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ABSTRACT

As mobile and embedded devices become widespread, the man-
agement and configuration of the software in the devices is
increasingly turning into a critical issue. OSGi is a busi-
ness standard for the life cycle management of Java soft-
ware components. It is based on a service oriented architec-
ture where functional units are decoupled and components
can be managed independently of each other. However, the
focus continuously shifts from the originally intended area of
small and embedded devices towards large-scaled enterprise
systems. As a result, implementations of the OSGi frame-
work are increasingly becoming more heavyweight and less
suitable for smaller computing devices. In this paper, we
describe the experience gathered during the design of Con-
cierge, an implementation of the OSGi specification tailored
to resource-constrained devices. Comprehensive benchmarks
show that Concierge performs better than existing implemen-
tations and consumes less resources.
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1. INTRODUCTION

In the last few years a clear trend has developed towards
the widespread use of mobile and embedded devices. As
a result, the problem of software life cycle management on
these devices has become more acute. This problem is com-
pounded by the special characteristics of ubiquitous comput-
ing. For instance, in cars, the life time of the hardware is far
longer than the life cycle of a single software release. Mobil-
ity also requires constant adaptation through addition and
replacement of software modules. Furthermore, the user ex-
perience is very important, and it can not be expected that
the user manually configures all the devices. Until now,
these tasks are performed ad-hoc and largely based on pro-
prietary systems. In response to the demand for a stan-
dardized software management platform, the Open Service
Gateway Initiative (OSGi) [24] has released an open busi-
ness standard for the management of dynamic modules in
Java. The OSGi platform is a service-oriented architecture
that allows to build applications out of loosely coupled soft-
ware modules to facilitate the addition, removal, and update
of each module independently.

1.1 Software management systems

The originally intended area of OSGi was the manage-
ment of home communication gateways like multimedia sys-
tems or set-top boxes for digital television. The first release
of the OSGi specifications in 1999 had a strong focus on
resource-constrained devices. OSGi has been very success-
ful as it addresses an increasingly important problem that is
not exclusive to resource-constrained devices. Today, OSGi
is widely used in large applications that need to be extensi-
ble at runtime, and to facilitate software management and
updates without taking an application down. One example
is Equinox [8], an OSGi implementation that forms the ex-
tensible plugin system of the Rich Client Platform [9] and
the Eclipse IDE. Projects like the J2EE container Jonas [7]
or the Apache Directory Server [2] combine OSGi with enter-
prise server architectures. Additional implementations have
been provided by several members of the OSGi Alliance,
e.g., Sun, IBM, Siemens, or Samsung. Some of them, for in-
stance the IBM Service Management Framework (SMF) [12]
and the ProSyst mBedded Server [26], are available for de-
velopers and end-users as commercial products. Currently,
two open source implementations of the OSGi Specification
Release 3 (R3) exist, Oscar [10, 23] by Richard S. Hall from
University of Grenoble and Knopflerfish [17] by Gatespace
Telematics. Oscar has been discontinued and succeeded by



the Apache Felix project [3], which implements the OSGi
R4 specifications. Eclipse Equinox also implements R4. All
these implementations focus on server-side applications, are
tailored to full-sized computers, and tend to be very liberal
with the use of resources.

There are several alternative proposals to implement soft-
ware management functionality for small devices. One of
them is MIDlets, which follows an orthogonal approach to
OSGi. MIDlets are part of the CLDC MIDP Profile [14]
and are used in Java-enabled cell-phones. MIDlets provide
some basic life cycle management but support only isolated
components and do not allow interaction across MIDlets.
Hence, they are inadequate for larger software applications.
Another example is the Multimedia Home Platform (MHP)
[21] and its US counterpart, the Open Cable Application
Platform (OCAP) [22]. These are de-facto standards for set-
top boxes for digital television. The software stack is based
on a J2ME CDC Foundation Profile [15, 16] and allows net-
work operators to distribute content and Java applications
in the form of Xlets to the user’s Digital Video Broadcast-
ing (DVB) terminal equipment. Technically, Xlets provide a
similar basic life cycle interface as MIDlets. Although MHP
has the concept of services, this denotes services of the ter-
minal device and cannot be dynamically extended. The only
way for Xlets to interact is through Remote Method Invo-
cation (RMI) calls outside of the control of the management
platform.

There is no doubt that OSGi offers a more complete plat-
form than either MIDlets or Xlets. Unfortunately, existing
OSGi implementations are hardly suitable for devices other
than full scale computers. Nevertheless, the functionality
of OSGi is a key element for making mobile and ubiquitous
computing a reality. The question is whether it is possible
to implement the OSGi functionality in a platform adequate
for smaller devices without loosing any of the advantages of
the OSGi idea.

1.2 Contributions

In this paper, we answer this question by describing the
experience gathered during the development of Concierge,
a complete implementation of the OSGi framework. Con-
cierge has been optimized for small! and embedded devices.
Yet, it provides all the functionality available on the OSGi
R3 specification. An important contribution of the architec-
ture of Concierge is that it has a considerably smaller file
and memory footprint than existing implementations. For
instance, Oscar and Knopflerfish have a file footprint of over
200 kBytes, while Concierge takes only 75 kBytes. Another
important contribution of the design of Concierge is that, in
despite of being far more compact than existing implemen-
tations, the evaluations included in the paper show that it
is more efficient and has better performance than larger sys-
tems. On a notebook, Concierge provides 50% performance
improvement over Knopflerfish and over 60% performance
improvements over IBM’s SMF on the Knopflerfish Regres-
sion Test benchmarks. In smaller devices, such as the PDA
Sharp Zaurus with the Sun cvm, Concierge is roughly ten
times faster than Oscar. The performance gains are impor-
tant for the user’s experience point of view as well as in
terms of more efficient energy consumption. In the paper,

!Throughout this paper, the term “small” device is used as
a synonym for “resource-constrained”.

we provide a detailed analysis of optimization strategies for
Java on small VMs. We then show how these optimizations
have been used in the design of Concierge. An important as-
pect of these optimizations is that they are not restricted to
Concierge but apply to any Java software on small and em-
bedded devices. Statistical measurements of the behavior of
existing OSGi applications are used to complete the picture
and assess the concrete influences of each optimization. As
a further contribution, from these measurements, we derive
the notion of the Awverage Bundle which characterizes the
behavior of a typical OSGi software module.

2. 0OSGI

Application Bundles

‘ OSGi Framework - Service Layer

‘ OSGi Framework - Life Cycle Layer

OSGi Framework - Module Layer

Figure 1: OSGi Architecture

2.1 Overview

OSGi is a platform for managing software modules, which
in OSGi are called Bundles. What OSGi provides is sup-
port for adding, removing, and replacing bundles at runtime
while maintaining the relations and dependencies between
the bundles. OSGi also provides a service-oriented archi-
tecture where bundles can publish and use services through
an event-based publish-subscribe system. An OSGi imple-
mentation has to provide all the necessary infrastructure to
manage bundles, maintain consistency across import/export
dependencies of the bundles, and implement a services and
event infrastructure including service registry and forward-
ing mechanisms, as well as the publish-subscribe system.

The advantage of using OSGi is that the always complex
problem of module control and consistency in larger appli-
cations is done automatically. The facilities provided by
OSGi also make it possible to dynamically replace parts of
an application that has been built as a collection of bundles
without interrupting the application. This is what makes
OSGi so attractive on the server side and is one of the rea-
sons why the focus of most implementations tends to be
larger installations rather than small devices (the other rea-
son being that until recently there was not enough critical
mass around the efforts on small devices to justify focusing
on them). With OSGi, it becomes possible to use service-
oriented architecture principles to build applications out of
independent, loosely-coupled software modules. Through
the service-oriented approach, OSGi clearly separates im-
plementation and interface, thereby making it possible to
change the implementation of a service at runtime.

