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A B S T R A C T

Fault detection and diagnosis (FDD) are essential for enhancing the performance of heating, 
ventilation, and air conditioning (HVAC) systems, preventing energy waste, and ensuring indoor 
comfort. However, popular data-driven FDD approaches encounter challenges, such as the lack of 
high-quality labeled data, poor generalization, and the black-box nature of the models, which 
hinder their adoption in the market. Moreover, most existing studies only developed and vali
dated their FDD models in simulation environments or laboratory settings, overlooking practical 
challenges of operational HVAC systems. First, this study focuses on implementing Diagnosis 
Bayesian networks (DBNs) in real-world settings, specifically, air handling units with heat re
covery wheels in a campus building in the Netherlands. DBNs have been proven to be promising 
solutions with advantages in interpretability, robustness to uncertainties, and flexibility. Second, 
a Kafka-based framework is introduced for real-time monitoring in HVAC systems, enabling 
continuous and scalable data processing. Third, a comprehensive diagnosis analysis is conducted 
using both historical operational data and experimental fault data. The results reveal significant 
discrepancies between design documents and the actual operation of the HVAC system, and the 
DBN successfully identifies eight out of nine injected faults during experimentation. Additionally, 
the results uncover issues such as false positives due to DBN’s limitations, inherent system faults, 
and unexpected HVAC system behaviors triggered by the simulated faults, offering critical in
sights into the operational challenges and diagnostic potential of DBNs in real-world HVAC 
systems. These contributions can advance the practical deployment of interpretable and robust 
FDD tools in building energy systems.

1. Introduction

In the European Union, approximately 40 % of energy is consumed in buildings, and over one-third of energy-related greenhouse 
gas emissions come from buildings [1]. The revised Energy Performance of Buildings Directive, entered into force in all EU countries in 
May 2024, aims to achieve emission reductions of at least 60 % in the building sector by 2030 compared to 2015 and to reach climate 
neutrality by 2050 [2]. Heating, ventilation, and air conditioning (HVAC) systems, which are crucial for maintaining comfortable and 
healthy indoor environments, account for the largest share of energy use in buildings [3,4]. However, defects and faults in HVAC 
systems can lead to unexpected indoor environment conditions and significant energy waste, with estimates suggesting these 
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inefficiencies could result in energy losses exceeding 30 % [5,6]. Therefore, fault detection and diagnosis (FDD) play a crucial role in 
improving HVAC system performance, preventing energy waste, and ensuring indoor comfort.

FDD has been the subject of extensive research, but a disjunction remains between academia and the building industry. FDD 
approaches can broadly be categorized into two types: knowledge-based and data-driven. Over the past decade, the emergence of 
artificial intelligence has sparked a surge in interest towards data-driven FDD approaches, which account for approximately 70 % of all 
related publications [7–9]. These approaches leverage statistical analysis and machine learning models to automatically identify faulty 

Abbreviations

AHU Air handling unit
ANN Artificial neural network
BMS Building management system
CCV Cooling coil valve
CNN Convolutional neural network
COP Coefficient of performance
CPT Conditional probability table
DBN Diagnostic Bayesian network
DNN Deep neural network
DT Decision tree
FDD Fault detection and diagnosis
GAN Generative adversarial network
HCV Heating coil valve
HCP Heating coil pump
HRW Heat recovery wheel
HVAC Heating, ventilation, and air conditioning
LSTM Long short-term memory
P&ID Process and instrumentation diagram
RF Random forest
RNN Recurrent neural network
SVM Support vector machine

Symbols
Ahcp HCP alert
Ahrw HRW alert
As,fan Supply fan alert
As,filter Supply filter alert
Ar,fan Return fan alert
Ar,filter Return filter alert
F Fault
p Number of samples in a period
Ps Supply air pressure
Ps,set Supply air pressure setpoint
Pr Return air pressure
Pr,set Return air pressure setpoint
S Symptom
Te Exhaust air temperature
Ti Inlet air temperature
To Outdoor air temperature
Tp Preheated air temperature
Ts Supply air temperature
Tset Supply air temperature setpoint
Tr Return air temperature
ΔPs Pressure difference between supply filter
ΔPr Pressure difference between return filter
Uhcv HCV control signal
Uhrw HRW control signal
Us,fan Supply fan control signal
Ur,fan Return fan control signal
ε Threshold
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patterns from data, often achieving high diagnostic accuracy [10]. Despite this academic enthusiasm, the adoption of data-driven FDD 
in the building industry has been sluggish. An interview conducted by Heimar Anderson et al. [11], which involved interviews with 29 
industry experts, revealed that FDD is still largely perceived as an academic concept. The experts indicated unfamiliarity with 
data-driven FDD approaches, and the market continues to rely heavily on traditional knowledge-based expert systems for diagnosing 
HVAC system faults. Frank et al. [12] also mentioned that the rule-based FDD approach is the most common FDD approach for large 
commercial buildings in the US. One primary reason for this slow adaptation is the lack of high-quality labeled faulty datasets for 
model training, which can be very time-consuming and labor-intensive to determine the actual operating condition or label of each 
data sample in practice [13]. Another major reason is that each HVAC system has its own unique boundary conditions, such as layout, 
weather, occupancy, and internal heat gains [14]. Consequently, data-driven FDD approaches encounter challenges related to scal
ability and transferability, which limit their effectiveness across diverse systems and buildings [8]. Additionally, for market-oriented 
FDD products, their trustworthiness and interpretability are crucial. The diagnostic mechanisms of data-driven FDD approaches, often 
viewed as black-box models, can lead to skepticism regarding their reliability and understanding [15].

To address these challenges, diagnostic Bayesian networks (DBNs) offer a promising solution [16,17]. One of the advantages of 
DBNs is their alignment with HVAC design and implementation practices, providing strong model interpretability and robustness to 
uncertainties [18]. In DBNs, nodes represent potential faults and related symptoms, while the graphical structure illustrates the re
lationships between them. The strength of these relationships is quantified using conditional probabilities, providing a transparent and 
quantitative understanding of how specific faults manifest as symptoms. Furthermore, DBNs are highly flexible in their construction. 
They can be built using a knowledge-based approach [19–24], which leverages expert insights and domain-specific rules, or through 
data-driven approaches [25,26], where the graphical structures and probabilities can be learned directly from experimental fault data. 
Hybrid approaches have also been implemented for DBN construction [27–29], combining both expert knowledge and data-driven 
learning. This flexibility allows for the integration of multiple information sources, enhancing FDD accuracy and robustness across 
various application scenarios in buildings.

Although extensive research has been conducted to develop and implement different FDD approaches for building systems, many 

Table 1 
Related studies on FDD for building energy systems.

