
 
 

Delft University of Technology

MDBs Versus MIBs in Case of Multiple Hypotheses
A Study in Context of Deformation Analysis
Zaminpardaz, Safoora; Teunissen, Peter J.G.

DOI
10.1007/1345_2023_208
Publication date
2024
Document Version
Final published version
Published in
X Hotine-Marussi Symposium on Mathematical Geodesy

Citation (APA)
Zaminpardaz, S., & Teunissen, P. J. G. (2024). MDBs Versus MIBs in Case of Multiple Hypotheses: A
Study in Context of Deformation Analysis. In J. T. Freymueller, & L. Sánchez (Eds.), X Hotine-Marussi
Symposium on Mathematical Geodesy: Proceedings of the Symposium in Milan, Italy, June 13-17, 2022
(pp. 73-81). Article 208 (International Association of Geodesy Symposia; Vol. 155). Springer.
https://doi.org/10.1007/1345_2023_208
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/1345_2023_208
https://doi.org/10.1007/1345_2023_208


MDBs Versus MIBs in Case of Multiple
Hypotheses: A Study in Context of Deformation
Analysis

Safoora Zaminpardaz and Peter J. G. Teunissen

Abstract

Statistical testing procedures employed in geodetic quality control often consist of two
steps: detection and identification. In the detection step, the null hypothesis (working model)
H0 undergoes a validity check. If the outcome of the detection step is the rejection of
H0, identification of potential source of model error is exercised through a search among
the specified alternative hypotheses. The testing performance is thus not only led by its
ability to detect biases but to correctly identify them as well. The detection capability of a
testing regime is usually assessed by its Minimal Detectable Bias (MDB) given a certain
correct detection probability. The information provided by the MDB only concerns correct
detection and not correct identification. The testing identification performance should be
evaluated by its Minimal Identifiable Bias (MIB) given a certain correct identification
probability. In this contribution, we demonstrate the difference between MDB and MIB.
It is hereby highlighted that a small MDB (or a high probability of correct detection)
does not necessarily imply a small MIB (or a high probability of correct identification).
The factors driving the difference between detection and identification performance are
illustrated using a simple example. Our analysis is then continued in the framework of
deformation monitoring.
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1 Introduction

In geodetic quality control, statistical testing procedures
often consist of two steps: detection and identification
(Baarda 1968; Teunissen 1985; Caspary and Borutta 1987;
Kösters and Van der Marel 1990; Amiri Simkooei 2001;
Perfetti 2006; Lehmann and Lösler 2017; Klein et al. 2019;
Nowel 2020). In the detection step, the validity of the
null hypothesis H0 is checked. If H0 is rejected in the
detection step, an identification is carried out as to which
of the alternative hypotheses to select. In case there is
only one alternative hypothesis, say H1, the rejection of
H0 is equivalent to the selection of H1. Thus, ‘correct
detection’ of mismodelling error would be equivalent to
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‘correct identification’ of it when working with a single
alternative hypothesis. This is however not the case if one
has to deal with multiple alternative hypotheses. In this
contribution, for multiple-alternative testing, we study the
performance of the detection and identification steps using
the concepts of the minimal detectable bias (MDB) and the
minimal identifiable bias (MIB), respectively, and highlight
the factors driving the difference between them.

This contribution is structured as follows. In Sect. 2, we
describe the null and alternative hypotheses, and highlight
the role of the misclosure space partitioning in testing these
hypotheses. The testing decisions and their probabilities
are discussed, whereby the following events are defined:
correct acceptance (CA), false alarm (FA), correct detection
(CD), missed detection (MD), correct identification (CI) and
wrong identification (WI). The concepts of MDB and MIB
are discussed in Sect. 3 for a testing procedure comprising
detection and identification steps. It is hereby highlighted
that the MDB provides information about correct detection
and not about correct identification. To provide insight into
the difference between the MDB and the MIB, we compare
them in Sect. 4, for a simple multiple-hypothesis testing
example. It is demonstrated, in graphical form, that the MIB
could be significantly larger than the MDB. The MDB-
MIB comparison is then continued for actual deformation
measurement system examples in Sect. 5. Finally a summary
with conclusions is presented in Sect. 6.

