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Abstract

Early detection of depression is crucial in mental healthcare. Augmenting depression diagnosing with AI
seems to be promising in detecting depression from subtle non-verbal cues and early signs that can be
missed from domain experts. For this to be achieved, AI procedures and decision processes need to be
interpretable to humans. In this thesis, we use and evaluate a saliency-based explainability framework
for a multi-modal depression-prediction model and validate its outputs through human judgment. The
multimodal input is created by combining high level facial features extracted from Action-Unit via a 1D-
CNN and high level vocal features extracted from log-mel spectrograms via a modified AlexNet. Then
a simple Feed Forward Network is used as a classification predictor for 3.5 second segments.

To assess whether these AI-flagged moments align with human reasoning, 17 lay participants viewed
thirty 8.5-second clips (half depressed, half non-depressed). For each clip they (1) rated depression
confidence on a 1–10 scale, (2) selected the single frame they found most influential, and (3) described
the facial or vocal cues that informed their choice. The goal is for the participants to give us an insight
on what the model may be ’seeing’. So we ask them to tell us what facial and voice features they
observed in their influential moments. From those experiments, we gained some useful insights to the
model. The results show that participants observations in non-verbal cues are valuable and align with
literature findings. And we find that there is alignment in participant’s observations on their own influen-
tial moment and on the model’s salient moment when the salient moment is correctly classified by the
model and they do not align when the salient moment is wrongly classified by the model. These find-
ings suggest that humans and the model value similar cues to make the correctly classify depression,
and help to enhance the interpretability of AI models.
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1
Introduction

Depressive disorder (also known as depression) is one of the prevalent mental health disorders. At
the global level, more than 300 million people are estimated to suffer from depression, equivalent to
4.4% of the world’s population World Health Organization 2017. The main characteristic of depression
is persistently low mood or a lack of interest and enjoyment for an extended period. Depression is not
associated with typical fluctuations in mood or feeling, as its severity can affect various aspects of the
individual’s life such as relationships or professional settings. The number of people diagnosed with
depression or experiencing depressive symptoms has increased steadily in the last century Wilson and
Dumornay 2022. Although depression is a leading cause of global disease burden, many individuals do
not receive adequate treatment, resulting in higher risks of chronicity and relapse Thornicroft et al. 2017,
Mekonen et al. 2022. Moreover, diagnosis in mental health remains challenging . Traditional frame-
works, such as the Diagnostic and Statistical Manual of Mental Disorders, rely on identifying a minimum
number of core symptoms over a specified period. Furthermore, misdiagnosis rates for certain men-
tal health conditions (e.g., bipolar disorder) can be as high as 55–76% Byeon 2023, underscoring the
limitations of current diagnostic methods and the need for innovative solutions.

In recent years, the use of new technological advancements for medical purposes has become increas-
ingly common (Junaid et al., 2022). Early detection of depression is crucial because it allows patients to
receive treatment sooner. One way to achieve this is by recognizing subtle signs that human diagnos-
ticians might miss. Research indicates that subtle non-verbal cues—such as minor changes in facial
expressions, tone of voice, and body language—are often difficult for clinicians to observe during rou-
tine assessments. For example, Cummins et al. 2015 discuss how nuanced variations in vocal prosody
and speech patterns, which can serve as early markers of depression, are frequently overlooked in clin-
ical practice. That is because these subtle cues can be brief and can vary greatly between individuals,
making it difficult to consistently identify early indicators of depression during those routine assess-
ments. Early identification of these cues is crucial, as alerting both the therapist and the patient can
prevent relapse and improve long-term outcomes. In response to these challenges, researchers are
exploring innovative strategies—such as patient self-monitoring tools (Onnela and Rauch, 2016) and
hybrid systems (Balcombe and De Leo, 2021) that integrate clinician insights with AI analysis—to better
capture the diverse ways depression manifests. At the same time, AI-based systems that analyze text,
audio, and video data have been proven to be powerful tools for diagnosing and predicting depression,
showing the potential to surpass traditional methods in the future, in terms of accuracy and efficiency
(Shatte, Hutchinson, and Teague, 2019). However, many of these models, especially deep neural net-
works, operate as black boxes, offering high accuracy at the cost of interpretability (Shah and Konda,
2021). In the context of clinical decision making, where trust and transparency are paramount, this lack
of clarity can hinder adoption and raise ethical concerns.

Explainable Artificial Intelligence (XAI) aims to address these challenges by making complex models
more transparent without substantially compromising their predictive performance. Explainability is
especially valuable in mental health: not only does it help clinicians understand why a model considers
someone likely to be depressed, but it also potentially fosters trust among patients, who are more
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likely to accept AI-driven insights if they know how those insights were arrived at (Woodcock et al.,
2021). In mental health diagnostics—particularly for depression— it is well established that cues, such
as shifts in vocal intonation, facial expressions, and body language, are inherently dynamic and are
key indicators that evolve over time (Mundt, Vogel, et al., 2012; L.-S. A. Low et al., 2010). However,
many existing XAI methods in this domain are primarily static, failing to fully capture how these cues
evolve over as can be observed by the comprehensive review by Guidotti et al. (2018). Most studies
to date either omit explainability or use generic feature-attribution techniques that ignore sequence
order, issues mentioned in the works of Arik and Pfister (2021) and Imans et al. (2024). Traditional XAI
methods like LIME (Ribeiro, Singh, and Guestrin, 2016), SHAP (Lundberg and Lee, 2017) have been
applied to depression prediction (Byeon, 2023), but they treat input features as an unordered set, thus
losing the narrative of change over time. In a clinical context, this can be problematic – we want to
know not just which behaviors indicate depression, but when and how those behaviors manifest during
an interaction.

In this research, we aim to address this problem by utilizing a saliency-based explainability method
proposed by Raman et al. (2024). To implement this approach, we model the patient’s input as a time-
series by using a sliding window technique to segment the data into manageable intervals. Then we
calculate the saliency of each segment comparing the change of the entropy from the previous seg-
ment, something that quantifies how much that particular interval (from the one segment to the other)
contributes to the overall model prediction. Saliency, in this context, refers to the degree of influence
that each segment exerts on the model’s output. By assigning a saliency score to every segment, we
can determine which parts of the patient’s input are most critical in driving the model’s classification
decisions. This approach leverages the temporal dynamics of audio-visual data by identifying critical
moments over time, thereby capturing how important cues evolve and influence the model’s decisions -
an insight that static methodsmay overlook. This is helpful because by highlighting the specific intervals
that are the most critical to the model’s classification decisions, we have a more intuitive explanation
that can directly inform clinical decision-making in mental health. In contrast, most XAI techniques previ-
ously used for depression prediction are post-hoc feature attribution methods or simple attention-based
interpretations, which are largely static in nature (Guidotti et al., 2018). Attentionmechanisms have also
been used to weight different time frames, which is a form of temporal explanation. While they highlight
time steps that are important, it does not provide more a more granular explanation. In contrast, our
saliency-based approach not only leverages temporal changes in audiovisual data but also quantifies
the contribution of each segment—by, for example, measuring changes in entropy between adjacent
segments—to the overall prediction. This can provide a more granular and interpretable explanation
of the model’s decision-making process, potentially enabling clinicians and patients to pinpoint exactly
when key depressive cues manifest during an interaction. However, similarly to the attention mecha-
nism techniques, while our approach identifies the salient moments that influence the model’s decision,
it does not specify which modality or precise feature within those moments is responsible.

Consequently, to further explore these temporal explanations, we conduct experiments with lay par-
ticipants, asking them to review the model’s highlighted audio-visual segments and answer targeted
questions regarding the presence of potential depression cues. Additionally, we examine not only the
participants’ ability to recognize signs of depression, but also the extent to which their perception of
influential cues and moment’s aligns with the model’s. This aims to enhance the interpretation of AI
systems and their internal decision processing. This human validation is especially important given that
in many studies on automated depression detection, the focus has been primarily on improving classi-
fication accuracy, often at the expense of a thorough evaluation of the interpretability of AI-generated
explanations. Most existing work presents AI-highlighted segments in isolation without rigorously com-
paring them against human-selected cues or expert annotations. However, this kind of one-to-one
comparison is crucial to ensure the AI is focusing on legitimate indicators of depression rather than
fake patterns. For example, while studies like those by K. Yang et al. 2023 and L. Zhang et al. 2025
have made initial strides by introducing human-annotated explanations, these efforts remain isolated
and do not fully integrate the temporal dimension of non-verbal behavior. Consequently, it remains
unclear whether the model’s highlighted moments genuinely correspond to the nuanced, time-varying
signs of depression recognized by clinicians or lay evaluators.

Motivated by these considerations, this thesis analyzes whether it is possible to enhance the inter-
pretability of AI-based medical diagnosis for depression through the identification of salient moments
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from video and audio data and subjecting them to human evaluation. Specifically, the central research
question is: “To what extent can interpretability in AI-based medical diagnosis for depression be im-
proved by identifying the salient moments in video and audio data and investigating them through
human evaluation?”

By addressing this question, we aim to determine whether the model’s highlighted segments corre-
spond to meaningful indicators that humans can recognize, and whether this alignment enhances clini-
cians’ and patients’ understanding of the rationale behind a depression diagnosis. To investigate further,
we established the following sub-questions:

1. To what extent can humans identify depression from short video clips?
2. To what extent do human-identified salient moments align with the model’s salient moments?
3. What facial/voice features do humans identify in AI-selected salient moments and in their own

By addressing these subquestions, we aim to establish a comprehensive evaluation approach that not
only evaluates the model’s predictive capabilities but also deepens our understanding of its explainabil-
ity.



2
Background

2.1. Depression Prediction
As noted above, depression increasingly affecting our society having a significant impact to public
health (World Health Organization et al., 2017). For this reason, using artificial intelligence technology
for depression detection has become more prominent in recent years (Karimian et al., 2025). Ma-
chine learning methods are frequently used to analyze text data from social media, electronic health
records, and patient self-reports Shatte, Hutchinson, and Teague 2019. Studies have shown that so-
cial media posts, on platforms like Twitter and Facebook, can be effectively used to identify individu-
als’ signs of depression, potentially offering a non-invasive and continuous monitoring tool Guntuku
et al. (2019). Additionally, various data modalities have been used in AI models such as Functional
Magnetic Resonance Imaging (fMRI) Mousavian et al. (2021), genetic and biomarker data Gu, Ming,
and Xie 2023, mobile phone data (Digital Phenotyping) Ware et al. 2020 etc. Frequently used data
modalities used for depression prediction are questionnaires, electroencephalograms (EEG), and video
recordings. For self-report questionnaires, prediction approaches typically involve traditional machine
learning algorithms—such as logistic regression, support vector machines, and random forests (Yasin
et al., 2023). In EEG-based prediction the process usually begins with advanced signal processing to
extract relevant features (Choubey and Pandey, 2019). These features are then fed into classification
algorithms such as support vector machines, random forests, or deep neural networks—including con-
volutional and recurrent architectures—to capture the temporal and spectral characteristics associated
with depression (Yasin et al., 2023). In the case of video recordings, predictive methods borrow com-
puter vision techniques for scanning for behavior signals. In this category, methods often rely on deep
models of learning such as convolutional neural networks (CNNs) for extracting spatial features and
recurrent neural networks (RNNs) or spatiotemporal models for handling facial expressions, body pos-
tures, and micro-expressions’ temporal dynamics. Such models are well equipped to pick out subtle
non-verbal signals that may point to depressive symptoms (Joshi and Kanoongo, 2022). Our research
narrows its focus to leveraging audiovisual data as input for depression prediction. Ground truth labels
for depression are derived from the Patient Health Questionnaire (PHQ), a widely validated instrument
that provides a reliable measure of depression severity.

2.1.1. Personal Health Questionnaire Depression Scale (PHQ)
AI models that use questionnaire data have demonstrated good results in predicting depression. Com-
monly used self-report tools for evaluating depression symptoms are the Patient Health Questionnaire
(PHQ-9 or PHQ-8) (Kroenke, Strine, et al., 2009) and the Beck Depression Inventory (BDI) (Beck,
1996). The PHQ questionnaire has proved to be a reliable and valid measure of depression severity
according to Kroenke, Spitzer, and Williams 2001 and is widely used in research on depression predic-
tion. It is used as the sole input in models (Jin et al., 2015), but most often, it is used in a hybrid setting,
combined with other data like clinical or sociodemographic data (Hornstein et al., 2021; L. Yang et al.,
2017; Jordan, Shedden-Mora, and Löwe, 2018) etc. The PHQ-8 derives from the PHQ-9, excluding
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the 9th question regarding self-harm or suicide, focusing only on the other 8 symptoms of depression.
This is because studies have shown that patients with or without diagnosed psychiatric illness can have
passive thoughts of death without being in immediate risk of suicide, leading to a lack of clarity regard-
ing what Item 9 of PHQ-9 is assessing (Razykov et al., 2012). In the DAIC-WOZ dataset that has been
used in this project, patients are labeled as depressed or non-depressed based on their scores on the
PHQ-8 questionnaire. Participants are classified as depressed if their PHQ-8 score is 10 or above, and
as non-depressed if it is below 10.

2.1.2. Depression prediction from Audiovisual data
Audiovisual data is also a crucial source of information for depression prediction tasks since it provides
non-verbal cues such as facial expressions, eye movements, and body language. For example, Girard,
Cohn, et al. (2014) found that visual cues—such as subtle changes in facial expression and reduced
eye contact—can accurately predict depressive symptoms. Early multimodal approaches combined fa-
cial and vocal signals to improve detection (Scherer, Stratou, and Morency, 2013; Gupta et al., 2014).
Recent advances have further improved predictive performance by leveraging deep learning on audio-
visual data. One such study used facial action analysis together with vocal prosody to automatically
distinguish depressed patients from non-depressed (Z. Jiang et al., 2020). Othmani, Zeghina, and
Muzammel (2022) developed a deep neural network model fusing facial and speech features as in-
put for predicting depression relapse from audiovisual cues. Moreover, multimodal approaches that
combine audiovisual data with other modalities have been developed to enhance prediction accuracy,
including text (L. Yang et al., 2017) and EEG (Song et al., 2022). Typically classification accuracy rates
fall in the 70–80% range for distinguishing depressed vs. non-depressed subjects based on audiovisual
data as mentioned in the work of Girard and Cohn (2015). This is a substantial level of accuracy given
the complexity of depression’s presentation, and it approaches the performance one might expect from
screening questionnaires. Some studies report even higher performance with advanced techniques –
for instance, a recent deep learning approach using attention-based feature fusion from Mahayossa-
nunt et al. (2023) obtained nearly 91.67% accuracy on a depression dataset. Overall, the convergence
of findings – from small-scale experiments to large multimodal challenges – provides strong evidence
that audiovisual markers are valid indicators of depression that algorithms can learn to recognize.

Building on this foundation, our work utilizes audiovisual data as input for a depression prediction model,
and then applies a saliency-based post hoc analysis to enhance interpretability. In this research the
aforementioned work of Othmani, Zeghina, and Muzammel (2022) has been used as a base for the
structure of the depression predictor which will be explained in more detail in chapter 3 Rather than
focusing solely on predictive accuracy, our approach identifies the most influential temporal segments
within the audiovisual data. This enables us to understand which specific moments drive the model’s
decisions, offering a more transparent and clinically relevant insight into the prediction process.

2.2. Video Analysis
Video processing is a key field within computer vision, allowing the analysis of dynamic content over
time. Video processing enables computers to track movements, analyze events or changes in behav-
ior and environment, by breaking down a sequence of video frames. Video processing methods can
be applied to a variety of computer vision tasks and it is important especially in applications that re-
quire an understanding of temporal relationships in video data Tang et al. 2023. In healthcare, video
processing opens up innovative approaches for patient monitoring and diagnosis. Its ability to detect
subtle changes in a patient’s emotional or physical state through facial expression or body movements
has made video-based analysis a powerful and promising tool for gaining insights into conditions like
depression, stress or other neurological disorders. There are numerous techniques to extract useful
information from video, we will delve in the ones used for the scope of this research.

2.2.1. Visual modality
Facial Features associated with depression

Depression can alter someone’s facial emotion and non-verbal behavior in observable ways. Studies
have identified several facial cues that are common in individuals with depressive symptoms. Pupil
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dilation has been associated with depression. Siegle et al. (2011) suggest that faster pupil movements
are associated with healthy controls, whilst depressed subjects present slower pupil dilation responses
under some conditions (He et al., 2022). Several studies suggest that an individual diagnosed with
depression, displays low expressibility in their facial expressions (He et al., 2022). That includes re-
duced eye contact (Lucas et al., 2015), gaze direction, eyelid activity (Alghowinem, Goecke, Wagner,
et al., 2013), iris movement, and eye openings/blinking (Alghowinem, Goecke, Cohn, et al., 2015). For
the scope of this research, a subset of facial features has been used for depression classification. By
focusing on these key indicators, we can capture the nuanced ways in which depressive symptoms
manifest. For instance, reduced positive emotions such as smiling less often (e.g. infrequent lip-corner
pulling smiles) has been associated with depressed individuals (Mahayossanunt et al., 2023). Addition-
ally mentioned in the work of Mahayossanunt et al. (2023), depressed individuals tend to display less
overall facial activity and expressivity. Besides the reduced positive emotions, there are several nega-
tive affect cues that have been associated with depression. In depression, certain facial expressions
associated with sadness or distress occur more often. For example, depressed patients may exhibit
more frowning or scowling expressions which convey negative feelings and social disinterest.