Ref. Year Objective Method Type

[43] 2019 AHU system for an office building DNN Simulation
[44] 2020 Multi-zone HVAC system Auto-associative neural network-based validation Simulation
[45] 2020 Chiller (ASHARE RP-1043) GAN Experimental
[46] 2020 Demand-controlled ventilation DBN Case
[22] 2020 HVAC system for a university building DBN Case
[23] 2020 HVAC system for a university building DBN Case
[47] 2021 Chiller (ASHARE RP-1043) CNN Experimental
[26] 2021 Chiller (ASHARE RP-1043) Reference model-based and faulty data-driven hybrid DBN Experimental
[27] 2021 AHUs (ASHARE RP-1312) Knowledge-guided and data-driven DBN Experimental
[48] 2021 AHUs Deep RNN Experimental
[49] 2021 AHUs (ASHARE RP-1312) Semi-supervised ANN Experimental
[50] 2021 AHUs for an academic building Ontological reasoning Case/Implementation
[16] 2022 AHUs for an industrial building Object oriented DBN Case
[40] 2022 HVAC system for a campus building Discrete DBN Case
[51] 2022 AHUs Transformer Case
[52] 2022 AHUs (ASHARE RP-1312) RF, SVM Simulation/ 

Experimental
[53] 2022 Chiller (ASHARE RP-1043) Variational autoencoder-based GAN Experimental
[54] 2023 Multi-zone HVAC system Bilinear deep Koopman model Simulation
[55] 2023 Central chilled-water plant ResNet and VGG Simulation
[56] 2023 Central chilled-water plant ResNet and VGG in a knowledge distillation framework Simulation
[57] 2023 AHUs (ASHARE RP-1312) Transformer integrated Wasserstein GAN Experimental
[58] 2023 AHUs (ASHARE RP-1312) Siamese networks with LSTM Experimental
[59] 2023 AHUs (ASHARE RP-1312) BP-MTN Experimental
[29] 2023 Chiller (ASHARE RP-1043) Residual–knowledge–data driven DBN Experimental
[60] 2023 Chiller (ASHARE RP-1043) Hybrid resampling based improved extreme learning machine Experimental
[61] 2023 Chiller (ASHARE RP-1043), screw chiller Knowledge-infused neural network Experimental
[39] 2023 HVAC system for an experimental facility Statistical techniques based on Tukey and Relative Entropy statistics Implementation
[62] 2023 HVAC system for upper secondary 

schools
DBN, ANN and SVM Implementation

[63] 2024 HVAC system for a commercial building Entropy-based DBN Simulation
[64] 2024 HVAC system for a light commercial 

building
Decision tree Case

[28] 2024 Chiller (ASHARE RP-1043) Data and knowledge fusion-driven DBN Experimental
[65] 2024 Chiller (ASHARE RP-1043) DBN with feature selection based on generic algorithm Experimental
[66] 2024 Chiller (ASHARE RP-1043) Improved GAN with an enhanced deep extreme learning machine Experimental
[67] 2024 AHUs (ASHARE RP-1312) Global modelling scheme integrated dynamic kernel canonical variate 

analysis
Experimental

[68] 2024 HVAC system for an office building DBN Simulation/Case
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studies have primarily focused on developing or validating their algorithms in simulation environments, or in laboratory settings [8]. 
Research on online and real-time implementations of FDD methods in actual buildings is insufficient. In real-world building cases, 
several practical challenges hinder effective implementation, including a lack of sensors [30,31], poor sensor accuracy and missing 
sensor values [32–34], non-standardized sensor installations [35], unexpected control logics, inconsistent definitions of Application 
Programming Interfaces (APIs) [36–38], and real-time data stream processing [39]. These issues significantly limit the practical 
applicability of FDD methods, underscoring the critical need to address challenges in their on-site implementation.

Furthermore, air handling units (AHUs) are one of the most common and important HVAC systems in buildings. While several 
studies have successfully developed DBNs for AHUs [19,20,27,40], these efforts have predominantly relied on experimental fault 
datasets from ASHRAE RP-1312 [41], which focus on AHUs with mixing air chambers commonly used in the U.S. and Asia. However, 
these AHUs have the potential risk of virus transmission. In contrast, AHUs in Europe typically use heat recovery devices, such as heat 
recovery wheels (HRWs), with a net physical air separation between the return and supply side, reducing the risk of contamination 
[42]. Despite the importance of AHUs with these heat recovery systems for safer and healthier ventilation, especially in the post-COVID 
era, their FDD has not been adequately investigated.

This study aims to bridge the gap between laboratory-based FDD research and real-world applications, offering insights into 
practical challenges and solutions for FDD in operational buildings. The contributions of this study are summarized as follows. 

• A DBN-based FDD approach is developed based on the four symptoms and three faults (4S3F) reference architecture for heating 
recovery ventilation in a campus building, where AHUs with HRWs is a common system in Europe but under investigated in the 
context of fault diagnosis.

• A Kafka-based data stream framework is introduced for FDD in HVAC systems, enabling real-time, continuous, and scalable data 
acquisition, storage, and processing.

• A comprehensive diagnosis analysis is conducted using both historical operational data and experimental fault data.
• Critical insights are provided into the operational challenges and diagnostic potential of DBNs in real-world HVAC systems.

The rest of this paper is organized as follows. Section 2 presents a literature review of FDD in building energy systems. Section 3
introduces the theoretical fundamentals of DBNs, the 4S3F reference architecture, and the Kafka-based FDD framework in buildings. 
Section 4 describes the case building and the proposed DBN. Section 5 presents the diagnostic analysis performed on historical data and 
experimental data. Section 6 concludes the key findings of this study, discusses its limitations, and suggests directions for future 
studies.

2. Literature review

This section reviews the relevant studies on FDD in building energy systems, which can be divided into four categories: simulation, 
experimental, case, and implementation studies [11]. Typically, simulation and experimental studies have primarily focused on the 
development of FDD methods, while case and implementation studies focused on evaluating the capabilities of the various FDD 
methods in real-world buildings. Table 1 summarizes the related studies on FDD for building energy systems in the last five years.

In simulation studies, labeled fault data used for model training, testing, and validation are generated through simulation envi
ronments. The simulation can precisely control the data resolution as needed, and there are no issues with data quality, missing values, 
or measurement uncertainty. Lee et al. [43] produced fault operational data of a 10-floor office building in EnergyPlus and developed a 
deep neural network (DNN) to diagnose the faults in AHU systems. Elnour et al. [44] obtained fault-free data in a 3-zone HVAC system 
using TRNSYS and proposed an auto-associative neural network-based method to validate and diagnose sensor faults. Huang et al. [63] 
generated the fault data of a virtual HVAC system testbed developed using Modelica in Dymola environment and evaluated the 
effectiveness of a novel entropy-based causality learning framework for DBN. Gao et al. [68] created a digital twin model for a building 
based on IDA-ICE and implemented DBN to diagnose faults. Gao et al. [55,56] utilized a Python-based simulation program to collect 
fault operational data of a central chilled-water plant, and they analyzed the performance of pruning and knowledge distillation of 
deep learning models. However, well-validated FDD models using simulated data may not always perform effectively when applied to 
real-world buildings, even though the simulations are carefully developed and calibrated. Huang et al. [52] found distribution dif
ferences between AHU fault data simulated by HVACSIM+ and real building data, resulting in FDD models trained on simulated data 
failing to generalize well when applied to real-world building data.

In experimental studies, labeled fault data are typically emulated in controlled laboratory settings, where sensors are properly 
calibrated to ensure high-quality data with few missing values. The severity of faults can also be carefully controlled in these ex
periments. Most of the experimental studies rely on fault datasets from the ASHRAE RP-1312 [41] and RP-1043 projects [69], which 
focus on AHUs and chillers, respectively. The models commonly used in these studies include random forest (RF) [52], support vector 
machine (SVM) [52], back propagation multi-dimensional Taylor network (BP-MTN) [59], artificial neural network (ANN) [49], 
convolutional neural network (CNN), Recurrent neural network (RNN) [48], long short-term memory (LSTM) [58], generative 
adversarial network (GAN) [45,53,57,66], Transformer [57], and DBN [26–29,40,65]. Both simulation and experimental studies offer 
ideal conditions for developing and evaluating FDD models. While experimental studies offer a relatively realistic setting, they are 
often costly, time-consuming, and limited in the types of faults they can emulate. Additionally, they still may not fully capture the 
complexities of FDD tasks in real-world buildings.