We use the following notation: The n-dimensional space
of real numbers is denoted as Rn, and the set of points on
the circumference of the n-dimensional zero-centered unit
sphere as S

n. Random vectors are indicated by use of the
underlined symbol ‘�’. Thus t 2 R

n is a random vector,
while t is not. The squared weighted norm of a vector,
with respect to a positive-definite matrix Q, is defined as
k � k2

Q D .�/T Q�1.�/.H is reserved for statistical hypotheses,
P for regions partitioning the misclosure space, andN .x; Q/

for the normal distribution with mean x and variance matrix
Q. P.�/ denotes the probability of the occurrence of the

event within parentheses. The symbol
H
� should be read as

‘distributed as : : : under H’. The superscripts T and �1 are
used to denote the transpose and the inverse of a matrix.

2 Statistical Hypothesis Testing

In any quality control procedure, a set of hypotheses, includ-
ing a null and several alternative hypotheses, are postu-
lated to explain the phenomenon in question. For example,
in geodetic deformation monitoring, the null hypothesis
describes the ‘all-stable, no movement’ model, while the
alternative hypotheses capture different dynamic behaviors
of the structure under consideration. Let the observational

model under the null hypothesis H0, a.k.a. working hypoth-
esis, be given as

H0 W E.y/ D AxI D.y/ D Qyy (1)

with E.�/ the expectation operator, D.�/ the dispersion oper-
ator, y 2 R

m the normally distributed random vector of
observables linked to the estimable unknown parameters x 2

R
n through the design matrix A 2 R

m�n of rank.A/ D n,
and Qyy 2 R

m�m the positive-definite variance matrix of y.
The redundancy of H0 is r D m � rank.A/ D m � n.

The validity of the null hypothesis can be violated if the
functional model and/or the stochastic model are misspec-
ified. Here we assume that a misspecification is restricted
to an underparametrization of the mean of y, which is the
most common error that occurs when formulating the model
(Teunissen 2017). Thus, the alternative hypothesis Hi is
formulated as

Hi W E.y/ D Ax C Ci bi I D.y/ D Qyy (2)

for some vector Ci bi 2 R
m n f0g such that ŒA Ci � is a known

matrix of full rank and bi is an unknown vector.

2.1 Misclosure Space Partitioning

Let us assume that there are k types of mismodelling errors
in the form of Ci bi (cf. 2) when parametrizing the mean
of observations. The information required to validate the
hypotheses at hand is contained in the misclosure vector
t 2 R

r given as (Teunissen 2006)

t D BT y (3)

where B 2 R
m�r is a full-rank matrix, with rank.B/ D r ,

such that ŒA B� 2 R
m�m is invertible and AT B D 0. With

C0b0 D 0 and given that y
Hi
� N .Ax C Ci bi ; Qyy/ for i D

0; 1; : : : ; k, the misclosure vector is then distributed as

t
Hi
� N .Cti bi ; Qtt D BT QyyB/; for i D 0; 1; : : : k (4)

with Cti D BT Ci . As t has a known Probability Density
Function (PDF) under H0, which is the PDF of N .0; Qtt /,
any statistical testing procedure is driven by the misclosure
vector t and its known PDF under H0.

An unambiguous testing procedure can be established
through assigning the outcomes of t to the statistical
hypotheses Hi for i D 0; 1; : : : ; k, which can be realized
through a partitioning of the misclosure space Rr (Teunissen
2018). Let Pi � R

r (i D 0; 1; : : : ; k) be a partitioning of the
misclosure space, i.e. [k

iD0 Pi D R
r and Pi \ Pj D ; for
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i ¤ j . The unambiguous testing procedure is then defined
as

select Hi if and only if t 2 Pi for i D 0; 1 : : : ; k (5)

We note, although in (5) the statistical testing is formulated in
the misclosure vector t , that one can equally well work with
the least-squares residual vector Oe0 D y � A Ox0 where Ox0 D

.AT Q�1
yy A/�1AT Q�1

yy y. By using the relation t D BT Oe0,
there is no explicit need of having to compute t as testing
can be expressed directly in Oe0 (Teunissen 2006).