To analyze these subtle variations rigorously, we use the Facial Action Coding System (FACS). FACS
deconstructs complex facial expressions into individual, measurable action units, allowing us to ob-
jectively quantify facial movements. This is especially important for explainability tasks, because by
mapping individual muscle movements to specific emotional states, FACS helps researchers and prac-
titioners trace model decisions back to observable, interpretable actions.

Facial Action Coding System (FACS) & Action Units (AUs)

The Facial Action Coding System (FACS) (Ekman and Friesen, 1978) is a framework used to taxono-
mize human facial movements. FACS classifies all visually distinguishable facial activity on the basis
of 44 unique Action Units (AUs), along with categories of head and eye positions and movements.
Action Units represent the fundamental actions of individual muscles or groups of muscles and have
been tested on offset/onset duration, average duration, occurrence frequency, and offset/onset ratios
(Ekman and Rosenberg, 1997).

• Offset/Onset duration: This reference to the duration that a muscle takes to begin its movement
(onset) and the time it needs to reverse in its neutral state (offset). Testing this helps identify how
quickly or slowly certain facial actions occur.

• Average duration: Typical duration in which the AU is active during a facial expression. Mea-
suring this gives us insight in how long each facial movement usually last. This gives valuable
information for depression prediction tasks, for example Parikh, Sadeghi, and Eskofier 2024 state
that people with depression exhibited prolonged facial movements linked to sadness and reduced
intensity of happy expressions

• Occurrence frequency: It measures how often a particular AU appears in among various facial
movements. Measuring this help us determine how common or rare are facial expressions in
different contexts.

• Offset/Onset ratios: This examines the relationship between the onset and offset of the muscle.
By analyzing this, we can determine whether facial expressions change gradually or abruptly.

Table 2.1 and Table 2.2 depict the AUs coded in FACS and the muscle groups involved in each ac-
tion. In the second figure more grossly defined action units are listed which means more obvious and
pronounced movements.
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AU Number Descriptor Muscular Basis
1 Inner Brow Raiser Frontalis, Pars Medialis
2 Outer Brow Raiser Frontalis, Pars Lateralis
4 Brow Lowerer Depressor Glabellae, Depressor Supercilli, Corru-

gator
5 Upper Lid Raiser Levator Palpebrae Superioris
6 Cheek Raiser Orbicularis Oculi, Pars Orbitalis
7 Lid Tightener Orbicularis Oculi, Pars Palpebralis
9 Nose Wrinkler Levator Labii Superioris, Alaeque Nasi
10 Upper Lip Raiser Levator Labii Superioris, Caput Infraorbitalis
11 Nasolabial Fold Deepener Zygomatic Minor
12 Lip Corner Puller Zygomatic Major
13 Cheek Puffer Caninus
14 Dimpler Buccinator
15 Lip Corner Depressor Triangularis
16 Lower Lip Depressor Depressor Labii
17 Chin Raiser Mentalis
18 Lip Puckerer Incisivii Labii Superioris, Incisivii Labii Inferioris
20 Lip Stretcher Risorius
22 Lip Funneler Orbicularis Oris
23 Lip Tightener Orbicularis Oris
24 Lip Pressor Orbicularis Oris
25 Lips Part Depressor Labii, or Relaxation of Mentalis or Orbic-

ularis Oris
26 Jaw Drop Masseter; Temporal and Internal Pterygoid relaxed
27 Mouth Stretch Pterygoids, Digastric
28 Lip Suck Orbicularis Oris

Table 2.1: Action Units and their Muscular Basis

AU number FACS name
19. Tongue out
21. Neck Tightener
29. Jaw Thrust
30. Jaw Sideways
31. Jaw Clencher
32. Lip Bite
33. Cheek Blow
34. Cheek Puff
35. Cheek Suck
36. Tongue Bulge
37. Lip Wipe
38. Nostril Dilator
39. Nostril Compressor
41. Lid Droop
42. Slit
43. Eyes Closed
44. Squint
45. Blink
46. Wink

Table 2.2: More grossly defined Action Units (AUs) in the FACS

In this research, we used the DAIC-WOZ dataset that contains 20 of those Action Units detected via
the OpenFace toolkit. From the comprehensive review by Yasin et al. 2023 it is clear that DAIC-WOZ



2.2. Video Analysis 8

dataset is a widely used dataset for depression prediction tasks. To capture the nuanced facial behav-
iors associated with depression—both in terms of reduced positive expressivity and increased negative
affect—the data must offer detailed and reliable annotations of individual action units. The DAIC-WOZ
dataset meets these requirements, as they represent a behaviorally and clinically informative subset of
the Facial Action Coding System (FACS) commonly used in affective computing and clinical research,
enabling a comprehensive analysis that directly leverages the strengths of FACS. The Action Units
contained in the DAIC-WOZ dataset are depicted in Table 2.3. Several studies support the claim that
the DAIC-WOZ dataset is a valuable resource for clinical affective behavior analysis, particularly in the
context of automated depression detection. It provides rich multimodal data—including audio, video,
transcriptions, and facial behavior features—that allow researchers to investigate a wide range of be-
havioral and emotional cues associated with depressive symptoms. For example Akbar et al. 2021
achieved high accuracy detecting depression using AUs extracted from the DAIC-WOZ dataset.

Action Unit Description Muscle Movement
AU01 Inner Brow Raiser Raises the inner part of the eyebrows.
AU02 Outer Brow Raiser Raises the outer part of the eyebrows.
AU04 Brow Lowerer Lowers the eyebrows.
AU05 Upper Lid Raiser Raises the upper eyelids.
AU06 Cheek Raiser Raises the cheeks (e.g., during a smile).
AU09 Nose Wrinkler Wrinkles the nose.
AU10 Upper Lip Raiser Raises the upper lip.
AU12 Lip Corner Puller Pulls lip corners upward (smiling).
AU14 Dimpler Tightens the corners of the mouth.
AU15 Lip Corner Depressor Pulls lip corners downward.
AU17 Chin Raiser Raises the chin.
AU20 Lip Stretcher Stretches the lips horizontally.
AU25 Lips Part Separates the lips (e.g., during speaking).
AU26 Jaw Drop Opens the mouth (e.g., surprise).
AU23 Lip Tightener Tightens the lips.
AU28 Lip Suck Pulls the lips inward.
AU45 Blink Closes the eyes (blinking).

Table 2.3: Descriptions and muscle movements for the 20 Action Units used in the DAIC-WOZ dataset.

2.2.2. Audio modality
One of the earliest modern works that associated depression with voice is the work of Kraepelin
(1921). In his work he defined depressed voice as ’patients speak in a low voice, slowly, hesitat-
ingly, monotonously, sometimes stuttering, whispering, try several times before they bring out a word,
become mute in the middle of a sentence’. Indeed in more recent studies shows that speech fea-
tures covers 38% of a message for affective computing, which is more that the semantic information
acquired from the speech Mehrabian 2017. These features, including aspects such as prosody and
acoustic properties, can be measured to capture how emotions are expressed in speech. For exam-
ple, a slower speech rate combined with reduced pitch variation can make a voice sound monotonous,
a characteristic frequently associated with depression. Figure 2.1 provides an illustration of a digital
audio signal, demonstrating how these measurable attributes underpin affective analysis.
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Figure 2.1: Signal of a small time interval of the raw .wav audio file from patient 300

Audio Features associated with depression

Depression also manifests in the acoustic properties of a person’s speech. A number of paralinguistic
vocal features have been identified as markers of depression. Mundt, Vogel, et al. (2012) state that
depressed speech tends to be slower. Additionally, patients speak at a reduced rate and take more fre-
quent or prolonged pauses mid-conversation. In recordings, severely depressed individuals produced
significantly longer silence intervals, more variable pause lengths, and a higher proportion of time spent
pausing versus speaking. Another mark is a flattening of vocal prosody. Depressed individuals often
speak in a monotone, with reduced pitch variation and inflection (Girard and Cohn, 2015). In study
by Liang et al. (2024) a set of 331 acoustic features (spanning cepstral, spectral, and voice quality
domains) could accurately distinguish individuals with MDD from healthy controls, indicating that a rich
acoustic profile of one’s voice is highly informative of depression status.

To analyze those variation in the voice, we use Log-Mel spectrograms, which provide a detailed time-
frequency representation of speech. Log-Mel spectrograms capture the rich spectral characteristics
of speech, making them well-suited for detecting subtle prosodic and articulatory changes associated
with depression.

Log-mel spectrograms

Log-mel spectrograms provide a compact and intuitive representation of audio that closely aligns with
human auditory perception—an essential consideration for analyzing speech in the context of depres-
sion. It begins with capturing the raw audio signal and running it through the Short-Time Fourier Trans-
form (STFT) Equation 2.1, which decomposes the signal into the frequencies it’s made up of, and for
how long.

[H]STFT{x[n]}(m,ω) = X(m,ω) =

∞∑
n=−∞

x[n]w[n−m]e−jωn (2.1)

Where:

• x[n] is the discrete signal.
• w[n−m] is a window function centered at m.
• ω is the angular frequency.
• X(m,ω) is the STFT result, a function of time (represented bym) and frequency (represented by
ω).

However, while the STFT offers precise frequency information, it does not reflect how us humans ac-
tually hear sounds. Human auditory perception is non-linear: we are more sensitive to differences in
lower frequencies and perceive changes in loudness on a logarithmic scale. To bridge this discrep-
ancy, the frequency components are transformed using the Mel scale—a scale designed to mimic the
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non-linear sensitivity of the human ear. This transformation compresses higher frequencies and ex-
pands lower frequencies, effectively emphasizing the frequency bands that humans are more in tune
to. Figure 2.2 visually demonstrates this conversion from Hertz to Mel.

Figure 2.2: Hertz to mel conversion

Building on this, a mel spectrogram is generated by applying a series of Mel filter banks to the STFT
output, grouping frequencies into bins that mirror our perceptual resolution. By converting the resulting
mel spectrogram’s magnitudes to a logarithmic scale, we obtain a log-mel spectrogram that not only
preserves the essential frequency details but also mirrors perceptual loudness differences. An example
of a log-mel spectrogram is illustrated in Figure 2.3.

Figure 2.3: Log-mel spectrogram for Segment 1 of Participant 300

In the context of depression, several indicators become more apparent through this logarithmic repre-
sentation. For instance, as mentioned above, a slower speech rate is common in depressed individuals
Mundt, Vogel, et al. (2012). In the context of log-mel spectrograms it manifests as extended segments
with minimal variation in spectral content. Similarly, reduced pitch variation results in a narrow range
of frequency modulation over time, contributing to a monotonous tone. At the same time, lower over-
all vocal energy appears as a consistent drop in amplitude across key frequency bands, and subtle
shifts in energy distribution, such as reduced high-frequency components, can signal a lack of vocal
vibrancy. These interpretable features extracted from log-mel spectrograms provide vital cues for un-
derstanding the acoustic correlates of depressive speech, thereby forming a foundational element in
machine learning approaches to depression detection.
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2.3. Deep learning
2.3.1. Neural networks
A neural network is a structure that is inspired by the structure and function of biological neural net-
works found in living organisms, such as humans and animals. Neural networks are designed to help
machines learn complex patterns and get valuable insights from input data . Given their ability to au-
tomatically learn hierarchical features, neural networks have become a key tool in affective computing
and mental health research. In this thesis, neural networks play a crucial role in both feature extraction
and depression prediction. For audio feature extraction, we utilize AlexNet, a deep convolutional neural
network (CNN), to process Log-Mel spectrograms and extract relevant acoustic features. For visual
feature extraction, a CNN is employed to capture facial action units and other visual cues indicative
of depression. Finally, these extracted features are used as inputs to a simple Multi-layer Perceptron
(MLP), which serves as the core depression prediction model. Later we apply a saliency-based post
hoc analysis in the depression predictor.

Multi-layer Perceptrons (MPLs)

Multi-layer Perceptrons is a type of feed-forward network that consist of multiple layers of neurons,
where each layer is fully-connected to the next one. As mentioned above, a Multi-layer Perceptron
is employed to perform the depression classification task. Each node, or neuron, receives multiple
inputs which are either outputs from previous layer’s nodes or raw data from the input. Each input
is multiplied by a weight that represents the importance of the corresponding input to the node. The
input layer receives the data and it consists of as many nodes as the number of features in the data.
Then one or more hidden layers are responsible for learning more complex representations and extract
features from the input data. An example of an MLP is illustrated in Figure 2.4.

To achieve that each node calculates a weighted sum of all its inputs:

zj =

n∑
i=1

wijxi + bj (2.2)

, where,

• zj is the result of the weighted sum for neuron j in current layer.
• wij the weight of the connection between current neuron j and previous neuron i,
• xi are the inputs of neuron j/ output of previous neuron i,
• bj is the bias term of the current neuron j, and
• n the number of neurons in the previous layer,

After the weighted sum is calculated for each neuron is passed through an activation function. Since
the function is non-linear (e.g ReLU, sigmoid) it introduces nonlinearity which enhances the model’s
capability to learn complex patterns. A linear model would not be able to learn complex relationships
in the data since regardless of the number of layers added it would still behave as a linear function.
Finally, the output of the activation function will now be either the new input of the next layer of neurons
or the output of the model in case of the last layer.

Activation functions

As mentioned above activation functions are crucial for our model’s capability of solving non linear prob-
lems. An activation function is a differentiable operator that applied fixed mathematical transformation
to a node’s output. The purpose of the activation function is to decide how much the output contributes
to the next layer without involving any trainable parameters. Some of the most popular functions are
shown in Figure 2.5.

For our MLP Depression predictor we have used ReLU as an activation function The Rectified Linear
Unit (ReLU) (Fukushima, 1975) activation function is defined as:

f(x) = max(0, x) (2.3)



2.3. Deep learning 12

Figure 2.4: A 4-layer MLP with 2 hidden layers

(a) ReLU (b) Sigmoid (c) Tanh

Figure 2.5: Popular activation functions.

ReLU outputs zero for all negative inputs and the input itself for positive inputs. It is computationally
efficient and widely used in deep neural networks.

Additionally, the Softmax function transforms the raw output scores of the model into a probability
distribution over the classes. In this project, Softmax is applied at the output of the Depression Predictor
Model. These probabilities are then utilized in the saliency-based post hoc analysis to interpret the
model’s decision-making process.

The Softmax function is defined as:

Softmax(zi) =
ezi∑n
j=1 e

zj
, for i = 1, 2, . . . , n, (2.4)

where:

• zi is the i-th raw output (logit) from the neural network,
• n is the number of classes,
• ezi represents the exponential function applied to zi,
• The denominator is the sum of the exponential of all logits, ensuring that the outputs form a valid
probability distribution.
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Loss functions

Loss functions in general are mathematical functions of the parameters of the machine learning algo-
rithm. They are fundamental components in machine learning algorithms, as they provide a quantitative
method to evaluate how well the algorithm is modeling the dataset. A loss function measures the dif-
ference between the predicted value and the real target value (Equation 2.5), in order to improve the
model’s performance. The goal is to minimize the total loss, defined as:

Total Loss =
1

N

N∑
i=1

L(yi, ŷi) (2.5)

where:

• N is the number of data points,
• L(yi, ŷi) is the loss for the i-th data point.

The choice of the appropriate loss function L depends on the nature of the task (e.g. classification,
regression) and plays a crucial role in the model’s training and final results. For example the Mean
Squared Error (MSE) is a commonly used loss function for regression tasks, while Cross-Entropy is
used for classification problems.

For the purpose of this thesis we used one modification of the Cross-Entropy Loss, the Focal Loss.
The Focal Loss is used for tasks where the data is not balanced meaning that one (or more) classes
are significantly underrepresented in the dataset. The DAIC-WOZ dataset used for the training of
our Depression Predictor is also biased as it contains more participants that are non-depressed than
depressed. The Focal Loss works by down-weighting the well represented class, enabling the model
to focus more on harder to classify examples. Focal Loss is defined as:

LFocal(y, ŷ) = − 1

N

N∑
i=1

C∑
j=1

yij(1− ŷij)
γ log(ŷij) (2.6)

where:

• N is the number of data points,
• C is the number of classes,
• yij is a binary indicator (1 if class j is the correct class for data point i, otherwise 0),
• ŷij is the predicted probability for class j for data point i,
• γ is the focusing parameter that controls the strength of down-weighting for well-classified exam-
ples (γ > 0).

2.3.2. Convolutional neural networks
A Convolutional Neural Network (CNN) (LeCun et al., 1989) is a specific type of deep neural network
designed to learn patterns in structured data, including both spatial data (e.g., images) and temporal
data (e.g., sequences). The difference from the traditional neural networks is that CNNs use convo-
lutional layers to extract patterns from the data. The architecture typically consists of an input layer,
hidden layers and an output layer, while the hidden layers include one or more layers that perform
convolutions. While originally developed for image processing, CNNs are also effective for analyzing
one-dimensional time-series data.