In case and implementation studies, data are obtained in actual measurement campaigns or directly sourced from building 
management systems (BMS) in real-world buildings, which brings many practical challenges. Firstly, data resolution may be difficult to 
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adjust if sourced from BMS records. Data quality is often inconsistent, with significant amounts of missing values [33]. Secondly, 
commercial-grade sensors commonly used in BMS often lack guaranteed calibration, leading to unknown measurement errors [70]. 
The placement of sensors may further affect data accuracy, limiting the reliability of data collection [71]. Moreover, only some case 
studies include labeled fault data, where labels are either generated through fault emulation, similar to those experimental studies, or 
derived from expert analysis of historical data through a detailed review of the entire measurement period. These challenges in 
real-world buildings can easily compromise the performance of data-sensitive statistical and machine learning models, highlighting 
the application potential of DBN with robustness to uncertain measurement and flexibility in modeling approaches. Li et al. [27] 
determined the prior DBN structure for an industrial building case based on expert knowledge and collected fault data to optimize the 
DBN using generic algorithms. Taal and Itard [22,46] proposed DBNs for a thermal energy plant and demand-controlled ventilation in 
a university building case and they examined the diagnosis results based on expert analysis. Gao et al. [68] found DBNs can be tolerant 
to missing data and still able to correctly identify that heat pumps are not running correctly. Furthermore, compared to case studies, 
another main practical challenge in implementation studies is real-time data processing. Taal and Itard [23] found that energy per
formance symptoms, such as coefficient of performance (COP), would be affected by the different detection time spans. Therefore, the 
input data batch size should be carefully considered in real-time FDD implementation.

While many studies have investigated advanced statistical and machine learning models in simulation and experimental studies, 
implementation studies play a crucial role in bridging the existing disjunction between academia and the building service industry. 
Notably, a review by Heimar et al. [11], covering the period from 1980 to 2022, revealed that only 4 % of the papers in the existing 
literature specifically focused on FDD implementation. These studies highlight critical shortcomings, such as the practical challenges 
encountered during real-world deployment, which are often overlooked in other study types. Consequently, there is a need for further 
investigation and development of FDD in building energy systems in real-world implementation scenarios.

3. Methodology

This section will introduce the theoretical fundamentals of DBN, the 4S3F reference architecture, and Kafka-based real-time 
monitoring framework for HVAC systems.

3.1. Diagnostic Bayesian network

DBNs are probabilistic graphical models that use directed acyclic graphs to represent random events (variables) and their con
ditional dependencies. DBNs are based on Bayes’ theorem [72]. In Bayes theorem, a conditional probability indicates the likelihood of 
one event occurring given the occurrence of another event. In the context of FDD in building energy systems, F = {F1, F2,…, Fn}

represent a set of possible faults and S = {S1, S2,…, Sm} represent a set of possible symptom states. If a fault Fi happens when a 
symptom S is observed or assumed to have occurred, the probability of the fault Fi under the symptom S can be written as follows. 

P(Fi|S) =
P(FiS)
P(S)

=
P(S|Fi)P(Fi)

P(S)
(1) 

where P(Fi|S) is the posterior probability of the fault Fi given symptom S; P(FiS) is the joint probability; P(S|Fi) is the conditional 
probability of observing symptom S given that fault Fi has occurred; P(Fi) is the prior probability of the fault Fi; P(S) is the marginal 
probability of observing the symptom S, which can be expressed as follows. 

P(S) =
∑n

i=1
P(S|Fi)P(Fi) (2) 

3.2. 4S3F reference architecture

To systematically and effectively construct DBN for FDD in building energy systems, the 4S3F reference architecture has been 

Fig. 1. The illustration of the 4S3F framework.
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proposed and applied in Refs. [18,23,24], as illustrated in Fig. 1. The 4S3F architecture, which consists of two stages, closely aligns 
with HVAC diagrams and the manners in which HVAC systems and their associated control systems are designed [17].

In the first stage, four generic types of symptoms can be detected, which normally are predefined by expert knowledge. Balance 
Symptoms are detected when balance deviations in energy, mass or pressure balance for systems occur. Energy Performance Symptoms 
emerge when deviations in energy performance metrics arise, such as COP or energy usage. Operation State Symptoms are detected 
when the operational states deviate from their expected states arise, such as temperature, flow rate, pressure, and on-off states of 
components. Additional Symptoms are based on supplementary information, which may include maintenance or inspection records, or 
fault alerts included in a component by the producer.

In the second stage, three possible faults can be diagnosed through DBNs. Component Faults refer to HVAC components and 
systems which do not function properly, such as incorrect installation, too low or too high design capacities, fouling, degradation of 
due to ageing or failure. Sensors are considered as components. These faults are also referred to as “hard faults” [73]. Control Faults 
include incorrect set points for controllers, timers, on-off control of components, and software faults. For example, this may involve 
incorrect control of supply temperatures or the on-off sequence of boilers. Model Faults are related to inaccuracies in the quantitative 
models used to estimate missing or virtual measurements [74]. The control and model faults are also referred to as “soft faults” [73].

3.3. Kafka-based HVAC FDD framework

This study introduces a Kafka-based HVAC FDD framework, as shown in Fig. 2, which is used for real-time data collection and 
monitoring. The framework is developed using open-source tools, offering scalability, flexibility, and the ability to handle large 
volumes of data efficiently. It employs Apache software solutions for data acquisition, processing, storage, and visualization. By 
integrating a suite of advanced tools, the framework ensures robust and efficient FDD for building energy systems, with an emphasis on 
enabling real-time performance. The following sections provide a detailed overview of the framework’s core software and 
functionalities.

Apache Kafka [75] is a real-time data stream queuing system designed to publish, store, process, and subscribe to streams of records 
seamlessly. Its core functionality is to capture and process data in real time from various sources, such as databases and sensors, 
delivering a continuous stream of events, also referred to as messages. The architecture of Kafka revolves around three key compo
nents: producers, consumers, and brokers. Producers are responsible for publishing the events into Kafka. Consumers, on the other 
hand, subscribe to the events and read them from Kafka. Brokers play a crucial role as mediators between producers and consumers. 
They efficiently manage and group the events into topics, which are essentially named streams of data. Apache ZooKeeper [76] is 
employed as a centralized service to maintain configuration information and naming, provide distributed synchronization, and 
manage group services. InfluxDB [77], an open-source NoSQL time-series database, has been selected for storing timestamped data due 
to its high performance and reliability. It supports an SQL-like query language, InfluxQL, which allows for querying data from 
measurements (equivalent to tables in relational databases). Its capabilities make it a reliable storage solution for handling the large 
volumes of data generated in building systems.

The framework begins with data collection, which involves gathering indoor air quality data, energy consumption data, and control 
signal records. The collected data is transmitted to a central server, where the Kafka source connector monitors a specified path and 
forwards the data to Kafka brokers for further processing. Once ingested by Kafka, the data undergoes a series of processing steps 
before being stored in the main database, InfluxDB. To initiate the FDD process, data is retrieved from InfluxDB and subjected to 

Fig. 2. Kafka-based FDD framework in buildings.
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extraction and preprocessing steps. The prepared data is then processed by DBNs, which facilitates symptom detection and fault 
diagnosis. To monitor the performance of buildings, the posterior probabilities of faults and diagnosis results are stored in the database. 
Finally, the dashboard can visualize the building operational data and provide fault reports.