2.2 Bundles

Bundles in OSGi are the concrete realization of the con-
cept of software modules. From a technical point of view,
they are ordinary JAR files containing class files and other
resources and having additional OSGi-specific attributes in



the JAR manifest. The management of bundles requires a
bundle registry where the system can keep track of what
bundles are around and what their status is. When a bun-
dle is inserted into the system, it is first persistently stored.
Then, the system builds a class loader for the bundle. The
point when the bundle is resolved depends on the concrete
OSGi implementation. Resolving the bundle involves check-
ing its internal class path, fulfilling the import declarations,
and resolving the bundle’s activator if it has one. After be-
ing resolved, the bundle is ready to be started when invoked.
Removing bundles is more involved. If the bundle is active,
it has to be stopped. All registered services have to be un-
registered and listeners have to be deactivated. Finally, the
bundle’s class loader is disposed of to remove knowledge of
the class types from the system (at which point is as if the
bundle would have never been there).

What makes OSGi interesting is the support for compos-
ing bundles by managing the dependencies between them.
There are two different types of dependencies between bun-
dles. The first one involves the sharing of Java packages be-
tween bundles so that one bundle exports the package and
one or more other bundles import it. This is a strong depen-
dency, since the presence of the package is required for the
importing bundles to work. The second form of dependency
is intended to support loosely-coupled interactions so that
bundles can be installed or uninstalled at any time. These
weaker dependencies are implemented through services.

2.3 Services

A service is an object with one or more interfaces plus
an optional set of properties. Services are registered by
bundles. The OSGi framework maintains a service registry
where bundles can register and provide services. Services
are by design not required for the resolving and the starting
of a bundle. Every bundle can request a service from the
registry and has to take own provisions for the case that
the service is currently not available. Service consumers are
only dependent on the interface but not on the concrete
implementations, i.e., they do not depend on the service ob-
ject. It is thus possible to replace the service implementa-
tion at runtime. The goal is to allow bundles to interact in a
loosely-coupled manner. For instance, a command-line shell
bundle listens to application bundles that register services.
These application services tell the shell how to interact with
these applications. In this way, the applications can extend
the functionality of the shell at runtime without creating a
strong dependency between them. Applications can come
and go while the shell is always able to interact with all
applications that are currently running.

2.4 Events

Information about changes in the state of bundles and/or
services is distributed across the system via events. These
events are managed through a Publish-Subscribe infrastruc-
ture. A bundle can register a ServiceListener if a cer-
tain service is not available, and wait until another bundle
registers this service. When the services appears, an event
is generated and forwarded to subscribed listeners. Simi-
larly, BundleListeners get informed whenever the state of
a bundle changes and FrameworkEvents are fired in case of
changes in the framework’s own internal state. Bundles of-
ten communicate using the more sophisticated Whiteboard
Pattern [25]. Instead of requiring all bundles to subscribe

to the event source, bundles can register the listeners as ser-
vices, and the source bundle calls all listeners that have an
entry in the service registry. This is more flexible since it
decouples event source and listener.

2.5 Framework

An OSGi platform has a layered architecture (Figure 1).
The lowest three layers are not really part of the system but
are very important in determining how it works, especially
the JVM layer. The lowest layer of a running OSGi frame-
work is the hardware itself, that can range from a standard
x86-based PC to mobile devices down to highly specialized
embedded systems. For the experiments in this paper, we
use a wide variety of hardware and software platforms. The
complete list and their characteristics can be found in the
Appendix. The next layer is the operating system. In our
tests, we have used several flavors of Linux, Windows XP,
Windows PocketPC, and SymbianOS. Which one has been
used in which device is also summarized in the Appendix.

The Java Virtual Machine layer deserves special atten-
tion. The problem is that not all JVMs are the same and
this is particularly true in resource-constrained devices. On
the one hand, the evolution of Java SE did not proceed
equally on all platforms. Whereas desktop and server range
machines typically have Java 1.5 and are heading towards
Java 1.6, small and embedded devices often still run on 1.2
or 1.3 compliant VMs. The differences in terms of features
are remarkable, for instance, the total number of classes
and interfaces in Java 1.2 is 1520, while it is over 12000
in Java 1.5 with not only new classes but also with impor-
tant changes to very basic and frequently used classes. On
the other hand, J2ME profiles feature by design only a sub-
set of standard Java. To overcome the pitfalls of compat-
ibility, OSGi has specified two different execution environ-
ments. The first is OSGi/Minimum-1.0, the minimal subset
of standard Java that is required to have a fully functional
OSGi framework. The second execution environment is the
CDC-1.0/Foundation, which is derived from the J2ME CDC
Foundation Profile and defines the intersection between the
Minimum execution environment and the Foundation Pro-
file. J2ME CLDC profiles are not valid execution environ-
ments and the underlying KVM [19] lacks basic concepts
like user-defined class loading that are crucial for OSGi. To
be fully compatible, bundles should not rely on any class
beyond the minimum execution environment.

The module layer handles the class loading of OSGi bun-
dles and the import and export of packages. Java class load-
ers consume arrays of bytes representing the Java byte code
of a class. For each loaded class, a Class Object and a sup-
porting data structure in the method area is created that
forms the type of the class. In OSGi, every bundle is loaded
by a separate class loader. Package imports therefore have
to be delegated from the importing to the exporting class
loader. The purpose of the module layer is to handle the
class loading and the delegations between bundles.

The life cycle layer provides an API for managing the life
cycle of the installed bundles. Since update and removal of
running bundles has implications on other bundles that have
imported packages from the affected bundles, the life cycle
layer has to ensure consistency. For example, all bundles
that want to import a certain package have to get the same



package, even if more than one bundle offer to export this
particular package. The handling of dependencies is also
performed by the life cycle layer. Every bundle can pro-
vide a class that implements the BundleActivator interface
with a start and a stop method. Whenever one of these two
operations are performed on the bundle, the corresponding
method of the BundleActivator is called. In this sense,
the start method of the BundleActivator replaces the main
method of traditional Java applications.

The service layer contains the service registry. Bundles
can register their service objects under the name of one or
more interfaces and together with a set of properties. The
properties are described by key/value pairs. Bundles inter-
ested in services can retrieve ServiceReferences for match-
ing services, optionally by providing an RFC 1960 LDAP
filter [11] that is matched against the registered properties.
The service reference gives access to the full set of proper-
ties of the service and allows the bundle to fetch the actual
service object from the registry.

3. THE CONCIERGE DESIGN

Implementing the OSGi specification for resource con-
strained devices involves many different trade-offs. First,
it is important to save CPU cycles, especially on mobile de-
vices. Second, memory has to be used carefully and treated
as a very scarce resource. The challenge here is that there
is no set of design rules on how to optimize code for small
devices. To make matters worse, smaller JVMs are far more
heterogeneous and less optimized than their larger counter-
parts. Hence, any design choice has to be tested on different
hardware platforms and different JVMs. Before describing
the implementation of the different OSGi layers in Con-
cierge, in this section we discuss general design principles
behind the Concierge architecture.

3.1 Consistent behavior across devices

The Java Virtual Machine Specification [20] defines the
general behavior of VM implementations but does not en-
force particular implementation rules. As long as a system
behaves to the outside world like a Java VM, internally al-
most everything is possible. Even well-known techniques
like method tables or garbage collection are not compul-
sory. As [28] accentuates, it is only mandatory to have some
kind of memory management. Therefore, internally, JVMs
widely differ. On full-sized machines, this does not matter
that much. First, because not many different Java VM im-
plementations are widely used. Second, all these VMs have
been optimized to roughly equivalent levels of performance.
On small devices, however, none of this applies. There are
many different VMs and they are optimized for size rather
than performance. A typical example is just-in-time compi-
lation often not available in small VMs. In addition, opti-
mizations tend to be hardware-specific, and the behavior of
a VM can radically change when it runs on, e.g., a PDA and
a mobile phone. Thus, Concierge has been designed without
taking advantage of specific platform characteristics. It uses
only generic optimizations based on principles that apply to
all potential hardware and software platforms. A key chal-
lenge in the design of Concierge is to achieve, as much as
it is possible, a consistent behavior across platforms. This
is crucial when developing applications that must run on
different devices.