1D CNN

A 1D Convolutional Neural Network (1D CNN) is a type of convolutional neural network specifically
designed to process sequential data rather than spatial data like images. The ”1D” in 1D CNN refers
to the fact that convolutions are applied along only one dimension—typically the time axis or sequence
axis. In this project, we leverage a 1D CNN to extract meaningful temporal features from sequences
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of facial Action Units (AUs), enabling the model to learn patterns in how facial muscle activity evolves
over time—patterns that may be indicative of depression. Unlike fully connected networks, 1D CNNs
can efficiently capture short-term dependencies in sequential data, making them well-suited for this
task as shown in the work of Kurek, Świderska, and Szymanowski (2024). In Chapter 3 we provide
a detailed explanation of how the 1D CNN extracts high level features from the Action Units and how
these features are then fed to the depression predictor. Figure 2.6 provides an overview of the 1D-
CNN architecture from Othmani, Zeghina, and Muzammel 2022 which we used for our visual features
extraction.

Figure 2.6: 1D CNN

AlexNet

AlexNet, introduced by Krizhevsky, Sutskever, and Hinton 2012, is a Convolutional Neural Network
(CNN) architecture that played a significant role in advancing deep learning research. It gained atten-
tion after achieving strong performance in the 2012 ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC), demonstrating the effectiveness of deep CNNs for large-scale image classification
tasks. AlexNet consists of eight layers—five convolutional layers followed by three fully connected
layers—that extract hierarchical features, from low-level textures to high-level shapes and objects. The
architecture is illustrated in Figure 2.7. While originally designed for image classification, AlexNet has
been successfully adapted for audio-based tasks by processing Log-Mel spectrograms—which are
time-frequency representations of sound. Since spectrograms share structural similarities with images,
CNNs like AlexNet can effectively capture relevant spectral and temporal patterns.

In this thesis, AlexNet is leveraged to extract acoustic features from Log-Mel spectrograms of speech
data. These extracted features capture key speech characteristics, such as prosody, pitch variations,
harmonic structure, and energy distributions, which have been shown to be indicative of depression.
Specifically, AlexNet enables the model to identify depression-related vocal markers, such as mono-
tonic speech, reduced pitch variation, and abnormal prosody—all of which have been linked to Major
Depressive Disorder (MDD). The extracted deep spectral features from AlexNet are then fed to our de-
pression predictor, where they are combined with visual features extracted from Action Unit sequences
using a 1D CNN as mentioned above. In Chapter 3 we explain in more detail the procedure in which
AlexNet extracts those high level features from the Log-mel spectrograms. This multi-modal approach
integrates both audio and facial behavioral cues, providing a more comprehensive framework for de-
pression detection
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Figure 2.7: AlexNet architecture

Model Calibration

Model calibration is the process of aligning a model’s predicted probabilities with the actual likelihood of
those predictions. In a well-calibrated model, the predicted confidence aligns with reality. For example,
if a model predicts an event with confidence 80%, that event should occur in 80% of similar cases.
This calibration is important in applications such as medical diagnosis, risk prediction, and autonomous
systems, where accurate uncertainty estimates inform critical decisions. Poorly calibrated models can
make over-confident or under-confident predictions, negatively affecting downstream tasks such as
classification reliability and model interpretability.

In this thesis, model calibration plays an important role in ensuring the reliability of the depression pre-
diction probabilities, which are later analyzed using a saliency-based explainability approach. Since our
saliency method relies on analyzing the gradients of entropy derived from the probability distributions, it
is essential that these probabilities accurately reflect true likelihoods rather than being overconfident or
poorly distributed. Without proper calibration, the entropy-based saliency scores could be misleading,
failing to capture meaningful uncertainty information in the model’s decisions.

Temperature scaling is a post processing method for re-calibration of the model, especially neural
networks. It works by adjusting the predicted logits (the raw outputs of the model before applying
softmax) using a temperature parameter T > 0. This adjustment ”softens” the probabilities, reducing
the overconfidence when T > 1. The adjusted probability for a class i is calculated as:

pi =
exp(zi/T )∑
j exp(zj/T )

, (2.7)

where zi represents the logit for class i. The temperature parameter T is typically learned in a wait-
ing validation set to minimize the calibration error. Because temperature scaling is performed as a
post-processing step, it does not require the retraining of the model, and thus is very computationally
cheap and simple to implement. This has made it a pretty popular method for deep learning calibra-
tion, especially for classification tasks. In this work, temperature scaling is applied to the depression
predictor model to calibrate its probability outputs before performing the saliency analysis in those cali-
brated probability distributions. In the next section, we introduce the saliency-based approach used in
this study and explain how entropy gradients are leveraged to interpret the model’s decision-making
process.
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2.4. Explainable AI
Explainable artificial intelligence (XAI) is a set of processes and methods that allows human users to
comprehend and trust the results and output created by machine learning algorithms. This is espe-
cially important in applications where decision-making has significant consequences, such as medical
diagnosis, mental health assessment, and risk prediction, where understanding the reasoning behind
a model’s decisions is just as important as the predictions themselves. Without explainability, deep
learning models are often regarded as ’black boxes’, making it difficult to assess their reliability and
potential biases. To address this, we incorporate a saliency-based XAI method in our depression clas-
sification pipeline. The goal is to interpret which aspects of the input —derived from speech and facial
Action Units (AUs)—contribute most to the model’s decision, offering insight into the model’s behavior.

2.4.1. Saliency
Saliency methods are widely used XAI tools that highlight the most influential parts of the input contribut-
ing to a model’s prediction (Schuff et al., 2022; Hu et al., 2023). In the context of this thesis, saliency
refers to the identification of time segments in a patient’s audio-visual data that most influenced the
model’s classification of depression. By highlighting these key features, saliency methods help reveal
how neural networks process information, offering valuable insights into their decision-making process.
As such, saliency is used as an XAI tool since it helps us understand which parts of the inputs are the
most influential in generating the output.

A notable contribution to the field is the work by Raman et al. (2024), who propose an information-
theoretic saliency framework for time-series forecasting. Their method identifies themost salient timesteps
in an observed sequence by quantifying how much each timestep contributes to reducing the model’s
uncertainty about future outcomes. By grounding saliency in differential entropy, they link the con-
cept of feature importance to information gain, rather than arbitrary perturbation-based metrics. This
approach enables principled counterfactual reasoning in forecasting tasks, and supports human-in-
the-loop analysis by highlighting which observations were most informative in shaping the model’s
probabilistic forecast.

Building on this idea, in this thesis we adopt the entropy-based saliency method tailored to our depres-
sion detection model. Instead of using a time-series data, we treat our inputs as time series by applying
a sliding window in the input modalities that represent a video. This way we will find how influential each
segment was for the model. In Chapter 3 we explain with more detail how the approach by Raman et al.
(2024) is applied for our depression predictor’s probabilities. As mentioned by Raman et al. (2024), the
definition of saliency given by Loog (2011) is:

S(x) := det(J⊤φ(x)Jφ(x)) (2.8)

, where Jϕ denoted the Jacobian matrix of ϕ which is the feature mapping.

To visualize the the amount of influence each input component, in our case segments, have in the
model’s output we use saliency maps. The mathematical formulation above leverages the determi-
nant of the product of the Jacobian’s transpose and the Jacobian itself, effectively measuring the local
sensitivity of the feature mapping. This determinant reflects how small perturbations in the input can
lead to significant changes in the output, thereby quantifying the “information gain” or uncertainty re-
duction attributed to each segment. This visualization is particularly valuable in our application, as it
not only highlights the critical moments in a patient’s audio-visual data but also illustrates how these
influences evolve over time. In Figure 5.13 a saliency map is illustrated that represents the saliency of
the segments contained in one of the 8.5 second video clips inlcuded in the experiments.
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Figure 2.8: Saliency map of Clip 308, 8.5 seconds

2.5. Research Gap
Explainable AI (XAI) has increasingly been applied to depression prediction to not only achieve high
predictive accuracy but also to provide transparency in decision-making—a critical factor in clinical con-
texts. For instance, a recent work by Jo et al. (2024) demonstrates that post hoc XAI methods such
as Local Interpretable Model-Agnostic Explanations (LIME) (Ribeiro, Singh, and Guestrin, 2016) and
Shapley Additive Explanations (SHAP) (Lundberg and Lee, 2017) can reveal which facial and acous-
tic features drive predictions in depression models. These techniques assign importance scores to
features, so they offer insights into how non-verbal cues - like subtle changes in facial expression,
variations in vocal prosody, and shifts in body language - contribute to the classification of depressive
symptoms. These methods have been employed for depression prediction tasks to interpret feature
contributions at the individual prediction level (Jo et al., 2024; Al Masud et al., 2025). Although infor-
mative, these explanations are inherently static (Guidotti et al., 2018). They tell us which cues are
important on the whole, but not when during the interaction those cues become important. As a re-
sult, such explanations ignore the temporal evolution of depression-related behaviors. Recent work
highlights that many explainability methods in depression detection still focus on static or frame-level
interpretations and fail to adequately incorporate temporal cues, limiting their utility for understanding
the evolution of affective behavior over time. For example, Moreno et al. 2023 notes that “interpretabil-
ity from temporal activities from videos when deep models are used is not fully explored,” highlighting
the gap in time-aware explainability approaches.

Our saliency entropy-based approach overcomes the above limitations. In contrast to existing meth-
ods that offer static, frame-level explanations, our approach provides a dynamic, time-aware analysis
that captures the temporal evolution of depression-related behaviors. A saliency-based explainability
approach directly targets this gap by capturing when and where the model is attending to depression-
relevant cues in the input video/audio sequence. Additionally, compared to other temporal approaches
such as Attention mechanisms our saliency entropy-based approach offers a model-agnostic, post-hoc
method that leverages the temporal relationships of the input (Gomez, Fréour, and Mouchère, 2022).
By computing the entropy of the model’s probability distribution and deriving the Jacobian with respect
to each video segment, this approach provides a more precise, fine-grained sensitivity analysis that
reflects the causal impact of small perturbations in the input. By filling this gap, our method contributes
to the broader goal of enhancing interpretability in AI-driven depression detection, and helps us answer
the first part of the research question ’To what extent can interpretability in AI-based medical diagnosis
for depression be improved by identifying the salient moments in video and audio data and investigating
them through human evaluation?’.

To answer the second part of the research question is also important for interpretability. Most prior
works on XAI presents AI-highlighted segments or features in isolation, without rigorously comparing
them against human-selected cues or expert annotations (Y. Zhang et al., 2023). Hence, a significant
gap lies in the limited effort to systematically validate these explanations against human judgment (Qi
et al., 2023). Recent work is beginning to acknowledge and address this gap. K. Yang et al. (2023)
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address this by conducting “strict human evaluations to assess the quality of the generated explana-
tions”, creating a dataset of human-annotated explanations for comparison. L. Zhang et al. (2025)
compare and contrast their model explanations with the professional annotations: they create a test
set of “text chunks identified by human annotators as important for depression prediction” and show
that their system could retrieve similar segments as supporting evidence. Such efforts underscore that
verifying AI explanations against expert annotations or user feedback is important. Following the exam-
ple set by these studies, we conducted our own experiments with lay participants. In our experiments,
participants reviewed the model’s highlighted audiovisual segments and answered targeted questions
regarding the presence and relevance of depression cues. It directly addresses our research question
by answering wether investigating and evaluating salient audiovisual moments through human evalua-
tion can potentially enhance the interpretability of AI-based depression diagnosis.



3
Methodology

This research develops a method that integrates salient moment detection with statistical feature analy-
sis to improve the interpretability of depression prediction. Our approach is two-fold. First we implement
a model for segment-wise depression prediction and, based on probability distributions, identify salient
segments for each patient. Second, we examine these salient segments by employing saliency maps
and rigorous statistical analyses for short video clips (containing those salient moments) that were pre-
sented to human participants. This section outlines the methodology for developing and evaluating the
depression predictor, for extracting the salient moments and for performing the statistical analysis to
assess them.

3.1. Data Collection
The initial phase involves collecting a dataset that contains a sufficient amount of individuals who either
suffer from depression or not. There are plenty of datasets in the literature either containing text data,
EEG data, or audiovisual data. The focus of this research is depression prediction for audiovisual data
and this is why we chose the Distress Analysis Interview Corpus (DAIC) dataset Gratch et al. 2014. The
DAIC dataset contains clinical interviews that aim to support the diagnosis of mental health conditions
associated with distress such as anxiety, depression, and post-traumatic stress disorder. A subset of
this dataset, the one used for this project, is called DAIC-WOZ. This dataset focuses solely on depres-
sion, as it contains depressed and non depressed individuals. Data collected from DAIC-WOZ dataset
include audio recordings and visual related information from interviews and extensive questionnaire
responses. The visual related information contain Action Units and also facial features representing
movements of specific points in the face per timestamp. The interviews are conducted by an animated
virtual agent, Ellie, which is controlled by a human interviewer in another room.

3.2. Data Preprocessing
Following a preprocessing procedure similar to the work of Othmani, Zeghina, and Muzammel (2022),
the speech recording and the visual features are aligned and then divided into smaller segments of
3.5 seconds. The audio and visual data are truncated and synchronized using the start and end times-
tamps of the transcript, which include the full interview text along with detailed speaker annotations
and timestamps. Deviating from the work by Othmani, Zeghina, and Muzammel (2022), which just
segments the data into 3.5 second segments, we decided to follow a sliding window setup. A sliding
window framework is employed to localize salient moments with finer temporal resolution, allowing us
to identify critical segments within shorter time intervals. The setup that was chosen was a window
size of 3.5 seconds with a stride of 0.1 seconds. This configuration was chosen to balance two critical
factors. First, a 3.5-second window is short enough that the incremental addition of 0.1 seconds still
influences the segment’s content, thereby ensuring that the calculated changes in entropy reflect mean-
ingful shifts in the signal. If the window were considerably larger, the 0.1-second shift would represent
a very small fraction of the total segment, reducing its impact on the overall entropy and potentially

19
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masking subtle yet important variations. At the same time 3.5 seconds are long enough to contain
meaningful information for the model to learn to classify depression and it was used in the work of Oth-
mani, Zeghina, and Muzammel (2022) which was the work that part of our preprocessing procedure
was based. Second, the stride of 0.1 seconds is a good compromise for the trade-off temporal resolu-
tion/computational cost. While a smaller stride could further increase temporal resolution, it would also
generate an excessive number of highly overlapping segments, leading to increased computational
costs without proportionate gains in the detection of perceptually relevant changes.

Additionally, using the transcript data, only the audio data where the participant speaks is kept. This
means that all the audio where the interviewer speaks is zeroed out. We kept the visual features for
those moments because even if the patient does not speak, useful visual cues can still be captured in
the patient while the interviewer is speaking. The next step, to prevent overfitting in the deep neural
networks, an extra preprocessing step is applied in audio recordings. First, the raw audio is augmented
to increase data variability. In this step, a bit of noise is introduced by randomly selecting a sample from
the audio and subtracting a percentage (between 1% and 10%) of its amplitude from the entire signal.
This perturbation is to simulate natural background variations. The perturbed audio is then further
augmented by randomly shifting its pitch by up to ±2 semitones. This pitch augmentation is employed
to enhance the diversity of the training data so that the network can generalize more effectively to new
samples. Finally, the AUs file contain Action Units and the changes in their values over the timestamps.
Gratch et al. (2014) created this file using OpenFace (Baltrušaitis, Robinson, and Morency, 2016),
where from the raw videos they extracted the Action Units. There are some parts of the videos where
the OpenFace algorithm was not confident in its detection of facial features. In practice, these values
suggest that the face was either not detected properly—perhaps due to occlusion, poor lighting, or
an angle that makes detection difficult—or that the tracking failed. Consequently, the data for those
frames is not reliable and does not contain any useful information about the facial movements. Those
frames were removed from the data along with the respective frames of the audio data, so the data
stays synchronized.

3.2.1. Audio data preprocessing
After the aforementioned preprocessing in the audio data, the calculation of log-mel spectrograms
follows, which is a type of visual representation of audio signals. First, we define the parameters for
the short-time Fourier transform (STFT): a window length of 25 milliseconds and a hop length of 10
milliseconds, which are calculated based on the audio sampling rate. The STFT is then performed
using a Hann window, and the squared magnitude of its complex values is taken to generate the power
spectrum. This power spectrum is converted to the Mel scale using 64 Mel bands, a transformation
that aligns the frequency representation with the human auditory system by emphasizing perceptually
important frequency bands. Finally, the Mel-spectrogram is converted to a logarithmic scale through
a decibel transformation, which compresses the dynamic range of the data and prepares it for further
analysis or model training, while ensuring numerical stability by adding an offset to avoid taking the
logarithm of zero.

Extracting log-mel spectrograms is used as feature extraction since they can capture essential fea-
tures of phonemes and intonation, which are critical for speech recognition systems. In the Othmani,
Zeghina, and Muzammel (2022) paper, the obtained log-mel spectrograms are passed through a VG-
Gish network (Hershey et al., 2017) for extraction of high-level features. Within our high-level audio
feature extraction approach, we leverage a similar deep neural network architecture, an AlexNet model,
as defined in Chapter 2. To be able to do that, we reshape these 2D spectrograms into a pseudo-3D
representation. This is done by replicating the spectrogram into three channels and enhancing it with
temporal derivatives, the delta and delta–delta features. The output is a three-channel representation
that preserves the spectral information but is compatible with architectures like AlexNet. We then em-
ploy a modified version of AlexNet inspired by the work of Venkataramanan and Rajamohan (2019).
AlexNet was originally designed for three-channel RGB images; rather than altering its architecture
to accept a single-channel input, we repeat the log-mel spectrogram into three channels. In Modi-
fiedAlexNet, convolutional layers extract spatial features in the spectrogram, while the classifier, which
is a dropout layer followed by a linear layer, projects these features into a small representation (with a
default of 512). The changes to the network, such as resizing the sizes of the convolutional kernels and
strides to match the sizes of the spectrograms, are drawn from previous research on emotion detection
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(Venkataramanan and Rajamohan, 2019) and are designed to better capture the salient audio features
that accompany depression. For every patient, each segment of the log-mel data is transformed into a
three-channel format. The segments are then individually passed through the modified AlexNet model
to obtain high-level feature representations. These audio -features are aggregated for each patient and
they will be one of the two modalities that will be fed as an input to train the segment-wise Depression
Predictor. Figure 3.1 depicts the audio preprocessing procedure that was described above.

