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Preface

This report describes the findings of my master thesis for the section of Water Resources
Management of the faculty of Civil Engineering and Geosciences of the Delft University of
Technology (DUT). | have executed this research with great pleasure at WL | Ddft
Hydraulics, who facilitated a work space during the total research period. Research was
done on the uncertainties in discharge predictions, induced by weather uncertainties, with
emphasis on finding an approach to map these uncertainties in a fast and effective way. The
study is aresult of a collaboration between the Delft University of Technology, WL | Delft
Hydraulics, the Royal Dutch Meteorological Institute (KNMI) and the Institute for Inland
Water Management and Waste Water Treatment (RIZA).

With respect to the research content, my gratitude goes to my graduation committee and
some other helpful people. From WL | Delft Hydraulics, I'd like to thank Ferdinand
Diermanse for his daily supervision, especially during the start of my research. Also I'd like
to thank Jaap Kwadijk for replacing Ferdinand as my supervisor during his field trips to
remote countries. Albrecht Weerts has helped me a lot in getting to know Deft-FEWS and
how to work with data files. He has been a terrific coach in hydrological modelling. From
TU Delft, I'd like to give my warm thanks to my graduation professor, Huub Savenije, Wim
Luxemburg and Hendrik Havinga, with whom | have had very useful conversations. Finally
my gratitude goes to Eric Sprokkereef and Helmus van de Langemheen of RIZA and Sander
Tijm of KNMI for their support and guidance of my activities. Thanks to them, | was ableto
present my findings to a broad public. I'd also like to thank Sander Tijm for his expertise on
weather models and their performance.

| was also supported in a broader sense than just research content by friends and family.

I’d like to thank Teun and Miriam for peaceful moments, drinking a cup of coffee at the
faculty every now and then. | thank my parents and sisters for their contact and cosiness
during my total study time. Finally, specia thanks goes to my girlfriend Hanneke for her
tremendous support just by listening to what | have been working on and by letting my mind
go to other important things than study.

Hessel C. Winsemius

Delft, November 2004
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Summary

Westher uncertainties can cause a substantial uncertainty in flood predictions in the Rhine
basin. Weather predictions become important when forecast periods extend and the effects
of previously released rainfall and resulting discharges from it, are fading out. In the Rhine
basin, this happens especially when lead times become greater than 2 days. Uncertainties in
hydrological processes are therefore dominant in the first 2 days of discharge predictions in
the Rhine, but after this period, uncertainties caused by weather uncertainties become
important. Endeavours are made to extent the lead times of discharge predictions in the
Rhine to 4 days. This means that weather forecasts and uncertainties in weather forecasts
become important. A forecast tool called FEWS-Rhine was developed by WL | Délft
Hydraulics to compute discharge predictions from a combination of weather predictions and
upstream discharge measurements.

This study contributes to the knowledge about how to handle uncertainties in flood
predictions in the Rhine basin caused by weather uncertainties. The objective of this study is
therefore to find out which westher uncertainties cause substantial variations in the
discharge predictions at Lobith. Since computation of probabilistic weather forecasts in
FEWS-Rhine are time consuming, an effective approach was looked for to take weather
uncertainties into account in flood predictions. The forecasting tool FEWS-Rhine was used
as material to produce forecasts.

A literature review on wesather forecasts and the influence of uncertainty of weather
characteristics on discharge predictions was conducted. It turned out that large scale
verification of weather models is mostly done by comparing monitored accumulated
precipitation numbers with forecasted accumulated precipitation numbers. Small scale
verification requires the reckoning with location errors since the location of precipitation
becomes more important when scale reduces.

Uncertainty in weather predictions is mostly mapped by an Ensemble Prediction System
(EPS) which provides a weather forecast with additional (mostly lower resolution) forecasts
using perturbed initial conditions called ensemble members. Results of the EPS of
ECMWF" were available for study. This EPS produces 50 members, forecasting 10 days
ahead. The performance of precipitation forecasts in EPS is highly dependent on the
precipitation predicted and on the season: a large amount of rain is mostly underestimated,
performance is less in summer than in winter because of the more chaotic behaviour of
summer weather systems.

Especially uncertainties in intensity and location of precipitation are important for discharge
predictions in small catchments. A higher intensity causes higher peaks in the discharge
prediction. Location uncertainties of fronts can influence the intensity because intensity is
dependent on the orography of the area in which it falls. These uncertainties were
investigated for the Rhine basin in this study.

! ECMWF: European Centre for Medium range Weather Forecasts
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In a previous study [Van den Dool, 2004], discharge simulations on the Rhine basin were
performed by making parameterized fronts in a MATLAB tool and reeasing them on
FEWS-Rhine. Especially the influence of the direction and velocity of fronts on discharges
at Lobith was investigated. The outcome was that the influence of direction and velocity of
fronts becomes important when they approach the flood wave direction (thus move
downstream) and celerity. This is caused by the fact that the front coincides with the flood
wave. However, it was also shown that regular fronts never move in downstream direction
and also movein a higher order vel ocity than the wave celerity.

In this research, more simulations with parameterized fronts were performed with emphasis
on variation in precipitation intensity and location of the fronts. The simulations showed that
when fronts follow each other at close distance, the Rhine basin reacts faster and produces
higher peaks. Furthermore a location uncertainty of a front as large as the distance between
two sub-basins can cause precipitation to fall either in one sub-basin or in the other. Finally,
low resolution data can cause rain that is in reality falling very locally in a sub-basin of the
Rhine catchment to fall partly outside the catchment or in another sub-basin.

An EPS forecast of January, 21% 1995 was computed in FEWS-Rhine. After 5 days the EPS
members deviate so much that the precipitation fields are not comparable anymore. The
uncertainty in EPS appears to occur at the scale of a total weather system, which is far
greater than the size of the Rhine basin. Computation of the influence of weather
uncertainties on discharge prediction is therefore not possible by using a small scale
verification procedure on the characteristics of fronts and linking this to the discharge
resulting fromiit.

Instead, a hydrological approach was needed, but requiring a much smaller amount of time
than FEWS-Rhine, to compute discharge uncertainties due to weather uncertainties from
EPS forecasts effectively. A regression equation including solely preceding daily
accumulated precipitation numbers proved to contain too little information to give
estimations of discharge numbers. Only the shape of the hydrograph could be recognized.
More information could be included in a simple hydrological model. The following
simplifications were made in comparison with FEWS-Rhine:

The mode gives daily discharge values instead of hourly.

The SOBEK River routing procedure was replaced by a regression equation including
discharges in sub-basins upstream from Lobith at a preceding time equal to an
approximation of thetravel time of waves from the upstream point to L obith.

The discharges from the sub-basins were produced by simple conceptual rainfall runoff
models based on the HYMOD model structure. A snow routine was included.

The assumption was made that there is a certain amount of auto-correlation between
discharges of neighbouring sub-basins because of correlations between hydrological
characteristics and meteorology. Therefore, only a few sub-basins were iteratively
included in the regression equation: the Lippe, Mosel and Neckar. The sub-basins
chosen are well spread over the Rhine basin which supports that they represent a good
sampling of the Rhine catchment.

iv WL[] [Pelft[Hydraulics,[Pelft[University[dfTechnology,[KNMI,[RIZA
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The EPS quick scan tool as described above, was tested on forecasts of the flood event of
January 1995. The tool produced results that can be plotted in an empirical distribution
function indicating which members exceed discharge thresholds corresponding to warning
water levels used by RIZA'. The amount of forecasts exceeding a threshold represent the
probahility of occurrence of an event above that level according to the EPS forecast.

The (lack of) predictability of EPS precipitation is a large shortcoming of the forecasts. In a
test case of 11 EPS forecasts, a rising precipitation intensity is accompanied by
underestimations of EPS. Lowering precipitation intensities are overestimated. Some form
of calibration of the precipitation time series is advisable.

It is recommended that the quality of the forecasts of the EPS quick scan tool is further
assessed by computing more EPS forecasts and compare them to results from other forecast
applications such as the daily based FEWS-Rhine. Quality could be enhanced for instance
by including more sub-basins in regression or by including more flood periods in the
derivation of the regression equation. The tool could be extended with the possibility to
compute EPS forecasts with higher resolution, which can have a better quality than low
resolution data.

Other interesting research topics would be to investigate if the modelling concept of the EPS
quick scan todl is applicable in other situations, for instance in other catchments that differ
for example in size, meteorological governing mechanisms and hydrological characteristics,
or for dry periods.

Some general recommendations would be to investigate what uncertainties dominate in
discharge predictions, hydrological or meteorological uncertainties, taking into account the
increase of the latter in time. Finally, it is recommended to investigate if the hydrological
uncertainty due to the simple deriving of potential evaporation numbers can be diminished
by deriving potential evaporation numbers from atmospheric measurements.

! Institute for Inland Water Management and Waste Water Treatment
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I Introduction

I.1 Preview

The floods of 1993 and 1995 made us realize that the design discharge of the Rhine is
possibly higher than was previously assumed and perhaps will increase further as aresult of
climate change [Silva et a., 2001]. The consequence would be that the Netherlands are not
enough protected against these events and floods would cause enormous damage and misery
in the areas close to the Rhine banks. The “Room for the Rhine Branches’ project,
performed by a commission instated by the Dutch authorities, presented and deliberated
different possibilities for protective measures. These measures can be classified in measures
that enlarge discharge capacity or measures that create temporary storage. The events of
1993 and 1995 also proved that an adequate prediction and warning system for these rivers
is necessary, especially for more than 2 days ahead. The planned retention reservairs for
example, will only function when the peak of the flood is retained. This requires an accurate
prediction of the timing of this peak. In case protective measures are still inadequate, both
dwellings and entrepreneurs can benefit from a warning system by taking necessary
emergency measures before the flood arrives in our country, in order to prevent damage.
Since the floods of 1993 and 1995, Dutch authorities have put efforts in the enhancement of
flood predicting models and extension of their lead time.

The discharges predicted by the warning system contain uncertainties, caused by
uncertainties in the models parameters, initial conditions and meteorological input. This
study focuses on the latter uncertainties, which increase especially when forecast lead times
are increasing. The study can contribute to the knowledge of the accuracy of flood
predictions. The input consists of weather characteristics, especially precipitation. Van den
Dool (2004) looked into the influence of front dynamics (direction and velocity) on
discharges at Lobith in the Rhine, using synthetic precipitation events (for a summary of his
thesis, see section 1.5). This study is a follow up of the study conducted by van den Dool
(2004) and will concentrate on actual weather forecasts instead of synthetic events.

1.2  Flood[prediction

Until 1999 water level forecasts for the gauging station Lobith were made with a simple
statistical model based on multiple linear regression technique [Promes, PM., 1987; Parmet,
B.W.A.H. and Sprokkereef, E., 1997]. The forecasts for 2 days ahead had a high accuracy.
Unfortunately forecasts for larger lead times were not accurate enough. After the floods of
1993 and 1995 a new forecasting tool was developed: FIoRIJN, which was capable of
forecasting discharges at Lobith accurately with lead times up to 3 days.

In close collaboration with RIZA, WL | Delft Hydraulics extended the lead time of 3 days
using a new flood prediction tool, Delft FEWS', with which theoretically any river basin can
be modeled. RIZA, the Institute for Inland Water Management and Waste Water Treatment
has contracted WL | Delft Hydraulics to make a ‘FEWS' for the Rhine. This was done to

! FEWS Flood Early Warning System
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make accurate predictions at Lobith with a forecast period of at least 4 days possible in the
year 2005, which means it was in development during this study. In the end, the result
should be an operational and automatically running model that gives continuous updates on
discharges at Lobith. The fact that this system is in development proves that the Dutch
authorities are taking flood prediction seriously. There are also tender plansfor developing a
FEWS for the Meuse basin.

The increasing lead times are accompanied by an increasing influence of uncertainties in the
weather forecasts that provide input for flood forecasting models. Therefore, flood
predictions in the Rhine using FEWS-Rhine could be considerably enhanced by taking into
account uncertainties in weather forecasts. Instead of giving one deterministic number on
which decisions must be based, a forecast, supported by its uncertainty can make pre-
warning and a much more distinct decision making possible.

1.3 Weather[prediction

The previous sections showed that effort is put into the accurate prediction of floods in the
Rhine. A moddl isin development at WL | Delft Hydraulics to reach this goal. The accuracy
of the predictions that are performed using this model is dependent on many factors. Some
of them are;

the correctness of the rdevant parameters

the accuracy of boundary conditions

the accuracy of initial conditions

the length of the forecast period

the accuracy of theinput data

This study focuses on the last factor. For short forecast periods, discharges upstream from
the gauging station of interest can be used to predict discharges at Lobith using for example
a regression equation. However, for larger forecasting periods, a flood prediction model
must also be fed with a weather prediction of the same period for which flood predictions
are made. The weather characteristics that are of importance for flood prediction are
precipitation and, in relation with this, temperature. The former has a primary relation to
water in the Rhine, the latter has a secondary order effect, indicating whether precipitation
fallsin the form of snow or rain and whether or not snow will melt and come to runoff.

Wesather predictions are done using physically based models which forecast interrelated
weather parameters (see aso section 3.2). The accuracy of weather predictions is mostly
clarified in the form of uncertainties which frequently is shown on weather services on
television or internet. In general, uncertainty grows with increasing forecast lead time.

2 WL[] [Pelft[Hydraulics,[Pelft[University[dfTechnology,[KNMI,[RIZA
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Figure1.1:  Example of uncertainty forecasting: an operational forecast in combination with other forecasts
with a certain probability, which create a bandwidth

The question arises which uncertainties in weather prediction have effect on the discharge
predictions and to what extent. While answering this question one must take into account,
that ‘precipitation’ as such does not encompass an uncertainty, but especially the character
of precipitation does. Uncertainties can for example be found in the form wherein
precipitation falls (snow or rain) the location of release (which sub-basin), the regional
distribution or spread, the intensity, the succession of fronts and showers, etc. When it is
clear which aspects of precipitation are of importance for flood predictions, effort can be put
into the improvement of prediction of these characteristics.

1.4 Flood[generation

The influence of uncertainties in weather characteristics on river discharges is highly
dependent on the river basin characteristics. For small catchments of only a couple of square
kilometres, an uncertainty in location of release of precipitation can be the difference
between rain falling into or outside the catchment for example. Also a fierce thunderstorm
on small scale will have a large effect on small river basins when it hits the basin directly.
Compared to the scale of the river basin and the discharge capacity of the river, the amount
of reeased precipitation will be large for such a basin, while for a large basin such as the
Rhine, this amount is relatively small. It is therefore highly dependent on the scale of the
catchment, what sort of event can cause a flood.

The river basin that is researched in this study is the Rhine basin. With its size of
approximately 185.000 ki, especially large scale frontal precipitation is relevant for floods
to occur. Small storms will at the most only influence its local sub-basins. History has
proven that succession of frontal precipitation events, thus resulting in a long-duration
event, contributes much to the occurrence of extreme floods in the Rhine. The flood of 1995
was an example of this. A long rainfall period caused the basin to saturate. When saturation
was reached, the reaction of the basin on excess rainfall was very fierce which caused the
flood. A more detailed review of the Rhine basin and its characteristicsis given in section 2.

WL[] [Pelft[Hydraulics,[Pelft[University[dfTechnology,[KNMI,[RIZA 3
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1.5 Previous[ftesearch

This research is a follow up of a graduation research performed by van den Dool (2004).
The goa of his research was to improve the understanding of the influence of weather
characteristics on discharge predictions in the river Rhine. Especialy the direction and
velocity of movement of frontal precipitation over the catchment were researched for both
hypothetical (fronts from all directions) and realistic scenarios (fronts in general from
western directions).