3.2 Code optimizations

One of the key problems when optimizing performance
is how the code is organized. In this context, the final
modifier is a still underestimated element in Java. Besides
the software-engineering and code-style aspects of the final
keyword, here we are interested in its performance implica-
tions. Generally, final methods use static invocation instead
of virtual method dispatching, which is considerably slower.
Static and private methods are implicitly final and do not
have to be explicitly marked as such. Just-in-time compil-
ers take advantage of final methods to, e.g., inline them.
Newer virtual machines can detect at runtime if a method
can be treated as final, small virtual machines are unlikely
to have these sophisticated optimizations. In the context
of resource-constrained devices, it is advisable to explicitly
use the final keyword if possible and preferably mark whole
classes as final, if they are not explicitly designed for inher-
itance.

Influence of the final modifier
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Figure 2: Influence of the final modifier

The impact on performance between using and not using
final is shown in Figure 2. In this experiment, the av-
erage execution time of methods with different arguments
are measured when invoked as a normal method, with the
method as final, with the parameters as final, and with both
the method and the parameters as final. Figure 2 shows
the relative performance gain with respect to the execution
time of the normal methods. The experiments are run on
seven different platforms, from a mobile phone to a work-
station. In most cases, a small performance benefit can be
observed. Surprisingly, the biggest gains are for Sun Java
1.5 (the workstation) which points out to a problem in how
final is treated in Java 1.5, since this behavior is not ob-
served in 1.4 on the notebook. As it will happen with several
of the measurements discussed in this section, the gains are
apparently small. This, however, is deceiving. First, the
tests are done on very simplified code so as to be able to de-
termine precisely the gain per method. In real applications,
these gains have an important cumulative effect, not only by
themselves but also when taking into consideration all the
aspects discussed in this section. Second, often these effects
result in radically different behaviors across platforms. To
ensure consistent behavior, these effects must be taken into
account so that applications built on top of Concierge can
have a behavior that is predictable across different devices.

3.3 C(lass structure

The importance of a method being final or not becomes
more clear when this is considered in relation to whether the



Static Class and Singleton
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Figure 3: Static and Singleton Methods

class is static or not. Static classes are implicitly final. In
OSGi, there is a central framework class that sits in the mid-
dle of all performance-critical paths. This is because bundles
are constantly talking to this class through indirection (e.g.,
bundle context, service reference, event listeners, etc.). This
class is by nature a singleton entity and the vast majority
of existing systems implement the framework class as some
flavor of the singleton pattern. Again, in large installations,
this might not play a major role. In small devices, it is a
huge bottleneck.

When implemented as a true singleton, prior to every
method call, the singleton getter method has to be called
to receive the instance. Sometimes, the singleton pattern is
hidden. Instead of calling the singleton getter method, the
singleton class passes a reference to itself whenever it creates
a class that requires access to it. In this case, the overhead
is in memory consumption since every class has to have a
reference to the singleton class. Using the singleton pattern
still has the advantage that accessing the fields of the class
is faster than if the fields were to be made static. Neverthe-
less, the overhead of getting the instance dominates. This
is shown in Figure 3. The Figure shows, for seven differ-
ent hardware platforms, the relative performance of calling
a method of a static class, calling a method of a singleton
class, calling a static method with field access, and calling a
singleton method with field access. As baseline, we use the
cost of calling a normal class method that is neither static
nor singleton. In all cases, the singleton method results in
significant overhead, close to 50% in most cases and over
150% on the Sharp Zaurus with cvm. The same can be said
for singleton method invocation with field access. This over-
head has to be paid for every access to the framework class,
which, as pointed out, happens very frequently in OSGi.

The conclusions from this experiments are obvious. In
Concierge, unlike all other OSGi implementations we are
aware of, the framework class is implemented as a static
class. This has the drawback that field accesses are more
expensive than for singleton fields but the overall perfor-
mance gains make this an acceptable trade-off. It also has
the drawback that static classes cannot be subtyped and ex-
tended. But since the framework itself is a monolithic and
closed entity, this is not an issue. Furthermore, one can ex-
trapolate from the results of the singleton pattern that com-
mon design pattern which increase the number of method
calls can severely slow down the execution of code on small
devices. Most often, this effect is underestimated.

3.4 Avoiding Indirection

The program fragmentation that results from using object-
oriented programming languages is typically hidden behind
powerful hardware and very advanced VMs. These resources
are not available in small devices. To quantify the impact
of code fragmentation, we have analyzed the execution time
of a local field access, the use of a local getter method, a
field access on an external class, and a getter method on
an external class. The measured time for 1.000.000 invoca-
tions are shown in Figure 4. These results are interesting,
because in the notebook and the workstation, the overhead
is small and almost independent of what mechanism is used.
This is also true for some of the small platforms that have
J9, a more optimized small JVM. For the other devices, the
difference is very substantial and can reach a factor of 6 for
every field access, even if the access is local.

Field accesses versus getter methods
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Figure 4: Invocation time of field access

Frameworks in general, and OSGi in particular, tend to
be implemented in an extensively object oriented way. For
instance, Knopflerfish has 51 classes plus 31 inner classes
and Oscar has 79 classes plus 39 inner classes. To make
sure that Concierge has optimal behavior on all platforms,
even those that are less optimized, Concierge has been de-
signed in a total of 6 classes plus 12 inner classes, all of
them final. The structure of the core classes is shown in
Figure 5. The experiment also shows that getter methods
should be avoided in resource-constrained devices. Gener-
ally, the costs of method calls can have a vital impact on the
runtime of an application. If possible, code hot spots should
not be divided into many methods, since not all platforms
are able to compensate the costs of method calls using the
corresponding optimizations. Hence, in Concierge, no getter
and setter methods are used. The purpose of these accessor
methods is usually to provide an abstraction from the data
fields of the class and additionally have the possibility to
perform sanity checks on access. However, this is only nec-
essary if external classes can access the data. In an OSGi
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Figure 5: Concierge core classes



framework, the external access is restricted to the API. In
this sense, we can afford to let the different classes of the
framework directly access the fields to save the overhead of
method calls. As before, the importance of this design deci-
sion lies both on the performance gains (up to a factor of 6
in every call) as well as on the level of consistent behavior
that can be achieved.

3.5 The Average Bundle

Some optimizations are valid under all circumstances. Is-
sues like choosing the best suitable data structure for a cer-
tain task however requires some knowledge about the fre-
quency and the kind of access to that data structure. In
OSGi, all activities of the framework are triggered by bun-
dles. It is therefore very important to characterize the be-
havior of an average bundle on which to base optimizations.
However, it is impossible to postulate an a prior: knowledge
about a general bundle. In the style of Sartre’s fundamental
theorem of existentialism [27], existence precedes essence, it
is hence inevitable to observe the behavior of existing bun-
dles to get a rough idea of how bundles operate.

As part of the work on Concierge, we introduce the notion
of the Average Bundle to incorporate exactly this idea. We
have collected from a variety of sources 107 publicly available
bundles written for OSGi. These bundles have been installed
on an instrumented version of Concierge. In this profiling
edition of Concierge, all relevant activities have been logged.
Then we have analyzed the log to establish a profile of what
these bundles do on average. The resulting behavior is what
we call the Average Bundle. For reasons of space, we can
not describe the complete behavior of this Average Bundle.
We will refer to concrete aspects of it as we discuss different
design decisions in the architecture of Concierge.

The Average Bundle captures only the application inde-
pendent behavior of bundles. It does not consider user inter-
action effects and it does not include the effects of incoming
calls from remote machines (it does however include the ef-
fects of outgoing calls). The reason is that it is difficult
to characterize user interaction and remote access patterns.
Both are highly application dependent and in here we are
only interested in platform relevant optimization. Eventu-
ally, the Average Bundle could contribute to solve the prob-
lem of adequate performance benchmarks for OSGi. So far,
no real application benchmark for OSGi frameworks exists.
The OSGi Alliance publishes test cases to test compliance,
not performance. Knopflerfish has a regression test suite
[18] that we use for benchmarking in this paper. However, in
terms of benchmarking, these tests are only synthetic bench-
marks. They reflect the Knopflerfish developers’ opinion of
useful and important framework features but cannot approx-
imate the real behavior of bundles. The Average Bundle
could be used in future work to create a meaningful appli-
cation benchmark for OSGi frameworks.