Figure 3.1: Audio preprocessing diagram

3.2.2. Visual data preprocessing
As mentioned before, the DAIC-WOZ dataset does not contain the raw videos of the interviewees
for confidentiality reasons. Therefore, our analysis relies on pre-extracted visual features the Action
Units (AUs) instead. The AUs are used as visual features to encode the facial patterns of depressed
subjects. As described in Chapter 2, AUs capture subtle facial muscle movements according to the
Facial Action Coding System (Ekman and Friesen, 1978) and serve as indicators for differentiating
between depressed and non-depressed individuals. Using a 1D-CNN is particularly appropriate as
convolutional layers are good at capturing local patterns in sequential data, such as trends and tempo-
ral dependencies, that are crucial to model the evolution of facial expressions over time. Inspired by
the configuration in Othmani, Zeghina, and Muzammel (2022), our AU1DCNN model is configured to
receive the 20-channel input encoding the 20 AUs. It employs a number of convolutional layers with
large kernel sizes and matching padding to collect a sufficiently large temporal window, followed by
pooling and dropout layers to reduce dimensionality and prevent overfitting. In addition, we incorpo-
rate a dimensionality reduction module—implemented as a fully connected layer (FeatureReducer)—to
project the high-level features generated by the CNN into a lower-dimensional space to match the di-
mensionality of the audio modality. Again each segment of AU data is independently fed to the 1D-CNN.
The extracted visual features are the second of the two modalities that are fed as an input to train the
segment-wise Depression Predictor. A visual representation of the procedure described above can be
found in Figure 2.6 in Chapter 2.

3.3. Model Development
In our approach, multi-modal features from the audio and vision modalities are combined to obtain a
robust depression predictor. We initially as mentioned above extract and preprocess features: audio
features are extracted from log-mel spectrograms and reduced in dimensions, and visual features are
extracted from Action Unit readings that capture facial expressions. These features are then concate-
nated per segment to generate a combined multimodal representation of each segment in an interview.

Since every patient’s data is divided into multiple segments under the sliding window framework, we
perform a flattening operation that concatenates all segment-level features from every patient into a
single tensor for training. This means that our training procedure is completely patient independent,
since the segments are flattened and then shuffled before they are fed into the model. This flattened
information, together with depression labels, is used to create a custom PyTorch Dataset. The dataset
also keeps track of patient IDs and segment indices, which can later be used to reconstruct the original
order of the segments within each patient for the saliency calculation.

The depression predictor model itself, is a deep neural network with several fully connected layers



3.3. Model Development 22

interspersed with batch normalization, ReLU activations, and dropout layers. The network takes the
high-dimensional multimodal feature vectors as input and maps them to a lower-dimensional space
before a final classification into two classes (depressed or non-depressed). This architecture is de-
signed to successfully reduce the complexity of the input features without sacrificing the most salient
information necessary for prediction. The Adam optimizer is used with weight decay for regularization
and a focal loss function is used as the training criterion as an attempt to mitigate the class imbalance
that favors the non-depressed group. The focal loss down-weights easy examples and focuses the
model on harder, misclassified examples, which is crucial in scenarios where one class might be un-
derrepresented. In addition, we incorporate learning rate scheduling to reduce the learning rate when
the training loss plateaus.

We use a softmax function for the model’s output, which produces probability distributions per segment
for calculating saliency. Calibration is essential when using softmax as the output of the neural network,
to ensure that the predicted probabilities are meaningful and they accurately reflect the real probabilities
of the event. Calibration ensures that when the model assigns a certain probability to a prediction—say,
70%—this value accurately reflects the true likelihood of depression. In our calibration step we employ
temperature scaling to adjust the model’s probability estimates. After scaling the model, we compute
the softmax probabilities from the logits and store these alongside the corresponding true labels and
patient/segment identifiers that will later be used for the reconstruction.

To evaluate how well our model’s predicted probabilities align with actual outcomes, we generated reli-
ability diagrams, shown in Figure 3.2 and Figure 3.3. A reliability diagram is a visual tool for assessing
how well a model’s predicted probabilities match the actual outcomes. Before Calibration (Figure 3.2):
The blue line is considerably away from the diagonal, indicating that the model’s probability estimates
are not well calibrated. There are bins in which the model overestimates and in which it underestimates
the true probability of depression. After calibration (Figure 3.3), the curve of the calibrated model is
more aligned with the diagonal. This suggests that for a predicted probability p to a prediction, that
probability is now a better approximation of the true fraction of depressed cases in that bin.

Figure 3.2: Reliability diagram before calibration
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Figure 3.3: Reliability diagram after calibration

3.4. Saliency
To further interpret our model’s decisions, we compute saliency maps over the segments for each
patient. Building on the methodology proposed by Raman et al. (2024) for using saliency maps to
explain why the model forecasted a future, saliency here is defined as the degree of change in the
model’s entropy of predicted probabilities from one segment to the next, capturing how informative
each segment is for the final classification.

We begin by loading calibration results, which contain each segment’s predicted probability distribution,
the ID of the patient that the segment belongs to, and the segments’ original index within each patient.
The probability distributions were generated by the calibrated model. We then sort and group segments
by patient ID, ensuring that each patient’s segments are processed in chronological order based on their
original segment indices. To compute the saliencies, the entropies need to be calculated first. Since
the output of the predictor is a discrete distribution, the entropy is calculated by the above definition:

h(X) = −
∑
i

p(xi) log p(xi) (3.1)

where X is the predicted probability distribution for that segment. Higher entropy indicates greater
uncertainty in the model’s prediction.

Having obtained entropy values for each segment of a patient, we then find the discrete gradient of the
values across consecutive segments. In one dimension, such a gradient is simply the Jacobian of the
entropy with respect to the index of the segment. The Jacobian in this case quantifies the sensitivity
of the entropy (and hence of the model uncertainty) to infinitesimal changes in time. By squaring the
Jacobian (gradient) values, we get our measure of saliency based on Equation 2.8. A large squared
gradient indicates a steep transition in entropy between adjacent segments, highlighting a segment
where the model confidence changes significantly and thus suggesting that the segment is salient.

Because raw saliency scores can vary from patient to patient, we normalize them to the range of [0,1]
by subtracting the minimum and then dividing by the maximum minus the minimum. We then identify
the top 5 segments with the highest saliency for each patient. From those highest saliency segments
we will later pick a number of them to include in the experiments.
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3.5. Evaluation
The first step of the evaluation is the evaluation of the model’s performance. The model’s performance
is evaluated with a list of quantitative metrics, primarily through a classification report and monitoring
the training loss over epochs. The classification report provides key performance metrics like accu-
racy, precision, recall, and F1 scores for depressed and non-depressed classes, providing a general
overview of the ability of the model to classify between these two classes. In this study, model evalua-
tion is performed exclusively on the training data. We monitor the training loss over epochs to assess
how steadily the model learns and converges; a consistently decreasing training loss indicates that
the model is capturing meaningful patterns from the data. Although relying solely on training loss and
training-based classification reports may overestimate performance due to potential overfitting, these
metrics offer valuable insight into the model’s learning dynamics and its ability to correctly classify cases
during the development phase. Future work will extend the evaluation framework aiming to improve
model generalization in unseen data.

Using the procedure described in Section 3.4, salient segments are calculated. The salient segments
though represent a window of 3.5 seconds. Since we work in a sliding window framework with a stride
of 0.1 seconds there is a substantial overlap between consecutive segments. That means that if a
segment S is identified as salient, it means the model’s confidence changed significantly relative to
segment S-1. However, since S and S−1 share most of their frames (they differ by only 0.1 seconds
at the start of S-1 or end of S), the triggering factor for saliency is likely the newly added 0.1-second
portion or the 0.1-second portion that was removed from the beginning of segment S−1. Figure 3.4
provides a clear illustration of the above setup. For the purpose of this thesis, we will focus on the
added information, hence in the second point of interest.

Figure 3.4: Segments S−1 (green) and S (blue)

The reasoning behind the focus on the second point of interest is firstly we want to give emphasis on
emerging cues. That is because participants are more likely to intuitively focus on information that is
added rather than removed to make a decision. Study by Yantis and Jonides (1984) supports the idea
that our visual attention system is designed to prioritize sudden changed in the environment, suggesting
that our attention system is sensitive to new appearing stimuli more than information that simple ceases
or is removed. Similarly, auditory research shows comparable effect, for example Näätänen et al. (2007)
using the mismatch negativity (MMN) response indicates that our auditory system automatically detects
and prioritizes new or deviant sounds.

These points of interest is the reason why, in this research, we distinguish between salient segments—
the short, automatically identified intervals derived from a sliding-window analysis—and salient mo-
ments, which are the specific points of interest within those segments. Each video clip is approximately
8.5 seconds long, which means it contains 51 consecutive segments. To avoid position bias around
the clips the segments are not positioned identically across all the clips. There are 3 different cases
regarding the position of the ’salient segment’ in the video clip.

• Case 1: The salient segment is positioned at the beginning of the clip. This means that there is
1 second before the beginning of the 3.5 second segment and 4 seconds after Figure 3.5a.
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• Case 2: The salient segment is positioned at the end of the clip. This means that there are 4
seconds before the beginning of the 3.5 seconds segment and then 1 second after Figure 3.5b.

• Case 3: The salient segment is positioned at the middle of the clip. This means that there are 2.5
seconds before the beginning of the 3.5 seconds segment and then 2.5 seconds after Figure 3.5c.

In the figures below we can see the 3 position cases and the points of interest in Figures 3.5a, 3.5b,
3.5c.

(a) Case 1: the segment labeled as salient occurs at the beginning of the
8.5 second video clip

(b) Case 2: the segment labeled as salient occurs at the end of the 8.5
second video clip

(c) Case 3: the segment labeled as salient occurs in the middle of the
8.5 second video clip

Figure 3.5: Three cases based on 3.5 salient segment position

Following the identification of these salient moments, an experiment (described in Chapter 4) presents
the 8.5-second clips to participants in a questionnaire. Participants are presented with the clips and
asked questions about the moments they assess to be salient, how they interpret the behaviors or
cues displayed, and whether they agree with the model’s identified moments. This setup allows us to
investigate:

• In how far the model detects significant intervals that can trigger depression behaviors
• How interpretable or self-explanatory these moments are to human audiences
• Understanding which facial and vocal characteristics are critical for identifying depression—and
whether these cues can be reliably recognized by human observers.

By combining quantitative performance indicators (accuracy, sensitivity, specificity) against qualitative
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human judgment on salient events, we gain both technical and user-level feedback on the capability of
the model to recognize and interpret potential signals of depression within short video segments.

3.6. Statistical Methods
Linear/Logistic mixed effect model

Linear mixed effects models extend traditional regression by incorporating both fixed effects (factors
we are explicitly interested in) and random effects (sources of random variability). This method is par-
ticularly well-suited for data with a hierarchical or nested structure—where multiple observations come
from the same participant or the same clip—because it accounts for the non-independence of these
observations. In our study, the fixed effect examines the relationship between depression status and
confidence ratings. The random effects capture the variability across participants and clips, ensuring
that the effect of depression is estimated accurately without being confounded by these other sources
of variability. In our initial model, we included random intercepts for both Participant ID and Clip ID to
account for variability at both levels. However, including Participant ID resulted in a singular fit warning,
meaning that the variance component for participants was estimated to be nearly zero. This indicates
that participants, on average, did not differ substantially in their baseline confidence ratings. Given
the limited number of participants (17) and the minimal variability among them, including this term did
not improve model fit and only added unnecessary complexity. Consequently, we simplified the model
by retaining only the random intercept for Clip ID, which captures the variability in confidence ratings
attributable to differences among clips. We implemented this analysis using the lmerTest package in R,
which builds upon the lme4 framework. While lme4 is widely used for fitting LMMs, it does not provide
p-values for fixed effects by default. lmerTest addresses this limitation by using methods like Satterth-
waite’s approximation to compute p-values, thereby enhancing the inferential power of our model. This
approach allowed us to robustly test whether depression status significantly predicts confidence ratings,
while appropriately controlling for both participant-level and clip-level variability in our dataset.

In addition to linear mixed-effects models for continuous outcomes such as confidence ratings, we
also employed logistic mixed-effects models to analyze binary classification outcomes (e.g., whether
a participant correctly identified a depressed clip). These models are a form of generalized linear
mixedmodels (GLMMs), which extend themixed-effects framework to handle non-continuous response
variables. Specifically, we modeled the binary variable CorrectPrediction (1 = correct classification, 0
= incorrect) using a logit link function, appropriate for binomial outcomes.

Pearson Correlation Analysis

This statistical method measures the linear relationship between two continuous variables. In our study,
we calculate the Pearson correlation coefficient between the model’s saliency values and the density of
participant-selected timestamps for each video clip. For each clip, saliency values provide a measure
of where the confidence of the model is most variable. At the same time, the density of participant-
labeled timestamps indicates in which locations human evaluators focus their attention when asked to
label salient points. By computing the Pearson correlation coefficient, r, between these two variables
using the formula:

r =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)
2
√∑n

i=1 (yi − ȳ)
2
,

where xi and yi denote the corresponding saliency value and corresponding human timestamp den-
sities, we have a quantitative estimate of how well human ratings correlate with those derived from
modeling. A high positive correlation indicates that timestamps with high saliency are also frequently
selected by human evaluators, suggesting a strong alignment between the automated and human in-
terpretation of the data.
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Experiments

In the previous chapter we discussed the methodology for detecting salient segments for each patient.
Those segments represent moment of high saliency value which indicated that there was an activity in
the video that ’surprised’ the model and influenced its decision process. This could be anything related
to the trainable features such as facial movement and changes in the voice prosody. The goal of this
experiment evaluate those salient moment based on human perception and investigate the reasons
behind their saliency, aiming to answer the research question posed in Chapter 1. The experiment will
be in a questionnaire form that contains only multiple choice questions. The experiment is separated in
two sections each one serving a different purpose and answers different sub-questions of the Research
Question. The participants were be shown a number of short video clips and were asked to reply in a
series of questions regarding those clips.

4.1. Video-Clip Processing
Asmentioned in Chapter 3, we already have the top 5 salient segments of each patient. The next step is
to make those segments illustrative to the participants of the experiment so that they can evaluate and
investigate those segments. For this purpose we will use the ’features’ file given from the dataset for
each patient. In this file contains the coordinates of 68 two-dimensional points of the face and how they
change for each timestamp. Using those files we recreate the face of the participants being interviewed
with an animated face. At the same time we used the .wav recording files for the audio of the clip and
we synchronized it with the facial movements using the timestamps that are present in both files. The
result is an animated speaking face that resembles the actual interview of the patient. The illustration
of this face can be seen in Figure 4.1. Each one of the dots represent a facial point that is contained in
the ’features’ file and its movement progresses over time as the timestamp increases. The animated
video clips were created using HTML and JavaScript based on feature and wav files that have been
truncated around the salient segment in three different ways, which will be analyzed below. Besides
watching the clip in the HTML page, the function of auto-saving the clip locally is also available.

27
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Figure 4.1: Animated speaking face

From the salient segment index (the position of the salient segment in the arrays), we calculate the
timestamp taking into consideration one important parameter. In the preprocessing step, some seg-
ments that were not valid were removed. Those segments, as mentioned in chapter 3 had one invalid
modality which is the video, since in the AUs file for some specific timestamps there is no facial data
because the confidence is low. This skews the indexes of the salient segments from their real positions.
For this reason a reliability mask has been used to remap all the salient segment’s indices with their
original indices in the data. After this is done the timestamps of those indices are calculated which they
now represent the real timestamp on the interview that this segment represents.

4.2. Experiment-Section 1: General diagnostic question and selected
influential/salient moment observations

The first section of the experimental design focuses on answering the first two sub-questions of my
research question, ”To what extend can humans identify depression from short video clips?” and ”To
what extend do human-identified salient moments align with the model’s salient moments?”. For the
first section of the experiment the participants are shown 6 individual video-clips. The first question
would be a diagnostic judgment, where participants rate how likely they believe the person in each clip
experiences depression. Participant’s are asked to assess the depression on a scale of 1 to 10 with 1
meaning they confidence is low that the person experiences depression and 10 confidence is high.

The seconds question the participants are asked to answer is regarding the salient moment identifica-
tion, where participants will select which moment in the clip was more influential for their decision. This
aims to investigate the alignment of the human-identified salient moments compared to the model’s se-
lected salient moment. The participants will have a slider that they will slide to the timestamp they chose
as influential. Finally, in this section the participants are asked to choose which facial and auditory cues
they observed during the influential moment they selected.