Literature shows that the effect of velocity and direction variations of rainfall patterns over a
conceptual catchment has the most effect when it approaches wave celerity and direction.
This phenomenon was studied for the Rhine catchment using a flood forecast tool, FEWS-
Rhine It was done by creating synthetic rainfall events using a MATLAB-tool, and
releasing them on the Rhine catchment in a wet hydrologic condition. Two types of
simulations were performed:

Simulations using hypothetical fronts that can have any veocity or direction

Simulations using regular fronts with realistic velocities and directions

Results prove that also for the Rhine catchment, velocity and direction of fronts passing the
catchment are most important when they approach the wave celerity and direction which
occurs when fronts move in downstream direction. In this way, the front causes coincidence
of flood peaks of tributaries with flood peaks of the Rhine itself, which results in a
substantial difference in the discharge peak. Precipitation in the form of snow diminishes
this effect by extra delay which smoothes the hydrograph.

From theresults of the simulations with regular fronts it was concluded that thisinfluenceis
far lessin reality since fronts that produce substantial discharge in the river Rhine until now
have never moved in downstream direction and always have moved with velocities that are
an order of magnitude larger than the wave celerity. The floods in the Elbe catchment
however, prove that it is not impossible that such precipitation events occur in European
river basins.

1.6 Objective

Dutch authorities become more and more interested in probabilistic flood forecasts instead
of deterministic forecasts due to the extension of lead times. One of the uncertainties in
flood forecasting is the weather forecast used as input for flood forecasting. The previous
study [van den Dool, 2004] was focused on effects of variation in precipitation
characteristics, especially movement, leaving out of consideration the uncertainty
surrounding true precipitation forecasts. Probabilistic flood forecasts can be a gain for
decision making concerning flood risks, since it doesn’t provide a decision maker with one
number but with a series of numbers forming a probability of occurrence of floods.
Therefore, this thesis focuses on uncertainties in weather forecasts and their effect on flood
forecasts. This thesisaims at two objectives:

to find out how, which, and to what extent uncertainties in weather forecasts affect the

actual flood discharge predictions. Results can indicate, which forecasted weather

parameters are interesting to enhance according to flood forecasting models.

since computation time of flood forecasts using probabilistic weather forecasts is large:

to find an approach to reate weather uncertainties to flood predictions effectively.

WL[] [Pelft[Hydraulics,[Pelft[University[dfTechnology,[KNMI,[RIZA
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The main activities to achieve these goals are;
An extension of the sensitivity analysis on precipitation characteristics by van den Dool
(2004), to gain insight in the influence and relevance of these characteristics on flood
predictions in the Rhine. It shows how and which characteristics influence the results of
flood forecasts.
An uncertainty assessment. To what extent the relevant uncertainties are present in
weather predictionsis researched
The development of an approach to include these uncertainties effectively in flood
predictions in order to quantify their effect.

The study is founded on a collaboration between Dutch parties: the Institute for Inland
Water Management and Waste Water Treatment (RIZA), WL | Delft Hydraulics, the Royal
Dutch Meteorological Institute (KNMI) and Delft, University of Technology (DUT), to add
to the insight in the rdiability of discharge predictions and the uncertainties that are
involved. Therefore the results are focused on discharge predictions at Lobith near the
Dutch-German border.

1.7 Approach

A literature review is conducted in order to assess what research already has been done on
the sensitivity of flood predictions concerning certain weather characteristics. It can point
out what differences in discharges can be expected from different types of precipitation
events. The performance problems that weather models usually have and the ways in which
these performance problems are assessed is also studied.

Wesather model forecasts are needed for this study. Two models were available for use: the
model of the European Centre for M edium range Weather forecasts (ECMWF) and the High
Resolution Limited Area Model (HIRLAM of KNMI). The characteristics of these models
arereviewed to obtain knowledge about the possible use of the modelsin this study.

Asafollow up of the study of van den Dool (2004), a sensitivity analysis on a small number
of weather characteristics is performed. Characteristics that influence discharge are for
instance precipitation intensity, the location where precipitation falls, the duration of a
precipitation event and temperature (snow or rain). The emphasis in this research is on
precipitation intensity, duration and location of fronts. The analysis is done using artificial
precipitation events consisting of oval shaped fronts in which characteristics can be changed
one by one The artificial rainfall events are created using a MATLAB tool that was
developed during the study of van den Dool (2004). The flood forecast tool used is FEWS-
Rhine, developed by WL | Ddft Hydraulics.

Theresults of the sensitivity analysis points out what uncertainties are of primary relevance
for flood forecasting. After the sensitivity analysis the focus will shift from synthetic
forecasts to real forecasts. The spread in probabilities of occurrence of serious events for the
Rhine catchment during the 1995 event according to real forecasts will be assessed. This
assessment points out which characteristics cause the major uncertainty in computations of
EPS forecasts in FEWS-Rhine and what the possible approaches might be to relate these
uncertainties to flood predictions effectively.
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Finally, efforts are put into the set up of a quick scan tool to give a quick indication of the
spread in discharge forecasts caused by uncertainties in westher forecasts. This tool can be
used to give afast indication of the spread of discharge numbers with large forecast periods.

In this phase of research, the only uncertainty considered is the non-linearity of weather
systems. This means uncertainties in the construction and parameters of both the
meteorological model and the hydrological models are not considered here. The quick scan
tool istested on probabilistic forecasts of the flood event in January 1995.

1.8 Outline

Project description and theoretical background

- Chapter 1 The introduction describes the background of flood prediction and
uncertainties in weather forecasts and project objectives and approach.
Chapter 2 Describes the Rhine basin focusing on the hydrological and meteorol ogical
characteristics that dominate the discharge regime of the Rhine and its tributaries.
Chapter 3 The literature review describes meteorological forecast models, their
performance and ways to verify their results and ensemble forecasting. Also some
articles are reviewed that describe the influence of weather characteristics variations on
conceptual catchments.

Sensitivity analysis and uncertainty assessment
Chapter 4 In the sensitivity analysis, smulations are performed using parameterized
frontal precipitation events. The sensitivity of FEWS-Rhine on certain variations in the
characteristics of these events is tested.
Chapter 5 The uncertainty assessment looks for the identifiability of uncertainties in
actual wesather forecasts. A rough indication of the quantity of the uncertainties from the
sensitivity analysis is seeked in ensemble forecasts.

Modelllng approach for uncertainty mapping
Chapter 6 Here, the description and redlisation of an ensemble quick scan tool is
given, which can be used to find quite accurate daily averaged discharge numbers at
Lobith in a much quicker way.
Chapter 7 A possible application of the quick scan tool is described. Some example
computations are made and assessed.

Discussion, conclusions and recommendations
Chapter 8 Theresults of this study are discussed.
Chapter 9 The final conclusions and recommendations for further study and general
recommendations on flood uncertainty prediction are presented.
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2 Rhine[basin

2.1 Introduction

The Rhine basin is a large and economic important watershed in Europe, covering
approximately 185.000 kn in parts of Italy, Switzerland, Austria, Liechtenstein, Germany,
France, Luxembourg, Belgium and the Netherlands. It springs from the Swiss Alps and
flows out into the North Sea at Hoek van Holland, after 1320 km. The Rhine owns many
tributaries like the Mosel and the Main, each having its own characteristics that will
influence the behaviour of the rainfall-runoff and transporting processes. Reevant
characteristics are length of the river, sope, vegetation, soil type and thickness, etc. Areas
with relatively high elevations (e.g. Vosges area, Black forest, the Alps) receive larger
amounts of precipitation because of orographic lifting effects than lower areas (e.g. the
Netherlands). In winter, precipitation in these areas will often be dominated by snowfall.

100 km
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Figure 2.1: The Rhine basin withitstributaries
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The river regime of the Rhine is
being changed through time because
of regulation activities such as
construction of dikes, canals,
expansion of beds, etc. Examples are
breeding spots and the numerous
amounts of wers that have been
constructed in the river and its
tributaries for regulation purposes.
The Rhine also has an enormous
economic purpose. It is one of the
most navigated rivers in the world.
Many enterprises have settled along
its banks in order to have a means of
trans-European transport next door.
The population density is very high.
This makes the threat for high
economic losses in case floods occur
large.
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2.2 Hydraulicland[ieteorological[ftegimes

Close to its origin, the Rhine's discharge is highly dependent on glacial- and snowmelt
[Binsbergen et al., 1980], meaning that the Rhine gradually changes from a snow melt fed
river into a rainfall fed river from upstream to downstream. Therefore, during normal
circumstances, the average flow of its upstream tributaries will increase during spring and
summer (because of the melting of snow and ice) and will decrease when temperature is
lowering in fall and winter whilethe tributaries more downstream will have ardatively high
average flow during winter when precipitation occurs frequently and soil often has a high
degree of saturation. In the case of aflood at Lobith, discharge is from experience caused by
a combination of different mechanisms. Floods usually occur in winter, mostly in December,
January and February and is often caused by the following scenario [e.g. Binsbergen et al.,
1980; Diermanse &t al., 2001]:

Precipitation of long duration occurs, causing soil saturation.

A frost period with precipitation in the form of snow follows.

A rising temperature causes snowmelt. At the same time heavy precipitation occurs.

This scenario eventually causes a combination of delayed runoff from snowmelt and
simultaneously direct runoff from precipitation. Because the soil is still frozen to a certain
depth, the melting snow and rain will runoff quickly. The precipitation mechanism that
causes the events is mostly frontal precipitation consisting of a succession of fronts which is
the governing precipitation mechanism in winter. Frontal precipitation is dominant for
floods because it can cover a large part of the basin and often cause a long duration event.
Convective storms that mostly occur in summer can be fierce but mostly occur very locally
and have a short duration, which makes their effect noticeable only onlocal scale.

Research on climate change indicates that rainfall events will diminish in frequency but will
be fiercer. Thefloods in 1993 and 1995 in the M euse and Rhine basins seem to be results of
this.

2.3 Tributaries

The magnitude of a flood in the Rhine is not only caused by combinations of weather and
hydrologic circumstances. It is also caused by the way its tributaries act. The tributaries that
contribute the most to the peak discharge are the Neckar, Main and Maosel. Flood events in
the Rhine are strongly related to flood events in the Mosel which proves its importance.
Hydrographs of flood events show that the discharge peaks of the Neckar and Maosdl
tributaries generally coincide at Koblenz [Diermanse et a., 2001]. The reaction of the Main
is somewhat slower which mostly causes a rise in the recession curve of the hydrograph at
Lobith but not in the peak discharge This is caused by differences in concentration times
between sub-basins. The concentration time is the average time needed for a water drop to
runoff to the outflow point of the basin. A very outstretched basin such as the Main has a
longer concentration time than a more compact basin such as the Neckar. Hill slopes and
soil characteristics also influence this concentration time [KHR, 1977].
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3 Literature[teview

3.1 Introduction

The literature review concentrates on weather models and their performance, the effect of
weather characteristics on the runoff regime of catchments, and some ways in which errors
and uncertainties in weather predictions can be mapped.

First, section 3.2 gives a rough description of the two available meteorological models at
KNMI, de Bilt. In section 3.3, a number of studies is reviewed in order to find out what
weather characteristics seem to be relevant for accurate discharge predictions. Findly, in
section 3.4, a number of articles is reviewed to show what verification methods are used to
study errors in weather models and what methods can be used to map uncertainty in weather
predictions.

3.2 Meteorological[forecast[inodels

3.2. ECMWEF

ECMWF Data Coverage (All obs) -SYNOP/SHIP
12/MAY/2004; 00 UTC
Total number of obs = 24390

1m0 12000 socw E0m a0mw o a0 s0vE sae e 1507

0

Figure3.1: = ECMWF coverage map with its observation points (source: www.ECMWF.int)

The ECMWF modéd is a numerical model, set up by the European Centre for Medium-range
Wesather Forecasts (ECMWF) which creates weather forecasts on global scale [eg.
Simmons et al. 1989, Buizza e al., 1999, Mullen & a., 2000]. The model is based on
physical relationships between the different atmospheric characteristics like air moist,
temperature and air pressure. It computes weather from a present observed state into
predictions up to 10 days ahead on a grid size of 40 x 40 km?. ‘Medium-range means that
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forecasts are made for relatively large prediction times. Short range models are mostly
focused on predicting tomorrow’s weather.

The ECMWF model is supported by an Ensemble Prediction System (EPS) that gives
alternative predictions using perturbed initial conditions on a lower grid size of 80 x 80 km?
(seealso section 3.4.2).

Thefirst operational forecasts with the ECMWF model were made in June 1979. Since then,
improvements have been made to the model like the implementation of EPS, increase of
horizontal and vertical resolution, improvements in the analysis and enlargement of the
amount of ensemble members. The consequences of these changes on the performance of
the model have been studied [e.g. Buizza et a., 1999]. The performance of the models
precipitation predictions is highly dependent on the accumulated precipitation and the
season. For precipitation amounts of 5 to 10 mm accumulated over 12 h, the predictions are
skilful up to 4 days in winter and 3 days in summer. Smaller amounts have a higher skill.
The improvement in performance for precipitation was ascribed to the improved model
resolution due to a smaller grid size and a larger number of vertical layers.

A more complete description of the ECMWF model can be found in Simmons et a. (1989).

3.2.2 HIRLAM'

e " : \nn || HIRLAM stands for High Resolution Limited
. G”q«\-fp°"5?;«t? HIRLAN/I - || Area Modé. It is a numerical model which
: % rdates the physical parameters of the
atmosphere using approximately the same
relations as ECMWF does, but with a higher
resolution. It was created with the goal to
provide short term weather forecasts. The
HIRLAM project was started in 1985. Since
then HIRLAM was updated and refined from
time to time. At present it is used by KNMI to
make operational numerical weather forecasts
up to 48 hours in advance. The output is
directly used for example in presentations of
forecasts on radio or teevision, but also for
automatic data supply towards specific interest
groups.

L The model was developed in order to make
~— = | highly detailed forecasts possible. The demand
for speed and frequency of delivering forecasts
of resolutions this high makes it difficult to run
Figure3.2:  Coverage map of HIRLAM the model over the whole of earth. Instead a
(source: http:/www. KNML.nl) cutting was chosen (see Figure 3.2) that roughly

covers Europe and the Northern-Atlantic Ocean

with grid cells of approximately 22 x 22 km? (0.2 x 0.2 deg.). Inside this operational model,
an 11 x 11 km? model is nested providing forecasts for Western Europe 24 hours in advance.
The coordinate system used is a rotated lat-long grid, which means that the coverage areais

! Source: hirlam.knmi.nl and www.knmi.nl
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pretended to be approximately above the equator to prevent grid sizes getting very small as
the area stretches to the north (this can cause numerical instability). Lateral boundary
conditions are provided from the analyses of the worldwide scale model from ECMWEF. The
model is continuously updated using observed weather data.

3.2.3 Performance[éf[ineteorologicalinodels

Studies on the forecast performance of numerical meteorological models have proven that
the performance depends on several factors. Precipitation was proven to be better
predictable during winter than during summer because of less prevalent convection and
more large-scale precipitation [Mullen & Buizza, 2000]. Also, the ensemble predictions give
good results on precipitation forecasts over the total 10 days forecast period when
accumulated precipitation frontal rain is not more than 1 mm d*. As accumulated
precipitation increases, the skill lowers for larger forecasting periods. Mostly, precipitation
intensity peaks are underestimated by EPS. This means that especially forecasts for extreme
events have alower skill [Mullen & Buizza, 2000].

