitions were obtained (38 frames; 10s/frame) immediately after intravenous
injection of 200 MBq 99mTc-mebrofenin (Bridatec, GE Healthcare, Little Chalfont, United
Kingdom) in order to calculate the hepatic uptake rate, see Fig. 6.1 A. Subsequently, SPECT
was performed (60 projections of 8 s/projection, 128 matrix) which was used for the 3-
dimensional assessment of liver function and calculation of functional liver volume. This
was followed by low-dose CT imaging for attenuation correction and anatomical map-
ping. Finally, dynamic acquisitions were obtained (15 frames; 60 s/frame, 128 matrix) to
evaluate biliary excretion.

Data were processed on a Hermes workstation (Hermes Medical Solutions, Sweden).
Geometric mean datasets of the anterior and posterior acquisitions were used for the anal-
ysis [15]. Regions of interest (ROI) were drawn delineating the liver, the left ventricle and
aorta (representing the blood pool) and the total field of view (FOV), from which time-
activity curves were created, see Fig. 6.1 B.

Total liver function (TLF) was represented by the mebrofenin uptake rate (MUR; %/min).
This was calculated as an increase of 99mTc-mebrofenin uptake over a time period of 200
s as described by Ekman et al. [32].

The FRL was defined on the planned resection and was delineated manually on the
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SPECT-CT images to calculate its functional share from HBS (FS HBS), which was defined
as the fraction of counts within the FRL, see Fig. 6.1 C. Subsequently, this functional share
fraction was multiplied by the TLF to calculate the FRL function (fMUR; %/min).

Figure 6.1: Hepatobiliary scintigraphy with series scintigram (A), ROI on summed images (B) and FRL delineation
on SPECT/CT (C).
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6.2.3. DHCE-MRI
DHCE-MRI data were acquired on a 3.0 Philips Ingenia whole-body MR-scanner (Philips
Healthcare, Best, The Netherlands) by means of a Dynamic T1-weighted 3D Spoiled Gra-
dient Echo sequence. The acquisition parameter settings were TE/TR = 2.30/3.75 ms, FA
= 15°, matrix size = 128×128×44, voxel size = 3×3×5 mm3, acquisition time = 2.14 s for each
volume; sampling interval (between images) was 2.14 s for volumes 1-81, 30 s for volumes
82-98, and 60 s for volumes 99-108. The total imaging for the dynamic series time was
approximately 20 minutes. Subjects held their breath during the acquisition of volumes
13-22, 33-42, 61-70 and 79-108. Upon acquisition of dynamic 11 (i.e. 21 seconds after
the start of the DHCE acquisition), a bolus of Gd-EOB-DTPA (Primovist®, Bayer B.V., Mij-
drecht, The Netherlands) at a standard dose of 0.025 mmol/kg (i.e, 0.1 mL/kg) was admin-
istered at 2 mL/s and flushed with 20 mL of saline at the same rate through an antecubital
intravenous cannula, see Fig. 6.2.

Volume 1-10
Dt = 2.2 s

Volume 82-98
Dt = 30 s

Volume 99-108
Dt = 60 s

Time

Volume 11-81
Dt = 2.2 s

……

108 Volumes, 20 Minutes

128 Pixels

128
Pixels

44
Pixels

3 3 5 mm3

…

Contrast
Agent

Injection

0                                   22 s                                 ~ 3 min                       ~ 12 min              ~ 20 min