4.2.1. Facial cues
The facial cues provided in the multiple choice questions are derived from a set of Action Units that
are included in the data set. The AU files contain 20 Action Units which were preprocessed and sub-
sequently used to train our neural network. Those Action Units represent some facial movements, and
those movements were offered as multiple choices to the participants. To assist participants, the facial
movements are organized in three distinct categories which are the Eyebrows & Forehead area, the
Eyes area and the Mouth area. Below are presented choices that were given to the participants and
the Action Units that they represent:

Facial Expressions – Eyebrows & Forehead

• Inner brow raiser (AU01) → Eyebrows lifted near the center
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• Outer brow raiser (AU02) → Outer edges of eyebrows raised
• Furrowed brows (AU04) → Brow lowering, sign of concentration or distress

Facial Expressions – Eyes

• Upper lid raiser (AU05) → Eyes opened wider than usual
• Eye blink (AU45) → Repeated blinking, linked to tension or alertness

Facial Expressions – Mouth & Lips

• Smiling (AU12) → Lip corner puller
• Dimpler (AU14) → Lip corner dimpler
• Downturned mouth (AU15) → Indicator of sadness
• Jaw drop (AU26) → Open mouth, surprise
• Lip tightener (AU23_c) → Pressed lips, sometimes indicating anger or control
• Lip suck (AU28_c) → Lips sucked in, sign of nervousness or self-restraint

Parikh, Sadeghi, and Eskofier (2024) mention that depressed patients exhibited higher frequencies of
AU1 (inner brow raiser), AU4 (brow lowerer), and AU15 (lip corner depressor), which are commonly
associated with sadness and distress. Also, the study found that these patients displayed lower fre-
quencies of AU12 (lip corner puller), which is related to expressions of happiness. There is no strong
evidence that AU02 (outer brow raiser) is specifically linked with depression, on the other side is a key
component of surprise and fear expressions. Notably, depressed individuals often exhibit an increased
blink rate (AU45) compared to healthy individuals and this increased blink frequency tends to normal-
ize as their condition improves (Mackintosh, R. Kumar, and Kitamura, 1983). In summary, excessive
blinking (AU45) might indicate internal stress; in depression it has been observed as a physiological
change, possibly related to tension or reduced dopamine activity, while in general it’s a sign of anxiety
or mental strain (Karson, 1988; Kojima et al., 2002). It is widely documented that genuine smiles are
less frequent in depressed individuals. Thus, depressed individuals show lower frequency and inten-
sity of AU12 (Smiling) (Sharma et al., 2024). When combined with AU06 (cheek raiser), it produces
a “Duchenne smile,” indicating genuine happiness (K. M. Sheldon, Corcoran, and M. Sheldon, 2021).
AU14 involves tightening the lip corners (often creating dimples); it often appears as a smirk when it
is one-sided. Sharma et al. (2024) also suggest that depressed patients exhibit AU14 less frequently
than non depressed groups. AU15 (mouth corners pulled downward) is one of the facial actions most
associated with depression. Parikh, Sadeghi, and Eskofier (2024) report higher occurrences of AU15
in depressed patients and the action unit is directly linked to expressions of sadness, grief, or despair.

4.2.2. Auditory cues
The DAIC-WOZ dataset provides us the raw audio recordings from the participants. The selection of the
multiple choice options for tone of voice was guided by findings from the literature. Key vocal markers
– prosody (intonation and pitch variation), speech rate (speed and pausing), loudness (volume/energy),
and voice quality measures like jitter and shimmer – have all been examined as potential indicators of
depressive states. According to Mundt, Snyder, et al. (2007), patients that responded to depression
treatment developed significantly greater pitch variability, paused less when speaking and spoke faster
than the baseline, whilst patients that did not respond to treatment did not show similar changes. At
the same time Y. Yang, Fairbairn, and Cohn (2012) found out that naive listeners (untrained people)
could with satisfying accuracy perceive depression severity from prosody alone. This implies that the
intonation changes in depression are salient, supporting the idea that a flat and monotone voice can be
a. important sign of depression. Several studies comparing depressed individuals with not depressed
group (Taguchi et al., 2018; J. Wang et al., 2019; Shin et al., 2021) suggest that the depressive group
had lower voices than the control group, that the tone of voice becomes simpler, lifeless and lower in
volume. Jitter and shimmer are also positively correlated with depression (D. M. Low, Bentley, and
Ghosh, 2020), indicating a less stable, more hoarse-sounding voice for depressed individuals.

Tone of voice
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• Monotone or flat voice → associated with depression
• Slow speech with long pauses → associated with depression
• Speech that sounds hesitant or unsure → associated with depression
• Reduced loudness → associated with depression
• Increased vocal jitter and shimmer → associated with depression and anxiety
• Stable voice → opposite of vocal jitter and shimmer
• Speech with energy or enthusiasm → opposite of monotone and flat tone
• Laughter or lighthearted tone → not associated with depression
• Speech that is fluid and uninterrupted → opposite of hesitant and unsure voice

4.3. Experiment-Section 2: Model's labeled salient moment obser-
vations

In this section we are aiming to address the third sub-question, ”What facial/voice features do human
identify in AI-selected salient moments for depression?”. The focus on the previous section was on the
moments that the participants chose as influential for their decision. In this section we shift the focus
on the moments that the model finds influential for its decisions. We are aiming to investigate what do
people observe during those moments and how this differentiates from their observations in their own
influential moments. Again similarly to section 1 the participants will be show the exact same 6 video
clips only now they will be prompted to a specific timestamp. This timestamp will represent the second
point of interest which contains the 0.1 seconds that were added due to the sliding window framework.
The participants now will be asked to answer the same questions regarding Facial Expressions and
Tone of Voice that they were asked before only now they will have to reply with what they observed in
the timestamp that they were given.
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Results

In this section, we present the findings from two complementary perspectives: first, the model’s perfor-
mance on detecting salient moments for depression, and second, the participant experiment evaluating
those moments. We begin by outlining the key measures and outputs of the model, demonstrating how
it identifies potentially important segments in the video clips. We then discuss the human evaluation,
where the observers rated their degree of confidence in picking up on depression, chose their influential
moment and selected what facial or vocal cues they believed were having an impact. By considering
both the model predictions and the results of the experiment side by side, the goal is to answer as
extensively as possible the research question and the sub-questions.

5.1. Model's results
Since the goal is to find patterns of decision making of the model, it is very important that the model’s
performance in identifying depression is adequate for the task. After training our neural network to
identify depression from 3.5 second segments, we evaluated its performance using precision, recall,
F1-score, and accuracy. Table 5.1 summarizes the metrics on the training set for each class (0 =
not depressed, 1 = depressed), along with macro and weighted averages. We report the model’s
performance on the training data rather than on new data because the model exhibits a significant
class imbalance towards the non-depressed class (Class 0). This class imbalance biases the model’s
predictions, and therefore it is less accurate for generalizing to unseen data. However, our primary
goal here is not to deploy a highly generalized depression predictor; but rather examining the hidden
patterns that the model learns in discriminating between depressed and non-depressed. Looking at the
training set—where the model actually built its decision boundaries—is how we get closer to unmasking
what cues or informative moments it considers relevant. This is significant in regards to understanding
the model’s internal thought process and where it directs its processing of the data it was trained on,
even if its overall performance might not translate so neatly to new, balanced data.

Precision Recall F1-score Support
Class 0 0.91 0.89 0.90 981323
Class 1 0.79 0.77 0.77 439079
Accuracy 0.86 1420402
Macro Avg 0.83 0.84 0.84 1420402
Weighted Avg 0.88 0.86 0.88 1420402

Table 5.1: Model performance metrics on the training set.

These metrics indicate that the model achieves a relatively high precision and recall for class 0 (not
depressed), while class 1 (depressed) shows moderate precision and recall, suggesting some room
for improvement. The overall accuracy is 0.86, which is promising given the complexity of the task.

Training Behavior
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Figure 5.1: Training loss

Figure 5.1 shows the training loss over 100 epochs, illustrating that the model steadily converges.
The figure shows a smooth downward trend from approximately 0.28 to about 0.20. This consistent
downward slope strongly suggests that the model is successfully capturing patterns in the training data:
as the network sees the examples again and adjusts its parameters, it becomes better at minimizing
errors on the training set.

5.2. Experiment findings
In this section, we present the results of our human subject experiment for evaluating and interpreting
the salient segments of our model. We asked subjects to rate their level of confidence for detecting
depression, select the timestamp they thought were most influential for their decision, and specify the
facial or voice cues that they observed both in this timestamp and the model’s highest saliency moment.
By analyzing both their confidence scores and feature selections, we gain insights into how humans
perceive and classify the same video clips that our model processed.

5.2.1. SQ1: To what extent can humans identify depression from short video clips?

Classification prediction

Understanding whether human evaluators can accurately identify depression from small video clips is
critical to both evaluating the model’s outputs and improving its interpretability. To answer this question
we need to determine how often participants can correctly identify depression (or non-depression). This
includes analyzing overall accuracy, error patterns and confidence level in their judgments.

Figure 5.2 provides a quick visual overview of how often participants correctly identified the clips. By
illustrating these proportions in a donut chart, we can immediately see the overall success rate of human
judgments. This is a straightforward baseline for how well the participants could tell apart depressed
from non-depressed individuals, and setting the stage for more advanced analyses—such as what
exactly they were looking at or which moments were more influential. From the illustration below we
can see that 66.7% of the clips where classified correctly.
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Figure 5.2: Classification prediction

The following table Table 5.2 shows the confusion matrix where the rows represent the actual class
and the columns represent the predicted class:

Actual / Predicted 0 1
0 35 (TN) 15 (FP)
1 19 (FN) 33 (TP)

Table 5.2: Confusion Matrix

From this matrix, we calculate the following metrics:

• Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
=

31 + 35

31 + 35 + 17 + 19
≈ 66.7%

• Precision:
Precision =

TP

TP + FP
=

31

31 + 17
≈ 68.8%

• Recall (Sensitivity):
Recall = TP

TP + FN
=

31

31 + 19
≈ 63.5%

• Specificity:
Specificity =

TN

TN + FP
=

35

35 + 17
≈ 70%

The data show that 35 non-depressed individuals were correctly identified, and 33 depressed individu-
als were correctly classified. In contrast, errors occurred in both directions: 15 non-depressed subjects
were mistakenly identified as depressed (false positives) and 19 depressed subjects were overlooked
(false negatives). When humans label a subject as depressed, they are correct about 69% of the time
(precision), and they detect roughly 64% of all truly depressed cases (recall). These findings suggest
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that, although human judgment captures a substantial portion of depression cases from short video
clips, there remains a significant margin of error—with a comparable likelihood of missing cases of
depression as of over-diagnosing them.

Inter rater reliability

Inter-rater reliability for human judgments of depression presence in the 30 short clips was quantified
using Gwet’s AC1, yielding a coefficient of 0.399, which, according to conventional benchmarks, indi-
cates fair agreement among raters but does not reach short of moderate or strong consensus. Each
clip was independently rated by either 3 or 4 participants, and the AC1 statistic accounts for chance-
agreement in this unbalanced design. Thus, while raters agreed on depressed versus non-depressed
status more often than chance alone, the level of consistency remained modest. However, individually,
no rater was below 50% classification rate, with most raters having an above chance score.

Confidence analysis

We want to investigate whether clips labeled “depressed” received different confidence ratings com-
pared to non-depressed clips. In Figure 5.3 we visualize the distribution of participants’ confidence
ratings (ranging from 1 to 10) for clips that were actually non-depressed (FALSE) versus depressed
(TRUE). Each “violin” depicts the full spread and density of confidence ratings: wider sections indicate
a higher concentration of ratings at that level, while narrower sections indicate fewer ratings. The box-
plots overlaid on the violins highlight the median (thick horizontal line), interquartile range (box), and
overall range (whiskers). Notably, the median confidence rating for depressed clips is higher than for
non-depressed clips, although there is substantial overlap between the two distributions.

Figure 5.3: Confidence distribution per Class (Depressed vs Non-depressed)

A Linear mixed-effects modelwas fit to quantify this difference and to examine whether this difference
is statistically significant or it is by chance. The model (fit by REML) yielded an estimated intercept of
4.11 (SE = 0.59), indicating that non-depressed clips received an average confidence rating of about
4.11. Depressed clips were rated, on average, 1.78 points higher (SE = 0.71) than non-depressed clips,
a difference that was statistically significant (t(28.69) = 2.52, p = 0.017). Initially, random intercepts
were included for both participants and clips, but the participant-level variance was effectively zero—
indicated by a singular fit—so only the clip-level random effect was retained, which had a variance of
approximately 1.89.

Additionally, to further deepen out analysis we investigate whether partcipants are more confident when
they correctly identify depression (TP) compared to when they incorrectly identify depression. Fig-
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ure 5.4 shows that the distribution for TPs is centered at a higher confidence level than for FPs. In line
with this pattern, a Linear mixed-effects model revealed that participants’ confidence was higher for TPs
compared to FPs (p = 0.0337, p<.05), with an estimated difference of about 0.95 points in confidence.

Figure 5.4: Confidence comparison between True Positives and False Positives

5.2.2. SQ2: To what extent do human-identified salient moments align with the
model’s salient moments?

Alignment with salient moments

One of the key objectives of our research is to find out if the periods that humans identify as most
impactful for their decision align with those impactful to our model. If responders repeatedly select time
frames that are similar or very close to the model’s significant sections, it indicates the AI is picking up
on cues analogous to those that humans intuitively use, which could be a promising indicator of inter-
pretability in its decision-making. Conversely, significant discrepancies could indicate that the model
focuses on subtleties unrecognized by humans, or that participants notice cues the model overlooks.

In Figure 5.5, we visualize the alignment between human-identified salient moments (represented by
violin plots showing the distribution of participants’ responses) and model-identified salient moments,
for clips where participants correctly classified individuals as depressed (True Positives at the clip level).
Each clip’s violin plot illustrates how participant-selected moments are distributed within the 8.5-second
video clip. The green circles indicate the model’s salient segments that were correctly identified by the
model (True Positive, TP), whereas red triangles indicate segments where the model misclassified a
segment as non-depressed (False Negative, FN).

The figure reveals that participant-selected salient moments generally cluster more closely around the
model-identified points when the model correctly classified the segment as depressed (green circles,
TP). Conversely, for segments that the model misclassified (red triangles, FN), participant-selected
points exhibit a broader distribution, indicating less alignment with the model’s salient segment.
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Figure 5.5: Plot for TP classification from participants

In Figure 5.6, we visualize human-identified salient moments for clips where participants correctly clas-
sified individuals as non-depressed (True Negatives at the clip level). The violin plots represent the
distribution of participant-chosen timestamps for salient segments within each clip. Green circles rep-
resent model-identified salient segments that were correctly classified by the model as non-depressed
(True Negative, TN), whereas red triangles represent segments incorrectly classified by the model as
depressed (False Positive, FP).

Participants’ timestamps generally cluster closer to the model’s correctly identified salient segments
(TN, green circles), although variability remains evident. In contrast, segments classified incorrectly
by the model as depressed (FP, red triangles) often show greater variability in participants’ selections,
indicating less consistency between human-chosen moments and the model’s salient segments.
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Figure 5.6: Plot for TN classification from participants

In Figure 5.7, we illustrate participant-chosen salient moments for clips where participants mistakenly
classified individuals as depressed (False Positives at the clip level). Violin plots represent the distri-
bution of the timestamps selected by participants as salient within each clip. Green circles indicate
segments the model correctly classified as non-depressed (True Negative, TN), whereas red triangles
indicate segments incorrectly classified by the model as depressed (False Positive, FP). Participant
responses appear more dispersed across these clips, regardless of the model’s segment classification
(TN or FP).
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Figure 5.7: Plot for FP classification from participants

In Figure 5.8, we present participants’ timestamp choices for clips they classified incorrectly as non-
depressed (False Negatives at the participant level). Green circles indicate segments the model cor-
rectly identified as depressed (True Positive, TP), while red triangles represent segments incorrectly
identified by the model as non-depressed (False Negative, FN).

Figure 5.8: Plot for FN classification from participants
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Due to simplicity and also due to notable visual differences observed in participant alignment withmodel-
salient moments, our subsequent statistical analysis primarily focuses on clips where participants cor-
rectly classified the presence (TP) or absence (TN) of depression. Specifically, we compared alignment
for salient segments where the model classification matched participants’ correct assessments (TP-TP
and TN-TN) versus segments where the model misclassified the salient segment (TP-FN and TN-FP).
We excluded detailed analyses of scenarios where participants themselves misclassified clips (FN and
FP) because participant uncertainty and variability were inherently higher, limiting meaningful interpre-
tation of human-model alignment.

The above observations are more clear in the illustrations below. In Figure 5.9 and Figure 5.10, we
visualize the raw error in seconds between the participants’ chosen salient moments and the model’s
salient segments. Specifically, these graphs show the distribution of errors in the subset of clips where
participants correctly identified the presence of depression.