2.2 Testing Decisions

As (5) shows, the testing decisions are driven by the outcome
of the misclosure vector t . Under each hypothesis Hi (i D

0; 1; : : : ; k), the outcome of t can lead to k C 1 different
decisions out of which only one is correct, i.e. when t 2 Pi .
With k C 1 hypotheses Hi ’s (i D 0; 1; : : : ; k), one can
define different statistical events including Correct Accep-
tance (CA), False Alarm (FA), Missed Detection (MD), Cor-
rect Detection (CD), Correct Identification (CI) and Wrong
Identification (WI). The definitions of these events together
with their links are illustrated in Fig. 1. In this figure, the
events under alternative hypotheses are given an identify-
ing index, as they differ from alternative to alternative. In

addition, the contributions of different alternative hypotheses
to the events of false alarm and wrong identification are
distinguished by means of an index.

Given the translational property of the PDF of t under the
null and alternative hypotheses (cf. 4), the probabilities of
the events in Fig. 1 can be computed based on the misclosure
PDF under H0, denoted by ft .� jH0/, as

PFA D P.t … P0jH0/ D
R
Rr nP0

ft .� jH0/ d�

PCA D 1 � PFA

PCDi D P.t … P0jHi / D
R
Rr nP0

ft .� � Cti bi jH0/ d�

PMDi D 1 � PCDi

PCIi D P.t 2 Pi jHi / D
R
Pi

ft .� � Cti bi jH0/ d�

PWIi D PCDi � PCIi
(6)

The probability of false alarm PFA is usually set a priori by
the user. We note that the last four probabilities all depend
on the unknown bi which one needs to set to evaluate the
mentioned four probabilities.

Here, it is important to note the difference between the
probabilities of correct detection and correct identification,
i.e. PCDi � PCIi . These two probabilities would be identical
if there is only one alternative hypothesis, sayHi , since then
Pi D R

r nP0. Similar to the CD- and CI-probability, we have
the concepts of the minimal detectable bias (MDB) (Baarda
1968) and the minimal identifiable bias (MIB) (Teunissen

Fig. 1 An overview of testing decisions, driven by the misclosure vector t , under null and alternative hypotheses
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2018). In the following sections, we highlight the difference
between the MDB (PCDi ) and the MIB (PCIi ).

3 Testing Performance

Statistical testing procedures employed in quality control
often comprises two steps (Baarda 1968; Teunissen 1985;
Caspary and Borutta 1987; Kösters and Van der Marel 1990;
Amiri Simkooei 2001; Perfetti 2006; Lehmann and Lösler
2017; Nowel 2020), as follows

• Detection: The null hypothesis H0 undergoes a validity
check, without considering a particular set of alternatives.

• Identification: If H0 is rejected in the detection step, i.e.
t … P0, a search is carried out among the specified
alternatives Hi (i D 1; : : : ; k) to pinpoint the potential
source of model error.

The testing performance is thus not only led by its ability to
detect biases but to correctly identify them as well. While
the former is measured by means of the MDB (or alterna-
tively CD-probability), the latter should be measured using
the MIB (or alternatively CI-probability) (Teunissen 2018;
Zaminpardaz and Teunissen 2019; Imparato et al. 2019).
Note, in single-redundancy case r D 1, that P1 D : : : D

Pk D R
r n P0, implying that the alternative hypotheses are

not distinguishable from one another, and thus identification
would not be possible.

3.1 Minimal Detectable Bias (MDB)

The concept of the MDB was introduced in Baarda (1967,
1968) as a diagnostic tool for measuring the ability of the
testing procedure to detect misspecifications of the model.
The MDB, for each alternative hypothesis Hi , is defined as
the smallest size of bi that can be detected given a certain
CD- and FA-probability. As the third equality in (6) shows,
PCDi depends, in addition to the PDF of t under H0 and
bi , also on P0 which is commonly defined as (Baarda 1968;
Teunissen 2006)

P0 D
n
t 2 R

r jktk2
Qtt

� �2
1�PFA

.r; 0/
o

(7)

where �2
1�PFA

.r; 0/ is the .1 � PFA/ quantile of the central
Chi-square distribution with r degrees of freedom. Using
(7), one in fact compares the test statistic ktk2

Qtt
against the

critical value �2
1�PFA

.r; 0/, with user-defined PFA, to decide
whether H0 is valid or not. This testing process is called
the overall model test, which would be a Uniformly Most
Powerful Invariant (UMPI) detector test in case of dealing

with a single alternative hypothesis (Arnold 1981; Teunissen
2006; Lehmann and Voß-Böhme 2017).