Figure 6.2: DHCE-MRI protocol

All post-processing was performed with in-house developed software implemented in
MATLAB (R2015b; MathWorks, Natick, MA). The dynamic images were aligned to the first
image in the series using the Self-Smilarity Context (SSC) method [33]. As such, spatial
correspondence of the images was achieved across time. Subsequently, the liver was de-
lineated using a semi-automatic segmentation method [34, 35]. The signal in each liver
voxel was converted into time concentration curves assuming a nonlinear relationship
between signal intensity and concentration of the contrast agent [36]. Furthermore, the
liver’s arterial input function (AIF) and its portal venous input function (VIF) describing
the contrast agent concentration in the blood plasma supplied to the liver by the hepatic
artery and the portal vein were estimated by averaging the top three of most enhancing
time concentration curves of the voxels from homogeneous regions in the aorta and the
portal vein respectively [34]. Additional details regarding the applied techniques are pro-
vided in Chapter 2.
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In order to estimate the liver function, the pharmacokinetics of the liver were modeled
from the MRI data based on COS-FLAC, the model proposed in Chapter 4. This model was
developed from Sourbron’s model [29]. It yielded the Gd-EOB-DTPA uptake rate (min-1) in
each voxel of the liver, which was averaged over the entire liver segmentation to represent
the total liver’s uptake rate Ki as measured with DHCE-MRI.

Additional semi-quantitative MRI study parameters were the relative enhancement
(RE) and maximum slope of increase (MSI), see Fig. 6.3. RE was defined in each voxel
as the difference of the signal at 20 minutes with the signal at baseline divided by the sig-
nal at baseline. MSI is defined as the maximum slope along the signal’s time course. Both
parameters were averaged over the entire liver.

Time

Signal 
intensity

q

Relative
signal 

enhancement

Pre-contrast 

Maximum
slope of
 increase

Figure 6.3: Signal intensity curve with semi-quantitative parameters.

For the calculation of the functional share from MRI, the FRL was manually delin-
eated in the last dynamic (showing the largest contrast) using an ROI drawing tool. Subse-
quently, the functional share from MRI (FS MRI) was calculated as the summed Ki values
in the FRL divided by the sum of Ki values over all voxels of the liver. Additionally, the FRL
function from MRI was calculated as mean Ki in the delineated FRL region (fKi). Similarly,
the mean maximum enhancement and maximum slope of increase were calculated over
the FRL region.

6.2.4. BIOCHEMICAL PARAMETERS
Blood samples were collected immediately before the MRI scan for routine laboratory
evaluation of aspartate aminotransferase (AST), aspartate aminotransferase (ALT), biliru-
bin, albumin, prothrombin time (PT), INR and creatinine.

6.2.5. STATISTICAL ANALYSIS
Continuous data were summarized by median and interquartile range (IQR) if not-normally
distributed and as mean and standard deviation (SD) when normally distributed. Discrete
variables were expressed as absolute numbers and relative frequencies. Pearson rank cor-
relation was performed to analyze the relation between normally distributed variables.
Reproducibility was assessed using intra-class correlation coefficient (absolute agreement,
single measures, two-way mixed) and by a Bland-Altman plot. Statistical analysis was per-
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formed with IBM SPSS Statistics (version 24.0; IBM Corp., New York, USA).

6.3. RESULTS

6.3.1. PATIENTS

Between December 2014 and July 2018, 20 patients underwent DHCE-MRI within 2 weeks
of the 99mTc-mebrofenin HBS. Patient characteristics are presented in Table 6.1. The me-
dian (IQR) time between HBS and MRI was 5 (2-10) days.

Table 6.1: Patient characteristics.

Variable n = 20

Age, median (IQR) 64 (57 – 70)
Male sex, n (%) 12 (67%)
BMI, kg/m2, median (IQR) 22.5 (21.3 – 28.2)
BSA, m2, median (IQR) 1.9 (1.7 – 2.1)
Diagnosis, n (%)

Colorectal liver metastasis 9 (45 %)
Biliary tumor 4 (20 %)
Hepatocellular carcinoma 3 (15 %)
Benign 4 (20 %)

Neo-adjuvant chemotherapy, n (%) 6 (30%)
Preoperative biliary drainage, n (%) 3 (15 %)

Figure 6.4: Pearson correlation between total liver function represented by the mebrofenin uptake rate (MUR;
%/min) and the Gd-EOB-DTPA uptake rate (Ki; min-1).
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6.3.2. LIVER FUNCTION
The mean MUR for the total liver averaged over all patients was 15.1 (± 3.4) %/min. The
mean Gd-EOB-DTPA uptake rate of the whole liver (Ki) averaged over all patients was 7.0
(± 2.4) per minute. There was a strong correlation between the MUR and Ki (Pearson r =
0.70, P = 0.001, n = 20), see Fig. 6.4.