3.6 Concierge design constraints

The discussion above document some of the key design
decisions around Concierge. Although some of them may
appear to be small optimizations, the results are cumula-
tive. As the performance evaluation will show, these opti-
mizations are what makes Concierge far more efficient than
existing implementations. Our goal with Concierge is to
have a real working platform for small devices. In those de-

vices, it is impossible to get around such small level details
because they are not hidden by ever increasing hardware ca-
pacity and a sophisticated VM with JIT compiler optimiza-
tions. Not tackling these issues at the level of Concierge
would mean that they will become visible to the application
developer. This is not acceptable according to our design
requirements because it would defeat the purpose of using
an OSGi platform. Given the current state of the art and
development in hardware and software for small devices, it
is unlikely that those issues will go away soon. Whereas
for Java SE, the newest version 1.6 has just been released,
the VM implementations for small devices still remain on
the level of Java 1.4 or even earlier versions. The design
of Concierge shows that being aware of these issues leads to
more efficient systems without compromising code quality or
maintenance. This same design points out what needs to be
done at the OS and JVM level to provide a more consistent
support across small computing devices. Until that hap-
pens, Concierge provides the necessary homogeneity to be
able to develop applications that run on a multitude of de-
vices and still exhibit consistent behavior across all of them.
In what follows we discuss each OSGi layer of the Concierge
implementations and how the ideas discussed in this section
are applied in practice.

4. CONCIERGE MODULE LAYER

The module layer is the base layer of the Concierge imple-
mentation. As indicated, it is in charge of loading bundles.

4.1 Bundles Overview

As a first step to understand the difference between Con-
cierge and existing implementations, we need to review what
happens when a bundle is loaded. As mentioned before,
bundles are JAR files. JARs are from a technical point
of view ZIP compressed archives with one particular ele-
ment called Manifest. The manifest is stored in the file
/META-INF/MANIFEST.MF and contains meta data about the
JAR, for example the vendor of the application or the ap-
plication’s main class. OSGi defines additional attribute
elements for the manifest main section.

Instead of a main class, a bundle can define a Bundle-
Activator that is the interface to the bundle’s life-cycle
control. When a bundle is loaded in the OSGi framework,
the manifest has to be processed. Specific attributes like
Import-Package or Bundle-ClassPath are relevant for the
loading and resolving of the bundles. All attribute/value
pairs are preserved in the properties of the Bundle object
and accessible to other bundles, if they have appropriate
permissions.

Bundles can be loaded from any external location that
is expressible as a valid URL, i.e., a well-formed URL that
maps to an URLStreamHandler known to the Java VM. Al-
ternatively, an InputStream to a JAR can be directly pro-
vided. This includes data sources other than files, for exam-
ple network streams or database entries. OSGi maintains
persistent state between restarts of the framework. In order
to do so, all Bundles are stored on persistent storage.

4.2 Dealing with compressed bundles

From a performance point of view, the fact that the bun-
dles are compressed requires careful treatment because there
is a significant performance difference between decompress-



ing bundles or operating on the compressed content. For
small devices, it is clearly preferable to keep bundles com-
pressed as much as possible. Unfortunately, this is not that
straightforward because it depends on the content of the
bundle. In this regard, the main problem is that the JAR
file of the bundle might contain additional, embedded JAR
files. These embedded JAR files can be accessed either by
their content, if they are part of the bundle-internal class
path, or the JAR file itself can be accessed as a normal re-
source in the bundle.

A possible strategy is to completely decompress the bun-
dle, including (recursively decompress) embedded JARs. Ob-
viously, this does not work for small devices, since in addi-
tion to the space that the bundle takes, the embedded JAR
files have to be stored twice. A compressed copy is needed
in case a bundle accesses the embedded JAR as a resource.
A decompressed copy is needed for all other cases. A better
strategy is to decompress the bundle but do not decompress
the embedded JARs (we refer to this strategy as Decompress
Bundle). This strategy incurs the runtime penalty of de-
compression at the time when the Bundle object is created.
Although intuitively this strategy pays a one-time cost for
decompression and performs all successive accesses directly
on the uncompressed files, it also has drawbacks. The main
one is that JAR archives contain a large number of small
files and the cost of writing them to the file system turns
out to be quite high.

This first strategy is based on the assumption that access-
ing decompressed data is faster. This is true only if there
are repeated accesses. If information is accessed rarely, the
overhead of decompression becomes less relevant. In fact,
the overhead of accessing compressed bundles is lower than
one would expect. ZIP archives compress each file individ-
ually, so it is possible to access only what is needed instead
of having to decompress the whole bundle. Since they have
an internal index structure consisting of a central directory
header and file headers, the overhead of locating a file within
a ZIP archive is low. In addition, bundles are not accessed
that often. The vast majority of content in the bundle is
in the form of class files. And, by design, class loaders ac-
cess classes only once. This is discussed in more detail in
Section 4.4. Multiple accesses to the same file can only hap-
pen in the case of resource files. We have used the Average
Bundle to test the hypothesis that repeated access to the
compressed bundle rarely happens. Table 1 contains a list
of relevant events (left column), how often the the event
takes place for the 107 bundles analyzed (center column),
and how often the event happens in the Awverage Bundle
(right column). The relevant events that access the bundle
are the class and resource requests. As the table shows, the
Average Bundle requests the loading of 42 classes. Of these
42 classes, 27.24 are from the bootstrap class loader. These
are classes that do not reside in bundles and do not require
decompression. The remainder of 13.88 class loads are to its
own classes. Each class can be decompressed individually
and once loaded, it is never accessed again (from the bun-
dle). For these classes, it does not matter if the bundle is
decompressed or compressed, the overhead is the same. The
Average Bundle also accesses 2.11 times its own resources.
This is a very small number and does not justify the space
overhead of decompressing everything. Hence, overall, the
numbers for the Average Bundle show that the bundle is

[ Event | total [ avg |
Classes requested 4011 | 42.22
Classes loaded from bootstrap cl 2588 | 27.24
Classes loaded from import delegation 68 | 0.72
Classes loaded from own bundle 1319 | 13.88
Classes not found 36 | 0.38
Resources requested 223 2.45
Resources found by own bundle 200 | 2.11
Resources found by import delegation 0 0
Resources not found 23 0.24
Multiple resources requested 15 0.16
Multiple resources not found 14 0.15
Resolved bundles 95 1
Bundle has embedded jar 22 | 0.23
Bundle jar accesses 2386 | 25.12
Bundle jar reads 1022 | 10.76
Bundle embedded jar reads 499 | 5.25
Package mappings created 201 2.12

Table 1: Classloading behavior of the average bundle

not accessed repeatedly and it could pay off to keep it com-
pressed.

The question that remains is what to do with embed-
ded JARs, whether to extract them into separate files or
to keep them inside the bundle. There are two possible
strategies. The first one (called StoreBundle) leaves the em-
bedded JAR files inside the bundle. The drawback here is
that the runtime penalty for accessing classes and resources
in embedded JARs is higher than accessing the compressed
bundle itself. Embedded JARs are not accessible as files,
they have to be located within the bundle JAR first and
then accessed as JarInputStream. These streams cannot be
searched for an entry in constant time, since the end of an in-
put stream is not known at runtime and therefore no index
exists. The second strategy (called EztractEmbeddedJAR)
is a hybrid solution between Decompress Bundle and Store
Bundle. The embedded JARs are extracted from the bun-
dle and stored separately as (non-embedded) JAR files. To
avoid duplication, the embedded JARs are removed from the
bundle. Since Java does not allow the deletion from files in
archives, this involves decompressing the entire bundle, ex-
tracting the embedded JARs, and recompressing what is left
of the bundle. Figure 6 compares the performance of these
three strategies (DecompressBundle, ExtractEmbeddedJAR,
and StoreBundle). The experiment uses a scenario where a
bundle with a size of 141 kBytes containing an embedded
Jar with a compressed size of 105 kBytes is loaded and ac-
cessed. The runtime of each strategy is divided into three
phases: init puts the JAR into the initial state, which in-
cludes, depending on the strategy, copying, decompression
or recompression of the bundle; load loads classes from the
original bundle JAR; load embedded loads classes from the
embedded JAR.