With (7), the CD-probability ofHi is given by

PCDi D P
�
ktk2

Qtt
> �2

1�PFA
.r; 0/jHi

�
(8)

where, according to (4), ktk2
Qtt

under Hi has a non-central
Chi-square distribution with r degrees of freedom and the
non-centrality parameter �2

i D kCti bi k
2
Qtt

. One can compute
�2

i D �2.PFA;PCDi ; r/ from the Chi-square distribution for
a given model redundancy r , CD-probability PCDi and FA-
probability PFA. If bi 2 R is a scalar, then Cti takes the
form of a vector cti , and the MDB is given by (Baarda 1968;
Teunissen 2006)

bi 2 R W jbi;MDBj D
�.PFA;PCDi ; r/

kcti kQtt

(9)

which shows that for a given set of fPFA;PCDi ; rg, the MDB
depends on kcti kQtt . For the higher-dimensional case when
bi 2 R

q>1 is a vector instead of a scalar, a similar expression
can be obtained. Let the bias vector be parametrized, in terms
of its magnitude kbi k and its unit direction vector d , as bi D

kbi k d . Then the MDB along the direction d 2 S
q�1 is given

by (Teunissen 2006)

bi 2 R
q>1 W kbi;MDB.d/k D

�.PFA;PCDi ; r/

kCti dkQtt

I d 2 S
q�1

(10)

If the unit vector d sweeps the surface of the unit sphere
S

q�1, an ellipsoidal region is obtained of which the boundary
defines the MDBs in different directions. The shape and
the orientation of this ellipsoidal region is governed by the
variance matrix Q Obi

Obi
D .C T

ti
Q�1

t t Cti /
�1, and its size is

determined by �.PFA;PCDi ; r/ (Zaminpardaz et al. 2015;
Zaminpardaz 2016).

The MDB concept expresses the sensitivity of the detec-
tion step of the testing procedure. One can compare the
MDBs of different alternative hypotheses for a given set of
fPFA;PCD; rg, which provides information on how sensitive
is the rejection of H0 for the Hi -biases the size of their
MDBs. The smaller the MDB is, the more sensitive is the
rejection of H0.

3.2 Minimal Identifiable Bias (MIB)

As the last equality in (6) shows, a high CD-probability PCDi

does not necessarily imply a high CI-probability PCIi unless
we have the special case of only a single alternative hypoth-
esis. Therefore, in case of multiple hypotheses, the MDB
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does not provide information about correct identification.
To assess the sensitivity of the identification step, one can
analyse the MIBs of the alternative hypotheses. The MIB
of the alternative hypothesis Hi is defined as the smallest
size of bi that can be identified given a certain CI probability
(Teunissen 2018).

The MIB corresponding with Hi can be found from
inverting the fifth equality in (6). This inversion is, however,
not trivial as PCIi is an r-fold integral over the complex
region Pi . One can take resort to numerical evaluation
techniques. For example, the MIBs in Sect. 4 are numerically
computed as follows. The probability PCIi is computed, by
means of Monte Carlo simulation, see e.g. Teunissen (2018),
at discrete biases bi and then the bias at which PCIi gets close
enough to the pre-set CI-probability is the MIB sought.

According to the fifth equality in (6), the MIB for a
given PCIi depends on the probability mass of the PDF of
t under Hi over Pi . This probability mass is driven by the
shape and size of Pi , magnitude of E .t jHi / and its direction
with respect to the borders of Pi . Note, if bi 2 R

q>1 is
a vector, then, a given CI-probability yields different MIBs
along different directions in R

q . In this case, a pre-set CI-
probability defines a region in R

q the boundary of which
defines the MIBs in different directions. The MIB of Hi for
a given CI-probability is denoted by jbi;MIBj if bi 2 R, and
kbi;MIB.d/k along the unit direction d 2 S

q�1 if bi 2 R
q>1.

4 MDB Versus MIB

As for a given bias bi , the CD-probability exceeds the CI-
probability, i.e. PCDi � PCIi , then for a given PCDi D PCIi ,
we have

bi 2 R W jbi;MIBj � jbi;MDBj

bi 2 R
q>1 W kbi;MIB.d/k � kbi;MDB.d/k for any d 2 S

q�1

(11)

The following example elaborates more on the above link
between the MDB and the MIB.