6.3.3. FUNCTIONAL SHARE AND FUTURE REMNANT LIVER FUNCTION
There was a strong agreement between the functional shares from HBS (FS HBS) and MRI
(FS MRI) (ICC = 0.944, 95%-CI: 0.863-0.978, n = 20). A Bland-Altman plot is presented in
Fig. 6.5. The mean difference in the functional share between FS HBS and FS MRI was
2.6% and the 95% limit of agreement was ± 14.3%.

Figure 6.5: Bland-Altman plot for the agreement between functional share (%) of the FRL measured with SPECT
and MRI.

Additionally, there was a strong correlation between the FRL function measured from
HBS (fMUR) and MRI (fKi) (Pearson r = 0.89, P < 0.001, n = 20), see Fig. 6.6.

6.3.4. BIOCHEMICAL PARAMETERS
Blood samples were taken from all patients. In one patient albumin and PT could not be
determined and in three patients INR could not be obtained, due to failing processing of
the blood samples. Total serum bilirubin was marginally elevated in three patients (32, 34
and 42 µmol/L respectively). There was a negative correlation between ASAT, ALAT and
bilirubin for both MUR and Ki, as shown in Table 6.2.

6.3.5. SEMI-QUANTITATIVE PARAMETERS
There was a moderate correlation between RE and the MUR (Pearson r = 0.473, P = 0.039,
n = 20). Furthermore, there was no significant correlation between the mean MSI and the
MUR (Pearson r = -0.380, P = 0.098, n = 20).
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Figure 6.6: Pearson correlation between future remnant liver function represented by the mebrofenin uptake
rate (fMUR; %/min) and the Gd-EOB-DTPA uptake rate (fKi; min-1).

Table 6.2: Pearson correlation between blood parameters and MUR and Ki.

AST ALT Bilirubin Albumin PT INR Creatinine

MUR
r -0.656 -0.530 -0.776 0.224 -0.144 -0.217 -0.325
P 0.002 0.002 <0.001 0.356 0.557 0.403 0.161
n 20 20 20 19 19 17 20

Ki
r -0.603 -0.525 -0.633 -0.01 -0.059 -0.063 -0.215
P 0.005 0.017 0.003 0.968 0.810 0.811 0.362
n 20 20 20 19 19 17 20

6.4. DISCUSSION

I N this study we demonstrated that there was a strong correlation between liver function
measured with the mebrofenin uptake rate (MUR) derived from 99mTc-mebrofenin HBS

and the mean Ki from DHCE-MRI in patients with planned liver resection. Furthermore,
there was a strong agreement between the functional share of the FRL, measured with
the SPECT-CT and MRI, yielding comparable calculations of the FRL function for both
modalities.

Geisel et al. compared in an earlier study the liver function measured with HBS and
MRI of the left and right liver lobes in patients undergoing portal vein embolization [37].
They showed a moderate to strong correlation between both the relative enhancement
and the hepatic uptake index on MRI and mebrofenin uptake in HBS.

In this study we assessed the total liver function using HBS and calculated the func-
tional fraction of the FRL using SPECT, similar to clinical practice. This method is suit-
able for the preoperative assessment of surgical candidates. Sourbron’s model provided
a quantification of the uptake rate of Gd-EOB-DTPA which is comparable to the uptake
rate of mebrofenin. To our knowledge, this is the first study to compare the functional
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distribution of liver function between HBS and MRI.

For the evaluation of liver function, we rely on the hepatic uptake of liver specific
agents. This uptake depends on liver perfusion, vascular permeability, extracellular dif-
fusion and hepatocyte transport, which parameters are taken into account in Sourbron’s
model. Clearly, all these parameters can be altered during liver disease. We hypothesize
that by explicitly taking them into account into Sourbron’s model, Ki yielded improved
(strong) correlation with MUR over the semi-quantitative parameters. Specifically, we
found only moderate, correlation between RE and MUR while the correlation between
MSI and MUR was not significant.