The interpretation of the results of the Figure depend
on whether embedded JAR files are present or not. If there
are embedded JAR files, the DecompressBundle strategy is
clearly preferable in all platforms in terms of runtime. How-
ever, this is the most expensive strategy in terms of space
consumption, a critical parameter in small devices. If there
are no embedded JARs, the StoreBundle strategy is the best.
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Figure 6: Bundle JAR loading variants

Unfortunately, in some platforms, this strategy pays a huge
penalty when embedded JARs are present. Fortunately, it is
known in advance if a bundle contains embedded JAR files.
In addition, according to the Average Bundle, only 23% of
all bundles have embedded JARs.

Based on this, Concierge implements both the Store Bun-
dle and the ExtractEmbeddedJAR strategies. By default, it
uses StoreBundle. A system property can be set that will
force Concierge to use the FExtractEmbeddedJAR strategy
whenever a bundle contains embedded JARs. The reason to
use the flag is that the performance difference between the
two strategies is highly platform dependent. For instance,
in the platforms with J9, the strategy does not pay off. In
which platforms it might pay off to set the system prop-
erty is shown in Figure 7. In this experiment, we run the
Knopflerfish Regression Tests once with the system property
set and once with the default behavior. The Figure shows
the relative gain of setting the property over using the de-
fault behavior. The reason to use these tests is that they
do not contain many bundles with embedded JARs. Once
more, the performance gains might seem small, however,
this performance difference constitutes a lower bound to the
potential gain of switching the strategies. For more general
loads, the gain will be much larger. The upper bound of
the gain between the strategies corresponds to the values in
Figure 6.

Speedup of the Knopflerfish Regression Tests
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Figure 7: Speedup of the knopflerfish regression
tests by decompression of embedded JAR files

For completeness, it must be mentioned that there is one
case in which parts of the bundle have to be decompressed no
matter what. By design, Java class loaders cannot load na-

tive code libraries from input streams. If a bundle contains
native code libraries, these libraries have to be extracted.
Native code libraries are not frequently used in OSGi bun-
dles, although the OSGi specification features a sophisti-
cated matching algorithm that allows to embed libraries for
different platforms. Only three of the 107 bundles that con-
tribute to the Average Bundle use native code.

4.3 Resolution

In smaller devices, the possibility for interaction are often
limited. Thus, operations that impose too many constraints
should be avoided, as these operations often end up increas-
ing the number of interactions required. This is particularly
true for software installation and especially delicate when it
involves users that are not computer experts. In this regard,
existing OSGi implementations suffer from the problem that
for applications to work, some bundles have to be loaded in
a very specific order. Failure to do so results in applications
not working in ways that are not easy to identify. Concierge
makes here an important contribution since it removes this
constraint as it allows bundles to be loaded in whatever or-
der, independently of the dependencies among them. We
expect this to be a very important feature for hand-held de-
vices and mobile computing.

To explain the problem in detail, we need to dwelve in how
bundles are resolved. Prior to any package import/export
or class loading, every bundle has to be resolved. First
of all, the bundle’s class path mentioned in the manifest’s
Bundle-ClassPath attribute has to be resolved by ensuring
that every entry in the classpath list actually maps to an
existing embedded JAR in the bundle. Embedded JAR files
that do not occur in the internal classpath are possible, but
they cannot contribute code and act like ordinary resources.
Next, the Import-Package declaration is resolved. For ev-
ery entry in the declaration list, a matching package has to
be found. The framework maintains a mapping of all ex-
ported packages and the corresponding exporting bundles.
Entries in the mapping are made only when the exporting
bundle has been resolved. If this bundle imports from a sec-
ond bundle, the second bundle has to be resolved before the
first bundle can be resolved. This makes the correct startup
order of bundles crucial and circular dependencies between
bundles potentially challenging. However, the specification
does not enforce a specific point in time where a bundle is
to be resolved. The only constraint is that bundles have to
be resolved before they can be started. When installing ap-
plications, these dependencies are far from trivial and can
be resolved only by experts familiar with the code.

Concierge eliminates the problem entirely by adopting
a two level resolution strategy. Whenever a bundle is in-
stalled, the framework tries to directly resolve it. If this
is successful, all exported packages are registered. Other-
wise, all exported packages are registered as potential ex-
ports. The first level, non-critical resolution of a bundle
will try to make use of potential (=unresolved) exports of
other bundles and trigger their resolution but without recur-
sion. As a result, required potential exports are themselves
not allowed to trigger the resolution of other potential ex-
ports. When a bundle is started, the resolution is critical
because the requested operation cannot be performed oth-
erwise. In this case, potential exports are tried to be recur-
sively resolved with infinite recursion depth. Cycles in the



dependency graph are suppressed. The combination of the
inexpensive but limited eager resolution attempt and the
exhaustive lazy resolution in critical situations, make Con-
cierge far more flexible then existing OSGi implementations.
Cyclic dependencies and lately installed package imports are
no longer harmful. While this feature of Concierge does not
affect performance, it goes a long way to simplify application
development, testing, and maintenance.

4.4 Class Loading

OSGi makes heavy use of user-defined class loading to
allow for dynamic adding and removal of bundles. Since
every creation of a new class involves class loading, the per-
formance of the class loading subsystem is crucial for the
entire OSGi system and the applications running on it. On
the one hand, the design of OSGi allows the independent
loading and unloading of bundles which requires every bun-
dle to be loaded by a separate class loader. On the other
hand, packages of a bundle can be imported by other bun-
dles, which requires a flexibility in the delegation between
class loader that exceeds the possibilities of standard Java.
For our target area, it is hence of extraordinary importance
to provide a robust and efficient way of class loading for
bundles.

Class loading is frequently considered to be one of the
most cryptic concepts behind Java. First, a class loader
builds up a namespace of all classes loaded by itself. In-
stances of the same class but loaded by different class load-
ers are considered to be different and instances of these
classes are incompatible, although they have the same qual-
ified name. Each class loader has to keep a reference to all
class types that have been loaded by it. This is necessary
to ensure that a class is never loaded more than once by
the same class loader. Otherwise, the type system would
become inconsistent since two instances of the same type
could be incompatible. Whenever a class is requested by
the runtime system, the class loader is obliged to first check
if it has already loaded the class before. Class types are
thus referenced by the class loader and are not garbage col-
lected as long as the defining class loader instance exists.
Removing class types from the system hence requires to un-
load the entire defining class loader. For an OSGi system,
that means that for each bundle, a separate class loader is
required to allow the removal of individual bundles.

Conventional Java applications typically use a single class
loader for all classes: The system class loader. This class
loader has access to every class file that is in the class path.
Java uses a delegation model between class loaders. With
version 1.2, every class loader can be assigned to be parent
of another class loader. In conventional Java applications,
the parent of the system class loader, that loads the ap-
plication’s code, is the bootstrap class loader, that loads
all system classes, such as those in java.* packages. The
parent of the bootstrap class loader is always set to null.
Every standard class loader first delegates the call to the
parent class loader and only if the class is not known by the
parent, it takes up own efforts to load the class.