Example Let y 2 R
4 contain two pairs of observations

of an unknown distance x 2 R made using two different
instruments, e.g., two different tape measures. The observa-
tions are assumed uncorrelated and equally precise with the
same standard deviation � . Under the null hypothesisH0, the
observations are assumed to be bias-free, whereas under the
alternative hypotheses Hi (i D 1; 2), it is assumed that the
observation pair made by one of the instruments are biased
by Ci bi (i D 1; 2) with Ci 2 R

4�2 and bi 2 R
2. These

hypotheses are formulated as

H0 W E.y/ D e4 x; D.y/ D �2I4

Hi W E.y/ D e4 x C
�
u2

i ˝ I2

�
bi ; D.y/ D �2I4

(12)

where ˝ shows the Kronecker product (Henderson and
Pukelsheim 1983), e� 2 R

� the vector of ones, I� 2 R
���

the identity matrix, and u2
i 2 R

2 the canonical unit vector
having one as its i th element and zeros otherwise.

The redundancy of H0-model is r D 4 � 1 D 3 > 1,
which means, upon the rejection ofH0, that the identification
of potential source of error would be possible. Under H1,
it is assumed that the mean-difference of the observables
of the second instrument is zero, while under H2, this is
assumed for the first instrument. To test the three hypotheses
in consideration, the following detection and identification
steps are exercised:

• Detection: The null hypothesis H0 is accepted if t 2 P0

with P0 given by (7).
• Identification: If H0 is rejected in the detection step, then

Hi (i D 1; 2) is selected if t 2 Pi with

Pi D

�

t 2 R
r n P0

ˇ
ˇ
ˇ
ˇ Ti D max

j 2f1;:::;kg
Tj

�

(13)

where

Ti D tT Q�1
t t Cti

�
C T

ti
Q�1

t t Cti

��1
C T

ti
Q�1

t t t (14)

would be a realization of the Generalized Likelihood
Ratio (GLR) test statistic in case there is only one single
alternative hypothesis (Teunissen 2006).

We note that the vector of misclosures t is not uniquely
defined. This, however, does not affect the outcome of the
above testing procedure as both the detector ktk2

Qtt
and the

test statistic T i remain invariant for any linear one-to-one
transformation of the misclosure vector. Therefore, instead
of t , one can for instance also work with

Nt D G�T t

( H0
� N .0; Ir /
Hi
� N . NCti bi ; Ir /

(15)

with NCti D G�T Cti and the Cholesky-factor GT of the
Cholesky-factorisation Qtt D GT G. The advantage of using
Nt over t lies in the ease of visualizing certain effects due to
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Fig. 2 Partitioning of the misclosure space R
3 corresponding with Nt

(15) using (7) and (13). The blue sphere shows the boundary of P0

with PFA D 0:1, while the orthogonal green and red planes separate P1

from P2

the identity-variance matrix of Nt (Zaminpardaz and Teunissen
2019). The partitioning corresponding with Nt is denoted by
P i for i D 0; 1; 2.

The misclosure space (R3) partitioning corresponding
with (7) and (13) is shown in Fig. 2. For the sake of visu-
alization, instead of t , we work with Nt defined in (15). The
blue sphere shows the boundary of P0 choosing PFA D 0:1,
while the green and red planes separate P1 from P2. The two
planes are orthogonal to each other implying that P1 and P2

are the same in shape and size.
As bi in (12) is a 2-vector, i.e. bi D Œbi;1; bi;2�T ,

the MDBs and the MIBs of the alternative hypotheses are
dependent not only on the pre-set CD- and CI-probability,
but also on the bias direction in R

2. Figure 3 shows the
MDB and MIB curves for Hi (i D 1; 2) given � D 0:1,
PFA D 0:1 and for different values of PCDi D PCIi . In each

panel, in agreement with (11), it can be seen that the MIB
curve encompasses the MDB curve.

Note, if E.Nt jHi / D NCti bi lies on the border of P1 and
P2, that the CI-probability ofHi cannot reach above 0:5. As
shown in Fig. 2, the regions P1 and P2 are separated from
each other by the following two planes

N�T

 
NC ?
t1

k NC ?
t1 k

˙
NC ?
t2

k NC ?
t2 k

!