The MUR is calculated as the percentage of total administered 99mTc-mebrofenin ac-
tivity accredited by the liver per minute as described by Ekman et al. This calculation
is conducted over a period of 150 to 350 seconds after injection (between homogenous
distribution in the blood pool and before hepatic excretion in bile ducts). Mebrofenin is
administered in tracer amounts such that the hepatic uptake receptors never reach sat-
uration. Practically, this makes Ekman’s method less susceptible to alterations in blood
flow.

There are several similarities in pharmacokinetic properties between mebrofenin and
Gd-EOB-DTPA, in particular, the uptake and excretion by the same transporters [38, 39].
Accordingly, multiple studies have shown that the liver enhancement effects of Gd-EOB-
DPTA, which were (semi)-quantitatively assessed, depend on liver function [23, 40, 41].
The main difference between both substances is that mebrofenin is exclusively excreted
by the liver, whereas approximately 50% of the injected Gd-EOB-DTPA dose is taken up
by the hepatocytes and about 50% is excreted through the renal system (assuming normal
organ function) [42]. In the absence of adequate biliary excretion, the urinary excretion
pathway can compensate for any deficient hepatic transport mechanism [43, 44]. Renal
excretion was found to be increased in patients with severe hepatic impairment. Even
in that case however, a high hepatic signal has been observed, which was adequate to
quantitatively assess liver function using Gd-EOB-DPTA [44].

Several pharmacokinetic models have been proposed to estimate liver function from
DHCE-MRI. Nilsson et al. applied a technique called truncated singular value decomposi-
tion (TSVD) in order to estimate pharmacokinetic properties [45]. However, this approach
regarded the hepatic artery as the sole input, and ignored the portal vein. Sourbron et al.
created a dual-input, two-compartmental model that accounted for Gd-EOB-DTPA me-
tabolization by the hepatic cells in 2012 [29]. One limitation of this model is that it ignores
the extraction rate of hepatocytes, i.e. the efflux to the bile canaliculi. To solve this, Ulloa
et al. modeled the transport of the contrast agent from the hepatocytes to the bile via so-
called Michaelis-Menten kinetics in humans [46]. Alternatively, Georgiou et al. modified
the efflux transport component of this model by a simpler approximation [47]. Recently,
Ning et al. correlated pharmacokinetic parameters estimated from different models with a
blood chemistry test [48]. They report that the relative liver uptake rate estimated from the
model without bile efflux transport correlated with direct bilirubin (r = -0.52, P = 0.015),
prealbumin (r = 0.58, P = 0.015) and prothrombin time (r = -0.51, P = 0.026). Furthermore,
only insignificant correlations were found using the model with efflux transport. For this
reason, in our work we applied COS-FLAC, the model described in Chapter 4, which is
based on Sourbron’s model, i,e, without bile efflux transport.
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A variety of biochemical blood tests reflect the numerous functions of the liver. We fo-
cused on ALT and AST levels which reflect liver damage or hepatotoxicity, coagulation pa-
rameters like PT and INR and the protein albumin that reflect synthesis function. Serum
bilirubin is generally considered the most potent prognostic marker for liver disease and
has been used in numerous prognostic models [49, 50]. We found moderate to strong
correlations between the hepatic uptake of both mebrofenin and Gd-EOB-DTPA and AST,
ALT and serum bilirubin. This confirms earlier findings [51, 52].

During hyperbilirubinema, which is often the case in patients with obstructive biliary
tumors, there is competitive uptake of mebrofenin/Gd-EOB-DTPA and bilirubin by the
hepatocytes due to the binding to the same receptor. This could explain the strong nega-
tive correlations between plasma bilirubin and the uptake of both Gd-EOB-DTPA and me-
brofenin in this cohort. Furthermore, during cholestasis, efflux of bile through the MRP2
receptors is impaired which can further contribute to the decreased Gd-EOB-DTPA up-
take. This was observed in three of our patients.