Specifically, to support the implementation of the proposed Kafka-based framework, a set of open-source packages was employed in 
this study. The real-time data streaming and queuing were handled using confluent-kafka (version 2.4.0), while time-series data 
storage and querying were managed through influxdb-client (version 1.43.0). For numerical processing, pandas (version 2.2.1) and 
numpy (version 1.26.4) were used, respectively. The DBNs were implemented using the pgmpy library (version 0.1.25). These tools 
enabled the development of a scalable, efficient, and interpretable FDD system tailored for real-world HVAC applications.

4. Case study

This section provides an overview of the case building, covering the HVAC system P&ID, sensor configuration, and control stra
tegies. It also introduces the proposed DBN construction, including problem formulation, structure modeling, parameter modeling, 
fault isolation and evaluation.

4.1. Case description

The case study involves an AHU installed in a seven-floor office building on the campus of TU Delft, the Netherlands. The building 
was built in 2002 with a total area of 10,767 m2. This AHU is equipped with filtering, heat recovery, and both heating and cooling 
capabilities, with airflow up to 28,700 m3/h. Heating is supplied by two gas-powered boilers, while cooling is provided by a chiller, 
both located in the building’s basement. The simplified piping and instrumentation diagram (P&ID) of the AHU is shown in Fig. 3. All 
the monitoring variables in the BMS are listed in Table 2, including temperature, static pressure, pressure difference, setpoints, control 
signals, and component alerts.

Fig. 4 presents the simplified operational strategies of the AHU from the system document, which is originally in Dutch. The AHU 
heats or cools the air depending on the supply air temperature relative to its setpoint. The x-axis represents the temperature, ranging 
from cold to warm. The y-axis represents the control signal, ranging from 0 % (fully closed) to 100 % (fully open). Unlike AHUs with 
mixing air chambers in the other studies [16,19,20,27,40,41], the AHU is equipped with a HRW, which can be used to exchange heat or 
cold between supply and return airflows to save energy. The technical specification states 49 % of the supply efficiency and 81 % of the 
exhaust efficiency of the HRW. If the supply air temperature falls below the setpoint in the heating season, the HRW is first activated. If 
the desired temperature cannot be reached by the HRW alone, the boiler starts to work, and the heating coil valve (HCV) opens to 
further increase the temperature. When the supply air temperature exceeds the setpoint in the cooling season, the chiller starts to work, 
and the cooling coil valve (CCV) opens further to reduce the temperature to the desired level. The valves regulate the flow of warm or 
cold water through the coils, which in turn transfer heat or cooling to the air being supplied. During winter, the CCV remains inactive, 
and similarly, the HCV is not used in summer.

Fig. 5 illustrates the rule-based strategies for adjusting the supply air temperature setpoint based on the outdoor temperature.
Ventilation of the AHU is provided by a set of fans located at the end of the supply and return ducts, with pressure in the ducts 

monitored by pressure sensors. The AHU adjusts fan speed to ensure the measured pressure matches the supply and return pressure 
setpoints, which are consistently set to 185 Pa and 200 Pa, respectively, as specified by the BMS. Airflow into and out of the AHU is 
regulated by one supply damper and two return dampers. Dampers, which are valves or plates that control airflow, in this case study 
are only operated as fully open or close. The supply damper automatically opens when the supply fan is activated by the AHU, while 

Fig. 3. The simplified P&ID of the AHU.
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the two return dampers, located on the east and west sides of the building, are controlled by the BMS and open during working hours. 
Additionally, the AHU includes two air filters, one in the supply duct and one in the return duct, both positioned before the HRW. These 
filters help maintain cleanliness within the AHU and purify the air being supplied. Pressure difference sensors monitor the condition of 
the filters, indicating when replacement is needed, as the pressure difference increases with accumulated dust. Additionally, the BMS 
includes three seasonal modes: winter, summer, and in-between seasons. The operation of the coils, boilers, and chiller is adjusted 
depending on the active season, with these components either blocked or unblocked as needed. The system also integrates online 
weather data and has functionality for generating alerts based on sensor readings.

Table 2 
Variables in BMS.

Variable Description Variable Description

To Outdoor air temperature Pr,set Return air pressure setpoint
Ti Inlet air temperature Uhcv HCV control signal
Tp Preheated air temperature Uhrw HRW control signal
Ts Supply air temperature Us,fan Supply fan control signal
Tr Return air temperature Ur,fan Return fan control signal
Te Exhaust air temperature As,fan Supply fan alert
Ps Supply air pressure Ar,fan Return fan alert
Pr Return air pressure As,filter Supply filter alert
ΔPs Pressure difference between supply filter Ar,filter Return filter alert
ΔPr Pressure difference between return filter Ahrw HRW alert
Tset Supply air temperature setpoint Ahcp HCP alert
Ps,set Supply air pressure setpoint ​ ​

Fig. 4. Simplified operational strategies of the AHU from the design documents.

Fig. 5. The supply air temperature setpoint of the AHU from the design documents.
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4.2. DBN construction

In this study, a DBN is proposed for the FDD task in the AHU of the case building. The DBN is constructed following the four-step 
modeling procedure outlined in Ref. [17], including problem formulation, structure modeling, parameter modeling, and fault 
isolation.

4.2.1. Problem formulation
The first step, problem formulation, involves understanding the components, capacities, sensors, and control in the system, 

identifying potential faults, and defining the symptoms of the FDD process.
In this study, the common faults, along with their associated symptoms, are determined based on the literature [5,19,21,78]. The 

faults primarily focus on component and control-related issues, with a total of 26 faults. Some similar faults, such as supply fan (Fans) 
stuck and return fan (Fanr) stuck, are grouped under a single fault number for simplification and clarity. Then, there are 35 symptoms 
identified, most of which are related to the operational states of the system as defined in the design documents. Due to the absence of 
airflow and water flow sensors, accurately calculating energy performance becomes challenging. However, two symptoms are used to 
approximately estimate the energy efficiency of the heating coil and the HRW. Alerts in the system are classified as additional 
symptoms. Additionally, the thresholds ε determine the sensitivity of symptoms and have a significant effect in determining when 

Fig. 6. The proposed DBN for the AHU in the case building.
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symptoms are detected. For example, ε1 is the temperature deviation between Ti and To, which are expected to be equal under normal 
conditions. In this study, ε1 is set to 2 ◦C. If the deviation exceeds this threshold, it is considered a symptom indicating abnormal 
behavior. When the thresholds are set too high, only severe deviations will be detected as symptoms, increasing the risk of false 
negatives. Conversely, when the thresholds are too low, normal fluctuations in system operation may trigger symptom detection, 
leading to false positives. The specific ε values chosen for symptoms are defined heuristically by design documents, expert knowledge 
and experience. A complete list and description of all faults, symptoms and thresholds can be found in the Appendix A1, A2, and A3 
respectively.

In the proposed DBN, both symptoms and faults are defined to have only two possible states: Present or Absent. This binary rep
resentation simplifies the construction of the DBN. Despite this simplification, it still provides building managers with sufficient fault 
information in practice.