Again a linearmixed effectsmodel was conducted to examinewhether participants’ temporal accuracy—
as measured by the raw error between their selected timestamp and the model-derived mean salient
interval—differed according to the clip salient moment’s classification by the model among cases where
participants correctly identified depression. In this analysis, the data were restricted to clips where par-
ticipants were correct (TP) and were further divided by the model’s classification of the salient segment
of the clip into two groups: TP (true positive) and FN (false negative). The model included random inter-
cepts for Participant ID and Clip ID. The intercept (–2.48 seconds, SE = 0.73, p = 0.00195) reflects the
average raw error for the reference group (clips with FN salient segment classification by the model).
Hence on average, the FN group’s selected timestamps are about 2.48 seconds before the model’s
midpoint. The fixed effect for ClipGroupTP was estimated at 0.57 (SE = 0.80, t = 0.71, p = 0.48318),
indicating that, on average, the raw error for TP clips was approximately 1.91 seconds (2.48+ 0.57) be-
fore the model’s midpoint. However, this 0.57-second difference does not reach statistical significance
(p = 0.48), meaning we cannot conclude that there is a reliable difference between the two groups’ Raw
Errors.

Figure 5.9: Raw error violin plot for TP-TP case
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Figure 5.10: Raw error violin plot for TP-FN case

Once more a linear mixed effects model was conducted to examine whether participants’ temporal
accuracy—as measured by the raw error between their selected timestamp and the model�derived
mean salient interval—differed according to the clip salient moment’s classification by the model among
cases where participants correctly identified non-depressed individuals. In this analysis, only cases
where participants correctly indicated non-depression (i.e., Confidence Level ≤ 5 and Classification-
Correct == ”Correct”) were included, and the variable ClipGroupND was defined based on the model’s
classification (TN vs. FP). The model included random intercepts for both Participant ID and Clip ID.
The intercept was estimated at –2.36 seconds (SE = 0.89, t(12.36) = –2.63, p = 0.021), representing
the predicted raw error for the reference group. The fixed effect comparing TN to FP yielded an esti-
mate of –0.06 seconds (SE = 1.11, t(12.17) = –0.06, p = 0.957), indicating that there was no statistically
significant difference in temporal error between TN and FP cases of salient segment in the clips among
the correctly classified non-depressed cases. Notably, while there was variability attributable to Clip ID
(variance = 2.48), the variability among participants was negligible. The above variability can be seen
in Figure 5.11 and Figure 5.12.
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Figure 5.12: Enter Caption

Figure 5.11: Enter Caption

Alignment with saliency maps

Alignment with the salient moment that belongs to the segment which was chosen, as discussed in
Chapter 3 as one of the top 5 saliency segments of each patient, is not adequate to determine the
overall alignment of saliency between the model and the participants. Therefore, in this section we
will explore a more general alignment using the saliency maps of the whole 8.5 second video clips.
Figure 5.13 illustrates the model’s saliency map for a specific clip (Patient 459), with time in seconds
on the x-axis and saliency scores on the y-axis. The dashed red line denotes a segment the model
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considers highly salient. By examining those graphs we can observe whether participants lean towards
high-saliency regions overall or prefer to choose timestamps in lower-saliency regions often or have
no specific pattern. (These observations reveal how closely human judgments align with the model’s
saliency distribution, whether individuals’ cues agree with the model or highly disagree). While the
Figure 5.13 depicted the raw saliency curve, we applied a cubic spline interpolation here to produce
a smoother line that more clearly highlights the model’s major peaks and valleys. The results are
depicted in Figure 5.14. Additionally, each red dot indicates a participant’s chosen timestamp, allowing
us to see whether their selections cluster around higher-saliency moments or diverge from the model’s
presumed areas of interest.

Figure 5.13: Saliency map for 8.5 video clip for participant 459

Figure 5.14: Selected timestamps along with saliency map

The figures above illustrate the saliencies of all the segments contained in the 8.5 second video clip
that were correctly classifies as depressed from the Depression Predictor (True Positive). As a first
step we will investigate the overall alignment of the participants chosen influential models when they
correctly classified depressed clips compared to the saliency maps that contain the correctly classified
as depressed segments by the model.
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Figure 5.15 plots the Pearson correlation (y-axis) for each clip (x-axis) between the model’s saliency
distribution of TP segments and the density of participants’ chosen timestamps when they correctly
classified depression. A positive correlation would mean that as the saliency is higher the timestamp
density is higher which means that participants choose timestamps with higher saliencies. By examin-
ing correlations for all clips that were correctly classified as depressed from the participants, we can see
whether participants consistently fall within high-saliency intervals or whether their decisions vary from
the model’s presumed region of interest. Overall, the correlations vary substantially across the clips.
Several clips exhibit positive correlations (e.g., Clip 337, Clip 403, and Clip 405), indicating that par-
ticipants may have chosen timestamps that tend to coincide with segments the model deemed highly
salient for depression detection. Conversely, other clips show near-zero or even negative correlations
(e.g., Clip 308, Clip 321, and Clip 344), suggesting that in those clips, participants may have selected
timestamps that do not align, or may even diverge, from the model’s high-saliency regions. However,
none of the above correlation has a p-value below the conventional significance threshold (0.05) in-
dicating that the observed correlations could be due to random chance rather than a true underlying
relationship.

Figure 5.15: Pearson Correlation between saliency and timestamp density

We investigated another case where the participant correctly identified clips as not-depressed. We
compare the alignment of their influential timestamps with the saliency map generated from all the seg-
ments that are contained in the 8.5 seconds video clip that were correctly identified as non depressed
from the model.In Figure 5.16 we can see an example of a clip that was correctly classified from partici-
pants as non-depressed and the saliency map of this clip containing only segments that were correctly
classified as non depressed by the model.
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Figure 5.17: Perason Correlation between saliency and timestamp density

Figure 5.16: Selected timestamps along with saliency map for participant 445

Similarly as above, Figure 5.15 plots the Pearson correlation (y-axis) for each clip (x-axis) between the
model’s saliency distribution of TN segments and the density of participants’ chosen timestamps when
they correctly classified a participant as non-depressed. Overall, the correlations vary substantially
across the clips. Several clips exhibit positive correlations (e.g., Clip 480, Clip 472, and Clip 40982),
indicating that participants may have chosen timestamps for non-depression that tend to coincide with
segments the model deemed salient when classifying these clips as non-depressed. Conversely, other
clips show near-zero or even negative correlations (e.g., Clip 427, Clip 24, and Clip 478), suggesting
that in those instances, participants may have selected timestamps that do not align—or may even
diverge—from the segments to which the model assigned higher saliency. Again just like for the pre-
vious case, we use p-value as a measure of confidence in the statistical significance of the observed
correlation. Similarly to the previous example, none of the above correlation has a p-value below the
conventional significance threshold (0.05) indicating that the observed correlations could be due to
random chance rather than a true underlying relationship.

The final step of our investigation is to determine whether the model’s highlighted segment indirectly
shapes participants’ classification decisions. Figure 5.18 compares how many participants correctly
identified depression across three different “cases,” each representing a distinct position of the model’s
salient segment (e.g., at the beginning, middle, or end of the clip). The bar chart illustrates the pro-
portion of participants who correctly identified the clips as depressed (true positive classifications) ac-
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cording to the location of the salient segment. The three cases represent different positions of the
model-identified salient segment: at the beginning (Case 1), at the end (Case 2), and in the middle
(Case 3). From the figure, Case 1 shows the highest true positive rate, suggesting that when the
model’s salient segment appears early in the clip, participants are more likely to recognize signs of de-
pression. Case 2 exhibits a moderately high rate, while Case 3 shows the lowest proportion of correct
identifications.

Figure 5.18: Classification rate per position

A logistic mixed-effects model was used to test the statistical significance of these results. The model
included random intercepts for both Participant ID and Clip ID. The analysis included 34 observations
from 17 participants and 10 clips. The model estimated a significantly higher probability of correct
classification when the salient segment occurred in Case 1 compared to Case 2 (β = –2504.10, SE =
95.21, p < 0.001) and Case 3 (β = –2518.51, SE = 94.12, p < 0.001). The intercept (representing Case
1) was also significant (β = 2535.04, SE = 93.75, p < 0.001).

5.2.3. What facial/voice features do human identify in AI-selected salient mo-
ments and in their own selected salient moments?

This section of our research aims to compare the cues that participants receive in the model’s selected
moment to those which they receive in the moment that they find most persuasive themselves. By
examining which facial cues and vocal cues are received in each case, we can determine whether the
AI’s chosen cues match human intuition or if participants pick up on different signals entirely. Addition-
ally, we will investigate the features that the humans perceive and determine whether they are able at
the first place detect meaningful facial or vocal features from short video clips.

Again for more detailed analysis, we divided the different clips in 4 categories. The ones that depict
depressed individuals and were classified correctly (TP), the ones that depict depressed individuals
and were classified incorrectly (FN), the ones that depict non-depressed individuals and were classified
correctly (TN) and the ones that depict non-depressed individuals and were classified incorrectly (FP).
This is done for both facial and voice features as they will be analyzed separately.

Facial Features analysis: Frequency/Co-occurance

The UpSet diagram below Figure 5.19 illustrates the facial features that participants selected in clips
they correctly classified as depressed. On the left side, the horizontal bar chart (“Feature Count”) shows
how frequently each individual facial feature appeared across these clips, with higher bars indicating
more frequent selections. On the top, the vertical bars (“Intersection Size”) represent how many clips
share particular combinations (intersections) of these features. For instance, a bar of height 2 indicates
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that a specific combination of features was present in two clips, whereas a bar of height 1 indicates that
a given combination was present in only one clip. Several facial expressions such as “Brow lowering,”
“Outer edges of eyebrows raised,” “Repeated blinking,” and “Lips pressed together” appear relatively
often, whereas “Smiling” or “Slight smirk” are selected less frequently. In many cases, only one or two
facial features appear together, suggesting that participants often rely on a small set of facial cues to
reach a conclusion of “depressed”.

Figure 5.19: UpSet diagram for Clips that were correctly classified as depressed

In Figure 5.20 we illustrate with another UpSet diagram the facial features that were more influential for
participants to classify a person as non-depressed even though they were. In this subset, participants
relatively often noted cues such as “Repeated blinking,” “Eye squinting,” and “Brow lowering,” whereas
features like “Eyebrows lifted near the center” or “Lips sucked in” appear less frequently (shorter bars
at the top).
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Figure 5.20: UpSet diagram for Clips that were incorrectly classified as depressed

Now let’s investigate the cases where the clips represented a non-depressed individual. Figure 5.21
shows the facial features that were cues for the participant to choose non-depression. In this subset,
“Repeated blinking” and “Eyebrows lifted near the center” appear most often, followed by features
such as “Mouth open” and “Smiling.” Meanwhile, features like “Brow lowering” or “Lips sucked in” are
less frequent. Again, most intersections involve only one or two features, suggesting that participants
typically relied on just a few cues to recognize a non-depressed presentation.

Figure 5.21: UpSet diagram for Clips that were correctly classified as non-depressed

In Figure 5.22 the UpSet diagram shows the most frequent cues and combinations for cases where
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the participants classified the clip as non-depressed but they were incorrect. ”Repeated blinking” was
chosen more frequently—followed by “Eye squinting,” “Brow lowering,” and “Lips pressed together.”
Other features like “Mouth open,” “Slight smirk,” and “Eyebrows lifted near the center” occur less often
(they have shorter bars).

Figure 5.22: UpSet diagram for Clips that were incorrectly classified as depressed

Vocal Features analysis: Frequency/Co-occurance

The UpSet diagram below Figure 5.23 illustrates the vocal features that participants selected in clips
they correctly classified as depressed. In this subset, features such as “Slow speech with long pauses,”
“Monotone or flat voice,” “Speech that sounds hesitant or unsure,” and “Reduced Loudness” appear
most often, while expressions like “Increased Speech Rate,” “Laughter or lighthearted tone,” and
“Speech that is fluid and uninterrupted” show relatively low counts. Several columns have bars of
height “4,” indicating that the same combination of features appeared in four different clips, suggesting
a recurring cluster of signs (e.g., slow, hesitant, or monotone speech) that reliably led participants to
identify those clips as depressed.



5.2. Experiment findings 49

Figure 5.23: UpSet diagram for Clips that were correctly classified as depressed

This UpSet diagram Figure 5.24 displays the vocal features that participants noted in clips where the
ground truth was depressed but participants incorrectly judged them as non-depressed—in other words,
false negatives (FN). In this subset, participants often reported more “positive” or “functional” vocal
qualities—such as “Speech that is fluid and uninterrupted,” “Speech with energy or enthusiasm,” and
“Stable Voice”—which presumably led them to believe the speaker was not depressed. Less commonly
cited were cues traditionally associated with depression, including “Reduced Loudness” and “Slow
speech with long pauses.

Figure 5.24: UpSet diagram for Clips that were incorrectly classified as non-depressed

This UpSet diagram ?? shows which vocal features participants identified in non-depressed clips that
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they correctly labeled as non-depressed (true negatives). In this subset, participants commonly noted
“Stable Voice,” “Speech that is fluid and uninterrupted,” and “Speech with energy or enthusiasm,” sug-
gesting they interpreted these more upbeat or steady vocal qualities as signs that the speaker was
not depressed. Features such as “Monotone or flat voice,” “Slow speech with long pauses,” and “Re-
duced Loudness” appear less frequently (nearer the top, with shorter bars), indicating that the cues
participants often associate with a depressed speaking style were seldom observed in these clips.

Figure 5.25: UpSet diagram for Clips that were correctly classified as non-depressed

Figure 5.26 depicts the vocal features participants noted in clips that were actually non-depressed yet
incorrectly labeled as depressed—i.e., false positives. In this subset, participants often highlighted cues
like “Speech that sounds hesitant or unsure,” “Reduced Loudness,” and “Monotone or flat voice,” which
they may have interpreted as indicative of depression. Features such as “Laughter or lighthearted tone”
or “Increased Speech Rate” appear less frequently. More frequently, hesitant speech and vocal jitter
and shimmer were chosen together.
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Figure 5.26: UpSet diagram for Clips that were incorrectly classified as depressed

Facial Features analysis: Selected moment vs Salient moment

In order to visualize the alignment between the facial features that participants selected versus the
features the model deemed salient, we generated spider (radar) charts. Each radial axis corresponds
to a different facial feature (e.g., “Brow lowering,” “Smiling”), and the distance from the center reflects
how strongly or frequently that feature appears. The yellow polygons represent the features observed
in the participant’s selected salient moment and the red polygon represents the features observed in
the model’s selected salient moment. By examining the overlap or divergence of the two polygons,
we can see whether the AI-highlighted segment emphasizes the same facial cues that participants
naturally identify, shedding light on how well the model’s reasoning aligns with human perceptions. For
the purpose of this thesis we will analyze these four scenarios:

• TP-TP (Participants Correctly Classified Depression, Model Salient Segment Also Correctly Clas-
sified as Depressed)

The red (Selected) and yellow (Salient) polygons in Figure 5.27a show a relatively high overlap in
certain features. For example, both participants and themodel commonly highlighted expressions
such as [e.g., “brow lowering,” “repeated blinking”] as important. The overall similarity in the
shapes and magnitudes suggests that, in these clips, human and model judgments converged
on similar facial cues for depression.

• TP-FN (Participants Correctly Classified Depression, Model Salient Segment Incorrectly Classi-
fied as Non-depressed)

Here in Figure 5.27b, the red polygon (participants’ selected features) appears to emphasize
cues that the model did not capture as strongly in its yellow polygon. While participants noted
[e.g., “eye squinting,” “lips pressed together”] with relatively higher intensity, the model’s salient
features for these clips remained lower on those same axes.

• TN-TN (Participants Correctly Classified Non-depression, Model Salient Segment Also Correctly
Classified as Non-depressed)

In Figure 5.28a, the shapes for Selected and Salient often show moderate overlap in features
generally associated with neutral or positive affect, such as [“smiling” or “outer edges of eyebrows
raised”]. The model’s salient cues and the participants’ chosen features both indicate a lack of
strongly “depressive” expressions, leading to accurate non-depressed classifications.
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• TN-FP (Participants Correctly Classified Non-depression, Model Salient Segment Incorrectly Clas-
sified as Depressed)

In Figure 5.28b the red polygon typically shows lower values for tension-oriented features, re-
flecting the participants’ judgment that the clips are non-depressed. However, the model’s yellow
polygon includes relatively higher values on certain cues [e.g., “brow lowering,” “eye squinting”],
suggesting it may have over-interpreted mild or ambiguous expressions as depressive signals.

(a) Salient segment identified correctly as depressed by the model (b) Salient segment identified incorrectly as non-depressed by model

Figure 5.27: Spider diagrams for clips that were correctly identified as depressed from participants

(a) Salient segment identified correctly as non-depressed by the
model (b) Salient segment identified incorrectly as depressed by model

Figure 5.28: Spider diagrams for clips that were correctly identified as non-depressed from participants

Vocal Features analysis: Selected moment vs Salient moment

Similarly we investigated the differences for the vocal features again with the use of a spider diagram.
Each radial axis corresponds to a different vocal feature (e.g., “Monotone or flat tone,” “Stable voice”),
and the distance from the center reflects how strongly or frequently that feature appears. The blue
polygons represent the features observed in the participant’s selected salient moment and the green
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polygon represents the features observed in the model’s selected salient moment. Again we will ana-
lyze these four scenarios:

• TP-TP (Participants Correctly Classified Depression, Model Salient Segment Also Correctly Clas-
sified as Depressed)

Both polygons (Selected vs. Salient) in Figure 5.29a show high overlap in features typically asso-
ciated with depression, such as [“Slow speech with long pauses,” “Monotone or flat voice,” and
“Reduced Loudness”]. The similarity of the polygons indicates that in these clips, both participants
and the model converged on vocal cues commonly linked to depressive affect.