3.3 Relevance[] off] precipitation[] characteristics[] in[] flood
prediction

3.3.1 Storm[vVelocity[and[direction

Watts and Calver (1991) proved that on a conceptual catchment of 100 km? the influence of
the speed of a storm is largest when velocity equals the wave celerity and decreases when
storm speeds arerising. This is because the release of the storm moves much faster over the
catchment than the concentration time of the tributaries. Because of the small system time of
the storm, it is as if rainfall is falling on one lumped area. Van den Dool (2004)
demonstrated the effect of precipitation front velocity and direction on high discharges in
the Rhine, which isin order of magnitude much larger than 100 km? The outcome was that
fronts, comparable in size and intensity and moving in a higher order velocity than the wave
celerity, induced equal discharges, no matter their velocity or direction. It also proved that
when the velocity and direction of a storm is approaching the flood wave's celerity and
direction the effect of velocity and direction on discharge will increase.

3.3.2 Precipitation[intensity

Watts and Calver (1991) showed that raising precipitation intensity in a conceptual
rectangular catchment of 100 km? does not significantly alter the time to peak. The peak
discharge shows an exponential rise when duration is kept the same with higher intensity
(which means that the total volume rises). When total volume of rainfall was kept the same,
thus decreasing duration and increasing intensity, the peak discharge was rising showing a
more sudden reaction with a thin but high and steep limb. Thetime to peak did not alter.

The former statements suggest that a front with a long duration can also have a high
intensity. In reality however, intensity and duration of a front show a negative correlation
which mostly is expressed using intensity frequency duration curves [Bloschl et al., 1996,
1997]. This means that low intensity fronts normally have a longer duration (a larger spatial
spread) than high intensity fronts and vice versa. Floods in the Rhine catchment are actually
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caused by a succession of fronts, which means that the effect of the intensity-duration
correlation will be hard to notice when studying Rhine flood events but will be more
important when looking at catchments of a smaller scale.

Van den Dool (2004) varied intensity on an artificial oval shaped front that had the same
spread and moved with the same velocity in each simulation. The front was passed over the
catchment from 3 realistic directions. The event of January 1995 was taken as a reference
for thetotal volume. In redlity, this event consisted of a series of fronts (instead of one large
front) passing the Rhine catchment from west to east with a velocity that was significantly
higher than the wave celerity. Therefore, the simplification to make out of many fronts one
large front is questionable. The results showed that the relation between accumulated
precipitation and discharge at Lobith were almost proportional.

3.3.3 Position[éf[fronts[in[felation[to[¢atchment

When the forecast of the position of a storm over a catchment like the Rhineis incorrect for
instance because a storm passes the catchment in another direction and/or position than
predicted, other areas, that can even belong to other tributary catchments might be hit by the
storm than predicted. Differences in the position of fronts above the Rhine catchment can
influence the hydrograph mainly because of two reasons.

The first reason is that differences in alocation of fronts can cause differences in
precipitation depths. In the Rhine catchment the Mosel contributes generally most to the
flood wave at Lobith [Diermanse et al. 2001]. However, precipitation amounts are largest in
the basins of the Neckar (Black Forest), Upper Mosel (Vosges) and the upper Rhine and
Aare (Alps) in the south and of the Ruhr and Sieg (Sauerland) in the north. The main cause
of the higher amounts of precipitation is that the areas mentioned are located on a relatively
high altitude which causes orographic lifting effects. A change of location of fronts from e.g.
the black forest to an area on higher altitude could therefore result in higher precipitation
numbers and thus in higher runoff.

The second reason for differences in runoff behaviour is that hydrological characteristics of
sub-basins such as slope, soil characteristics and drainage area can differ significantly per
tributary basin [e.g. Savenije et a. 2000].

3.4 Verification[and[Ensemble[prediction

To assess the uncertainty in results of meteorological models, different methods are used.
The performance of models is assessed by verification techniques and uncertainty is
illustrated by EPS. Three verification procedures are mentioned in section 3.4.1. The use of
EPSis described in section 3.4.2.

3.4.1 Verification

To test the performance of a meteorological model, verification analyses are performed.
Verification means that modelled events are compared with observed events which gives an
indication of the skill of the modd’s prediction. This skill can be assessed for different
conditions (e.g. difference between summer/winter) and for different weather characteristics
(eg. precipitation, temperature, etc.). Errors are mostly denoted in statistical scores like
bias, mean absolute error and root mean square error [Wilks, 1995]. Three methods for
verification of precipitation are described below:
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Signal detection theory:

A simple verification technique for deterministic precipitation forecasts that provides a
statistical skill on the performance of the weather model is *signal detection theory’: From a
series of precipitation forecasts and the corresponding observed values within a certain area,
a so-called contingency table of “yes/no” forecasts and “yes/no” events can be constructed
asfollows [Buizza et al., 1998].

Table 3.1: Form of a contingency table

yes forecast no forecast
yes observed hit miss
no observed false alarm correct, no event

The hit rate is defined as the ratio of the number of correct “yes” forecasts over the total
number of “yes’ forecasts. The other part of the “yes’ forecasts that were in fact wrong is
called “false alarm rate’. Misses occur when an event took place but was not forecasted.
Thus the miss rate is the number of non-forecasted observed events divided by the number
of non-forecasted events. The second part of non-forecasted events is those who were
indeed not observed and are thus correctly forecasted. A situation is called an event when
the total amount of precipitation over a certain time span in a certain area exceeds a pre-
determined threshold value. For probabilistic forecasts such as EPS, this table can be used to
count the number of hits, misses, etc. from EPS members. It can also be directly applied on
the flood forecasts, eg. by calling peak discharges due to ensemble members above a certain
threshold a ‘hit’ and below a‘miss'.

Verification on accumulated precipitation

Precipitation forecasts of HIRLAM and ECMWEF are verified using numbers of 24 hours of
accumulated precipitation. Using this approach, all characteristics of precipitation (intensity,
location, spread) are united into one factor, the accumulated precipitation. This approach is
justified when looking at precipitation amounts over a reatively large area. When for
example an area, the size of a sub-basin in the Rhine catchment is considered, a bad skill
according to this verification technique can indicate that rainfall was misallocated by the
weather model, more than that the intensity was misjudged, which makes this technique
somewhat questionable when using it for discharge uncertainties due to weather
uncertainties in sub-basins of the Rhine.
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Figure3.3: Example of a CRA. Left is the forecasted rain system, right shows the gauged and interpolated
rain system. The heavy line shows the boundary of the original CRA, the dashed line shows the
CRA including the shift needed to approach the observed front.

Contiguous Rain Areas

Ancther method is to verify using “Contiguous Rain Areas’ (CRAS) [Ebert & McBride,
2000; Nachamkin, 2003], an object-oriented approach. A CRA is an area in which both a
forecasted and observed rainfall front is isolated within a specific isohyet. A horizontal
translation on the forecasted rain is done in order to let the forecasted rain ‘fit’ with the
observed rain as much as possible. The displacement needed indicates how large the
location error of this specific front was. Subsequently, the intensity error on the location
corrected forecast can be found. Thus, using this method the error can be split up in errors
dueto location, accumulated precipitation and pattern. This more detailed approach prevents
that misallocated rainfall areas are penalized severely. Especially when verifying on smaller
scale, this method is more appropriate than using accumulated precipitation numbers.

If one wantsto compare observed values with gridded modelled values, interpolation should
be applied. A way of creating modelled and point observed precipitation fields that are
comparable is described by Cherubini et a. (2001): modelled fields can be interpolated to
station locations or the other way around.

3.4.2 Ensemble[prediction[systems

Ensemble prediction systems (EPS) are used to support a central forecast with additional
forecasts, generated with the same model but with slightly perturbed initial conditions. Only
initial conditions for which the model is sensitive are changed. By changing one parameter
in the initial conditions dlightly, in the first time steps, the perturbation will not be very
noticeable, but after a considerable number of time steps, a totally different scenario may be
computed, when the perturbations are applied in an area sensitive for strong development.

EPS is used with the ECMWF model, supporting forecasts with 50 ensemble members with
an 80x80 km® grid size. The forecast lead time is 10 days with 6 hour intervals.
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The ensemble forecasts that give a comparable development of the weather are clustered
based on pressure differences. Mostly the skill of the EPS forecasts is assessed using an
accumulated rainfall verification like mentioned in section 3.4.1. The applicability of EPSin
flood forecasting is that it can be used to give a probability distribution function of forecast
states at different moments in time which can be used in flood risk assessments (e.g. to
quantify the probability that a maximum acceptable loss will occur) [Weerts et al. 2003].
This concept can already be applied in FEWS-Rhine. In this case, every EPS-forecast
should be provided with a ‘probability of occurrence’ which for ECMWEF is mostly set on
0,02.

Some remarks must be made about EPS:

The performance of EPS is highly dependent on the type of occurring events that have to be
modelled. There are large differences between predicting events in winter or in summer for
instance. Buizza et al. (1998) investigated the performance differences during summer and
winter by verification comparing accumulated rainfall patterns of model runs and
observations. The outcome was that there is a large seasonal variability in the forecast skill
[see also Mullen and Buizza, 2000]. In winter the EPS forecasts performed better because
mostly large scale precipitation is formed, which is relatively well predictable. In summer,
most precipitation consists of convective loca showers which makes precipitation a lot
more difficult to predict in summer than in winter.

Furthermore, the skill is also dependent on the precipitation threshold (the average rainfall
volume predicted). As threshold increases, the forecast skill decreases. Forecasts of 50 mm
accumulated rainfall are not even skilful at +1 day for either season [Mullen and Buizza,
2000]. The EPS forecasts cannot be used to find a spread in individual characteristics of the
probabilistic forecast, because EPS forecasts are hard to compare with each other because
they all represent different weather forecasts (e.g. see Figure 3.4)

The magnitude of the uncertainty bandwidth in EPS grows in time but is also larger when
thereisalot of activity in the atmosphere, for example when thunderstorms are expected.

ECMWF T319 Forecast Daily Chuster ; 2004041812 +120
van : Zondag 18 April 2004 12 UTC 0458 9121516 19 20 22 23
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Figure3.4: ECMWF centra forecast (left) and 25 clustered EPS members (right), showing air pressure on
500 hPa. EPS predictions are usualy clustered on basis of air pressure. Look-a-like members
form acluster.
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3.5 Conclusions

Uncertainty in the velocity and direction of storms that cause floods in the Rhine catchment
do not have a significant influence on the uncertainty in discharge because their veocity
never approaches the wave celerity and their overall moving direction is west-east while the
direction of aflood wave is more or less south-north.

Uncertainty in intensity is the most important factor to influence the shape of the
hydrograph. The timing of peaksis hardly influenced by this.

In the Rhine catchment, the influence of raising precipitation intensity while keeping all
other characteristics equal is almost proportional to the discharge at L obith.

The position of fronts above the Rhine catchment determines which sub-basin is effected by

precipitation. This can influence the dischargein two ways:

1. A front can cause more precipitation in one catchment than in the other e.g. because of
orographic differences.

2. Thereare hydrological differences between sub-basins which make the sub-basins react
differently on precipitation.

The value of verification methods used to verify the performance of precipitation forecasts,
is dependent on the scale on which is verified. Small scale verification (e.g. Rhine sub-basin
level) on soldy accumulated precipitation can give very large errors when caused by
displacement errors. A more detailed approach considering these displacement errors (CRA
method) can be more useful on Rhine sub-basin level. Signal detection theory can provide
the correctness of forecasts according to a threshold value. This can also be applied in flood
prediction by calling a forecast that generates a peak discharge above a certain threshold a
‘hit" and below a‘miss'.

Assuming that the EPS system provides reliable probability forecasts, it proves that weather
uncertainties can be substantial. EPS can be used to support discharge predictions with a
probabilistic distribution of forecast states. An assumption must then be made about the
probability of occurring of an ensemble member. The performance limitations of EPS
should be considered when this is applied. The performance of EPS is for example highly
dependent on the season and on the precipitation intensity. Winter scores better than summer
and high precipitation intensities are mostly underestimated.

The magnitude of the uncertainty produced by EPS is dependent on:
Theforecast period: e.g. forecasting 10 days ahead gives more uncertainty than one day.
The activity in the atmosphere: much activity (for instance during a summer thunder
storm) means that weather can be predicted less accurate. This causes more uncertainty.
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4  Sensitivity[] analysis[] on[] precipitation
characteristics

4.1 Introduction

Since discharge predictions can be sensitive for location and intensity errors of precipitation
according to literature, these sensitivities were tested on the Rhine catchment using the flood
forecasting model FEWS-Rhine. The sensitivity analysis is a contribution to the research of
van den Dool (2004). Endeavours were made to make to a certain extent realistic synthetic
rain events. This was done by letting the event consist of several fronts, make the duration
time considerable and move the fronts over the catchment with a realistic direction and
velocity. The analyses were done using artificially parameterized events that represent a
realistic winter situation: the velocity of fronts was taken constant on 20 m/s. Large oval
shaped frontal precipitation systems with a constant intensity were created. The fronts all
came from the west. For the sake of simplicity, the same maximum duration per front was
used asin van den Dool (2004).

Section 4.2 describes the experiment approach used. Most of the experiment was derived
from the work of van den Dool (2004). A description of the parameterized events used for
simulations is also shown in this section. In section 4.3 the chosen boundary and initial
conditions are described and grounded. The results of the simulations are described and
assessed in section 4.4. In section 4.5 conclusions drawn from the sensitivity analysis are
summed up.

4.2 Experimental[$etup

Input for the sensitivity analysisis provided by parameterized rainfall. In the MATLAB tool
created by van den Dool, characteristics of the events can be changed by varying:
- the number of fronts

the allocation of fronts

travd velocity

travel direction

rainfall intensity

covering size

In this way variations in spatial spread of the event and location of rainfall could be
simulated. To make sure results were comparable, for each simulation a volume check was
performed both on the total Rhine catchment area and the rainfall as interpolated on the
gauging stations used by FEWS-Rhine. To keep control on volume numbers, overlap
between fronts was taken into account by summing theintensity of both fronts at the overlap
locations and the covering surface of the fronts was made dependent on the travel velocity
and the total number of fronts passing the catchment.
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To represent a typical winter Situation, some characteristics were kept equal in each
simulation:
thetravel velocity of frontsis 20 nvs.
thetravel direction of frontsis from west to east.
The intensity of one front without overlap is 2 mm/hr (overlap between 2 fronts would
causeintensity at the overlap location of 4 mmvhr).

The simulations were done in the update phase of FEWS-Rhine by replacing historical data
with the time series containing the synthetic rainfall. Historical datais used to provideinitia
states for the HBV-models during the update phase. The discharge computations from the
different simulations are analyzed on their behaviour. The sensitivity for location and
intensity were analyzed in the following ways:

Varying the succession distance between fronts.

Varying the amount of fronts. A greater number of fronts means a smaller size per front

to keep the total volume of rainfall equal in each simulation.

Varying the release location of rainfall by letting a same amount of rainfall fall on

different sub-basins in each ssimulation.

The first two cases were performed using the same approach as van den Dool: rainfall
events are created using parameterized fronts in a MATLAB precipitation simulator. The
events are interpolated to time series for basin-centres of sub-basins that are represented by
HBV rainfall-runoff models in FEWS-Rhine. The last case was performed by directly
producing basin centred time series.
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Figure4.1:  Simulation diagram for sensitivity anaysis (source: van den Dool (2004))
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The simulations are described in more detail bel ow.

Varying the succession distance between fronts

Four events consisting of a succession of 4 fronts were created and computed in FEWS-
Rhine. The latitudinal distance was the same in each simulation, only the longitudinal
distance between the fronts was varied.

Table4.1: Characterigtics of 4 event simulations for sensitivity on variation in the succession distance of

fronts
long. lat.distance | max. Volume total | FEWS Volume
distance [° North] intensity catchment [10° m?]
[° West] [mm/hr] [10° m?]
0 1 6 5,76 3,18
5 1 4 5,76 3,14
10 1 2 5,77 3,14
15 1 2 5,77 3,16

Maximum intensity rose because overlap between fronts occurred.