4.2.2. Structure modeling
Then, structure modeling involves constructing the structure of the BN model, reflecting the dependencies between the fault nodes 

and symptom nodes. The proposed DBN is based on expert knowledge, shown in Fig. 6.
In Fig. 6, some faults and symptoms that appear on components or sensors of both the supply and return sides of the AHU are 

combined and denoted with a subscript “s/r”. The structure of connections to symptom nodes differs depending on whether the 
symptom node is also combined. If the symptom node is combined, the supply-side fault is linked to the supply-side symptom, and the 
return-side fault is connected to the return-side symptom. For instance, the top-left “Tr/e fault (broken)" fault node represents the Tr/e 
fault connected to symptom S19 and the Te fault connected to symptom S20. In cases where a symptom node represents a single 
symptom, both supply and return faults are connected to it. For example, the connection from the “Tr/e fault” to symptom S21, where 
both the Tr and Te faults are linked to symptom S21. The “Dampers stuck” fault is connected only to supply-side symptoms S14 and S4, 
as these symptoms pertain specifically to the supply side of the AHU.

4.2.3. Parameter modeling
This step involves specifying the parameters of the DBNs, including assigning prior probabilities and conditional probabilities.
Prior probabilities refer to the frequency of fault occurrence in building energy systems. However, there is a lack of understanding 

of how often each fault occurs in AHUs with HRW. Yet, the possibility of faults occurring is still considered low. In this study, for 
component faults, the initial prior probabilities are assigned as 0.02 for fault Present state and 0.98 as fault Absent state. For control 
faults, initial prior probabilities are assigned as 0.05 for fault Present state and 0.95 as fault Absent state. Therefore, it is expected that 
component faults have a 2 % probability of being Present, while control faults have a 5 % probability, independent of any other faults or 
symptoms.

Due to simplified binary representation of faults and symptoms, it requires only one parameter for each conditional probability 
between a fault and its associated symptom. The conditional probabilities of DBN have been grouped into two types: strong and weak 
relationships. As depicted in Fig. 6, black edges indicate strong conditional probabilities of 90 %, while grey edges represent weak 
conditional probabilities of 30 %. Theoretically, distinct conditional probabilities can be defined for every edge in the DBN, but this 
becomes cumbersome in practice. Furthermore, Taal et al. [23] have shown that the chosen absolute conditional probability values are 
less important than the relative values.

For each component fault, the conditional probability of the related alert symptom was set to strong. If a fault had no related alert, 
the most likely symptom was considered strong. This approach was made possible because symptoms were formulated to correspond to 
the chosen faults. The HRW and heating coil efficiency symptoms were also considered strong conditional probabilities for the HRW 
and heating coil failure faults. Symptom S23 can be caused by multiple control, component or sensor faults, also same with symptoms 
S4 and S7, which are detected when the measured pressure is different from the setpoint. Therefore, they have no strong conditional 
probability edges, as the possible faults are too many to be certain which fault likely caused it. The entire conditional probability table 
(CPT) for each symptom node is constructed with the leaky-or model based on the conditional probabilities. The CPT of a symptom 
node contains probability for each combination of fault states that are connected to the node.

4.2.4. Fault isolation and evaluation
The step involves calculating the fault posterior probabilities based on observed symptoms and isolating the faults according to 

predefined rules. In this study, the diagnosis using the proposed DBN is performed on both historical and experimental data.
Exact Bayesian inference is the most common algorithm to calculate the posterior probabilities of faults in building energy systems. 

In this study, we also use it to perform a backward inference to find the most probable fault given the observed symptoms, as shown in 
Equation (2). In this study, a fault is considered to be diagnosed if its posterior probability is at least 60 %. Unlike single fault diagnosis 
in Refs. [19,20,40], the proposed DBN supports multiple fault diagnosis at the same time.

For the historical data analysis, records from 2022 to 2023 were selected, focusing exclusively on working hours. The dataset spans 
a total of 506 working days, with measurements recorded at 10-min intervals, resulting in 36,433 samples. To minimize false positives 
due to unstable measurements in practice, the detection of a symptom sample requires at least two consecutive samples to exhibit the 
Present state. To confirm the daily detection of a symptom on a given day, the symptom must appear in at least three samples within 
that day. Subsequently, daily fault diagnosis is performed using the proposed DBN, which leverages these daily symptom detections to 
calculate the posterior probabilities of each fault. Some metrics are defined in the historical analysis, including the sample-level 
symptom detection rate, day-level symptom detection rate, and day-level fault diagnosis rate. The sample-level symptom detection rate refers 
to the proportion of detected samples to the total number of samples, while the day-level symptom detection rate refers to the 
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proportion of days with detected symptoms to the total number of analyzed days. The day-level fault diagnosis rate refers to the 
proportion of days with diagnosed faults to the total number of analyzed days.

For the experimental data analysis, nine experiments are conducted to simulate four types of control faults. The details of the fault 
experiments are presented in Table 3. Similar to the historical data analysis, symptom detection across different time periods requires a 
minimum of p/6 occurrences of a detected symptom within the period to confirm its presence, where p is the number of samples in the 
period. The detected symptoms are then used for fault diagnosis during this period.

5. Results

This section presents data analysis and diagnosis results from the proposed DBN, using both historical and experimental data.

5.1. Statistical analysis of historical data

The statistical analysis of historical data reveals some interesting insights. Fig. 7(a) presents the distribution of temperature-related 
variables from 2022 to 2023, including temperature sensors and supply air temperature setpoints. First, the values from To and Ti 
sensors show similar distributions. However, the Ti sensor values, with an average of 14.4 ◦C, are slightly higher than the To sensor 
values, which have an average of 13.7 ◦C. The To data comes from an online weather source integrated into the BMS, while Ti sensor 
data comes from BMS measurement. Consequently, the difference could be due to a bias in one of the temperature readings or dif
ferences in the measurement locations. Additionally, Tset can sometimes be set lower than 19 ◦C, even as low as 10 ◦C, which is 
inconsistent with the description in the design documents as shown in Fig. 5. Fig. 7(b) presents further details about the To and Tset. 
According to the design documents, the Tset is set based on the To, which is represented by the nominal setpoint curve in the figure. But 
the actual setpoints are consistently much lower than the curve. This suggests that the system might be operating outside the pa
rameters outlined in the design documents and these deviations could be the result of system misconfigurations, sensor calibration 
issues, or a deliberate adjustment based on user preferences.

Fig. 8 shows the distribution of the pressure-related variables, including static pressure sensors, pressure difference sensors, and 
pressure setpoints. As expected from the design documents, the median values of the setpoints Ps,set and Pr,set are 185 Pa and 200 Pa, 
respectively, and the actual pressure values (Ps and Pr) align well with their setpoints, except for a few outliers.

Fig. 9 shows the distribution of control-related variables. First, the distributions of the CCV and HCV control signals exhibit a broad 
range, reflecting the varying heating and cooling demands influenced by outdoor weather conditions. This is consistent with the Dutch 
climate, where heating is required more frequently than cooling. Consequently, the cooling coil is utilized on fewer days than the 
heating coil, resulting in a median value of 0 %. Next, the median values of the fan control signals align with the required control 
settings to maintain the pressure setpoints. The interquartile range is relatively narrow, as expected, given that the pressure setpoints 
are fixed and do not fluctuate. Third, the control signal for the HRW spans from 0 % to 100 %, as it operates with binary control—either 
off (0 %) or on (100 %). This binary operation can complicate the maintenance of a stable supply temperature, as the HRW might need 
to be frequently switched on and off to achieve the desired setpoint, rather than maintaining a constant capacity like the valves. The 
median value for the HRW control is 100 %, indicating that the HRW was typically in the ‘on’ state.