User-defined class loading is the core of most component-
based extensible Java application frameworks. It is not only
possible to remove types at runtime by disposing the defin-
ing class loader, customized class loader can be used to lo-
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Figure 8: Class loader schema in Tomcat

cate and load classes from locations different from the file
systems. The most popular example of a network-based
class loader is the Applet [13] platform, which is a user-
defined class loader able to load classes by using the HTTP
protocol and equipped with special security constraints. An-
other example is the Tomcat [4] web container. Similar
to OSGi, it needs to add and remove entities (in this case
web applications) at runtime. Hence, these web applications
have to be loaded by separate class loaders, as depicted in
Figure 8. Furthermore, different web application must be
isolated so that a malicious web application cannot affect
other web applications or the runtime system. This is also
an intrinsic property of the class loader design since each
web application is only able to access code of its own class
loader or of those in the delegation path. The same applies
to OSGi and is another reason why OSGi support is impor-
tant in mobile devices.

Class loading in OSGi is far more complex. Instead of
a so-called flat delegation schema—typically a tree as in
Tomcat—OSGi bundles form a partly-connected delegation
graph. The import and export of packages are the directed
edges of the delegation graph, whereas the class loaders of
the bundles are the vertices.

The OSGi specification requires the following search or-
der for class loading: First, the system class loader, then
the class loader that exports the shared package, if the class
could belong to an imported package, and finally the bun-
dle’s own class loader. Since the parent delegation model
of Java does not support N to N delegations as necessary
in OSGi, package imports have to be handled outside the
standard Java behavior. As a first step, the class loader has
to determine if a requested class potentially belongs to an
imported package and explicitly call the corresponding class
loader prior to any attempt to load the class. Owing to the
impact of class loading on performance, Concierge uses a
HashMap to store a mapping between package name and the
exporting class loaders. This map is initially filled during
resolution of the bundle and allows to decide in constant
time, if a class is a candidate for delegation and getting the
exporter in the same step. If the result of the hash map
lookup is null, the class cannot be imported and the class
loader is thus allowed to be loaded from the own bundle.
Otherwise, the request to load the class is delegated to the
exporting class loader. This involves, depending on the de-
sign of the class loader structure, several method calls. As
discussed in Section 3.4, method calls are very expensive
in smaller devices. Unlike other existing OSGi implemen-
tations, Concierge has implemented the class loader subsys-
tem in such a way that method calls for delegation of classes



are reduced to a minimum. Since the particular impact of
method calls differs across the platforms, this is also impor-
tant for achieving consistent behavior on all platforms.

If the class is not imported, the BundleClassLoader tries
to locate the class file in the bundle JAR file and in all em-
bedded JARs that are in the bundle’s internal class path.
The actual loading of the class is performed by reading the
corresponding byte array and feeding it into the defineClass
method, which returns a Class object. This object is then
returned through the delegation path to the original re-
quester.

4.5 Bundle Registry

The framework has to maintain the information about all
registered bundles. Many operations act on the bundle ID,
a long value assigned to the bundle during installation. In
database terminology, the bundle ID is a primary key of the
bundle. It is unique, ascending, preserves the installation
order and must not be changed during the lifetime of the
bundle. A once assigned bundle ID must not be reused for
a different bundle, even after restarts of the framework. To
allow for fast lookup of the bundle ID—bundle reference, a
hashed data structure like HashMap is most suitable. How-
ever, in some situations, the order of the bundles is impor-
tant. It is expected that bundles start in the order in which
they were installed, i.e., the ascending order of bundle IDs.
Since the HashMap does not guarantee any iteration order,
the LinkedHashMap would be ideal for that purpose. Such
data structure has been introduced with Java 1.4 and is not
available, for instance, on J2ME CDC profiles. Concierge
instead uses an additional ArrayList to keep the order in
an efficient way. The overhead compared to a reimplemen-
tation of the LinkedHashMap is 8 bytes per entry, since a
HashMap entry consumes 24 bytes, an ArrayList element is
an Object reference of 16 bytes and a LinkedHashMap entry
has only 32 bytes. Measurements have shown that not only
the code size is more compact for the ArrayList variant,
but also the performance is slightly better, even compared
to the Java 1.4 LinkedHashMap implementation.

S. LIFE CYCLE LAYER

Besides the bundle operations install, start, stop and unin-
stall, the life cycle layer offers the possibility to update bun-
dles. Updates can have implications on the imports of pack-
ages and on services used by other bundles. The OSGi
specifications emphasize the consistency of the framework
at any time. Packages that are imported by other bundles
are therefore unaffected by bundle updates since this could
lead to an inconsistent framework state. All other pack-
ages, however, have to be updated immediately. In terms
of performance and consistency in our heterogeneous set of
devices, the life cycle layer is not too relevant. The opti-
mization is to make reasonable trade-offs to assure that im-
portant operations are well supported by appropriate data
structures while keeping memory consumption to a reason-
able minimum.

Concierge accommodates the perpetuation of consistency
among package exports by preserving the exporting class
loader when bundle updates occur. Existing delegations be-
tween other bundles and the updated bundle’s class loader
are redirected to the originally exporting class loader, unless
a full update of the bundle is triggered by the PackageAdmin-

Service (an optional standard OSGi service) or by a restart
of the framework. In both cases, affected bundles have to
be restarted to access the new version by import delegation.
Uninstallation of bundles or failed registrations require an
entire cleanup of all resources associated with the affected
bundle. This includes the deregistration of registered ser-
vices, the disposal of exported packages and a notification
to all subscribed listeners. Own registered listeners have to
be unregistered as well. The used data structures do not
in every case allow a fast lookup of the entities that belong
to the bundle. For example, the service registry does not
preserve the information of bundles that have registered the
particular service. The BundleImpl object therefore con-
tains references to certain registered entities to allow quick
and thorough cleanup.

6. SERVICE LAYER

Whenever a bundle wants to use a service, it requests a
service reference via BundleContext that matches the re-
quested interface name and, optionally, a provided filter.
The result of this service request is either a valid Service-
Reference object or null, if no matching service is available.
It is possible to retrieve more than one service reference at
once, for more than one implementation of the same service
interface or for different services matching the same filter.
The performance of the service layer is a potentially limiting
factor for any OSGi implementation. In the following, we
present Concierge’s optimized service management subsys-
tem. Different from the optimizations discussed so far, the
performance of operations on this layer cannot be easily iso-
lated, since the variety in which they can appear is too large
and the operations depend too much on the composition of
bundles and services. However, a good indicator of the ser-
vice layer’s overall performance is the Performance Registry
Test Suite of the Knopflerfish Regression Tests, that we dis-
cuss as part of the evaluation of Concierge.

6.1 Filters

Among all entities, services typically appear in the largest
quantity. It is hence often necessary to limit the results of
a service request and the set of events for which a service
listener gets informed to a defined subset. OSGi supports
RFC 1960 [11] LDAP String Filters for this purpose. The fil-
ter implementation is very important for the performance of
the whole framework. Not only that service requests are on
average the most frequent framework operation at runtime
and about ten percent of them are filtered, also service lis-
teners can be registered with filters to get only informed if a
matching service arrives, the properties have been modified,
or the service has disappeared. Some OSGi implementations
try to improve performance by, e.g., caching intermediate
results of filter evaluations. This is not feasible in Con-
cierge because of the tighter memory constraints on small
devices. Instead of caching, Concierge provides a highly op-
timized RFC 1960 filter implementation that performs well
even when resources are scarce.

Filters can consist of several well-formed braced literals
combined by boolean operators. This structure has to be
parsed and modeled by appropriate Java data structures.
For instance, the filter

(&(service.id<=10) (| (requires_screen=false)
(! (presentation=%))))



is modeled in Concierge by the following data structure:

Figure 9: Structure of a filter in Concierge

Typically, OSGi implementations do the lexical analysis of
the literals and recursively parse them to build a tree of fil-
ter parts. However, recursion creates a severe performance
problem on resource-constrained devices, since it leads to
large stack frames and typically involves a large amount of
method calls.