• TP-FN (Participants Correctly Classified Depression, Model Salient Segment Incorrectly Classi-
fied as Non-depressed)

Here in Figure 5.29b, the participant-selected polygon (e.g., the blue shape) tends to emphasize
certain depression-related cues that the model’s salient polygon (e.g., green) does not highlight.
For instance, participants may frequently note [“Increased vocal jitter and shimmer”], whereas
the model’s salient moment values are comparatively lower on that axis. There is no big overlap
between the participant’s selected moment features and the features observed in the model’s
selected salient moment.

• TN-TN (Participants Correctly Classified Non-depression, Model Salient Segment Also Correctly
Classified as Non-depressed)

In this Figure 5.30a, both polygons generally show lower values for depression-linked cues (like
slow, flat, or hesitant speech) and relatively higher values for more neutral or positive-sounding
qualities (e.g., [“Speech with energy or enthusiasm,” “Fluid and uninterrupted speech”]). This
indicates a consensus between participants and the model that no strong vocal indicators of
depression were present.

• TN-FP (Participants Correctly Classified Non-depression, Model Salient Segment Incorrectly Clas-
sified as Depressed)

Again in Figure 5.30b we observe a mismatch in the two polygons as expected. In the participant-
selected segment, features such as “Speech with energy or enthusiasm” and “Stable voice” have
higher relative values, whereas in the model’s salient segment, features like “Speech that sounds
hesitant or unsure” and “Slow speech with long pauses” show moderately elevated values. Over-
all, the participant’s polygon covers fewer depression-associated features than the model’s poly-
gon, which emphasizes some cues commonly linked to depressed speech but did not result in a
correct final classification.

(a) Salient segment identified correctly as depressed by the model (b) Salient segment identified incorrectly as non-depressed by model

Figure 5.29: Spider diagrams for clips that were correctly identified as depressed from participants
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(a) Salient segment identified correctly as non-depressed by the
model (b) Salient segment identified incorrectly as depressed by model

Figure 5.30: Spider diagrams for clips that were correctly identified as non-depressed from participants



6
Discussion

6.1. Results interpretation
Our study examined how human judgments and model-computed saliency maps align when identifying
depression cues in short clips. Overall, our results reveal a complex picture. As clearly stated in the
Results chapter, the classification results show that approximately two thirds (66.7% )of the clips were
correctly labeled as either depressed or non-depressed, while one third (33.3%) were misclassified.
Although the overall accuracy suggests that the model or approach captures some relevant features of
depression, the one-third error rate indicates considerable room for improvement. We will delve a bit
deeper in the analysis and interpretation of the results.

Inter rater reliability

The fair AC1 (≈ 0.40) does not reflect an inability to detect depression per se-each rater on average
classified clips above chance-but rather a lack of consensus about which specific clips carry clear
depressive signals. In other words, raters tended to disagree on the ambiguous cases rather than all
missing the same clips. That is because, some clips contained only moderate signs of depression
that potentially contain more subtle cues and is more probable to create discrepancy between the
participants. Additionally, this dispersion likely stems from the varied ways individuals weigh verbal
versus nonverbal cues, idiosyncratic thresholds for “depressed” affect, and the absence of a shared
decision rubric. Cognitive load may also have played a role since the same clips for some participants
may appeared at the beginning of the experiment while for other it may appeared at the end, where
the participants are more prone to mistakes since they have already performed a lot of cognitive and
mentally straining tasks.

Confidence analysis

Figure 5.3 illustrates the distributions of confidence ratings for depressed and non-depressed clips.
Observing the two distributions, the median confidence rating for depressed clips appears higher than
that for non-depressed clips, suggesting participants generally provided higher confidence scores when
a clip actually depicts depression. However, the overlapping ranges in both distributions indicate that
this confidence is not absolute: some non-depressed clips still receive moderately high confidence
scores, and some depressed clips receive lower confidence ratings. Thus, while a higher median
confidence for depressed clips implies that participants generally feel more certain about identifying
depression when it is present, the overlap shows there is still considerable ambiguity in how individuals
assess these cues. This ambiguity highlights the inherent challenges in identifying depression based
solely on observable cues and suggests that while confidence ratings provide useful information, they
may need to be supplemented with additional diagnostic methods to enhance accuracy.

A subsequent linear mixed-effects analysis confirmed these observations.The linear mixed-effects anal-
ysis indicates that clips labeled as “depressed” received higher confidence ratings (on average 1.78
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points more on the scale of 1 to 10) than those labeled “non-depressed.” This suggests that participants
not only perceived stronger cues when judging a clip as depressed, but they also felt more certain in that
judgment. One possibility is that depressive signals—whether facial, vocal, or contextual—stand out
more distinctly to observers, resulting in greater confidence. Another explanation is that participants
may be more cautious about missing a potential sign of depression, leading them to assign higher
confidence once they suspect depression.

Interestingly, the random effect for participant was effectively zero, implying that individual differences
in how confident participants felt did not vary substantially. In other words, participants showed a
fairly consistent pattern in how they rated clips. The main variability was at the clip level, with some
clips generally evoking higher or lower confidence across the board. This finding highlights the role
of the clip’s inherent characteristics—such as the clarity of depressive indicators—rather than major
differences in individual participants’ tendencies to give higher or lower confidence ratings. It also
highlights the variability in depression manifestation among different individuals, making some of them
more difficult to ’read’ than others as they have a smaller or different expression palette. Overall, the
implication of these results is that people do sense something in depressed clips that leads them to
higher confidence overall. It’s not purely random guessing.

The results in Figure 5.4 combined with the linear mixed-effects analysis, suggest that participants
exhibit greater certainty when they accurately identify a clip as depressed, implying some degree of
insight into their own accuracy. At the same time, the presence of lower confidence for false positives
highlights that misclassification is associated with reduced certainty. This suggests that participants
may have some metacognitive insight into their own decision accuracy—they ”feel” more certain when
their judgment is right.Taken together, these findings underscore the importance of examining not only
the accuracy of classification judgments but also the confidence with which those judgments are made,
as it can offer additional clues about how observers process cues related to depressive symptoms.

Alignment with salient moments

Before delving into analyzing the salient moments, it is important to recognize that the model’s salient
segments do not necessarily correspond to clear or strong indicators of depression. Instead, the model
identifies salient moments based on local entropy changes, indicating segments that introduce uncer-
tainty or surprise to the model’s predictions. This means a salient segment may represent various
phenomena, such as sudden changes in behavior, shifts in facial expression, vocal characteristics, or
other contextual factors, and not exclusively explicit signs of depression.

This is something that we took into consideration in the visualizations in Figure 5.5, Figure 5.6, Fig-
ure 5.7 and Figure 5.8. When a moment is salient, we need also to take into account whether or not
the segment it belongs to was correctly or incorrectly classified by the model. This distinction gives us
valuable information.

• True Positive (TP): The segment is actually from a depressed participant, and the model cor-
rectly identifies it as depressed. Interpretation: The model’s salient moment might have captured
genuinely depressive features, making it easier for humans to align.

• True Negative (TN): The segment is actually from a non-depressed participant, and the model
correctly identifies it as non-depressed. Interpretation: The salient moment might represent clear
signals of a healthy emotional state.

• False Positive (FP): The segment is non-depressed, but the model incorrectly classified it as
depressed. Interpretation: If the model’s salient moment contains any identifiable features, they
may reflect ambiguous or misleading behaviors that led the model to mistakenly infer depressive
characteristics.

• False Negative (FN): The segment is from a depressed participant, but the model incorrectly
classified it as non-depressed. Interpretation: Here, the salient moment likely signals unexpected
patterns or uncertainty—possibly subtle, atypical depressive signs that were hard for the model
to correctly interpret.

Interpretation of Figure 5.5

The observed patterns (Figure 5.5) highlight the complexity of interpreting salient segments identified



6.1. Results interpretation 57

by the model. A slightly higher alignment between participants and the model for segments correctly
classified (TP) suggests that when the model potentially identifies segments indicative of depression,
these segments likely contain more recognizable or universal cues of depression that human observers
also readily detect. However, even within these correctly classified segments, there remains noticeable
variability in participants’ chosen timestamps. Additionally, this slightly higher alignment can be coinci-
dental.

In contrast, segments misclassified by the model as non-depressed (FN) exhibit slightly higher disper-
sion in participants’ responses, reflecting higher ambiguity. This result is intuitive: since participants
had already correctly classified these clips as depressed, they specifically sought cues associated
with depression. The model, however, identified salient segments in these FN cases likely due to fea-
tures inconsistent with depression, such as expressions or behaviors that appeared unexpectedly non-
depressed to the model. Consequently, human participants, possibly focusing on depressive indicators,
responded with timestamps more widely dispersed and misaligned from the model’s FN segments.

Interpretation of Figure 5.6

The results presented in Figure 5.6 reveal important insights regarding the alignment of human and
model-identified salient moments for non-depressed clips. In some clips, these circles are centered
within the densest region of participant selections, suggesting that in those cases where the model
may captures features—perhaps clear signals of a healthy state—the participants also capture fea-
tures they consider non-depressive, suggesting the model’s salient moment aligns with participant judg-
ments. However, in other clips, the green circle sits on the edges or even outside the main distribution,
indicating that the model’s salient point—while ultimately leading to a correct classification—does not
necessarily coincide with the majority of participant-selected timestamps.

By contrast, the red triangles (FP) represent caseswhere themodel incorrectly flagged a non-depressed
clip as depressed. These points sometimes lie well outside the violin’s densest region, implying that
the model focused on cues that participants generally did not find indicative of depression. Perhaps
in these clips the cues that the model picked up (and misclassified as depression) are ambiguous or
even misleading to human observers. This could indicate that the model is sensitive to features that do
not necessarily trigger the human perception of depression. In other clips, however, the red triangle is
not so far removed from participant selections, suggesting that the model and participants might have
picked up on similar signals yet interpreted them differently since participants have correctly classified
the clip as non-depressed while the model incorrectly classified the segment as depressed.

Overall, the figure shows that correct classification (TN) does not guarantee a better overlap between
the model’s salient point and the timestamps participants that are most informative, and incorrect classi-
fication (FP) does not always mean a stark deviation from participant perceptions. Instead, the degree
of overlap varies clip by clip, highlighting that model saliency (based on entropy changes) and human-
selected cues (based on subjective assessments) sometimes coincide and sometimes diverge.

Interpretation of Figure 5.7

The results shown in Figure 5.7 provide important insights into the complexity of identifying depres-
sion from short clips. Participants incorrectly labeled these individuals as depressed, indicating they
perceived cues that resembled depressive behavior. Interestingly, some model-identified salient seg-
ments were also false positives, meaning the model similarly perceived signals incorrectly suggestive
of depression. This shared missclasssification may reflect genuinely ambiguous or unclear behavioral
signals within these clips, potentially causing confusion for both the model and human observers.

As we can see in the plot there is not clear distinction on whether one of the two categories TP and
FN salient moment is closer or further to the participants’ selected timestamps.Taken together, these
patterns illustrate that correct classification (TN) does not guarantee strong alignment with human-
selected timestamps, nor does a misclassification (FP) always mean the model’s salient moment is
far removed from human perceptions. Instead, the figure underscores how model saliency—derived
from entropy changes—can sometimes coincide with human judgments, yet at other times emphasize
moments that participants do not view as decisive.

Interpretation of Figure 5.8
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The variability observed in Figure 5.8 aligns well with the nature of the data: these clips were mis-
classified by participants as non-depressed, indicating that participants may have struggled to identify
clear depressive signals. The fact that some of the model’s salient segments were also false nega-
tives (FN)—segments the model did not identify as depressed—likely added to the confusion, as these
segments may contain subtle or ambiguous behavioral cues not clearly indicative of depression.

Where the model correctly identified segments as depressed (TP), participant failed to recognize these
indicators as clearly depressive. This pattern underscores the complexity of human judgments in subtle
cases: even when clear indicators exist (as potentially recognized by the model), lay observers may
overlook or misinterpret these signals, leading to classification errors.

Overall, in the diagrams above we see a clear discrepancy and not alignment between participants
influential moments and the model’s salient moment. It seems like in all the cases participants have
their own personal reasons to believe something is salient that differ from each other and from the
model most of the times. Later on we try to delve deeper in the alignment of salient moments with
participants influential moments.

Error plots

TP-TP vs TP-FN

To further analyze and investigate the alignment of humans salient moments with themodel’s we use the
raw error. The findings from the linear mixed effects model indicate that among clips where participants
correctly classified depression, the temporal precision of their responses does not significantly differ
between clips that the model also classified the salient segment as depressed (TP) and those that it did
not (FN). Although the descriptive statistics suggest a modest shift in the average error (with TP clips
showing slightly less negative error), the lack of statistical significance implies that participants’ ability
to accurately pinpoint the salient interval is relatively consistent, regardless of the model’s classification
of the top salient segment of the clip.

TN-TN vs TN-FP

These findings indicate that for non-depressed clips, where participants accurately identified the clip
as non-depressed, the temporal precision of their responses—as measured by raw error—does not
differ between clips that the model correctly classified their salient segments as non-depressed (TN)
and those that were misclassified (FP). The significant negative intercept suggests an overall tendency
toward a negative raw error, but the non-significant difference between TN and FP groups implies that,
in terms of timing accuracy, the model’s classification of the salient segment does not differentially
impact participant performance.

Pearson Correlation

One salient moment itself may not give us enough information about the overall saliency of the clip.
That is why we deepen the analysis further employing saliency maps. The Pearson correlation analysis
shows us whether there is any correlation between the saliency values (taken from the saliency maps)
and the timestamp density of the participant’s responses. For this thesis we focused on cases where the
participants correctly classified the clip (TP and TN). That is because we want to focus on whether the
participants have strong influential cues to identify depression or non-depression and if the moments
that influence the model do also influence the participants. We calculated the Pearson correlation
diagrams using saliency maps of the clips. There are two types of saliency maps employed for this
task. First saliencymaps for depressed clips that only contain saliencies of segments that were correctly
classified as depressed by the model (TP) and second saliency maps for non-depressed clips that only
contain saliencies of segments that were correctly identified as non-depressed by the model.

TP-TP

The correlation analysis between participant-selected timestamps and model-generated saliency maps
offers insight into how closely human observers’ perceptions of depression cues align with those of the
computational model. The presence of positive correlations in some clips suggests that, at least in
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certain instances, participants and the model focus on similar visual or auditory cues that may be in-
dicative of depression. These findings lend preliminary support to the idea that the model’s saliency
maps, which highlight regions it considers important for classification, capture cues that are also per-
ceived as relevant by human annotators.

The variation across clips—ranging from positive to near-zero or negative correlations—underscores
the complexity of human perception and the nuances of the model’s learned features. It is possible
that, for some clips, the model attends to subtle cues that participants do not consciously register or do
not consider critical. Conversely, participants may pick up on broader contextual or narrative elements
that the model does not capture, leading to lower or negative correlations. However, it is important to
note that none of the correlations reached statistical significance (p > 0.05 for all clips), indicating that
the observed associations could have occurred by chance. This lack of statistical power may, in part,
be due to the limited number of participant observations per clip, which reduces the sensitivity of the
correlation tests.

TN-TN

The correlation analysis between participant-selected timestamps and model-generated saliency maps
provides insight into how closely human observers’ perceptions of non-depression cues align with the
model’s learned features. In clips with positive correlations, participants and the model appear to con-
verge on similar visual or auditory signals that affirm a non-depressed classification, offering preliminary
evidence that the model’s saliency maps capture aspects of the clips that humans also consider rele-
vant. However, the presence of near-zero or negative correlations in other clips highlights the inherent
complexity of interpreting non-depressive behavior. Participants may rely on broader contextual or so-
cial cues that the model overlooks, or the model may attend to subtle indicators that participants do not
consciously register. These discrepancies emphasize the importance of refining model interpretability
and exploring additional ways to bridge the gap between human judgment and machine-based saliency
for more robust and transparent mental health assessments. Additionally, as mentioned before some
clips may be more difficult for humans to classify than others since there may be the components of
cultural bias or limited skills from the participants. However, just like in the previous case none of the
correlations reached statistical significance (p > 0.05 for all clips), indicating that the observed associ-
ations could have occurred by chance.

Position bias

In Figure 5.18 there are illustrated the classification scores based on the salient segment positions.
The scores are about True positive classifications meaning how many clips that are depressed were
correctly classified as depressed based on the salient segment position. Since these clips’ salient
moment were correctly classified as depressed by the model (true positives), the salient segment in
each case likely contained distinct depression cues. The higher true positive rate in Case 1 implies that
when salient signals appear near the beginning, participants may find it easier to detect depressive
indicators. Conversely, when the salient segment is in the middle (Case 3), participants might have
more difficulty noticing or recalling those cues by the time they make their judgment. Interestingly,
Case 2—where the salient segment is at the end—has a moderately high rate, which could be because
participants are left with an impression of the depressive cues they see last, potentially influencing their
final decision.

It is also possible that some participants even if they did not consciously select the model’s salient
moment as the most influential,they were nevertheless subconsciously influenced by it when making
their final assessment. This discrepancy implies that the cues participants believe are most important
may differ from those emphasized by the model. Participant may not highlight segments as important
if these segments contain more subtle cues that even though they may subconsciously influence them
they are not that evident to them.