The absence of correlation between albumin and coagulation parameters might be
explained by insufficient power (due to the small patient population) and the absence of
patients with severely impaired liver function.

In several centers, HBS is currently the reference test for the preoperative evaluation
of FRL function in patients undergoing liver resection. A disadvantage of this technique is
(despite the relatively low radiation burden) the relatively low spatial resolution, making
it not feasible as a diagnostic modality for the differentiation of liver lesions. Contrary,
the best available imaging tool for lesion characterization is standard contrast-enhanced
MRI with multiple contrast phases (pre-contrast, arterial, portal-venous, late venous, de-
layed and optionally the hepatobiliary phase). With conventional MR imaging techniques,
DHCE-MRI cannot be combined with the standard contrast-enhanced scans, one per-
forms either of the two scan types. New developments in the field of MRI sequence en-
gineering now offer the possibility to acquire data continuously in free breathing using a
radial acquisition scheme [53, 54]. When performed before and during contrast adminis-
tration, the raw data can be reconstructed into different data sets: (1) the standard contrast
phases optimally timed for each subject as the inflow of contrast-enhanced blood into the
liver can be observed and (2) a dynamic contrast-enhanced data set for time-intensity
curve and/or pharmacokinetic analysis. While this has not yet been evaluated, the ap-
plication of such a radial acquisition in this patient group could provide a one-stop-shop
modality where patients undergo one scan for both characterization of underlying liver
disease and evaluation of (future remnant) liver function.

In addition to lesion characterization, MRI facilitates evaluation of fibrosis, steatosis
and micro-perfusion levels of the hepatic tissue as well as assessment of bile duct dis-
ease [55–57]. These parameters were not measured in our cohort because most patients
had relatively normal (global) liver function without great variation in fibrosis or steato-
sis grade. Future studies could focus on the relation between Gd-EOB-DTPA uptake and
fibrosis or steatosis grade assessed with histopathological quantification of liver biopsies.

One limitation of the applied MRI protocol was that the patients were instructed to
hold their breath at several time-points. We did so to avoid movement artifacts during im-
age acquisition, especially at the time points corresponding to the arterial, portal-venous
and late venous phases. A free breathing DHCE-sequence, for example with a radial acqui-
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sition scheme, should be studied in the future in order to reduce the burden on patients.
Another limitation of this study is the rather small variation in liver function in our

cohort. A larger variation would potentially yield an increase of the correlation between
HBS and MRI. The small sample size might also result in insufficient power to detect a sig-
nificant correlation with other blood samples like coagulation parameters. Future studies
in a different study population, including patients with chronic and diffuse liver disease
that have a wider range of liver function should be conducted to make these findings more
robust.

We did not perform an exact sample size calculation (a power analysis), since there
was no previous data available on the correlation between Sourbron’s model parameters
and MUR. We anticipate that our data can form the basis for sample size calculation for a
larger prospective, observational cohort study.

In conclusion, assessment of liver function with DHCE-MRI is comparable with that
of 99mTc-mebrofenin HBS. If future studies confirm these findings and new free-breathing
scan techniques can be applied successfully, DHCE-MRI could provide a one-stop-shop
modality for the preoperative assessment of patients undergoing liver surgery.
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7.1. CONCLUSIONS

P ATIENTS with colorectal cancer are frequently presented with liver metastases for which
(partial) resection is often the best therapy. However, the future remnant liver, the re-

maining part of the liver after resection, should allow adequate liver function to avoid
liver failure. This thesis presents methods for the accurate voxel-wise estimation of the
future remnant liver’s function based on pharmacokinetic modeling of dynamic contract-
enhanced (DCE) MRI. It presents several novel techniques regarding registration, segmen-
tation as well as pharmacokinetic modeling of DCE-MRI data of the liver. In addition, the
relation of DCE MRI of the liver and hepatobiliary scintigraphy was studied.