The goal of these simulations were to see how the distance between fronts from the west
affects the magnitude of discharge at Lobith, and what happens for example when the
passing of the fronts concurs with the expected course of the flood wave.

The longitudinal distance between every front was 1° in every simulation. The latitudinal
distance was varied between 0° until 30° in western direction. The passing location of the
first front was set on an equal position in every simulation: 47° lat., 8.5° long., which means
that the largest part of the first front passes upstream from Maxau (long. 49°) and has
therefore only a small influence on the models input.

Precipitation in mm op t=186 Precipitation in mm op t=16

Latitude [deg. North]
Intensity [mm/hr]
Latitude [deg. North]
Intensity [mm/r]

Longitude [deg. East] Longitude [deg. East]
Figure4.2:  Front succession with long. distance = Figure4.3:  Front succession with long. distance =
5° west. 15° west.

When the Rhineis considered to flow exactly from south to north and flood wave celerity is
assumed to be a constant 1,5 /s, the centre of the fronts should have a latitudinal distance
between each other of approximately 20° longitude to let the fronts coincide with the flood
wave. Because the Rhine catchment is not flowing uniformly towards the north but also has
an overall western direction, this distance will be slightly higher to guarantee a coincidence
with the flood wave.
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Varying the amount and spread of fronts

The actual spatial spread of rainfall can differ from predictions because the distance between
fronts was smaller than predicted or weather models with different spatial resolution were
used. The result can be that one predicted front in reality consists of a nhumber of smaller
fronts, passing over the same time span. Therefore, the amount of fronts was varied between
2 and 10 fronts in 4 simulations. Volume was controlled by reducing theradii of thefrontsin
accordance with the number of fronts. The duration of every event is kept equal.

Table 4.2: Characteristics of 4 event smulations for sensitivity on variationsin the number of fronts

nr. of | lat.  width | long. width | Volume sgb [ FEWS volume
fronts [-] [km] [km] [10° m?] [10° m?]

2 354 555 5,22 2,46

4 250 392 5,75 3,15

6 204 320 5,81 3,38

10 158 248 5,91 3,61

Precipitation in mm op t= Precipitation in mm op t=
2 32

Figure4.4:  Succession of 4 fronts, plotted Figure4.5:  Succession of 10 smaller fronts
above the Rhine basin. 2 fronts are with smaller succession distance
passing at this moment

Varying the release location of rainfall

Precipitation can be misallocated resulting in precipitation falling in another area than was
predicted. Especially with large lead times, the consequence can be that precipitation is
falling in another sub-basin than was predicted. To demonstrate the sensitivity of FEWS-
Rhine for these allocation errors, a number of simulations was performed in which an equal
volume of precipitation in an equal amount of time was released on one sub-basin in each
simulation. The total volume was set on 0,5 km® while the time span in which this amount
fell was set on 1 day. Thus the intensity was dependent on the surface of the sub-basin. All
the other sub-basins were not influenced by any precipitation.

The simulations were performed with precipitation on the Ruhr, Mosd, Main and Neckar,
since these sub-basins have a very different size and position in relation to Lobith. The
simulation time is 10 days. The rain was released during the 3" day of simulation (duration:

1 day).
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Table4.3: Characteristics of event simulations for sensitivity on location variations

nr. of | release sub- | HBV Volume sgb

fronts [-] basin Covering [10° m?]
surface [km?]

1 Ruhr 4485 0,5

1 Mosel 28713 0,5

1 Main 27296 0,5

1 Neckar 13868 0,5

4.3 Boundary[and[initial¢onditions

The sensitivity analysis is primarily aimed at looking into effects of possible rainfall
prediction erors. However, the boundary conditions, initial conditions and lateral
groundwater flow module all influence the discharge. The sensitivity analysis should be
performed in such a way that the outcome of simulations mainly shows the influence of
changes in the meteorology. Therefore other influences that can cause misinterpretation of
the results were considered before starting the analysis.

For the SOBEK module boundary at Maxau, normally historically measured discharge is
used. The effect of discharge fluctuations might be of influence on the form of the
hydrograph at Lobith. A run is made with no rainfall whatsoever in the catchment to show
this effect. In this case, discharge should only be caused by the wet initial conditions in the
catchment. The pesks that occur at Maxau are, although they are dampened out due to
resistance over the travel distance, still well noticeable in Lobith (see arrows in Figure 4.6),
considering a phase difference of about 4 days routing time according to literature [i.e.
Diermanse, 2001].

4500 A
4000 / \ A
__ 3500 N~
og 3000 / / S
o 2500 ~————
o /
g 2000 /
<
& 1500
& —
1000 —— Maxau (historical) ||
500 —— Lobith (computed) |
O T T T T
22-jan-95 24-jan-95 26-jan-95 28-jan-95 30-jan-95
time [date]

Figure4.6:  Runwithout rain from 15-01-1995 until 31-01-1995 using historical boundary values (Maxau)
and spin-up modelled initial conditions. Results are shown from 22-01-1995 until 31-01-1995

To prevent large fluctuations in the discharge at Lobith due to fluctuations in the discharge
at the boundary of the model, the boundary condition at Maxau was set on a constant value
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for the total computation period in every simulation of this sensitivity analysis. The effect of
rainfall on discharge is therefore the main noticeable effect, due to the reaction of the HBV
models of the Rhin€'s tributaries on it.

In each simulation, the same initia conditions for the HBV models were used. A wet
situation was created by running the HBV models of FEWS-Rhine for some months of
update time until January, 22™ 1995, the start of each simulation. The period after January,
22" 1995 was actually alarge flood period.

The lateral groundwater module only gives lateral discharges between Andernach and
Lobith. Lateral groundwater flow was not considered in the routing reaches upstream from
Andernach. The groundwater routine behaves according to the blue line in Figure 4.7
between January 16™ and 31% 1995.
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e S —
0 ; T T ) T T T
— [y = N N N \ N N w
£ .0,0005.9 L L2 I = 2 Y L
‘g 2’ D D D ) \ ) ) )
- > > > > > > >
‘o 0,001 ¢ © © © © © © ©
o> a ol ol (6] (6] \U‘I (6] (6]
g -0,0015
£ N\
»  -0,002
. \
= -0,0025
< —— Historical \_,/
-0,003 ™ __ Attered
-0,0035
time [date]

Figure4.7:  Latera flow between Rees and Lobith using historically observed discharge values and atered
discharge valuesfor Andernach, dischargeis set to 3000 m*/s constantly.

Since the groundwater module bases its results on historically measured data which is not
valid in the simulations performed in the sensitivity analysis, the groundwater module was
more or less bypassed by setting the discharge at Andernach on a constant value. The
influence of the groundwater module was considerably diminished in this way.
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4.4 Results

4.4.1 Succession[dlistance[éf[fronts

Rhine discharge at Lobith, 4 fronts with different succession
distances
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8000 //’ Z ’«R lat. distance = 0

— |at. distance = -5
7000 / /
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— |at. distance =-30
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Figure4.8:  Dischargesat Lobith with varying front distances

The above figure shows clearly that variations in the peak discharge are only large when
variations in distance between fronts is large. The peak is highest when al fronts pass the
catchment simultaneously and is lowering only a little, when distance between fronts
enlarges, with a maximum of 15 % with a longitudinal distance of 30° west. This means that
alot of rain in a short period is causing higher peaks than the same amount of rain spread
out over a longer period when the basin is saturated. Above the fact that the basin is
saturated, fronts with close succession distance apparently amplify the flood wave by
contributing to the same flood wave. As the distance enlarges, precipitation will ‘miss’ the
earlier produced flood wave and will instead produce a new, relatively low flood wave.

24 WL[] [Pelft[Hydraulics,[Pelft[University[dfTechnology,[KNMI,[RIZA



Propagation[¢flWeather[forecasts[yincertainties[in Master{thesis Sensitivity[analysis[dn[precipitation[¢haracteristics
flood[forecasting

20%
18%

X 16%

S 14% Pad

[ /

8 12% 2

S 10%

S 8% P

x 6% —

& 4% / ¢ peak decrease
2% polynomial
0% ‘ ‘ ‘ ‘ ‘ ‘

0 5 10 15 20 25 30 35 40
longitudinal distance between fronts [deg. west]

Figure4.9:  Percentage of peak decrease with growing distance between fronts

The distance between fronts seems to have a polynomial relation with the peak decrease
resulting fromiit.

The concurrence with the flood wave is not noticeable at all. Since sub-basins in the west
are fed with rain before sub-basins in the east and hydrological differences between sub-
basins can also cause differences in reaction time, it is likely that their flood contribution
arrives at the Rhine with phase differences, too large to cause considerable coincidence. In
the case of downstream moving fronts, the precipitation on sub-basins will concur more
often resulting in coincidence of peaks [van den Dool, 2004].

Timing of the peak dischargeis significantly different in each simulation. The difference can
be explained by the fact that precipitation occurs earlier in the neighbourhood of Laobith
when fronts are close to each other. The earliest peak occurs when every front passes
simultaneously. A closer look will be given to the contribution of the Rhine's tributaries.

The Neckar is taken as example: it confluences with the Rhine between Maxau and Worms.
In Figure 4.10 the discharge from the Neckar just before confluence with the Rhine (station
Rockenau-SKA) is shown. It is clear that also in thetributaries the largest peaks occur when
the fronts are passing the Rhine catchment simultaneously, simply because more
precipitation occurs in a shorter period. Figure 4.11 shows how the Neckar influences the
discharge of the Rhine downstream from its confluence point. The peaks in the Neckar can
clearly be observed downstream from the confluence point.
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Neckar discharges, 4 fronts with different succession distances
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Figure4.10: Neckar discharges with varying front distances

Rhine discharges downstream from Neckar (Worms), 4 fronts
with different succession distances
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Figure4.11: Discharges downstream from confluence of Neckar with Rhine
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4.4.2 Amount[and[$patial[$pread[of{ironts

Discharge at Lobith with constant volume of rain, varying nr. of
fronts
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Figure4.12: Discharge at Lobith using different numbers of fronts

The results of these simulations at Lobith show that FEWS-Rhine is somewhat sensitive to
resolution change or errors in the spatial spread of a rainfall event when one considers
different numbers of fronts. The time to peak does not vary significantly, but the peak
discharge does. As in the previous section, only large shifts, in order of magnitude of whole
degrees are of significance.

What should be marked is that the volume check shows that the amount of rain falling in the
Rhine catchment is diminishing when the number of fronts decreases. This error is caused
by the fact that both latitudinal and longitudinal radius of the fronts become larger when
number of fronts decreases. The first front reaches over the borders of the catchment.
Therefore precipitation that should fall within the catchment is actually falling outside of the
catchment. The latter fact seems an error in the approach followed, because as stated before:
the total volume should be the same in each simulation. However when the weather model
used has alarge grid size, this fact can occur in reality. Operational forecasts are now mostly
not coarser than 0.5°. However, EPS forecasts are made on a grid size of 80x80 km?.
Precipitation intensity within such a surface can vary substantially thus causing a
misinterpretation of the intensity locally. Also, Buizza et a. (1999) proved that the
performance of numerical weather models seriously improves when resolution is increased.
This could mean that location errors could be large when using a low resolution modd,
which might also increase the problems mentioned above.

A correction was made on the FEWS volume in such a way that the total volume of rain
falling in the influence area of FEWS-Rhine is equal in every simulation. This was done by
atering the intensity. The results clearly show that discharges are nearly equal in this case.
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Figure4.13: SameasFigure 4.12 but with precipitation intensity correction
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4.4.3 Release[location

Rhine discharge at Lobith, different sub-basins hit by a
constant volume of rain
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Figure4.14: Discharge a Lobith with varying release locations of a constant volume of precipitation as
indicated in the legend

The results on the variation of location of rainfall show that the peak discharge is higher
when rainfall falls closer to Lobith and when rainfall fallsin smaller catchment with a faster
reaction time. Rainfall on the Ruhr catchment probably gives a high peak because the Ruhr
is both small and close to L obith. Naturally the peak comes earlier also. Also rainfall on the
Neckar produces a peak that is significantly higher than others although it is the farthest
from Lobith of the four sub-basins. This is caused because the catchment is smaller and thus
reacts faster and more extreme than the Mosd and Main catchments. To support this, a plot
of the different sub-basins with and without rain is shown bel ow.
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Discharges at sub-basins with or without rain
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Figure4.15: Dischargesat sub-basins with or without rainfall

It seems that the surface of the sub-catchment is the main reason for differences in peak
heights in de individual sub-basins. A scatter plot of the surface of the sub-basins versus the
amount of extra discharge caused by the extra rain (discharge without rain minus discharge
with rain) shows the relation between basin-surface and discharge peak. The value of the
regression line should not be over-estimated since it is based on only 4 samples.
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Figure4.16: Scatter plot of the peak contribution by rainfall and the correlated surface of the sub-basins. The

dataset consists of the peaksin the Ruhr, Mosdl, Main and Neckar

Although the Neckar causes a pesk of equal height as the Ruhr, it is significantly lower
when it arrives at Lobith. The routing distance causes smoothing of this peak because of bed

friction, bends, river profile changes, etc.
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Note: since the catchment area of the Ruhr is almost an order of magnitude smaller than the
other catchment aress, the precipitation intensity had to be very high to meet the total
volume demand of 0,5 km* An intensity of more than 4,5 mmv/hr during one day is
necessary to obtain the total volume. Therefore, this is not a realistic scenario. Still, the
results show that the influence of the Ruhr on the discharge at Lobith is very directly
noticeable. The influence of the other sub-basins is less directly noticeable since their
contribution to the discharge at Lobith fades out during routing. Nevertheless it can clearly
be seen that the catchment response on rain is highly dependent on its rel ease location, both
intiming of peaks and height of peaks.
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4.5 Conclusions

A different succession distance with a constant number of fronts results in higher peaks
when fronts are close to each other. This can be explained by the fact that a closer
succession distance of fronts enlarges the coincidence of precipitation with the flood wave.
A succession time between fronts which is larger than the average concentration time of the
Rhine basin, ‘misses’ the flood wave and will therefore not or hardly contribute to it. The
timing of the peaks is also earliest when fronts are close to each other.

Precise coincidence of fronts, coming from an alternate direction than the flood wave, with
the Rhine's flood wave does not have a significant influence on the flood wave's peak
height. The reason for this is that the height of the flood wave is highly dependent on the
contribution of the Rhine's tributaries. It is the timing of the confluence of these peaks and
their possible coincidence with the Rhine's flood wave that influences the peak height. The
fact that fronts move from west to east and that there are differences in hydrological
characteristics of the sub-basins, such as the concentration time, causes a phase difference
between the peaks from tributaries and the flood wave in the Rhineitself.

Location errors or low resolution data can suggest that rainfall is widely spread while in
reality it falls locally. It can causerainfall to fall in the wrong sub-basin or even fall outside
the Rhine basin. In practice, the resolution of most weather models is high enough for the
Rhine catchment. Therefore the resolution error will only be noticeable on smaller, sub-
basin scale.

Therelease location of precipitation is important since the different sub-basins of the Rhine
react very differently on precipitation. This is mainly caused by differences in size and
concentration time. The distance between the sub-basins outflow points and Lobith causes a
smoothing of the hydrograph which means that sub-basins close to Lobith cause higher
peaks than more distant sub-basins. Naturally the routing time between sub-basins and
Lobith differs, causing a different timing of the peak discharge at Lobith.