5.2. Diagnosis on historical data

Fig. 10 presents the results of symptom detection in historical data. Eleven symptoms were not detected on any day, while another 
eleven symptoms were detected on over 10 % of the days. Among these detected symptoms, symptoms S19 and S16 appeared nearly 
every day, along with symptoms S25, S23, S22, S34, S1, S17, S27, S35, and S18. These detected symptoms reveal several issues in real- 
building scenarios, including sensor performance and control operations.

Sensor-related issues are evident in the frequent detection of symptom S19 is due to the return air temperature sensor data being 
only available in 30-min intervals and containing missing values, reflecting the challenges of varying sensor granularity. The detection 
of symptoms S1 and S16 reveals the inconsistencies between the Ti sensor and the To sensor as the discrepancy mentioned in Section 
5.1. Similarly, symptoms S17 and S18 highlight further inconsistencies between sensor values. Symptom S17 points to discrepancies 
between the Ti sensor and the Tp sensor when the HRW is off, while symptom S18 reflects inconsistencies between the Tp sensor and the 

Table 3 
The details of the fault experiments.

Case Simulated Fault Experiment Description Time Date

1 Incorrect Fans control Fans control signal was set to 30 % 08:30–11:00 2024.3.23
2 Incorrect Fans control Fans control signal was set to 70 % 11:30–14:00 2024.3.23
3 Incorrect Ps, set Ps, set was set to 235 Pa 11:10–13:50 2024.3.24
4 Incorrect Ps, set Ps, set was set to 135 Pa 14:00–17:00 2024.3.24
5 Incorrect HCV control HCV control signal was set to 0 % 9:30–11:20 2024.3.29
6 Incorrect HCV control HCV control signal was set to 30 % 11:30–14:00 2024.3.29
7 Incorrect HCV control HCV control signal was set to 100 % 14:05–17:00 2024.3.29
8 Incorrect Tset Tset was set to 23 ◦C 11:30–14:30 2024.3.30
9 Incorrect Tset Tset was set to 17 ◦C 14:35–17:59 2024.3.30
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Ts when the HCV is off. Both symptoms suggest potential sensor bias or sensor placement issues. Also, the detection of symptom S25 
indicates the Ts is lower than expected. One possible cause for symptom S25 could be sensor bias in either the Tp or Ts measurements.

Control-related issues are reflected in the presence of symptom S23, which indicates that the Ts often deviates by more than 1 ◦C 
from its setpoint, suggesting potential faults with the HCV and HRW controls, similar to the presence of symptom S22. Meanwhile, the 
presence of symptom S34 indicates that the Tset was not between 19 ◦C and 22 ◦C, reflecting inconsistencies with the control strategies 
specified in the design documents, as mentioned in Section 5.1. Similarly, symptom S35 is formulated according to design specifi
cations requiring the HRW to operate at 100 % when the HCV starts working. The frequent presence of S35 also shows the in
consistencies between design and actual operations. Also, another potential cause of symptom S25 could be inaccuracies in the HCV 
control signal, leading to an inability to consistently deliver the required heat.

Additionally, if the day-level symptom detection rate is higher than the sample-level symptom detection rate, this indicates that the 
symptom is present on most days but occurs only a few times per day. Conversely, if the sample-level symptom detection rate is higher 

Fig. 7. The distribution of the temperature-related variables in 2022–2023: (a) the boxplot of the temperature-related variables; (b) comparison 
between the supply air temperature setpoints and the outdoor temperature.

Fig. 8. The boxplot of the pressure-related variables.

Fig. 9. The boxplot of the control-related variables.
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than the day-level symptom detection rate, the symptom tends to be detected on fewer days throughout the year, possibly correlating 
with seasonal patterns. Interestingly, the ratio between day and sample level symptom detection rates varied significantly across 
symptoms. For example, symptoms S23 and S25 were detected on a similar number of days, although symptom S25 had nearly twice as 
many detected samples as symptom S23. Most symptoms showed a higher day-level detection rate than the sample detection rate, with 
S21 being an exception. This suggests that S21 tended to appear more frequently in short bursts over fewer days.

Fig. 11 presents the results of fault diagnosis in historical data. Six faults were diagnosed on more than 10 % of the days. The most 
frequently diagnosed fault was the “Tr Sensor Fault”, which was diagnosed on all days in the dataset. This is expected due to the missing 
data for the return air temperature sensor, as indicated by symptom S19. The “Ti Sensor Fault” was also frequently diagnosed, 
occurring on 97 % of the days, aligning with the frequent detection of symptoms S16 and S1. Similar to the “Tp Sensor Fault” with the 
related symptoms S26, S18, and S25. The “Incorrect Ts,set” was detected on 64 % of the days, due to the strong link to symptoms S34 
and S23. Control faults such as “Incorrect HCV Control” and “Incorrect HRW Fault” were detected on 43 % and 11 % of the days, 
respectively, with related symptoms S23, S27, S22, and S35 detected beforehand. The remaining faults were diagnosed infrequently, 
which aligns with the related symptoms that were also detected infrequently.

Fig. 11 also presents the average posterior probabilities of each fault and the comparison between average posterior probabilities 
and day-level fault diagnosis rates provides some insights. For the most frequently diagnosed six faults, the values of the average 
posterior probabilities closely align with the percentage of days they were detected. It is because, on days when these faults were 
diagnosed, their posterior probabilities were nearly 100 %. Conversely, on days when they were not diagnosed, the probabilities were 
generally close to 0 %. For “Ts Sensor Fault”, “HC Fault”, and “Fans Stuck”, the average posterior probabilities are relatively high 
despite the percentage of diagnosed days ranging only from 2 % to 5 %. This suggests that the calculated daily posterior probabilities 
for these faults were frequently above 0 %, yet insufficient to surpass the posterior probability threshold of 60 % for fault diagnosis, 
thereby preventing their diagnosis on many days.

Fig. 10. Symptoms detection rate in historical data from 2022 to 2023.

Fig. 11. Fault diagnosed in historical data from 2022 to 2023.
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5.3. Diagnosis on experimental data

To further evaluate the capabilities of the DBN, nine fault experiments were conducted. Table 4 provides a summary of the 
diagnostic results from the experimental data, presenting the top three faults ranked by their posterior probabilities. Faults in bold 
indicate the correct diagnosis. The results demonstrate that DBN effectively identifies eight out of nine simulated faults. However, 
some unexpected faults are also diagnosed. A detailed analysis of these diagnoses is provided below.

In Case 1, the fault “Incorrect Fan Control” is accurately diagnosed with a posterior probability of 100 %. This is because the Ps 
decreases when the supply fan is stuck at a low speed, resulting in the presence of the relevant symptoms S3 and S4. However, two 
additional faults, “Ti Sensor Fault” and “Incorrect HCV Control”, are also observed both with posterior probabilities of 100 %. First, the 
diagnosis of “Ti Sensor Fault” is based on the presence of the highly relevant symptom S16. As previously observed in the historical data 
analysis, the value of the Ti sensor appears abnormal, suggesting that the sensor may have been installed at an inappropriate location. 
Second, the diagnosis of “Incorrect HCV Control” can be attributed to unexpected system behavior. At lower fan speeds, the HCV 
control signal becomes unstable, causing fluctuations in the supply air temperature. This situation results in the presence of relevant 
symptoms S22 and S23, which contribute to the diagnosis. In Case 2, the fault “Incorrect Fan Control” is also accurately diagnosed with 
a posterior probability of 100 %. When the supply fan is stuck at a higher speed, the relevant symptoms S3 and S4 get detected. 
However, similar to Case 1, the presence of symptoms S1 and S16 leads to the diagnosis of an additional fault, “Ti Sensor Fault”. 
Additionally, the unstable HCV control causes the detection of symptom S23, resulting in the false-positive diagnosis of the fault 
“Incorrect Tset.“.