In this chapter, the contributions of the previous chapters are highlighted. Moreover,
potentially future work will be discussed.

7.1.1. REGISTRATION
In Chapter 2, the registration framework proposed by us integrated a liver segmentation
into the ALOST registration framework [1]. The prior segmentation supported ALOST in
restricting the search space. The improved registration was demonstrated by better fits of
Sourbron’s model to the time intensity data after registration. The proposed framework
can be easily adapted to other DCE-MRI applications with different contrast agents pro-
vided that a segmentation of the organ of interest is available.

In Chapter 3, two novel frameworks for 4D registration of DCE MRI data were pro-
posed to reduce the sensitivity of image registration methods to local minima in the ob-
jective function. The first framework Sorting Volumes According to Displacement (SVAD)
imposed an ordering to the images by increasing distance in the superior-inferior direc-
tion with respect to a reference image. Subsequently, the images were sequentially reg-
istered to the reference image starting with the images with the shortest distance. Hy-
pothetically, the registration of an image was initialized close to the global optimum by
combining its registration to the preceding image with the registration of the latter to the
reference. The second framework Optimizing Starting Points According to Robust Fitting
(OSPARF) assumed a linear relation between the mean relative displacement of the liver
and the displacement of individual points in the liver. It also aimed to initialize the reg-
istration close to the global optimum by iteratively adjusting the initial registration based
on this assumed relation. The proposed methods were compared to two state-of-the-art
methods that also try to avoid getting trapped in a local minimum. The performance of
the registration methods was quantitatively assessed using the residual after fitting of a
pharmacokinetic model and the target registration error on synthetically deformed im-
ages. The proposed methods outperformed the existing methods in all but a minority of
cases. Furthermore, the OSPARF method appeared to have a slight edge over SVAD, al-
though the difference was not large.

7.1.2. SEGMENTATION
In Chapter 2 - 4, a segmentation method based on the so-called contrast enhancement
map was adopted to segment the liver. As we apply a liver-specific contrast agent, the
surrounding organs show less signal enhancement than the liver. Maximal contrast was
achieved by subtracting the registered first image of the series from the last image. Subse-
quently, the liver was segmented based on the resulting “contrast” volume by means of a
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level set approach.

In Chapter 5, a finer segmentation method was proposed to partition the liver from the
DCE-MR images. It consists of two steps. In the first step, a region growing method was
applied to segment the hepatic vein (HV), the portal vein (PV) and inferior vena cava (IVC)
from the liver. In the second step, skeletons of these segmented vessels were regarded as
landmarks to partition functional liver segments. Comparison with state-of-the-art meth-
ods showed that our method produced more accurate segmentations of the vessels in the
liver. Moreover, our segmentations of functional liver segment had large overlap (mea-
sured through the Dice Coefficient) with a manually annotated reference. The proposed
segmentation method can easily be adapted to other DCE-MRI or DCE-CT applications
with low spatial resolution.

7.1.3. PHARMACOKINETIC MODELING

In Chapter 4, we proposed an improved pharmacokinetic model for DCE-MRI of the liver.
The novelties of our work comprised:

1) Analytical voxel-wise modeling of the arrival-time of the contrast agent. Orton’s
model was adopted to represent the liver’s dual input functions (hepatic artery and portal
vein) and embed them into Sourbron’s model. The combined Orton and Sourbron (COS)
model was shown to enhance the fitting accuracy as well as the efficiency of the model
fitting.

2) Compensation for effects that can be modeled by varying applied flip-angle, e.g. B1-
inhomogeneity. A flip-angle potentially deviating from its nominal value due to this effect
was modeled by taking into account the displacement of a liver voxel with respect to the
first image.