The sensitivity analysis shows that especially variations in weather characteristics on large
scale arerdevant for discharge computationsin the Rhine.
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5 Uncertainty[in[weather[forecasts

5.1 Introduction

The previous chapter and the results of van den Dool (2004) show that especialy the total
volume of rain and the release location on sub-basin level can be important for an adequate
flood prediction. Especially location uncertainty will have effect when this uncertainty is of
large scale, meaning that precipitation might be falling on for example the Main catchment

or its neighbour, the Neckar.

A visual inspection of two ensemble members of an EPS forecast (sourcee ECMWEF) shows
globally how fast the weather predictions can deviate from each other in time. Both spatial
spread and intensity are clearly different within 2 days.
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Figure 5.2:
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Same ensemble members asin Figure 5.1 but after 48 hours forecast time
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In 2006, RIZA should be able to forecast discharge states at Lobith at least up to 4 days
ahead in time within 30 minutes of computation time. Since most of the precipitation that
falls in the Rhine catchment can be noticed at Lobith about 2 days | ater than the release time
it seems highly rdevant to look into the uncertainty in weather characteristics induced by
probahilistic forecasts such as ECMWF EPS. FEWS-Rhine is aready equipped with the
possibility to compute EPS forecasts. However the computation time of 50 ensemble
members is much higher than the 30 minutes available. It is therefore useful to find out if
and when it is necessary to compute these forecasts and to find a quicker approach in
defining the spread development caused by EPS forecasts. Therefore, in this chapter, an
analysis of an EPS forecast (see also section 3.4.2) of ECMWF of the rain period in January
1995 is made. The goal of thisanalysisisto find out if and how one can recognize ensemble
members that will produce a serious discharge in the near future by analyzing the
characteristics that are important for discharge predictions at Lobith according to the
sensitivity analysis and previous study. L ocation and intensity uncertainties are important. In
the end, a simple and fast approach is looked for to compute EPS forecasts into discharge
numbers.

The assumption is made that both the weather model and FEWS-Rhine are flawless and that
anomalies are only caused by the fact that weather is subject to chaos.

In section 5.2, a computation of an ensemble forecast in FEWS-Rhine is reviewed in order
to identify the ensemble members that result in the largest floods. The ensemble members
that cause the highest discharge and the lowest discharge at Lobith after 10 days lead time
are analyzed on their differences like timing of precipitation, released precipitation sums
over the FEWS-Rhine relevant area, and precipitation sums, split up over the largest sub-
basins. In section 5.3, a tart is made in defining an efficient way of finding relevant EPS
members by corrdating discharge numbers to accumulated precipitation numbers in the
preceding days. This is done to find out if accumulated precipitation numbers contain
enough information to find indications of the discharge at L obith.

Note: In this chapter, daily accumulated precipitation numbers are used to correlate
precipitation to resulting discharges. They were computed using approximately the same
method" as the HBV models in FEWS-Rhine do. For more information about the approach
used, see appendix B.

! Note: instead of using Kriging, the inverse distance method was applied as inter polation method
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5.2 EPS[fun

An ensemble forecast is used as input for FEWS-Rhine. In this case, the EPS-forecasts of
January 21%, 1995 are chosen. The reason for choosing this dataset is that most of the
precipitation that caused the floods in this period fell between this date and the next 10 days.
Spread between ensemble members is according to literature mostly caused by:
large precipitation intensity. The larger the forecasted intensity is, the more uncertainty.
large forecast periods. This was illustrated in Figure 5.1 and Figure 5.2,

The resulting discharge numbers at L obith 10 days ahead are shown in Figure 5.3. It shows
that the resemblance of the EPS members diminishes rapidly in time after 2 days.
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Figure5.3:  Dischargeat Lobith tarting at January, 21% from 50 ensemble members

Note: The meteorological datasets that are used for the state updating period of FEWS-
Rhine in January 1995 were assembled from very little measurements. Most of the data
points were obtained using interpolation from the few stations that were available. Therefore
the forecasts presented in the next sections are not accurate. They are only used as an
illustration of influence of weather uncertainty on flood forecasts. In real-time forecasts,
datasets from far more meteorological gauging stations will be used.
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A plot of the empirical distribution functions of the discharge caused by the ensembles at
different forecast periods of a multiple of whole days shows us more clearly how the spread
develops.
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Figure5.4:  Cumulative distribution functions of discharge at Lobith using the EPS forecast of January 21%
1995. Severa lead timesin whole days are given.

The discharge at Lobith in the first 2 days is nearly equal for every ensemble member. This
is caused by the fact that in this period, discharge is still mainly caused by precipitation that
occurred earlier than the start of the forecast period. Therefore, it can be stated, that
hydrological uncertainties (e.g. soil parameters and slopes) and uncertainties in the SOBEK
routing module (e.g. roughness, hydraulic shape) will be dominant during the first 2 days. In
relation to this an interesting phenomenon to study would be on which moment in time the
dominance of uncertainty shifts from hydrology and hydraulics, to weather and to what
extent they might amplify each other.

In the cumulative distribution function after 10 days, it can be seen, that the limb of the
flood is still rising in the most extreme ensemble member while the discharge caused by the
lowest members is already dropping. In this case, member 3 scores highest while member
24, of which the limb is already declining, scores lowest. This fact implies that the different
effect of ensemble members on flood prediction does not only encompass the fact that less
precipitation occurs. Apparently fronts can also be heavily misplaced or mis-timed on the
Rhine catchment, are missing the Rhine catchment, or are not occurring at all. Thefollowing
figure, showing the rough differences between member 3 and 24, illustrates this.
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Figure5.5:  Discharge and daily accumulated precipitation depth caused by ensemble members 3 and 24 of
the EPS forecasts of January 21% 1995 10 days ahead

First of all, the above figure shows clearly how the discharge at Lobith correlates to the total
amount of precipitation falling in the Rhine catchment. After some days, a very large
difference in precipitation volume occurs between the two members which makes it a clear
indicator for how serious a forecast can be. Secondly, it also shows the lag between
precipitation falling and discharge at Lobith resulting from it. In the first 4 days, both
members release an almost equal amount of rainfall, resulting in almost the same discharge
in the first 6 days. In the last 6 days, apparently a large precipitation field is passing the
Rhine catchment according to member 3, while this does not happen according to member
24. A movie fragment of the two members around day 8 illustrates the different situations.
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Figure5.6:  View on the fronts resulting from members 3 and 24 at day +6. The red arrows approximately
point inthe direction in which fronts move.

The image resulting from both members deviates extremely in both allocation of fronts and
intensity which makes the two ensemble members hardly comparable after 5 days.

The visual inspection of an ensemble prediction (see Figure 5.1, Figure 5.2 and Figure 5.6)
shows that the differences in precipitation in EPS are caused by uncertainties on a scale that
is much larger than the Rhine basin itself. This is caused by the fact that fronts and
especially total weather systems are also larger than the Rhine basin itsdf. Spatial spread
and form, intensity and location deviate so much that visual comparison is hard, especially
when this should be done automatically. The mapping of uncertainties in individual
characteristics of fronts (location, spatial spread, intensity, etc.) induced by EPS with a
visual method such as CRA (see aso section 3.4.1) is therefore hard to relate to discharge
uncertainties. The anomalies between ensemble members are simply too large in relation to
the Rhine catchment. In a much larger catchment that equals the size of weather systems, for
instance the Amazon, this concept might be applicable since CRA could then for instance be
applied on atotal low pressure area instead of on individual fronts. For the Rhine catchment
it seems inevitable to map uncertainties through a hydrological modelling approach using a
distribution of precipitation time series over the catchment.

The daily accumulated precipitation numbers according to member 3 and 24 on some of the
sub-basins show the spatial distribution of precipitation over the Rhine catchment.
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Figure5.7:  Daily accumulated precipitation depths on sub-basins according to member 3 and member 24 of

the EPS forecast of January, 21% 1995

The course of the accumulated precipitation numbers for each sub-basin shows more or less
the same shape as Figure 5.5 shows for the total Rhine catchment. Some differences
between the individua sub-basins occur. The Main for example receives relatively more
rainfall in the last 6 days of the forecast than in the first 4 days according to member 3.
According to member 24, it receives relatively more in the first 4 days. For instance, what
might have occurred is, that according to forecast 24 a front passes the Rhine catchment
from the west and looses its activity after passing the Mosel catchment resulting in very
little rainfall in the Main catchment while according to member 3 it gains in activity
producing higher amounts of precipitation in the Main than in the Mosd. However, there
could be other reasons for the deviation. Apparently the different EPS members distribute
the precipitation differently over the catchment, which in the end can cause a different
reaction of the Rhine catchment than when precipitation is distributed more equal over the
catchment.
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Another important issue is the general intensity differences between the sub-basins. It seems
that the Neckar and Main generally receive significantly less rainfall than the Mosd and
Ruhr since both ensemble members indicate a generally lower intensity than in the other two
sub-basins. This indicates that the released amount of rainfall from a front is highly
dependent on the location of the front. Release of rainfall isfor a part induced by orographic
differences throughout the Rhine basin. It confirms that location uncertainty of fronts also
causes uncertainty in the amount of rain that can be expected and thus also the discharged
volumein the Rhine.

5.3 Precipitation[discharge[¢orrelations

A first attempt to give fast indications of discharge spread according to EPS is made using
solely accumulated precipitation numbers in the days preceding to the discharge that is
forecasted. To find out how much information accumulated precipitation numbers contain,
daily averaged discharge numbers at gauging stations were correlated to numbers of 24
hours of accumulated rainfall in the preceding days in the upstream sub-basin. The dataset
used was from September 1994 until February 1995. The following formula for correlation
was used:

(5.1)

Singular correlation coefficient [-]
Independent variable (preceding precipitation sums) [m’]

;
Xi

X:  Maean of total dataset of independent variables [m’]
Vi: Variable dependent on x; (discharge) [m%/s]

y Mean of total dataset of dependent variables [m®/s]

Figure 5.8 shows the correlation coefficients of the discharge at Lobith with daily
precipitation sums for the total Rhine catchment in the 10 preceding days. After 10 days the
correlation is assumed to be spurious for example because precipitation that falls in this
period will have a physical non-valid correation with discharge.

The figure proves that the correlation is rather diffusive. There is not one time lag between
precipitation and discharge which gives a significantly higher correlation coefficient than
other time lags do. The precipitation numbers will probably have a high degree of auto-
correlation since a rain depth that falls on day ‘x’ will probably have a large correlation with
rainfalling onday ‘x-1" and ‘x+1’, especially in winter when fronts have a large surface..
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Figure5.8:  Correlation coefficients for correlation between discharge at Lobith and precipitation in the
FEWS relevant areain the preceding days

The same correlation has also been researched for the largest sub-basins, Neckar, Main and
Mosel. Discharges are derived from the most downstream gauging stations in these sub-
basins, Rockenau, Raunheim and Cochem. Results are shown in Figure 5.9.
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Figure5.9:  Correlation coefficients for correlaion between discharges and preceding precipitation in
different sub-basins: Neckar, Main and Mosel

The above figures show that, especially in the smaller sub-basins, there is a more distinct
correlation between daily precipitation volumes in the preceding days and discharge, which
indicates that auto-correation is of smaller significance. Still, a clear correlation is not
present, especially for thelarger, slower reacting catchments. This means that there are other
influences than accumulated precipitation numbers that aso provide information to find
discharges at the outflow points. Probably, hydrological characteristics and the state of the
sub-basins contain a lot of this information. The reaction of basins on rainfall is highly
dependent on them. A catchment containing a lot of soil moisture from precipitation of
earlier times will react very differently on rain than a relatively dry catchment. Evaporation
is aso variable through the seasons and can cause differences in effective precipitation.
Finally, in winter, precipitation can fall in the form of snow, which makes the correlation
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between accumulated precipitation and discharge less clear during frost periods and during

melting of snow.

To find out if hydrological characteristics, evaporation and snow delaying effects can be
disregarded for indicative discharge numbers, the accumulated precipitation numbers for the
Rhine basin were corrdated to discharge numbers using multiple linear regression.
Regression coefficients were obtained from a dataset of October 1997 until December 1998.
Theregression equation derived, was tested on the dataset of September 1994 until February

1995,
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Figure5.10: Calibration period 1997-1998. The regression equation was applied on this dataset resulting in the

red hydrograph
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Figure5.11: Validation period 1994-1995. The regression equation obtained from the previous dataset was
applied on this dataset

Although the form of the hydrograph is quite accurate, it seems that especially serious peaks
are tremendously underestimated. In reality, in summer periods, mostly the basin is
relatively dry and evaporation is considerable. Therefore, a small amount of rainfall will be
intercepted and evaporated. Excess rainfall will for the largest part be absorbed by the
catchment resulting in a low production of discharge. In winter, excess precipitation will
saturate the basin. The same amount of precipitation will then cause a much higher
discharge. Also snow delaying effects can make a considerable contribution to floods. Since
these processes are not taken into account, the regression equation tries to make the best of
the calibration fit by overestimating discharge during summer and underestimating it during
winter. The timing of the peaks however is quite accurate, which implies that rainfall is
mostly quite equally distributed over the catchment. Dueto the latter fact, this method might
be useful to identify the fluctuation of the hydrograph due to weether forecasts. However,
the actual discharge numbers deviate a lot from these computations. A good indication of the
discharge can therefore not be found. More regression variables that provide information
about evaporation, soil moisture content and snow states should be included.
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5.4 Conclusions

The influence of uncertainties according to EPS forecasts is hardly noticeable at Lobith in
the first 2 days of the discharge forecasts, due to the still dominating historical information
in the basin (precipitation and discharges in sub-basins of earlier days). After 2 days, the
uncertainty spread is rising fast.

The weather forecasts themselves show very large differences between ensemble members
after 5 days and more, not only in intensity, but also in location. This makes ensemble
members hard to visually compare to each other. The differences occur on the scale of total
weather systems. Since the Rhine basin is much smaller than the scale of weather systems, a
mapping of discharge uncertainty cannot be derived from mapping of individual differences
in weather systems or fronts using a method such as CRA (see also section 3.4.1).

The uncertainty in discharge prediction occurring at Lobith due to EPS forecasts are not
only caused by intensity uncertainty but also for a great part by uncertainty in location of
precipitation.

Differences between EPS members occur on the scale of total weather systems. The
deriving of uncertainties in individual characteristics of fronts, using a visual verification
approach, and relating this to discharge uncertainties, seems therefore inapplicable. Also due
to distribution of hydrological characteristicsin the Rhine basin, the effect of EPS members
can best be compared by looking into how the members affect the Rhine basin itself. A
hydrological modelling approach such as FEWS-Rhine can produce the discharge resulting
from these time series. The challenge is to diminish the computation time needed.

A first option of hydrological modelling is the use of preceding daily accumulated
precipitation numbers in the Rhine catchment. Correlation between accumulated
precipitation numbers in the Rhine basin and discharges at Lobith shows that these
precipitation sums provide a large part of information required to estimate the discharge. In
sub-basins, this correlation is even higher: the smaler the sub-basin, the higher the
correlation is.