In Cases 3 and 4, the fault “Incorrect Ps, set” is easily diagnosed by the presence of the highly relevant symptom S8.
In Case 5, the fault “Incorrect HCV Control” is accurately diagnosed with a posterior probability of 100 %. Due to the HCV control 

signal being stuck at 0 %, the heating coil is unable to provide sufficient heat, preventing the Ts from reaching its setpoint. This results 
in the presence of the relevant symptoms S22 and S23. However, an additional fault, “Ts Sensor Fault”, is also diagnosed due to the 
presence of symptom S18. This is unusual because, when HCV is fully closed, Ts is even lower than Tp. A possible explanation is that the 
fault in the Ts sensor may indeed exist, or the sensor might be improperly installed. In Case 6, the fault “Incorrect HCV Control” is also 
accurately diagnosed with a posterior probability of 100 %, based on the symptoms S22 and S23. But there is an additional fault, 
“Heating Coil Fault”, with a posterior probability of 52.7 %. It is due to the presence of the relevant symptom S25, which is triggered by 
the abnormal values of Ts as mentioned above. In Case 7, the simulated fault “Incorrect HCV Control” is misdiagnosed to “Ti Sensor 
Fault” with a posterior probability of 100 % and “Heating Coil Fault” with a posterior probability of 80.6 %. “Ti Sensor Fault” could be a 
potential system fault as previously analyzed. The diagnosis of “Heating Coil Fault” arises because of the presence of symptoms S23 and 
S25: during the experiment, Ts did not increase as expected when the HCV control signal was set to 100 %, likely due to the boiler being 
unexpectedly shut off.

In Case 8, the fault “Incorrect Tset” is accurately diagnosed with a posterior probability of 100 %, directly attributed to the presence 
of symptom S34.

But in Case 9, except for the correct diagnosis, two additional faults, “Ti Sensor Fault” and “Incorrect HCV Control”, are also 
diagnosed. “Ti Sensor Fault” is consistent with previous cases, likely caused by the Ti sensor’s improper installation, which triggers 
symptom S16. The diagnosis of “Incorrect HCV Control” is because when Tset is set too low, the HCV attempts to adjust but behaves 
unstably, leading to unexpected system behavior and activating the symptoms S22 and S23.

6. Insights, limitations, and future directions

In this study, DBNs are implemented to support FDD in the heat recovery ventilation system. The DBN approach offers several 
unique advantages. First, it provides high interpretability by aligning with HVAC engineering logic and causal relationships, which 
facilitates understanding and trust among practitioners. Second, DBNs are robust to missing or noisy sensor data. Third, DBNs can 
support simultaneous multi-fault diagnosis, making them well-suited to the inherent complexity and multi-fault nature of real-world 
scenarios, where purely data-driven models may fail or need to re-train. Furthermore, the integration with Kafka-based framework also 
demonstrates their feasibility for real-time implementation. The DBN in this study is constructed entirely based on expert knowledge, 
without requiring any training data. In summary, compared to data-driven or simple rule-based methods, the DBN approach provides a 
strong balance of diagnostic accuracy, transparency, and modeling flexibility.

By combining detailed diagnosis analysis based on both historical and experimental data, the study offers valuable insights into 
FDD for the AHU system equipped with HRW. The main findings of this study are summarized as follows. 

● First, the statistical analysis of historical data reveals significant discrepancies between the design documents and the actual 
operation of the HVAC system. These include potential biases in sensor measurements and consistently lower-than-nominal 
temperature setpoints, indicating poor commissioning practices and possible occupant interventions that may have led to delib
erate adjustments of setpoints, which are often observed in real-world building scenarios.

● Second, fault diagnosis on historical data further emphasizes these discrepancies and uncovers inherent sensor faults, such as 
installation issues, missing or inconsistent data. It also identifies distinct symptoms and fault patterns that some symptoms persist 
on most days but occur only occasionally throughout the day, while others appear in short bursts over fewer days, potentially 
correlating with seasonal effects.

● Third, in the diagnosis on experimental data, the proposed DBN demonstrates its effectiveness by successfully identifying eight out 
of nine simulated faults, confirming its capability as an FDD tool. However, the DBN also diagnoses additional, unexpected faults. 
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These can be attributed to three factors: (1) false positives arising from the DBN’s inability, (2) inherent system faults as mentioned 
in historical data analysis, or (3) unexpected HVAC system behavior triggered by the simulated faults. Notably, inherent system 
faults should not be regarded as false positives, as these faults genuinely exist within the building and are common in poorly 
commissioned real-world conditions. Despite these challenges, the DBN remains effective, whereas purely data-driven methods 
might fail under such conditions.

Despite its contributions, the study has several limitations. First, the analysis is based on data from a single building in the 
Netherlands, which may limit the generalizability of the findings to other buildings or HVAC systems with different configurations, 
operational characteristics, or environmental conditions. Second, the development of the DBN, including its structure, parameters, and 
thresholds, was based on the authors’ domain knowledge and analysis, which is a common practice in other related studies [19,20,40]. 
But the proposed DBN may not fully account for all potential symptoms or fault behaviors, particularly in real-world scenarios where 
inherent system faults and unexpected operational dynamics can further complicate system behavior. Furthermore, this approach also 
poses challenges when applying DBN to other buildings. While the general DBN-based FDD framework is conceptually transferable, its 
practical application to other buildings involves several system-specific adaptations. The network structure, parameters, and symptom 
thresholds are typically tailored to the specific HVAC system, sensor configurations, and fault definitions of the target building task. 
Therefore, significant customization may be required. However, certain parts of the framework are reusable or adaptable across 
buildings. For example, prior probabilities and conditional dependencies associated with common HVAC components (e.g., fans, 
dampers, HRWs) may be transferable, especially in buildings with similar control strategies and sensor availability. The Kafka-based 
data stream framework can also be reused with minimal modification.

Future work could address these limitations and enhance the robustness of DBNs for FDD in real-world building scenarios. First, due 
to frequent issues with missing sensor values, it is valuable to explore sensor data imputation methods and virtual sensor techniques to 
mitigate data quality issues. Second, given the frequent occurrence of inherent system faults and the potential for multiple faults to 
overlap or interact, investigating the effects and patterns of simultaneous faults could offer valuable insights for the construction of 
DBNs, such as symptom determination, structure and parameter modeling. Furthermore, developing adaptive threshold mechanisms 
could enhance the flexibility and accuracy of DBN across different systems and operational characteristics. Lastly, in real-world 
scenarios, experts may have differing opinions on fault frequency and patterns, influenced by their background and experience. To 
enhance DBN’s reliability, it would be beneficial to incorporate insights from multiple experts in determining the prior and conditional 
probabilities.