Since LDAP filters are described by a context-free gram-
mar in a prefix notation, Concierge uses an innovative one-
pass stack-based LALR [1, 6] parsing approach with a looka-
head of length one. The detection of a left parenthesis leads
to a lookahead whether the following character signals a
boolean concatenation of literals or if a singular literal fol-
lows. In case of a concatenated expression, a new filter part
object with the according boolean operator is pushed onto
the stack. All following symbols are linked to this element
and either also pushed to the stack, or, if they are single liter-
als, only parsed and linked. Every terminal literal is of the
form key operator value, except literals using the present
(’=*") operator, that requires no value (in our example, the
presentation attribute). The operators can also be parsed
with a lookahead of one. Whenever a right parenthesis is
read, the topmost stack entry is removed. At the end of the
parsing, a tree of filter part objects is formed that exactly
reflects the structure and logic of the filter string.

Once parsed, the filter object can be used for matchings
against property dictionaries. For every literal, a corre-
sponding key in the service property dictionary has to be
found by case insensitive matching. This complicates the
implementation of matching since Hashtables, the typical
implementation of the Dictionary interface, by nature only
supports case sensitive key lookup. Variants of the key have
different hash values and therefore do not lead to matching.
It would be possible to initially transform all keys of a dictio-
nary to equal case, and do the same for the filter’s attribute
key on every request. However, this is often unnecessary
overhead since most attribute keys used in literals are ac-
tually constants defined by the OSGi API, like service.id
or objectClass. The filter statistics of the Average Bundle
summarized in Table 2 show that 40% of the filter attribute
keys were well-defined constants. Concierge therefore first
tries to find a key by case sensitive matching, then checks
the lowercase variant of the filter key and as final fallback
tests every key in the dictionary. This preserves the perfor-
mance of the Hashtable for all constant keys and otherwise
performs as custom array-based case-insensitive implemen-
tations of the dictionary interface such as those used, e.g.,
in Knopflerfish.

According to the type of the value in the dictionary, the
value in the filter has to be transformed into the same type
to be compared. A naive approach would use reflection

filter count 42 | 0.44 per bundle

simple filters 25 | 60% of all filters

complex filters 17 | 40% of all filters

number of literals | 70 | 4.12 literals per complex filter
total literal count | 95 | 2.26 literals per filter
constant attr keys | 38 | 40% of all literals

Table 2: Filters of the Average Bundle

and try to find a constructor that takes the string as ar-
gument. However, reflection is a serious performance bot-
tleneck. Thus, this approach is only used when all optimiza-
tions fail. Concierge has optimized matchings for all prim-
itive types and all boxed types? as well as Strings, arrays,
and vectors.

6.2 Service Registry

Every service registered with the OSGi framework has to
be stored in a service registry to allow lookup, modifica-
tion of the properties, and removal. Each service can be
registered under 1 to n service interface names, every ser-
vice interface can be implemented by 0 to m services. This
is, from a database point of view, an N to M relationship,
which is not trivial to model efficiently in Java. Due to the
special importance of services for the overall performance,
an algorithmic optimization of the service registry is very
important for the runtime performance of applications run-
ning on the OSGi platform.

Concierge uses a HashMap with the interface name as key
and an ArrayList of ServiceReference objects as value
(Figure 10). This is the optimal support for the most fre-
quent lookup operation where one or all services implement-
ing a certain interface have to be found and their references
have to be returned. Modification and removal of regis-
tered services uses the ServiceRegistration object that is
returned by the framework as result of a registration. In
some sense, ServiceReference and ServiceRegistration
are just two different facets of the same entity: the service.
But the two interfaces cannot be merged into one imple-
menting object since this would cause security problems.
Not every service that has permissions to retrieve a service
reference is also allowed to modify or unregister the service.
In Concierge, ServiceRegistrationImpl is a private inner
class of ServiceReferenceImpl to prevent this. Only the
entity that received the object by registering the service has
access to it but registrations do not have to be stored sepa-
ratly.

Most other OSGi implementations use the opposite ap-
proach and store registrations in the registry with a field
pointing to the service reference. This is unnecessary since
the registration is never returned as the result of a query. A
problem of the design with the Map containing Lists is the
removal of services. Whenever a service is removed, it might
have been registered under more than one service interface
and potentially every ArrayList in the HashMap would have
to be checked for the service reference. However, the infor-
mation under which interfaces the service has been regis-
tered is available in the service properties as objectClass.
Thus, the removal can be done in deterministic time. For

2except BigInteger and BigDecimal that are not supported

by every VM and hardly occur on small devices
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some operations, all registered services have to be traversed.
To support this, an additional ArrayList of all registered
services is maintained, as it is done for the bundle registry.

7. SERVICES

The OSGi specification defines a couple of standard ser-
vices for OSGi platforms that can optionally be implemented.
Normally, services should be provided as independent bun-
dles. Not every setup of application bundles requires all of
the standard services, so they can be added on demand. For
a small number of services however, there are good reasons
for implementing them as part of the framework. Services
like the PackageAdminService are so heavily dependent on
internals of the framework that they are hard to implement
efficiently as stand-alone bundles. And since they provide
important extensions of the framework’s abilities, they are
most likely to be used by other bundles. The feature matrix
in Table 3 lists the open source OSGi distributions and the
services they provide within the framework.

Service Knopflerf. | Oscar Concierge
StartLevel Framework | Framework | Framework
PackageAdmin Framework| Framework | Framework
Log Bundle Bundle Framework
ServiceTracker Framework | Framework | Bundle
PermissionAdmin | Framework| Bundle Bundle
URL Framework | Bundle Bundle

Table 3: OSGi Implementations Feature Matrix

Although Concierge is designed with a focus on footprint,
we have implemented the StartLevelService and Package-
AdminService as part of the framework’s system bundle for
reasons of performance and simplicity. The StartLevel-
Service adds the possibility to group bundles into start lev-
els, which can be started and stopped simultaneously. The
PackageAdminService allows to find out about exported
packages, which bundle has exported them and where they
are in use. And, most important, it allows to force the re-
placement of all exported packages that have been updated.
Both services increase the total footprint of Concierge only
marginally but provide adequate benefits to the user. The
LogService is normally independent of the framework. It
allows bundles to log messages with certain log levels and
LogReader instances to get the logged messages for evalu-
ating or displaying them. Since logging is of special impor-
tance in embedded systems which sometimes are “headless”
and feature no screen device, Concierge has implemented a
minimal log service in the framework to allow bundles and
the framework itself to use this service.

So far, no other standard services have been implemented.

It is up to future work to build some of the standard ser-
vices with the “Concierge philosophy”. The usual way of
other distributions to provide services like the HttpService
is to embed a full-blown Java implementation like Jetty into
a bundle and to write a technology adapter for the spe-
cific OSGi service API. These services can easily require
a multiple of the framework’s own footprint and are thus
certainly not suitable for resource-constrained devices. Pro-
viding such services will mean in many cases writing new
custom implementations tailored to small devices.

8. EVALUATION

Concierge is a complete OSGi R3 implementation and
thus compares with Knopflerfish 1.3.5 or Oscar 1.0.5. The
supported startup semantics include Knopflerfish init.xzargs
files as well as properties in the style of Oscar. Additionally,
Concierge allows to explicitly define profiles in the startup
file. These profiles allow to start the framework from shell
scripts using different configurations of bundles and differ-
ent storage locations without the user interaction needed in
systems like Oscar.

8.1 Setup

Two different aspects were considered during the imple-
mentation of Concierge: Runtime performance and resource
consumption. Lacking a standard benchmark, for evaluation
of the performance, the Knopflerfish Regression Tests have
been used on the several test platforms. These tests consist
of several JUnit test suites which cover different functional
aspects of an OSGi framework. Although the main intention
of the test is to ensure the correctness of the functionalities
described in the OSGi specifications, they also measure the
total time for each test suite. This allows to use them for
benchmarking purposes. The ConstantTestSuite is of little
interest in terms of performance. It only checks that all con-
stants mentioned in the OSGi specifications are set to the
correct value and are accessible for applications. The Fil-
terTestSuite creates a large set of LDAP-style filters as they
are used in service reference requests. The FrameworkTest-
Suite checks a large range of framework features and is thus
a good indicator how the framework as a whole performs.
It is close to the kinds of operations that occur during the
startup of an application. The PackageAdminTestSuite per-
forms updates on bundles and checks, if the exported pack-
ages are still consistent. The performance of this test is a
good indicator how the class loading performs. For estimat-
ing the runtime performance, the PeformanceRegistryTest-
Suite has a high relevance. This test registers 1000 services
and 100 service listeners, which is a good indicator of how a
system scales. Furthermore, operations on services are the
most frequent ones during the runtime of application bun-
dles. The other tests are more functional and less relevant
in the context of performance.