By relating the preceding accumulated daily precipitation numbers in the Rhine with
discharges at Lobith using multiple linear regression, the bend points and thus timing of
peaks in the hydrograph can be identified quite accurately. However the accumulated
precipitation numbers do not contain enough information to estimate the magnitude of peak
discharges. Apparently, the reaction of the basin on precipitation is also highly dependent on
the distribution of rainfall over the sub-basins, evaporation and the hydrological state of the
basin (e.g. wet or dry). This means that if multiple regression is applied, the equation should
contain information about these variables in order to find an appropriate hydrograph. The
deriving of this information can be done logically by hydrologica modelling. It seems
therefore more logical to use a conceptual hydrological model to relate precipitation to
discharge instead of a Statistical approach such as multiple linear regression.
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6 Ensemble[§uick[$can[tool

6.1 Introduction

The former sections have proven, that the characteristics of ensemble forecast members
deviate very much considering the weather characteristics that were researched in the
sensitivity analysis and the study of van den Dool (2004) and can therefore be of particular
use to indicate how certain or uncertain a flood prediction will be, especially when one
wants to predict with lead times greater than 2 days. The computation time of EPS forecasts
however, istoo large, especially due to the time consuming routing procedure to calculate a
full ensemble set in every forecast. As was stated in the former chapter, a comparison of
ensemble members on solely accumulated precipitation numbers is inadequate because the
spatial distribution of precipitation, evaporation and the hydrological state is disregarded.
The conclusion was that the use of a hydrological modelling approach seems more obvious.
During this research, an EPS quick scan tool based on hydrological principles was
devel oped which should give a fast estimation of discharge numbers in Lobith according to
ensemble predictions. The tool is aimed at diminishing the forecast computation time of
EPS forecasts. The application of such a tool could be to make a global check if thereis a
chance of occurring of a flood, to analyze the uncertainty of discharge predictions and if
deemed necessary, to pre-select serious ensemble members for re-computation in a more
precise forecasting tool such as FEWS-Rhine. For operational application, such a quick scan
tool should fulfil the following demands:

It should give (at least daily averaged) estimates of the discharge at Lobith 10 days

ahead in time, according to an EPS forecast.

A total ensemble set should be calculated within a negligible amount of time, in

comparison to the time FEWS-Rhine needs to calculate the ensemble set.

The output results must point out for every forecast period between 1 and 10 days,

which ensemble members produce the highest discharge.

Section 6.2 describes the model concept used for the EPS quick scan tool. The model
concept consists of simplifications of the modules used in FEWS-Rhine. In section 6.3, a
description and remarks on the calibration and validation methodology are given. In section
6.4, the construction of the model is described. Some rainfall runoff models for sub-basins
of the Rhine are required. Section 6.5 treats the module structure used (HYMOD) and its
calibration and validation. Finally, the hydrological model structure was tested on some
sensitivities in section 6.6.
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6.2 Model[¢oncept

To meet the demands stated in section 6.1 the model concept which is used for FEWS-Rhine
has to be smplified. Simplifications could be made in:

the SOBEK RE routing procedure

the hydrological models of the Rhine's sub-basins

spatial and temporal resolution

The simplifications chosen are described bel ow.

Routing procedure:

Especially the SOBEK RE model in FEWS-Rhine is time consuming. An alternative for a
routing procedure for modelling discharges at one specific point is the use of the assumption
that there exist multiple linear correlations between the discharges at the point of interest
and discharges in other points upstream of the point of interest some time earlier. This
principle was used in the Multiple Linear Regression model for water level predictions at
Lobith [Parmet and Sprokkereef, 1997], which can accurately predict water levels and
discharges 2 days ahead. This model is still operational for navigational purposes. The
formula, which computes discharge numbers using multiple linear regression can have the
following form:

Qct)ut = bO + leE)l_jtl + bZQZ + + prp (61)
where:
Qe Predicted discharge, dependent on Qy, Q,...Qp

Qu Q,..Qp Observed values of a p number of discharges at a certain time before
prediction time in upstream points
bo b1 ,..b, weighing coefficients of the regression equation

Theindependent variables consist of:
the discharge at Lobith one day in advance. The discharge is therefore considered to
have a large correlation with the discharge the day before.
discharges near the confluence points of the Rhine's sub-basins. These discharges
determine in which direction the discharge should go, in other words, the first derivative
of the discharge at L obith.

The dependent variable is the discharge at Lobith at the time of interest
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Figure6.1:  The Rhine with the most important confluence points from its tributaries

The amount of time difference which makes the discharges related, is the trave time, which
is dependent on the wave celerity in between the two discharge points. Naturally the wave
celerity and therefore also the travel time will not be constant in time but will fluctuate due
to stage differences. The assumption is done that these fluctuations are limited. The
physically based flood routing method based on mass and momentum balance, which is
significantly more time consuming, is replaced by a coarse estimation of the trave time
between waves passing a gauging station of a sub-basin, and later on passing Lobith.
Because of the fluctuations in the wave celerity, this model concept would probably not be
applicable on hourly basis.

The regression coefficients describe how much influence the regression variable has. Thisis
mainly dependent on:
The distance between the sub-basins outflow point and the point of interest: the peak of
flood waves diminishes while travelling to Lobith due to dispersion caused by bed
friction, bends, cross-section variations, €c.
The proportion of water that is discharged into the Rhine from the sub-basin in question.

Since the time lag can reach before the time of prediction and after it, depending on the
forecast time, both historically measured data and computed data is necessary for the MLR
model. Computed data should be produced by rainfall-runoff models representing the
behaviour of the sub-basins.
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Hydrological models:

The rainfall-runoff (RR) models that should feed the MLR mode with discharge
information can aso be simplified. The detailed and small scale HBV models can be
replaced by conceptual models of a coarser spatial scale, preferably representing a complete
sub-basin. A simple RR model structure can be used to make lumped models for the largest
sub-basins, or sub-basins that are closest to Lobith.

Spatial resolution:

Ancther simplification can be made by taking advantage of the large correlation between
discharges from sub-basins that are close to each other. A series of discharge observations of
the Main was correated with a series of the Neckar (neighbouring sub-basin) over the same
period (October 1997 until December 1998). Corrdation coefficients for different time lags
(Main is lagging on the Neckar) are shown in Figure 6.2.

Correlation coefficient [-]

0 1 2 3 4 5 6 7 8 9 10

time lag [days]

Figure6.2:  Correlation coefficients between discharge in Raunheim (Main) and Rockenau (Neckar)

Apparently both the meteorology and hydrology of neighbouring sub-basins in the Rhine
catchments have similarities, causing the high correlation in discharge. The typical
meteorology that causes significant dischargein the Rhine basin (e.g. Figure 5.1 and Figure
5.2) supports this. Fronts that release precipitation above and cause floods in the Rhine
catchment:
are significantly larger than the area of a sub-basin thus causing a correlated amount of
precipitation in sub-basins that are close to each other, and
pass from west to east [e.g. van den Dool, 2004] due to the fact that moist air is supplied
from the sea, which cools down and precipitates above the Rhine catchment.

The phase difference between reaction of sub-basinsis caused by the fact that:

- Afront can pass one sub-basin first and it's neighbouring basin afterwards (due to the
west-east orientation of the front). Precipitation simply occurs later in the more eastern
parts of the Rhine basin.

The hydrological characteristics of sub-basins differ. Especially the concentration time
is an important factor causing phase difference.
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The optimal correlation between the Main and Neckar occurs with a time lag of 2 days.
According to the reasons mentioned above, this can be caused by:
the difference in orientation of the sub-basins: the centre of the Main basin is more
easterly located than the centre of the Neckar basin.
the fact that the concentration time of the Main basin is larger than the concentration
time of the Neckar basin.

The high correlations provethat, for somewhat rough indicative discharge numbers, it might
not be necessary to include al the sub-basins in this MLR model. Instead, samples can be
taken from sub-basins that discharge large amounts of water on the Rhine and sub-basins
that are close to Lobith. These will probably provide the model with enough information to
estimate the discharge at Lobith. If all sub-basins are included, some of them will probably
cause auto-correlation that expresses itself by negative regression coefficients. Which sub-
basins to include in the MLR modél is iteratively tested while adding discharges from sub-
basins and check if performanceis enhancing.

A schematic view on the model structure is shown below. In the next sections, the
construction and calibration of the mode! is described.
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Figure6.3:  Schematic overview of EPS quick scan tool

WL[] [Pelft[Hydraulics,[Pelft[University[dfTechnology,[KNMI,[RIZA 49



Ensemble[quick[3can[fool Master{thesis Propagation[¢flWeather[forecasts[yincertainties[in

flood[forecasting

6.3 Calibration

6.3.1 Reliability[¢alibration[data

For calibration purposes of both the RR sub-models and the MLR-model, reliable datasets
are needed. This section was written to contemplate issues related to reliability of data and
hence affect the outcome of modelling results. Furthermore it grounds the choices made for
selecting calibration data. The data selected is presented in section 6.3.2.

Discharge data

Discharge data is mostly obtained by measuring stage heights and convert these into
discharge numbers by using a stage discharge rdation that is derived for each gauging
station. Mostly these relations perform well during normal situations, but extreme low and
extreme high discharges are often not very well estimated. During a flood, the river’'s
morphology can even change, which alters the stage discharge relation. Therefore the
reliability of discharge data should always be questioned. Often discharge datasets contain
gaps, sometimes larger than one week. Although gaps can be filled by interpolation, datasets
containing a numerous amount of gaps are considered to be lessreliable.

M eteorological data

The reliability of meteorological data can also be questionable. In the German part of the
Rhine basin (which also covers a small part of France and Luxembourg), over 140 gauging
stations are present, which means, that a gauging station on average covers almost 800 k.
The precipitation intensity is mostly subject to a high degree of spatial variability (due to
orographic variability, land use, etc.), especially in summer, which means that, considering
the limited number of gauging stations, also precipitation data should be treated carefully.

Some precipitation datasets have been formed by sampling in only a few of the available
gauging stations. The rest of the time series is obtained by interpolating the few
measurements to the rest of the gauging stations. These sets often produce a very unrdiable
precipitation series. In some sub-basins, intensity is highly overestimated while in others a
serious underestimation is made.

Temperature data is mostly quite reliable because measurements are mostly made using
uniformly methods and the spatial variability is mostly not so large.

6.3.2 Data[selection

Two calibration periods containing discharge datasets for the Rhine and its tributaries
gauging stations were coupled to derivethe MLR equation. A long calibration period of over
one year: October 1997 until December 1998, and a shorter one containing only a winter
period: September 1994 until February 1995. The equation was validated on a winter period:
October 2001 until March 2002.
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For the first two datasets, fairly reliable hourly precipitation and temperature data, derived
from a large number of gauging stations, was available. The series consisted of values,
interpolated to the centres of the HBV models for the Rhin€'s tributaries. The values were
averaged per tributary, modelled in this study, in order to calibrate the lumped conceptual
RR models. The 1997-1998 period was used for calibration, the 1994-1995 period for
validation. More than a whole year was used for calibration to take into account both dry
and wet periods.

6.3.3 Model[performance

Performance for the RR models and the MLR-modd was tested using two traditional scores:

Thefirst score is the root mean square error (RMSE) which indicates how large differences
between observations and computations are:

RMSE =J—§” (Q-Qc)’ (62)

i=1

The second score is the variance according to Nash/Sutcliffe [1970] which indicates the
order of magnitude of skill as a number between 0 and 1:

i=n i=n

RZ - i=1 — i=1 (63)
o 2
a. (Q| - erean)
i=1

where:

Q Observed discharge

Qmean Mean observed discharge of the calibration period

QC Computed discharge

Hydrographs resulting from the RR models were also visually inspected, also with use of
scatter plots of the observed and computed values with referenceto an ‘ideal’ regression line
Q=QC. The emphasis was on the timing and magnitude of peaks and groundwater
discharge, which preferably should never exceed measured discharge and should not
explode in time. Also the discharge integrated over time (mass-outflow through discharge)
should not be very different comparing computed and measured discharge.
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6.4 Multiple[Linear[Regression[imodel

The gauging stations taken into account in the MLR model as sampling for the whole basin
are Rockenau (Neckar), Cochem (Mosd) and Schermbeck (Lippe). The first two are
considered to be important because the discharge of these basins is considerable. Mostly
floods at Lobith are closely related to floods in the Mosel. The flood wave caused by the
Neckar usually meets the flood wave from the Mosel causing a much larger flood. The
Lippe is taken into account because its outflow point at Schermbeck is close to Lobith. It
will also represent the discharge from other tributaries close to Lobith such as the Ruhr, Sieg
and Erft. The combination of sub-basins chosen, provide the MLR model with a scattered
sampling over the Rhine basin, taking many areas into account. This makes forecasts more
reliable,

Lippe

M osel

Figure6.4:  The sampled sub-basins of the Rhine, indicated in red

The residue of the discharge, presented as b, in equation 6.1 should be minimized in order
to be certain that the discharge is well enough explained by the regression variables. In order
to make low discharge number estimations reliable, it should at least be smaller than the
lowest measured value in the dataset.

Note: although it is the second largest tributary of the Rhine, the Main was excluded from
the regression equation because its correlation with discharge from the Neckar is high and
the Main is more difficult to model due to weirs and the dam Griesheim. The choice
between modelling the Ruhr or the Lippe was aso based on this reason together with the
fact that the discharge series available for the Ruhr contained a lot of gaps, especially during
high discharges which makes calibration more difficult and results somewhat less reliable.

The model was built up in steps by adding regression variables one at the time. To prevent
the occurrence of auto-corrdation, the amount of regression variables was kept as low as
possible. Which time lags to use to aobtain the highest skill enlargement was iteratively
tested using calibration scores. The time lags are based on travel times between the gauging
stations modelled and Lobith. The adding of regression variables outside the boundaries of
travel times resulted in a lower residue discharge (bo). However, for both calibration
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periods, the skill scores were dlightly lower, which proves that a higher number of
regression variables does not implicitly result in a better performance of the MLR model.
A good fit was found using the following regression coefficients:

Table 6.1: Regression coefficientsfor MLR model Lobith

(Sub-)basin Gauging station Br;yes] lag

t-4 t-3 t-2 t-1 t
Rhine Lobith 0 0 0 0,7754 | computed
Lippe Schermbeck 0 0 0 -2,0380 | 4,39607
Mosel Cochem 0 -0,6265 |1,0760 | O 0
Neckar Rockenau 0 0,38153 | 0 0 0
by 186.1 ma3/s

If more than one time lag has been taken into account for the contribution of a sub-basin,
one of the two regression coefficients becomes negative. Apparently the positive regression
coefficient is dominant. The negative coefficient makes a correction on the positive
coefficient when time lag is in between whole days. Naturally, the two coefficients added
should never produce a negative number. That would imply that a discharge upstream
diminishes a discharge downstream which is physically nonsense.

The MLR model was tested using the measured discharge data in the relevant gauging
stations. Instead of using the measured value of the discharge at Lobith in the regression
equation, the calculated discharge from the previous step was used. Both the calibration
periods and one validation period, October 2001 until March 2002 were used to test. The
calibration periods were also tested on their fit with computed discharges from the RR
models used. The error caused by the rainfall runoff models and the error caused by the
regression equation can be derived separately in this way.

The performance of the derived regression equation is enough to estimate rough discharge
numbers. The model often produces underestimations during high peak discharges. The
error in the peak discharge during 1995 for example is partly caused by the regression
equation and partly by underestimations in the hydrological models. For indicative
discharge numbers however, the model is considered to be reiable enough. The scores of
the calibration and validation periods are presented below. Plots of the results are given in
appendix C. Unfortunatdy, no reliable precipitation and temperature data was available to
test the validation period together with the RR models.

Table 6.2: Simulation results from runs of MLR model using both measured discharges a gauging stations
and computed discharge values from the RR models asinput

Observed Q Computed Q
Z Z
Period B (Nﬁh’S”t) RMSE [m¥s] | R (N""[S_]h’ SUD) | RMSE [m¥s]

1997-1998

(Calibration) 0,966 227 0,958 254

1994-1995

(Calibration) 0,976 330 0,985 261
2001-2002 (Validation) 0,955 343 - -
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6.5 Rainfall[funoff($ub[ models

6.5.1 Model[$tructure

Simple rainfall runoff models have been developed for the sub-basins that are included in
the MLR model, the Lippe, Mosel and Neckar. A simple existing conceptual model structure
called HYMOD was used [Vrugt et a., 2003]. A snow routine was added since snowmelt
can give a substantial contribution to high discharges..