D 0I N� 2 R
3 (16)

with NC ?
ti

2 R
3 being a vector of which the range space is

the orthogonal complement of the range space of NCti . It can
be easily verified, if bi is parallel to Œ1; 1�T , that E.Nt jHi /

will lie on the intersection of the above planes. This explains
the bands around the direction of Œ1; 1�T in Fig. 3 when
PCIi is set to be larger than 0:5. On the other hand, when
bi is parallel to Œ1; � 1�T , the MDB and the MIB are very
close to each other. A bias along the direction of Œ1; � 1�T

makes E.Nt jHi / lie at its farthest position from the planar
borders of P1 and P2. Thus, under Hi (i D 1; 2), most of
the probability mass of the PDF of Nt that lies outside P0 falls
into the region P i . As a result PCDi and PCIi are very close to
each other for a given bias along Œ1; � 1�T , or alternatively
the MDB and the MIB are very close to each other along
Œ1; � 1�T for a pre-set PCDi D PCIi . ut

The above example clearly shows that the detection and
identification performance of a testing procedure could be
completely different from each other.

5 DeformationMonitoring

In this section, we continue our MDB-MIB comparison for a
dam deformation monitoring case, inspired by an example in
Heunecke et al. (2013, p. 227), see also (Zaminpardaz et al.
2020). Figure 4 [top] shows a top view of a dam over a lake,

P P
MDB
MIB

P P P P P P

Fig. 3 Illustration of the MDB versus the MIB curves for testing the hypotheses in (12) using (7) and (13), given � D 0:1 and PFA D 0:1. The
panels from left to right correspond to PCDi D PCIi of 0.4, 0.6, 0.8 and 0.99, respectively
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Fig. 4 Deformation monitoring of a dam (Zaminpardaz et al. 2020).
[Top] The horizontal monitoring network consists of four reference
points around the dam and two object points on the dam (points 5
and 6). The blue lines indicate the distance+direction measurements
between their ending points, and the arrows point from total station

to target. [Bottom] The graphs of MDB (solid lines) and MIB (dashed
lines) of different alternative hypotheses in (18) as function of the pre-
set probability. The results correspond with the testing procedure in (7)
and (13), given PFA D 0:01

together with two different 2-D terrestrial survey networks
designed to monitor the dam’s horizontal displacement. For
simplicity, it is assumed that the dam is vertically stable.
The survey networks consist of two object points on the
dam subject to displacement (points 5, 6), and four reference
points in a stable area close to the dam (points 1, 2, 3, 4).
To determine horizontal deformations of the dam, two sets

of measurements are collected at two times (or epochs),
l D 1; 2.

In the survey network shown in Fig. 4 [top-left], each
measurement set contains 60 measurements; five distance
measurements and five direction measurements taken from
each of the six points to the rest of the points by a total sta-
tion. The distance and direction measurements are assumed
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to be normally distributed with standard deviations of 1 cm
and 10 s of arc, respectively. The measurements are assumed
to be all uncorrelated. To make the scale, orientation and
location of the 2-D survey network estimable, the coordinates
of the reference points 1 and 2 (black triangles in Fig. 4
[top]) are assumed given. The 60 distance and direction
observations at epoch l are then used to estimate the Easting
and Northing of points i D 3; : : : ; 6, together with the
unknown instrument scale factor (one for the whole network)
and six unknown orientations (one per instrument set-up).

To analyse the dam’s horizontal displacement, we make
use of the epoch-wise estimated coordinatesof points i D

3; : : : ; 6 and their corresponding variance matrices. Let xi;l 2

R
2 (for i D 3; : : : ; 6 and l D 1; 2) be the coordinate vector

of point i at epoch l , and let xl D ŒxT
3;l ; xT

4;l ; xT
5;l ; xT

6;l �
T 2

R
8 for l D 1; 2. Under the null hypothesis H0, where

deformation is absent, we assume

H0 W x2 D x1 .all stable/ (17)

The redundancy under H0 is r D 8. The dam is supposed
to be subject to load of the water in the lake, and hence it is
assumed that either only one or both of the dam points may
be pushed back in the direction perpendicular to the dam.
Thus we have three alternative hypotheses as

Hi W x2 D x1 C .u4
iC2 ˝ d/ bi .point i C 4 is unstable; i D 1; 2/

H3 W x2 D x1 C .u ˝ d/ b3 .points 5 and 6 are unstable/
(18)

with u4
iC2 2 R

4 the canonical unit vector having one as
its .i C 2/th element and zeros otherwise, u D u4

3 C u4
4,

d 2 S the known unit vector in the direction perpendicular
to the dam, and bi 2 R the unknown scalar deformation size
parameter. Note, under H3, that we assume that the object
points 5 and 6 deform with the same amount.