Not all tests ran successfully on every platform. Oscar
had problems with matching certain filters on SableVM and
both Oscar and Knopflerfish threw an exception during the
PackageAdmin test on JamVM. A few of the tests had to be
patched because they were too much tailored to Knopfler-
fish’s special behavior. For example the order of certain
events during installation of bundles depends on the resolu-
tion strategy.
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Figure 11:

8.2 Performance

Figure 11(a) shows the detailed runtime of the regression
tests on several small devices. Concierge performs substan-
tially better than the other open source implementations.
Although the selected platforms are heterogeneous, Con-
cierge outperforms the other implementations on all plat-
forms. The speedup ranges from about 3.2 in comparison
with Knopflerfish on cvs Zaurus up to about 13 times better
than Oscar on the Slug. The main performance improve-
ment is the service layer that is benchmarked in the Perfor-
manceRegistryTestSuite. The service layer is a major per-
formance factor during the runtime of an OSGi framework,
but it also interesting to analyze the performance of the
other layers. Figure 11(b) shows only the more functional
tests in a larger scale than in the previous Figure. Concierge
performs better on most platforms or at least competitive in
the case of JamVM on the Slug. But not only the intended
domain of resource constrained devices can profit from the
optimizations within Concierge. Figure 11(c) shows the run-
time of the regression tests on a Notebook with J2SE 1.4
and on a Workstation running J2SE 1.5. Even on these
devices where resources are not a limiting factor and the
Java VMs are highly optimized, OSGi applications can gain
some performance when running on Concierge. With more
complicated setups, for instance, a large number of installed
bundles and a high frequency of framework operations, the
speedup of Concierge is also noticeable. In this situation, the
optimizations on the module layer lead to the improvement.
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8.3 Resource consumption

Concierge has a file footprint of under 75 kBytes whereas
Knopflerfish and Oscar are both slightly above 200 kBytes,
ProSyst’s mBedded Server needs about 275 kBytes and IBM’s
SMF almost 440 kBytes. Concierge also requires less mem-
ory for maintaining the framework and the registries. The
traces depicted in Figure 11(d) show the integral of the
heap consumption during the regression tests (measured on
a notebook). The VM is configured with an initial heap size
of 1 MB and a maximum size of 2 MB. Concierce allocates
less memory on the heap during the tests. Therefore, the
garbage collector is not so frequently invoked, especially not
in critical cases that slow down the execution of the pro-
gram. The overall runtime of the tests under these condi-
tions are 3.5 minutes Oscar, 2.4 minutes for Knopflerfish and
38 seconds on Concierge. In conclusion, when running with
low resources, the performance of Concierge is significantly
better even on powerful machines.

8.4 Consistency across platforms

One important goal of Concierge is to provide a certain
level of consistency on all platforms, although both the hard-
ware and the Java VM are heterogenous. In Figure 11(a), we
have compared the runtime of different OSGi implementa-
tions on the test platforms. Considering just the results for
Concierge, it can be said that this goal has been reached.
For instance, the SableVM iPAQ platform is a PDA with
a generic, mainly unoptimized open source VM, wheras J9



Symbian is a Nokia Smartphone with a custom-tailored and
optimized J9 port. Unlike Oscar, Concierge is able to pro-
vide almost equal performance, although the setups are com-
pletely different. A gap that Concierge cannot level are per-
formance differences that result from fundamentally differ-
ent levels of optimized VMs. The JIT-enabled cvm on Sharp
Zaurus remains two times faster than the SableVM iPAQ,
although the hardware setup is almost identical.

8.5 Even smaller devices

As an additional test on “physically small devices”, we
have benchmarked Concierge on an Intel iMote2 sensor net-
work board (ARM5-TE compliant XScale PXA27x, 32 MB
RAM, 32 MB Flash). With a linux OS for arm-embedded
and a JamVM installed, Knopflerfish and Concierge are able
to run, although Knopflerfish has some erroneous test cases.
Oscar does not run properly, many test cases fail. The final
runtime of the regression tests for Knopflerfish is 5 minutes,
Concierge needs only 70 seconds.

9. CONCLUSIONS

In this paper we have presented Concierge, a full imple-
mentation of the OSGi R3 specification. Concierge targets
small devices. The experiments in the paper show that the
design of Concierge leads to better and more consistent per-
formance across devices than with existing OSGi implemen-
tations. In the paper we have addressed in detail the chal-
lenge of designing an OSGi platform in resource constrained
devices and how to take advantage of the insights gathered
through extensive experimentation. The result is an OSGi
implementation that performs significantly better than ex-
isting implementations and thereby extend the range of ap-
plications for OSGi. Future work around Concierge includes
a distributed version and a fluid computing platform [5] im-
plemented on top of Concierge. More details and downloads
are provided on http://www.flowsgi.inf.ethz.ch.
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APPENDIX

J2SE 1.4 Notebook: Type: Notebook, Manufacturer: Dell,
Model: Inspiron 9300, CPU: Intel Pentium M 750 1.8 GHz,
BogoMIPS: 1576.09, RAM: 1024 MB, OS: Windows XP SP 2,
Java VM: Sun JDK 1.4.2_.12, Compliance: J2SE 1.4, JIT

J2SE 1.5 Workstation: Type: Workstation, Manufacturer:
Dalco, Model: D865 Workstation, CPU: 2x Intel Pentium 4
3.0 GHz, BogoMIPS: 5985.04, RAM: 2048 MB, OS: Linux Fe-
dora 2.6.17_smp, Java VM: Sun JDK 1.5.0-06-b05, Compliance:
J2SE 1.5, JIT

SableVM iPAQ Familiar: Type: PDA, Manufacturer: Com-
paq, Model: iPAQ 3870, CPU: StrongARM SA-1110 206 MHz,
BogoMIPS: 137.21, RAM: 64 MB, OS: Linux familiar 2.4.19-
rmk6-hh37, Java VM: SableVM 1.11.3, Compliance: J2SE 1.4

cvm Zaurus: Type: PDA, Manufacturer: Sharp, Model: Za-
urus 5500 G, CPU: StrongARM SA-1110 206 MHz, BogoMIPS:
137.21, RAM: 64 MB, OS: Linux Embedix 2.4.6-rmk1-np2, Java
VM: Sun cvmm 1.0, JIT, Compliance: J2ME CDC Personal Pro-
file

J9 Symbian: Type: Smart Phone, Manufacturer: Nokia, Model:
9300i, CPU: TI OMAP 1510 150 MHz, BogoMIPS: 125, RAM:
80 MB, OS: SymbianOS, Java VM: IBM J9 2.2, no JIT, Com-
pliance: J2ME CDC Foundation

JamVM Slug: Type: Embedded Linux Network Storage Link,
Manufacturer: LinkSys, Model: NSLU2, CPU: Intel XScale
IXP420 133 MHz, BogoMIPS: 131.48, RAM: 32 MB, OS: Linux
NAS 2.4.22-xfs, Java VM: JamVM 1.4.3, Compliance: J2SE
1.4

J9 iPAQ PocketPC: Type: PDA, Manufacturer: HP, Model:
iPAQ 5550, CPU: Intel XScale PXA255 400 MHz, BogoMIPS:
397.31, RAM: 128 MB, OS: Windows PocketPC 4.20, Java VM:
IBM J9 2.2, no JIT, Compliance: J2ME CDC Personal Profile