To investigate the case that those results are due to random variation we use a logistic mixed-effects
model. After including both participant and clip as random effects, the logistic mixed-effects model
suggests that salient segment position strongly influences participants’ ability to correctly identify de-
pressed clips. However, the model yielded extremely large coefficients and standard errors, indicative
of quasi-complete separation — a situation in which a predictor variable (in this case, Salient Position
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Type) nearly perfectly separates the binary outcome. This is likely due to data sparsity since there
are is a small number of observations. This leads to unstable estimates and suggests that while the
trend is meaningful, the statistical model may be overfitting, and the results should be interpreted with
caution. Additional data or more balanced designs may be necessary to produce stable, reliable effect
estimates.

Feature Analysis

Facial features

The findings for TP clips align with prior literature, which reports that depressed individuals tend to
show more brow-related actions (e.g., AU1, AU4) and increased blink rate (AU45). As seen in the
diagram, participants frequently selected “Brow lowering” and “Repeated blinking,” possibly reflecting
signs of sadness, internal stress, or tension. Furthermore, fewer expressions related to happiness or
positive affect (e.g., smiling) were observed, which is consistent with research indicating that depressed
individuals typically display lower frequency and intensity of AU12 (lip corner puller).

However, it is notable that features like “Outer edges of eyebrows raised,” sometimes linked to surprise
or fear, also appeared relatively frequently. While the literature does not strongly link outer brow-raising
(AU02) to depression, its consistent presence in the current data may reflect participants’ perception
of tension or distress in the brow region more broadly. Similarly, partial smiles or smirks (AU14) were
reported, though less frequently, which aligns with the notion that genuine smiling is uncommon in
depression. Although a smile might typically be seen as a sign of positive affect, its presence dis not
necessarily dissuade participants from concluding that a clip was depressed. Participants may have
considered other salient cues, such as tension in the eyes or brow area, or voice cues to be more
indicative of depression, thus “overriding” the presence of a smile. It is also possible that participants
recognize that individuals with depression can still smile, whether as a coping strategy or a social mask.
This finding aligns with broader discussions in depression research, indicating that facial expressions
can be mixed or incongruent, and a momentary smile does not rule out an underlying negative mood.

In Figure 5.20, because these clips were truly depressed, yet participants did not recognize them as
such, it suggests that some of the more ambiguous or even “neutral”-seeming cues (e.g., blinking, slight
smirks, or widened eyes) may have obscured participants’ detection of depressive signals. Although
“Brow lowering” or “Lips pressed together” can be signs of distress, these may not have been pro-
nounced enough—or interpreted strongly enough—to override the potentially “normal” or less overtly
sad expressions. This dynamic highlights how false negatives can arise when observers rely on highly
stereotypical markers of depression (e.g., a flat or downcast face) and underestimate subtler facial
indicators.

Compared to the depressed groups, themost frequently selected cues here in the TN case Figure 5.22—
such as repeated blinking and eyebrows lifted near the center—may be interpreted by participants
as neutral or relatively positive signs, thus reinforcing a “non-depressed” judgment. For instance, re-
peated blinking could be perceived as typical or comfortable behavior, rather than a sign of distress.
Likewise, slightly lifted eyebrows or an occasional smile might signal a neutral or upbeat demeanor.
In line with existing research indicating that depressed individuals often exhibit lower frequencies of
genuine smiles, seeing a normal or slightly smiling expression may have led participants to conclude
that these clips were not depressed. The relatively lower frequency of tension-oriented features (e.g.,
brow lowering) further supports that participants found fewer distress signals in these clips. Overall,
these findings underscore that a handful of positive or neutral cues—especially around the eyes and
mouth—were salient enough for participants to accurately identify these individuals as non-depressed.
Features that scored high in TP observation such as Brow lowering and Lips pressed together now
have low frequency scores which can indicate that are more likely to be linked as depressive cues from
the participants.

Because the clips in Figure 5.22 were actually non-depressed, the presence of tension-oriented or
ambiguous cues (e.g., frequent blinking, squinting, or lowered brows) seems to have prompted partic-
ipants to over-interpret them as signs of depression. These findings highlight how relatively common
facial expressions—such as blinking or a momentarily lowered brow—can be misconstrued as depres-
sive indicators, especially if observers expect depression to manifest in any display of perceived stress
or discomfort. Comparing these results to truly depressed clips (where features like prolonged sad



6.1. Results interpretation 61

expressions are more prominent) could help clarify which signals genuinely reflect depressive affect
and which simply convey mild tension or momentary discomfort.

The UpSet diagrams reveal that the co-occurring features selected by participants at a specific times-
tamp often do not match well-known, prototypical expressions. This likely reflects that participants are
capturing fleeting, idiosyncratic moments rather than standardized expressions. In other words, the
features chosen at a given moment may represent subtle or mixed cues that, while salient to the ob-
server, do not neatly combine into the canonical expressions typically described in the literature. This
variability underscores the complex, context-dependent nature of real-world affective signals, suggest-
ing that what participants perceive as ‘influential’ may not always align with conventional expressions
of depression

Vocal features

The findings in the TP case Figure 5.23 align with well-established notions about depressed speech pat-
terns. Participants frequently highlighted slower, quieter, andmore hesitant vocal qualities—characteristics
widely reported in the literature as indicative of depressive states, such as monotone prosody, reduced
loudness, and prolonged pauses. When such features co-occur (as shown by the intersection columns
with higher frequencies), they may present a strong cumulative signal that the speaker is depressed. In
contrast, features associated with more energetic or positive affect (e.g., laughter, higher speech rate,
fluent speech) were seldom selected, implying that participants may regard these as counter-indicators
to depression.

Overall, the results suggest that participants share a mental model of depressed speech marked by
sluggishness, uncertainty, and diminished variation in pitch or volume. Recognizing these patterns
can help researchers and clinicians refine automatic detection methods for depression and devise
clearer guidelines for human observers—emphasizing the role that perceived “slowness,” “flatness,”
and “hesitancy” play in identifying potential signs of depression from vocal cues alone.

Because these clips in Figure 5.24 were actually depressed but not recognized as such, it appears
that relatively fluent, energetic, and stable speech overshadowed or masked more subtle indicators
of depression. When participants heard someone speak with continuity, confidence, or even mild en-
thusiasm, they may have discounted any low-intensity signs of sadness or hesitation, thus labeling
the clip as non-depressed. This pattern aligns with the idea that stereotypical “depressed speech” is
slow, monotone, or hesitant; if a speaker deviates from that profile by sounding more fluid or confi-
dent, observers might miss underlying distress. Comparing these results to the Depressed & Correct
cases highlights how strongly participants rely on slower, flatter speech as a depression cue. If those
cues are absent—or if more positive-sounding cues are present—participants risk underestimating the
possibility of depression.

Compared to depressed clips — where slower, flatter, and more hesitant voices were frequently iden-
tified — these non-depressed clips Figure 5.25 were characterized by vocal qualities that participants
perceived as more lively, continuous, or confident. This distinction aligns with prior research suggest-
ing that a smoother, more energetic delivery is generally associated with better emotional well-being.
However, it is worth noting that some features typically linked to depression (like monotone speech)
did surface in a handful of these non-depressed clips, highlighting the complexity of vocal expression
and the possibility that certain cues can be context-dependent or interpreted differently depending on
other co-occurring features. Overall, these results underscore that participants largely rely on mark-
ers of clarity, stability, and energy in the voice to make correct “non-depressed” judgments—a pattern
consistent with lay intuitions about healthy or normal-sounding speech.

The findings in Figure 5.26 suggest that participants may perceive certain subdued or uncertain vocal
qualities—such as hesitant, quiet, or monotone delivery—as red flags for depression, even when the
speaker is not depressed. In other words, the absence of overt positivity or confidence might lead
observers to mistakenly assume a depressed state. When contrasted with true negatives (correctly
identified non-depressed clips), it becomes clear that features like stable voice and energetic speech
are not as prevalent here, potentially fueling themisjudgment. This underscores the complexity of vocal-
based depression detection: participants can over-attribute mild speech irregularities to depression.

Selected moment vs Salient moment



6.2. Implications 62

Facial features

These spider diagrams shed light on how both participants and the model identify key facial expressions
associated with (or indicative of) depression. In the TP-TP and TN-TN scenarios, the convergence of
features suggests that human observers and the model share similar heuristics—e.g., brow tension
and blinking for depression, smiling or relaxed brow for non-depression. This agreement implies that
the model can sometimes mimic human intuition effectively, lending preliminary support to its saliency
mechanism. Of course, the features that participants observe in those salient moments does not neces-
sarily equal what the model actually ’observed’ in those salient moments. However, the matching of the
features when both the model and the participants classified correctly (TN-TN and TP-TP) compared to
the discrepancy of the features when the model and the participants classified differently (TN-FP and
TP-FN) suggests that even with the bias, participants are able to differentiate between the cases where
the salient moment is correctly or falsely classified by the model (hence possibly containing depression
cues vs ambiguous cues).

Vocal features

These vocal-based radar charts complement the facial analyses, underscoring how participants and
the model differ or agree on cues tied to depression. In the TP-TP and TN-TN cases, both human judg-
ments and the model’s salient segments align well, pointing to shared recognition of either “depressed”
vocal markers (slower, flatter, and quieter speech) or “non-depressed” markers (clear, energetic, or un-
interrupted speech). This alignment implies that the model can learn many of the same vocal signatures
that participants intuitively associate with depression or its absence.

Similarly to before, the fact that in the cases of TP-FN there is discrepancy while in cases TP-TP
there is alignment it show us that participants are able to pick up differences in voice features based
on the meaning of the salient moment. Both facial and vocal diagrams reinforce the hypothesis that
participants observations about the salient moment are valid and will help us shed light in what the
model can use as cues to form a decision. The above results suggest that participants and the model
seem to follow similar heuristics and value similar cues to form the right decision.

6.2. Implications
Our results have several important implications for improving the interpretability of AI-based medical
diagnosis for depression through the identification and human evaluation of salient moments in video
and audio data. First, the fact that humans correctly classify 66.7% of clips as depressed or non-
depressed from short video segments (Sub-question 1) demonstrates that even brief clips can contain
robust cues for depression.

Second, our findings reveal that human-identified salient moments and the model’s salient moments
diverge more often than they align (Sub-question 2). While there are instances of convergence—
particularly in cases where both humans and the model correctly classify clips (TP-TP and TN-TN)—the
predominant pattern is one of discrepancy. This divergence indicates that the model’s method of de-
riving saliency (based on entropy changes) does not necessarily agree with what human observers
may find salient. Even though such misalignment highlights a critical gap in interpretability, it does not
directly suggest that the model does not follow relevant cues since there are several reasons to explain
the discrepancy, discussed in the limitations section.

Third, in examining the specific facial and vocal features (Sub-questions 3a and 3b), our analyses
show that when participants select influential moments, they tend to identify features that align with
established literature—such as brow lowering in depressed faces and slower, more hesitant vocal pat-
terns. In cases where human and model selections converge, the features are consistent with known
depressive markers. However, discrepancies in cases like TP-FN and TN-FP indicate that even when
participants are biased by their own interpretations, they still distinguish between influential moments
when the model misclassifies the salient segment. This suggests that human evaluation is valuable
not only for validating model outputs but also for highlighting the limitations of current explainability
methods. Despite these limitations, this preliminary exploration into the relationship between human
timestamp selection and model saliency highlights potential areas of convergence and divergence.
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The discussed results point to the potential benefits of incorporating human expertise alongside algorith-
mic criteria. Rather than relying only onmeasures like entropy, themodel could be refined by leveraging
insights from clinicians or expert evaluators to pinpoint which parts of a video or audio clip truly reflect
depressive symptoms. By recalibrating the model’s outputs based on these human-identified cues, its
predictions would be more closely aligned with clinical judgment, ultimately enhancing its accuracy and
real-world utility.

6.3. Limitations
This study faces several noteworthy limitations that warrant careful consideration when interpreting
the findings. First, all participants were lay individuals with no formal clinical training in mental health.
Several studies (Slepian, Bogart, and Ambady, 2014; Rother et al., 2021) have shown that experts
performance is not substantially higher that lay participants in identifying depression from visual and
audio cues in thin-sliced scenarios like in our case (8.5 seconds clip). However, experts do tend to
outperform laypeople in more nuanced or borderline cases, where depression is more mild and cues
are more subtle, improving sensitivity Slepian, Bogart, and Ambady (2014). Second, the sample size
was relatively small (17 participants), limiting the statistical power and the representativeness of the
results for broader populations. For the Pearson correlation analysis the small number of participants
per clip is an important limitation. With only three or four participants annotating each clip, individual
differences in perception or annotation strategy can significantly influence the overall correlation values.
Consequently, these findings cannot be generalized without caution.

Third, there was an imbalance in the experiments depicted clips, with fewer clips where the salient mo-
ment is part of a salient segment that is false-positive (FP) and false-negative (FN) than true-positive
(TP) and true-negative (TN) cases. It is important to note that the number of clips with incorrectly classi-
fied salient moments (FN, FP) was about half that of correctly classified ones (TP, TN). This difference
in sample size limits the statistical reliability of some observed trends might affect the robustness and
generalization of the comparisons. Future studies could address this limitation by ensuring balanced
sample sizes or employing weighting or normalization methods to better understand how alignment
differs based on the correctness of the model’s classification.

Another important limitation is that the facial expressions were presented through animation rather
than real human faces, potentially making it a hard task for participants since subtle emotional cues
are harder to interpret. An actual face of a real person would be much more easier and intuitive for
participant to assess facial expressions on potentially giving us more valuable information. Additionally,
regarding the video clips, there is a potential bias regarding the speech context. Even though the
participants were prompted to not focus on the context of the speech and only in the voice and facial
expression, such bias is difficult to overcome. So there is the possibility that the context of the speech
subconsciously played a role in the participant’s decisions.

Another concern arises from the sliding-window approach: as we discussed in the previous chapters a
moment can be flagged as salient due to 2 points of interest. Either something important was removed
in the 0.1 seconds of the slide or something important was added in the 0.1 that were added due to the
slide. In this study we decided to focus on the second point of interest and around this we performed the
analysis. But there may be salient points selected by the participants that are closer correlated to the
other points of interest that were left out of the analysis. Furthermore, participants were asked to identify
precise timestamps to a 0.1-second resolution, but the experimental interface allowed navigation only
in one-second increments, introducing potential timing inaccuracies.

6.4. Future Improvement
Future research should address several key areas to enhance both the experimental design and the
underlying model. First, expanding the participant pool—ideally including domain experts such as
clinicians—would provide more robust and clinically informed assessments, potentially reducing sub-
jective bias and increasing the reliability of human evaluations. Overall, the 66.7% accuracy indicates
moderate performance. Future work could explore several avenues for improvement: (1) collecting
additional data to increase the diversity of depressive presentations, (2) refining the model to focus on
more discriminative features (e.g., combining facial, vocal, and contextual signals) and make it more
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generalizable. Future research would benefit from increasing the number of participants per clip to
reduce variability and provide a more robust test of alignment between human and model saliency.
Additionally, designing more balanced experiments that contain the same number of FP and FN salient
moments will be important for a more fair and generalizable comparison. These improvements will help
bridge the gap between machine-driven analyses and human clinical intuition, ultimately enhancing the
interpretability and practical utility of AI-based depression diagnostics.



7
Conclusion

In this work we set out to discover whether surfacing “salient moments” in audiovisual depression
assessments-and then checking thosemoments against human judgments-couldmake AI explanations
both more meaningful and more interpretable. We first showed that, although lay participants are only
moderately accurate when forced to judge very short clips in isolation, the facial and vocal cues they
cite (“eye-squinting,” “long pauses,” “monotone voice,” etc.) map directly onto well-established clinical
markers. In other words, their selections are far from random—they echo the literature on depression
indicators. We then compared those human-chosen features to the cues our model highlights at its
own most salient time points. When the model correctly flagged a segment as “depressed,” there was
a strong alignment between the participant-noted cues and the model’s information-theoretic saliency
peaks. Conversely, on segments the model misclassified, this alignment vanished—suggesting those
moments truly contain ambiguous or noisy signals.

Taken together, these findings answer our main research question To what extent can interpretability in
AI-based depression diagnosis be improved by identifying salient moments and validating them with hu-
mans?. Overall, our results show that highlighting the exact moments in a patient’s audio-video stream
that cause the model’s uncertainty to spike can substantially improve interpretability. When the model
correctly flags a segment as “depressed,” the very same facial expressions and vocal cues people
observe in those salient moment-long pauses, eye-squints, monotone pitch—are the ones that partic-
ipants also observe in their own influential moments, and these align neatly with established clinical
markers. Moreover, by comparing the radar-chart visualizations, we can directly see which specific fea-
tures both the model and the participants seem to deem influential in those moments-demonstrating
that the cues selected by lay raters (e.g. slowed speech, raised brows, reduced loudness) are not
only consistent across viewers, but also potentially truly informative for the model’s decision. In other
words, our information-theoretic saliency not only pinpoints when the model is being influenced, but
also confirms what behavioral signals may carry that decision weight in a way that resonates with hu-
man intuition and psychological theory. We also observe that the exact timestamps participants select
as their ‘tipping point’ often do not coincide with the model’s saliency peaks. Rather than undermining
our approach, we interpret this misalignment as a reflection of how difficult it is—even for humans—to
pinpoint the precise instant their own judgment changes when viewing very short clips.
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