We referred to the approach combining both of the aforementioned novelties as the
COS-FLAC model. The validity of our approach was supported by the moderate to strong
linear correlation between displacement and deviation in flip angle. The COS-FLAC model
was quantitatively assessed by the root mean square error (RMSE) of the residue that re-
mained after fitting the model to the signal in every voxel of the liver. We found that the
COS-FLAC model achieved significantly lower RMSE than the COS approach. Further-
more, three model complexity criteria showed that the COS-FLAC model outperformed
the COS model in the vast majority of voxels.

7.1.4. CLINICAL FEASIBILITY

In Chapter 6, DCE-MRI perfusion parameter liver uptake rate (Ki) derived from our COS-
FLAC model with Gd-EOB-DTPA was correlated with the corresponding liver uptake rate
(MUR) in 99mTc-Mebrofenin Hepatobiliary Scintigraphy with SPECT. Strong correlations
were found between uptake parameters derived from DCE-MRI and HBS for both total
and FRL function (Pearson r = 0.70, P = 0.001 and r = 0.89, P < 0.001 respectively). There
was a strong agreement between the functional share determined with both modalities
(ICC = 0.944, 95%-CI: 0.863-0.978, n = 20). There was a significant negative correlation
between liver aminotransferases and bilirubin for both MUR and Ki. The results indicate
that DCE-MRI with Gd-EOB-DTPA has the potential to quantitatively measure functional
features of the liver.
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7.2. FUTURE WORK

D EEP learning has gained enormous popularity in recent years. It is a form of ma-
chine learning that enables computers to learn from experience represented by large

amounts of annotated data and understand the world in terms of a hierarchy of concepts
[1]. Unlike conventional machine-learning techniques, which were limited in their ability
to process natural data in their raw form, deep learning is able to learn complicated con-
cepts by building them out of a deep-layered graph of these hierarchies without explicitly
transforming the raw data into a suitable internal representation or feature vector [2]. Ap-
plying deep learning to DCE-MRI of the liver is interesting and promising. The following
topics may be expanded upon in the future.

7.2.1. REGISTRATION
When performing registration, one of the key steps is to design a similarity metric to ex-
tract features in corresponding images, which typically requires careful engineering and
considerable domain expertise. It might be possible to adopt deep-learning networks to
estimate a similarity measures for images to drive an iterative optimization strategy [2].
Alternatively, deep-learning networks could be directly applied to predict transformation
parameters [3]. Moreover, with the help of parallel computing in multi-GPUs, it may be
possible to realize real-time training of the network.

7.2.2. SEGMENTATION
The deep learning techniques to achieve segmentations can be mainly divided into two
categories: convolutional neural network (CNN) and recurrent neural network (RNN).
Deep convolutional nets have brought breakthroughs in processing images, video, speech
and audio, whereas recurrent nets are often applied to sequential data such as text and
speech [4].

1) CNN- backbone methods. Semantic segmentation is one of the key problems in the
field of computer vision. It describes the process of associating each pixel of an image
with a class label. Many networks have been proposed to do so, such as U-Net [5], SegNet
[6], DeepLab [7] and RefineNet [8]. In the biomedical imaging field, segmenting organs of
interest in 3D volumes is a challenging task. Quasi- 3D [9] and fully 3D [10] U-Nets have
been used to solve this problem. Common inputs for such neural networks are gray-scale
images or RGB images (three channels). However, our DCE-MR images are 4D data, i.e.
3D+t (108 dynamics). Upon registration of the DCE series, 108 dynamics can be regarded
as 108 channels. Integrating 108 channels into a proper deep neural network might con-
tribute to the segmentation performance.

2) RNN-backbone methods. As mentioned above, our 4D DCE-MRI data is a time se-
ries. For each voxel in the abdomen, a Time Intensity Curve (TIC) can be extracted and
different profiles correspond to different kinds of tissues / organs. As such, segmenting
tissues / organs can be regarded as a sequence classification problem. A popular ap-
proach for sequence classification is a gated recurrent network like the Gated Recurrent
Units (GRU) approach [11] and the Long Short-Term Memory (LSTM) configuration [12].
Applying these methods in the field of biomedical imaging might certainly be interesting.
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