7. Conclusions

This study presents the implementation of DBNs in Dutch office building, demonstrating their potential and challenges for FDD in 
real-world building scenarios. A Kafka-based framework is introduced for implementing FDD in HVAC systems. By integrating detailed 
diagnostic analysis using both historical and experimental data, the study provides valuable insights into FDD for AHU systems 
equipped with HRW. Statistical analysis of historical data reveals notable discrepancies between design specifications and actual 
HVAC operation. Fault diagnosis on historical data further exposes these discrepancies, identifying inherent sensor faults such as 
installation errors, missing data, and inconsistencies. These insights can inform improvements in building service practices, including 
refining maintenance protocols and supporting continuous commissioning. The proposed DBN model proves its capability by accu
rately detecting eight out of nine simulated faults in experimental data, despite some false positive diagnoses. Future work should focus 
on addressing these limitations to enhance the robustness and reliability of DBNs for FDD in real-world building scenarios. Key areas 
for improvement include further investigating fault impact, enabling simultaneous fault diagnosis, developing adaptive threshold 
mechanisms for improved symptom detection and fault diagnosis, and integrating expert knowledge to enhance model ability and 
decision-making.
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Appendix. The details of the proposed DBN

Table A1 
The fault nodes in the proposed DBN

No. Fault Description Fault Type

F1 Fans/Fanr Stuck The supply or return fan is stuck or fails completely. Component
F2 Filters/Filterr Leakage Air is leaking when passing the supply or return filter.
F3 Filters/Filterr Fouling The supply or return filter is filled with dirt or dust.
F4 Heating Coil Fault HCV stuck or HCP failure
F5 HCV Leakage Heating water leaks through the valve, causing the heating coil to heat the air up even when the HCV is fully 

closed.
F6 HRW Stuck The HRW is stuck or fails completely.
F7 Dampers Stuck The supply damper is stuck.
F8 Ps/Pr Sensor Ault The supply or return air pressure sensor exhibit biases, outliers or missing values.
F9 ΔPs/ΔPr Sensor Fault The pressure difference sensor between supply or return filter exhibit biases, outliers, or missing values.
F10 Ti,/Tp/Ts/Tr/Te Sensor 

Fault
The inlet, preheat, supply, return or exhaust air temperature sensor exhibit biases or broken (outliers, or 
missing values).

F11 Incorrect Tset The AHU supply air temperature setpoint is higher or lower than the designed setpoint. Control
F12 Incorrect Ps,set/Pr,set The AHU supply/return air pressure setpoint is higher or lower than designed setpoint.
F13 Incorrect HRW Control The HRW control signal is incorrect.
F14 Incorrect HCV Control The heating coil valve signal is incorrect.
F15 Incorrect Fans/Fanr 

Control
The supply or return fan control signal is incorrect.

Table A2 
The symptom nodes in the proposed DBN

No. Symptom Rule Symptom Type

S1 Comparing Ti and To |Ti − To | > ε1 Balance
S2 Supply fan alert is present As,fan = 1 Additional
S3 Comparing Us, fan, Ps,set and Ps Us,fan < 0% or Us,fan > 100% or (Us,fan < 100% and Ps < Ps,set − ε2) or (Us,fan > 0% and Ps > Ps,set +

ε2)
Operational State

S4 Difference Ps,set and Ps
⃒
⃒Ps − Ps,set

⃒
⃒ > ε3 Operational State

S5 Return fan alert is present Ar,fan = 1 Additional
S6 Comparison Ur, fan, Pr,set and Pr Ur,fan < 0% or Ur,fan > 100% or (Ur,fan < 100% and Pr < Pr,set − ε2) or (Ur,fan > 0% and Pr > Pr,set +

ε2)
Operational State

S7 Difference Pr,set and Pr
⃒
⃒Pr − Pr,set

⃒
⃒ > ε3 Operational State

S8 High or low Ps,set
⃒
⃒Ps,set − 185

⃒
⃒ > ε4 Operational State

S9 High or low Pr,set
⃒
⃒Pr,set − 200

⃒
⃒ > ε4 Operational State

S10 High Δ Ps ΔPs > ε5s Operational State
S11 Supply filter alert present As,filter = 1 Additional
S12 High Δ Pr ΔPr > ε5r Operational State
S13 Return filter alert present Ar,filter = 1 Additional
S14 Low Δ Ps Us,fan ≥ 5 and ΔPs < ε6 Operational State
S15 Low Δ Pr Ur,fan ≥ 5 and ΔPr < ε6 Operational 

State
S16 Comparing Ti and To |To − Ti| > ε7 or Ti = NaN or Ti < ε14 or Ti > ε15 Balance

(continued on next page)
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Table A2 (continued )

No. Symptom Rule Symptom Type

S17 Comparing Tp and Ti when 
HRW off

(
⃒
⃒Tp − Ti

⃒
⃒ > ε7 and Uhrw = 0%) or Tp = NaN or Tp < ε14 or Tp > ε15 Balance

S18 Comparing Ts and Tp when 
HCV closed

(
⃒
⃒Tp − Ts

⃒
⃒ > ε7 and Uhcv = 0% and Uccv = 0%) or Ts = NaN or Ts < ε14 or Ts > ε15 Balance

S19 Tr outlier or missing data Tr = NaN or Tr < ε14 or Tr > ε15 Operational State
S20 Te outlier or missing data Te = NaN or Te < ε14 or Te > ε15 Operational State
S21 Difference Tr and Te with HRW 

off
|Te − Tr| > ε7 and Uhrw = 0% Balance

S22 Comparing Uhcv, Ts and Tset (Uhcv > 0% and Ts > Tset + ε8) or (Uhcv < 100% and Ts < Tset − ε8) or (Uhcv > 0% and Uhrw < 100%) 
or Uhcv < 0% or Uhcv > 100%

Operational State

S23 Difference Ts and Tset |Ts − Tset | > ε9 Operational State
S24 HCP alert present Ahcp = 1 Additional
S25 Low heating coil efficiency (

Ts − Tp
)
> ε10*

Uhcv

100 
and Uhcv > 0% Energy 

Performance
S26 Comparing Tp and Ts with 

HCV closed
Uhcv = 0% and Ts > Tp + ε11 Balance

S27 Comparing Uhrw, Ts and Tset (Uhrw < 100% and Ts < Tset − ε8 and Tr > To) or (Uerw > 0% and Tr < To) or (Uerw > 0% and Ts >

Tset + ε12) or Uerw < 0% or Uerw > 100%
Operational State

S28 Low HRW efficiency Uhrw > 0% and 
Tr − Te

Tr − Ti
< ε13*

Uhrw

100
Energy 
Performance

S29 HRW alert present Ahrw = 1 Additional
S30 Ps outlier or missing data Ps = NaN or ps < ε16 or Ps > ε17 Operational State
S31 Pr outlier or missing data Pr = NaN or Pr < ε16 or Pr > ε17 Operational State
S32 ΔPs outlier or missing data ΔPs = NaN or ΔPs < ε16 or ΔPs > ε17 Operational State
S33 ΔPr outlier or missing data ΔPr = NaN or ΔPr < ε16 or ΔPr > ε17 Operational State
S34 High or low Tset Tset < ε18 or Tset > ε19 Operational State
S35 Comparing Uhcv and Uhrw Uhcv > 0% and Uhrw < 100% Operational State

*NaN means missing value.

Table A3 
The thresholds in the symptoms

Threshold Value Threshold Value

ε1 2 ◦C ε10 5 ◦C
ε2 5 Pa ε11 1 ◦C
ε3 5 Pa ε12 1 ◦C
ε4 1 Pa ε13 0.49
ε5s 239 Pa ε14 − 25 ◦C
ε5r 174 Pa ε15 50 ◦C
ε6 5 Pa ε16 0 Pa
ε7 1 ◦C ε17 500 Pa
ε8 1 ◦C ε18 19 ◦C
ε9 1 ◦C ε19 22 ◦C

Data availability

Data will be made available on request.
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