S iT<O
E,(t)

P(t)
| S,
| ) T

C P_.(t)

MAX <l

Figure6.5:  The conceptua model structure HY MOD with an additional snow routine

6.5.2 Modelprocesses

Input

The input of the model consists of averaged daily precipitation (P) and temperature (T).
When temperature is above 0 °C, excess precipitation is subdivided (Pe; and Pe;) depending
on the current soil moisture state St). When temperature gets below 0 °C, a snow pack
reservoir (S) is filled with the total precipitation amount. It melts off when temperature is
risng above 0 °C again according to the snow melting rate Ry, in mm/(°C day). The
snowmelt (M) in mm/day reads:

M =max(TR,,S,) if T>0 (6.4)
Actual daily evaporation (E;) in mm/day is equal to the potential evaporation (Ey) in
mm/day (required as input) when enough soil moisture is available. Interception is not taken

into account as an individual process. Theinterception processistreated as a part of thetotal
daily evaporation. Actual evaporation (including interception) in mm/day thus reads:

E, =min(E,.S) (6.5)
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Storage
Soil moisture capacity and thus storage capacity varies across the basin according to the
following dimensionless function (see also the curve in Figure 6.5).
- C t 61+B
F(Q)=1-¢ LOO
e max @

0E£C()EC,,, (6.6)

The factor B [-] determines the stegpness of this function. E.g. when B is zero, F(C) [-]
becomes a linear distribution functions. A larger factor B shapes F(C), which results in a
function which has a variable derivative between 0 and 1 (seefor an example of the shape of
F(C), Figure 6.5). The amount of water that can be stored is determined by the maximum
storage capacity (Crax [MmM]). The storage at time t at the position containing the highest
amount of storageis indicated by C(t) [mm]. Through F(C) [-] thisamount is converted into
an average storage amount over the basin, S(t) [mm]. The part of the rainfall per timestep
that is treated as excess rainfall becomes larger when soil content increases.

Routing

The sub-surface excess rainfall (P, [mm/day]) is distributed by a factor a [-] to the short
residence reservoirs, flowing out according to K, [d], and by a factor 1-a [-] to one long
residence reservoir which flows out according to residence time K¢ [d']. It is assumed that
the slow reservoir represents groundwater induced flow and the quick-flow reservoirs
represent all faster responding processes such as sub-surface flow, surface runoff, road-
runoff, etc. When field capacity is reached in the total catchment (Crax [Mm]), all excess
rainfall is directly routed through the quick-flow reservoirs with short residence time (K).
Thisflow is labdled Pe; [mm/day] and represents only overland flow processes.

6.5.3 Calibration

Since for each sub-basin a lumped conceptual model was formed, the precipitation is
assumed to be equally distributed over the catchment. Potential evaporation is assumed to
have a cosine form over the year, approaching its minimum on January, 1% and its maximum
on July, 1%, The total amount of yearly evaporation was derived from the HBV models.
Approximately the same approach was used in the HBV models in FEWS-Rhine to in-
calculate evaporation: an average value per month is assumed, which is equally subdivided
over the days in the month. The potential evaporation was dightly altered in order to
produce a correct outflow of mass by discharge in comparison to measured values.

Crax and B were altered in order to calibrate the height of the discharge peaks. Kq was
altered to time the peaks correctly and Ks and a were changed in order to obtain a redlistic
rate between quick and slow flow. Naturally, slow flow should not exceed the measured
total discharge. Since the influence of snow pack and snowmelt processes at Lobith
dominates during winter, the parameter R, gave a clear signa in winter periods. It was
therefore considered after calibration of all the other parameters.

The scores for calibration and the resulting parameters are given in the tables below:
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Table 6.3: Simulation results from runs of HYMOD models for calibration (1997-1998) and validation
period (1994-1995)
R? (Nash/Sut) [-] RMSE [m?¥/s]

Period Mosel Neckar Lippe Mosel Neckar Lippe
1997-1998 (Calibration) 0,945 0,799 0,899 82,2 57,4 17,9
1994-1995 (Validation) 0,964 0,888 0,948 133,3 47,2 15,8
Table 6.4: Parameter values

_ Crmax i M; [mm/(°C K -l -l

Sub-catchment [mm] B [-] day) af] | Kq[d™] Ks[d7]
Lippe 300 0,9 6 0,7 0,35 0,03
Mosel 185 0,8 2 0,6 0,65 0,025

Neckart 160 0,6 2 0,35 0,8 0,015

The calibration results are shown in appendix-section C.2

6.6 Sensitivity[analysis

The sensitivity of theresults for parameter anomalies in the hydrological models weretested
by changing parameters of the hydrological model for the Mosd and test on the calibration
period 1997-1998. A small period, the winter of 1997-1998 is shown in graphs below. The
flux parameters K, and Ks were not tested on uncertainty, since these can be quite accurately
estimated on the basis of timing of peaks. The yearly amount of potential evaporation (E,),
the maximum soil moisture capacity (Cnax) and the spatial variation of the soil moisture
capacity (B) determine for the largest part how the soil moisture state of the model behaves.
Since the rdiability of especially pesk estimations is seriously dependent on the soil
moisture state, these 3 parameters are considered to be very important and are taken into
account in this sensitivity analysis.

The results are given in Figure 6.6, Figure 6.7 and Figure 6.8. The colours represent the
different simulations. For each simulation, the discharge (solid line) and the maximum soil
moisture state (dashed line) is given, using individual vertical axes. Simulations given in
blue represent the base simulation using the calibrated parameter set.
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Figure6.6:  Sengtivity analysis on average potentia evaporation. The calibrated parameter set uses average
potentia evaporation of 1,5 mm/day.

The potential evaporation was varied in a wide range, because the physical validity of the
evaporation numbers chosen is very small (cosine form). Evaporation can easily vary alot,
because it is influenced by many factors, such as temperature, the number of hours of
sunshine per day, interception, wind velocity and vegetation. None of these individual
influences have been taken into account determining the potential evaporation. It is a
therefore considered as a very unreliable factor. Figure 6.6 shows that the soil moisture state
is highly dependent on evaporation. It should be considered that the HBV models in FEWS-
Rhine also contain this uncertainty.
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Figure6.7:  Senstivity anaysis on maximum soil moisture capacity. The caibrated parameter set uses
maximum soil moisture capacity of 175 mm
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In case the soil moisture capacity is exceeded by rainfall excess, the quick flow component
of the model is fed by overland flow (Pe;) which results in a sudden fierce reaction of the
catchment on precipitation causing discharge peaks that are significantly higher than when
field capacity is not reached. An enlargement of the maximum soil moisture storage
therefore creates an extra buffer for excess rainfall. The logical consequence is that peaks
are lowered, especialy when soil moisture content is approaching field capacity.
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0 T T T 0
Oct-97 Nov-97 Dec-97 Jan-98
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B=10------- field capacity

Figure6.8:  Senstivity anaysis on variation of soil moisture capacity. The caibrated parameter set uses
variation of soil moisture capacity of 0,8

A low valuefor B means that the spatial bias between the soil moisture capacity throughout
the catchment and the maximum soil moisture capacity is small. A high value for B means
that there are areas in the catchment which have a much smaller soil moisture capacity than
Crax- The distribution function F(C) will have a more smooth form which means that the
total soil moisture capacity is lower, but will be reached more gradually than in the case that
B islow. A low B can result in a more sudden appearance of peaks. The latter effect is not
noticeable in the test dataset but can occur especially during flash floods when the
catchment saturates in every case. Figure 6.8 shows that a value of B of 1,0 results in a
higher sub-surface flow during increase of soil moisture and that soil moisture content is
increasing reatively slowly. It confirms that there is more variation in the catchments soil
moisture capacity becauseit is harder for the catchment to retain water.
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Figure6.9:  Theeffect of parameter uncertainties on discharge computation derived from more than one year
of computation

Figure 6.9 shows that the hydrological model for the Mosel is the most sensitive for
uncertainty in potential evaporation, which is for a large part caused by interception. The
parameter uncertainties are not studied here.

In every sensitivity simulation, the differences in the soil moisture states are differing more
and more with increasing lead time using different parameter values. For the state updating
period this is very essential: an initial soil moisture state that unjustly almost reaches the
maximum soil moisture capacity will result in more overland runoff and thus higher
discharge peaks than occur in reality. An extra verification step is therefore advisable but is
not executed here since more reliable data was lacking.

6.7 Applicability[bf[fthe[MLR[Inodel[¢oncept

The applicability of the MLR model concept for other river basins is a topic of discussion

for at least two important reasons:

1. Inthe MLR modé for discharges at Lobith, the assumption is made that there is always
a high correlation between precipitation falling in one sub-basin and precipitation falling
in neighbouring sub-basins and due to hydrological similarities also the discharge in
outflow points of sub-basins are correlated. This assumption can be made because
floods usually occur in winter when fronts usually cover a large part of the Rhine
catchment. This might however not be the case in for instance a tropical country, where
the occurrence of large rainfall amounts resulting in floods is mostly caused by other
weather mechanisms such as monsoon rains or tropical storms which can also cause
rainfall very locally instead of over a large area. Also the hydrological characteristics of
sub-basins might differ so much that correlations between hydrographs are not as large
as was shown in this research.
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2. The second reason is that the MLR model concept works for the Rhine due to the fact
that the surface of the Rhine basin is of a significantly smaller scale than the size of a
depression. All fronts moving over the catchment will therefore move in approximately
the same direction and will by approximation always have a high coverage on the Rhine
catchment. A much larger catchment might have a surface comparable or even greater
than the covering surface of a depression which makes the above assumptions much less
reliable. Fronts might move in different directions and the depression will not
necessarily cover alarge part of the catchment.

In smaller river basins than the Rhine basin, the grid size of the weather input data might
also become a problem when such a modelling concept is applied. Floods in a basin which
is smaller than a grid cell, can be caused by rain which falls very locally, but which is spread
out over onegrid cell in the weather prediction.

Finally, the application of the MLR model at Lobith is also questionable during summer
periods. A regression variable contains information about more sub-basins than just the one
it represents. In winter this assumption is generally valid since neighbouring basins mostly
receive a comparable amount of rain and evaporation does not play a dominant role in the
soil state. In summer however, rain mostly occurs more locally and the differences in
evaporation numbers become more important. Therefore the differences between the
hydrological states of sub-basins and thus their reaction on rainfall will be larger. This
makes the regression equation less valid for summer periods. The model could be improved
on this point by sampling more sub-basins in the regression equation than just the three
presented here.
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7  Application[quick[$can[tool

7.1 Introduction

The EPS quick scan tool, described in the previous chapter can have both a practical
application during real-time flood forecasting and a research application.

If it will be used in practice, the MLR model should answer the following question: “Is there
chance of a flood event in the next 4 days according to developments in the weather?” The
spread of this answer induced by EPS should provide the probability. Preferably, forecasting
can even be done further ahead than 4 days.

In order to provide a probability of occurrence, athreshold value is needed that indicates the
divide between a flood-event and no flood event. When discharge computations of ensemble
members exceed the threshold value, these members could be re-computed in FEWS-Rhine.
The MLR model can compute EPS forecasts every day while FEWS-Rhine only computes
the pre-sel ected members from the ML R model during flood risk periods.

Also, more research could be done on the use and rdiability of EPS weather forecasts in
flood forecasting. The statistical reliability of EPS for instance could be a subject for further
study. In order to make statistical solid remarks about the rdiability of EPS, a considerable
amount of EPS forecasts should be computed. If for instance one year of EPS forecasts
would be computed in FEWS-Rhine and one EPS forecast computation costs 2 hours of
time on afast computer, it would take about 2 months of uninterrupted computation time to
produce one year of EPS flood forecasts. The computations for such research could be done
using the EPS quick scan tool. A preliminary research should be done on the reliability of
FEWS-Rhine versus thereliability of the quick scan tool.

The next section shows how EPS forecasts are made using the quick scan tool and how they
can be judged according to a threshold value.

7.2 EPS[{orecasts

RIZA is responsible for the pre-warning of floods in the Netherlands. Since forecast periods
should be extended to at least 4 days, the EPS forecasts can provide an uncertainty
bandwidth caused by weather uncertainties. RIZA has instated three warning levels based on
observations and predictions at Lobith:
Water level has reached 14 m + MSL (Discharge: #6300 m¥/s) and 15 m + MSL
(Discharge: #8000 m’/s) is expected: flood service is activated: forecasts are published
by an information centre.
Water level has reached 15 m + MSL and 16 m + MSL (Discharge: +10100 m%s) is
expected: alarm phase 1 isinstated: regional crisis centres are gathered.
Water level has reached 16 m + MSL and higher levels are expected: alarm phase 2 is
instated: national crisis centres are gathered.
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Let us say that the flood event of 1995 has not taken place yet and that an operational
forecast system consisting of FEWS-Rhine and the EPS quick scan tool is available. Every
day, one computation of EPS is made to provide the flood forecast with uncertainty. The
warning levels are taken into account using the complementary discharge values from the
discharge stage relation at Lobith. The forecasts start on January, 20™ 13.00 hours and last
until January, 30™ 13.00 hours. In redlity, a continuous update of the hydrological models
should be used. In this test case, a state updating period for the hydrologica models was
used of 140 days, thus starting during September, 1994.

Measured discharges must be used inthe MLR model for as long as they have already taken
place and are available. Discharges that take place after the start of the forecast period are
computed by the hydrological models. The three hydrological models are run 50 times, each
time using a different EPS member. The sub-basin hydrographs of all 3 sub-basins using all
50 EPS members are combined into the regression equation resulting in 50 hydrographs at
Lobith.

Appendix D shows the hindcasted hydrographs at Lobith for every EPS forecast including
some days before the start of the forecast. The measured discharges of the same period are
also included. Average EPS generated daily accumulated precipitation numbers and the
measured precipitation numbers were included. For every forecast and forecast period in
whole days (1 to 10) an empirical distribution function is given of the discharge versus the
numbered ensemble members. The dotted vertical lines in the distribution functions show
the 3 warning levels. In this way the distribution functions show how many ensemble
members cause exceeding of the warning levels for every forecast period between 1 and 10
days.

The averaged EPS accumulated precipitation shows an overall underestimation of
precipitation depth while precipitation numbers arerising. Therefore the results of the rising
limb of the event also show an overall underestimation. When precipitation amounts are
lowering again, EPS makes a serious overestimation of precipitation. The last forecasts
show an overall overestimation according to it. From the stair plots, the ensemble members
are sorted on the exceeding or not exceeding of the warning levels of RIZA after 4 days lead
time. The appearance of higher discharges after more lead time has also been taken into
account, which means that if the water level is expected to drop after these 4 days, the
warning level is lower. Every ensemble member has been given a probability of occurrence
of 0,02, which is a correct assumption according to literature.
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Figure7.1:  Probability of exceeding of warning levels as defined by RIZA, according to the EPS quick scan
tool after 4 days lead time. The red arrowsindicate what should have been forecasted

If the EPS quick scan tool had been available in 1995 and would have been used as
presented here, it would have forecasted the probability of exceeding of warning levels 4
days ahead in time quite well. This is shown in Figure 7.1. In most cases, the red arrow,
which indicates what should have been forecasted according to what happened in redlity,
points at the largest probability of occurring. The probability forecast of January, 22™ is not
accurate enough. The underestimations of precipitation intensities are quite serious in the
first 2 days of the EPS forecast. This, in combination with bias caused by the hydrological
models and regression equation, causes an underestimation of the discharge in the first 4
days lead time of the discharge forecast, which is too large to forecast the correct warning
level. Apparently thereis alot of atmospheric activity during these first 2 days. The activity
of the atmosphere should therefore be considered as a factor that can make the probabilistic
discharge computations less reliable. The forecast of January, 26" is a typical example of a
forecast that could have been re-computed in FEWS-Rhine, since it gives high probabilities
for both the 2™ and the 3 warning level.