We note that since r D 8 > 1, our testing procedure
involves both the detection and identification step (7) and
(13). Assuming PFA D 0:01, Fig. 4 [bottom-left] shows the
MDB as a function of the CD-probability in solid curves,
and the MIB as a function of the CI-probability in dashed
curves for the three hypotheses in (18). For each hypothesis,
its MIB graph lies above its MDB graph corroborating the
first inequality in (11). For example, for a given pre-set
probability of PCDi D PCIi D 0:98, there is an offset of
almost 6mm between the MIB and the MDB in case of H1

and H3, while the H2’s MDB and MIB difference is at sub-
mm level.

The MIB-MDB difference will change if the survey
network measurement set-up changes. Figure 4 [top-right]
shows a survey network obtained by removing 17 pairs of
distance/direction measurements from the top-left network.
As a result of loosing 34 measurements compared to the
previous survey network, both the MDBs and the MIBs
increase as shown in Fig. 4 [bottom-right]. It is observed
that the MIB and the MDB can differ significantly from
each other. For example, for a given pre-set probability of
PCDi D PCIi D 0:98, there is an offset of almost 16mm
between the MIB and the MDB in case ofH1 and H3.

As shown in Fig. 4 [bottom], the MDB and the MIB, for
a pre-set probability, differ from hypothesis to hypothesis.
For example, for the range of probabilities shown in Fig. 4

[bottom-left], it is observed that

jb2;MDBj > jb3;MDBj > jb1;MDBj

jb2;MIBj > jb3;MIBj > jb1;MIBj
(19)

As the MDB, for a given set of fPFA;PCDi ; rg, is driven by
kcti kQtt , the first expression in the above equation can be
explained by comparing kcti kQtt for i D 1; 2; 3. The larger
the value of kcti kQtt , the smaller the MDB is expected to be.
For example, for the survey network shown in Fig. 4 [top-
left], we have

kct1kQtt � 180I kct2kQtt � 105I kct3kQtt � 158 (20)

which are driven by the network geometry, measurement
precision and the direction of displacement. The above equa-
tion implies that H1 and H2 should, respectively, have the
smallest and the largest MDBs among the three alternatives
for a pre-set CD-probability. The MIB inequalities in (19)
are due to a combination of (20), the shape and size of Pi ,
magnitude of E.t jHi / and its direction with respect to the
borders of Pi .

6 Summary and Concluding Remarks

In this contribution, a comparative analysis was provided
of the detection and identification steps of statistical test-
ing procedures. The detection step aims to validate the
null hypothesis H0, while the identification step, upon the
rejection of H0, aims to select the most likely alternative
hypothesis among those in consideration.In case there is only
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one alternative hypothesis, say H1, the rejection of H0 is
equivalent to the identification ofH1. This is however not the
case when working with multiple alternatives. Having dif-
ferent functionalities, the detection and identification perfor-
mance of the testing procedure should then be assessed using
two different diagnostic tools. The detection capability of a
testing regime is usually assessed by its Minimal Detectable
Bias (MDB), whereas the testing identification performance
should be evaluated by its Minimal Identifiable Bias (MIB).

Using the concept of misclosure space partitioning, we
discussed testing decisions and their probabilities. Through
this partitioning, it was shown that the distribution of the
misclosure vector can be used to determine the correct
detection (CD) and correct identification (CI) probabilities
of each of the alternative hypotheses. One can then ‘invert’
these probabilities to determine their corresponding minimal
biases, i.e. the MDB and the MIB. It was highlighted that a
small MDB (or high probability of correct detection) does
not necessarily imply a small MIB (or a high probability of
correct identification), unless one is dealing with the special
case of having only one single alternative hypothesis. The
factors driving the difference between detection and identifi-
cation performance were illustrated using a simple multiple-
alternative testing example. Our evaluations were extended to
basic deformation measurement system examples with multi-
ple alternative hypotheses, where monitoring measurements
were provided by a 2D terrestrial survey network.
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