7.3 Conclusions

The results of 11 computations of EPS show that the EPS quick scan tool works. The
guestion remains if EPS forecasts are reliable enough to use for uncertainty prediction. The
rain intensity error in EPS is a large shortcoming in the use of EPS forecasts for flood
forecasting purposes since less water means less discharge.

The intensity error can also cause a second order effect on the hydrographs peaks. It can
cause the difference between total saturation of the soil moisture capacity or not. When
saturation is reached, the reaction of the hydrological models of the sub-basins on rainfall
will shift considerably from predominantly slow and delayed towards fast and direct.
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The regression equation also causes errors. Large peaks are mostly slightly underestimated.
Since the calibration of the MLR model gave quite accurate results, the largest
underestimations are still caused by EPS. Computations from FEWS-Rhine should therefore
also contain the same underestimations during rising intensity. It can be concluded that
computations from EPS forecasts should be treated with much care since their accurateness
can be quite low, especially during large intensity forecasts.
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8 Conclusions[and[fecommendations

The conclusions (section 8.1) are assembled according to the objectives mentioned in
section 1.6. The conclusions about the application of the model that was derived in this
study are also given.

Recommendations, related to this study, are given in section 8.2. Possible research on the
improvement of the EPS quick scan tool, developed during this study, and the application of
EPS in flood prediction is given. Finadly, general recommendations on possible
enhancements in hydrological modelling in the Rhine basin are given.

8.1 Conclusions

8.1.1 Influence[éf[precipitation[¢haracteristics[dn[flood[prediction

Previous research on the influence of variations in weather characteristics [van den Dooal,
2004] and further research in this study shows that especially uncertainties in prediction of
precipitation intensity and location of fronts can have considerable influence on flood
predictions at Lobith. Simulations in FEWS-Rhine using parameterized rainfall events show
that:
a higher precipitation intensity produces an increase in the peak discharge that is almost
proportional to theincreasein intensity.
when fronts pass shorter after, and thus closer to each other, the Rhine basin reacts faster
and produces higher peaks. The pesk increase is caused by the fact that succeeding
fronts release their precipitation on the same flood wave. Larger succeeding distances
cause rainfall, which will induce smaller separate discharge peaks instead of one large
discharge peak.
a location uncertainty of a front as large as the distance between two sub-basins can
cause precipitation to fall either in one sub-basin or in the other. Since sub-basins react
differently on rain, the resulting discharge is influenced by this in the timing and
steepness of discharge pesaks in the hydrograph at Lobith.
the use of low resolution precipitation data can suggest that rainfall is widely spread,
whilein reality it falls locally. It can cause rainfall in the wrong sub-basin or rainfall that
unjustly falls outside the Rhine basin.
The direction and velocity of fronts are only important when they move in the wave
direction (thus moving downstream) and approach the wave velocity. This causes a
coincidence of fronts with the flood wave. Regular flood inducing fronts on the Rhine
catchment do not follow such patterns, thus uncertainty in direction and velocity of fronts do
not have significant influence on flood predictions in the Rhine basin.

According to ensemble forecasts (EPS), uncertainty in precipitation occurs on the scale of
total weather systems, a scale far greater than the size of the Rhine catchment. It is therefore
not possible to map an uncertainty bandwidth in discharge predictions by making a visua
based comparison of characteristics of fronts in EPS members. Mapping of influences of
uncertainties in weather forecast on discharge predictions can therefore best be done using a
hydrological modelling approach, computing discharge from each EPS member. FEWS-
Rhine is capable of doing this but computation is too time consuming to handle 50 EPS
members during operational forecasts.
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8.1.2 Approach[{or{including[weather[iincertainties

The following can be concluded about a possible model ling approach that can give a quick
indication of discharge volumes induced by different ensemble members from ensemble
wesather forecasts:

A multiple linear regression equation containing preceding daily accumulated precipitation
numbers on the Rhine basin, predicts the patterns (timing of peak and recession) in the
hydrograph at Lobith quite accurately. The magnitude of the discharge however, cannot be
computed accurately since other information like hydrological characteristics, states,
evaporation variations and snow delaying effects have not been taken into account. This
information is apparently too important to disregard in the Rhine basin.

Thereis a strong correlation between discharges in sub-basins upstream from Lobith and the
discharge at Lobith considering a phase lag. The phase lag that gives the highest correlation
is equal to an approximation of the travel time of flood waves in between these points. A
multiple linear regression equation containing these upstream discharges as regression
variables can be formed to estimate the discharge at Lobith on a daily averaged basis,
making a physical routing procedure redundant. The discharges in the upstream points can
be estimated using lumped conceptual models. These simplifications make discharge
predictions with EPS members considerably faster.

Finally, there is also a strong correlation between the discharges of neighbouring sub-basins
of the Rhine. Apparently both the meteorological circumstances and hydrological
characteristics of neighbouring sub-basins of the Rhine have a strong resemblance. This has
the advantage that not all sub-basins need to be included in the regression equation.

Application of the above concepts using the HYMOD model structure [Vrugt et al., 2003]
including a snow routine for rainfall runoff modelling of 3 lumped hydrological models for
sub-basins of the Rhine (Lippe, Mosel and Neckar) shows that quite accurate daily averaged
discharge numbers at Lobith can be obtained in this manner.

8.1.3 Application[éfimodel[én[EPS[forecasts

Theregression model can be applied by computing discharges from EPS forecasts in a quick
and indicative way. The forecasts can be mapped in for instance a probability empirical
distribution function of discharges. As a result the probability of exceeding of the threshold
water levels at Lobith of 14.00, 15.00 and 16.00 m + M.S.L. as defined by RIZA® can be
given.

The EPS forecasts for the period of January 20™ 1995 until January 30™ 1995 show serious
underestimations of the precipitation intensity during rising intensity. Especially if lead
times of 4 days and more are considered this comes to light. A decline of the intensity,
which happed after January, 30" showed a serious overestimation of intensity. This effect is
directly noticeable in the flood predictions using EPS. Therefore especially the forecasts
using EPS with larger lead times than 4 days should be treated with care. Obviously, the
MLR model approach does not solve the problem of rainfall intensity underestimation.

! Institute for Inland Water Management and Waste Water Treatment
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8.2 Recommendations

8.2.1 EPS[4uick[$can[tool

Little is known about the quality of the forecasts made with the MLR modd. It could be
assessed by comparing its results with the ones obtained by FEWS-Rhine. A number of
events should be computed in both the MLR model and FEWS-Rhine. The main criterion
should be if the tool will always sdlect the ensemble members that indeed lead to high
discharge peaks according to the results from FEWS-Rhine. A FEWS-Rhine on daily basis
exists. This model could be used for this purpose.

Accordingly, the performance of the MLR model may be improved, for instance by adding
regression variables and re-deriving of the regression equation with a larger reliable
calibration period than was used in this research. Especially data containing a number of
floods, combined with precipitation and temperature data for extra validation of the rainfall
runoff models would be useful.

The discussion whether or not the MLR model concept is applicable on other catchments
and/or other situations (see also section 6.7) is worthwhile to investigate. The concept can
betested onriver basins that differ for examplein:
Order of magnitude of the catchment surface in relation to the order of magnitude of the
weather systems.
Number of sub-basins with significant contribution on the discharge in the point(s) of
interests.
Type of weather mechanisms that cause floods.

When the EPS quick scan tool is used, an extension of forecast possibilities of FEWS-Rhine
with only a limited number of ensemble members would be valuable. During data
importing, the user should be able to select the ensemble members he/she wants to compute.

The possibility of deriving forecast uncertainties with the MLR model could be extended by
computing higher resolution ensembles such as DMI mini ensembles (72 hours ahead, made
by nesting HIRLAM in ECMWF). The quality of these ensembles is probably higher than
ECMWF ensembles, since resolution determines for a great part the performance of EPS
forecasts. The lead time of 72 hours of DMI ensembles is large enough to provide discharge
predictions of 4 days lead time, because the first 2 days lead time of discharge forecasts at
Lobith are hardly influenced by weather forecasts.

The dry summer of 2003 has proven that not only flood predictions but also drought
predictions can be useful for example for farmers and power plants. EPS might also be used
in combination with an EPS quick scan tool for forecasting probabilities of drought instead
of floods. Evaporation and geohydrological processes will fulfil a larger role in these
predictions and must be taken into account more detailed than was done for flood
predictions e.g. by replacing the slow flow reservoir by a geohydrological module in the
HYMOD RR mode structure.
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8.2.2 Application[6f[EPS[in[flood[forecasting

The application of the EPS quick scan tool shows that the assumption that the model
creating EPS forecasts is flawless is somewhat dubious. Research to application of EPS has
proven that the performance of precipitation forecasts is lowering when high precipitation
intensity is expected. Two possible improvements are presented here.
Firstly, the EPS forecasts might be improved if therainfall time series are calibrated on their
bias before they are used for computation. Possibilities of calibration methods are:
comparing precipitation observations with EPS forecasts
comparing EPS forecasted discharges with observed discharges

Thefirst option is based on improvement of the source of the computed forecasts. The last
option isaimed at improving the estimate of the probability of occurrence of floods, passing
a cetan threshold value In the latter case one cannot be absolutdy certain that the
calibration only involves the meteorological data. It might also partly correct hydrological
shortcomings.

Both methods can be applied by for example ranking ensemble members based on their
possible consequences in terms of floodings, for example using Signal Detection Theory
(see section 3.4.1). A forecasted situation in which a pre-determined threshold is exceeded
should then be seen as a forecasted event. If, for example, 20% of the EPS members result
in exceeding of the threshold, this percentage can be considered as the probability of
exceeding. The number of EPS members that indeed forecasts this event provides then the
probability of occurrence that the event will happen. In this case EPS forecasts that for
example predict a 0-20%, probability of occurrence can be counted, and 20-40%, etc. Over
thetotal calibration period, one can check if indeed in 0-20% of the cases the event occurred
or not. The calibration should alter the EPS forecasts in such a way that the latter check
indeed shows to a certain extend a correct resemblance between probability of occurrence of
an event and the true occurrence. Preferably this correction should be derived from physical
indicators that determine how large the under- or overestimation is. The performance is for
example dependent on the season. For a statistical solid calibration, a large historical period
of precipitation observations should be compared with the EPS results.

A second improvement could be obtained by using uncertainty predictions based on other
factors than perturbations in the initial conditions. These perturbations become the dominant
factor of uncertainty after 2 days lead time. The uncertainty in the first 2 days is dominated
by other factors.

8.2.3 General[ftecommendations

During this study, the question raised which uncertainties are dominant in flood predictions
at Lobith using tools such as FEWS-Rhine: hydrological or meteorological uncertainties.
The fact that the influence of weather forecasts is hardly noticeable in the first 2 days of a
flood forecast but is very much noticeable for larger lead times makes it interesting to study
the dominance of these uncertainties with extending forecast periods and find a way to map
the hydrological and meteorological uncertainties individually.
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In the HBV modds in FEWS-Rhine, potential evaporation is assumed to be constant
throughout a month. This assumption however is very rough. The hydrological models
produced during this study proved to be very sensitive for the state updating. The
hydrological state is very dependent on the amount of evaporation. The estimation of
potential evaporation in the HBV models of FEWS-Rhine and the HYMOD models of the
quick scan model produced in this study can be enhanced by computing it from atmospheric
conditions such as the temperature, number of hours of sunshine, wind velocity, relative
moisture.
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Appendices

A FEWS[Rhine[imodel

A.l HBV[models

The routing procedure in FEWS-Rhine is fed by several rainfall runoff models based on the
conceptual HBV model.

River Rhine Basin

gauging station used at the BfG for
$ hydrodynamic modelling of the river Rhine

[1] HBV subbasin
HBV district (different colours)

100 0 100 Kilometer

Figure A.1l: Modelled sub-basins of the Rhine basin (Federal Institute of Hydrology (BfG), 2001)
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Below a description of the HBV model is given'.

The HBV-model (Swedish meteorological and hydrological Institute (SMHI), 1996) is a
conceptual precipitation-runoff model, which simulates snow accumulation, snow melt,
actual evaporation, soil moisture storage, groundwater depth and runoff. The model input
consists of precipitation, temperature and potential evaporation. The first versions of this
model have been developed in the early 70’s. Originally it was used for runoff simulation
and hydrological forecasting only, but over the years the number of objectives for which the
model has been used increased. As a consequence, the model has been modified a number of
times. Figure 2 shows a schematic view of the HBV-96 model. The model consists of three
major components: a snow routine, a soil routine and a runoff response routine. Each of
these three components is discussed separately.

The snow routine

Precipitation enters the model via the snow routine If the air temperature, T, is below a
user-defined threshold TT (» O °C) precipitation occurs as snowfall, whereas it occurs as
rainfall if T3 TT. However, the threshold temperature can also be extended to an interval of
length TTI. Within this interval precipitation is a mix of snow and rain, decreasing linearly
from 100% snowfall at the lower end of the interval to 0% at the upper end of the interval. If
precipitation occurs as snowfall, it is added to the dry snow component within the snow
pack. Otherwise it ends up in the free water reservoir, which represents the liquid water
content of the snow pack. Between the two components of the snow pack, interactions take
place, either through snow melt (if temperatures are above threshold TT+DTTM) or through
snow refreezing (if temperatures are below threshold TT). The respective rates of snow melt
and refreezing are;

Snowmelt =CFMAX (T - TT) ;T>TT +DTTM
(A1)

Refreezing = CFR* CFMAX(TT - T) T<TT

where and CFMAX (mm/°C d) and CFR (-) are user defined model parameters. The fraction
of liquid water in the snow pack (free water) is at most equal to a user defined fraction,
WHC (-), of the water equivalent of the dry snow content. If the liquid water concentration
exceeds WHC, dther through snow melt or incoming rainfall, the abundant water becomes
availablefor infiltration into the soil:

DP = max{(SN V\IHC*SD),O} (A2)

where OP is the volume of water added to the soil module (mm), SW is the free water
content (mm) of the snow pack and SD is the dry snow content of the snow pack (mm).

! Text taken from Weerts, Diermanse and Werner: Model uncertainties and ensemble forecasting,
Delft, WL| Delft Hydraulics, 2003
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KHQ = Recession at HQ
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Figure A.2:  Schematic view of a subbasin of the HBV-96 model (Swedish meteorological and hydrological
Institute (SMHI), 1996)
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Figure A.3:  Schematic view of the snow routine

The soil routine
The incoming water from the snow routing, DP, is available for infiltration in the soil
routine. In this routine runoff is generated according to the following power relation:

b
DQ = 6GS|_\/I9 DP (A.3)
F. o

where [Q is the amount infiltrating water (mm) which runs off directly in the same timestep
and b is an empirical parameter (-). Application of equation (A.3) implies that the amount of
seepage water increases with increasing soil moisture content. The remaining part fraction
of theinfiltrating water is added to the available amount of soil moisture, SM (mm). F. (mm)
is the maximum soil moisture storage.

A percentage of the soil moisture will evaporate. This percentage is related to the measured
potential evaporation and the available amount of soil moisture:

E =M E  SM<LP*F,
LP*F, "
(A4)
E,=E,  ;SM3LP*F,

where E; is the actual evaporation (mm/d), E is the potential evaporation (mnvd) and
LP(-) is a user defined threshold, above which the actual evaporation equals the potential
evaporation.
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The parameter IFC (or IFCO and IFC1), if distinction is made between forest zones and
other zones) introduces an interception storage (mm). From this storage, evaporation is
equal to the potential evaporation, aslong as enough water is available.

The runoff response routine
The volume of water which becomes available for runoff from the soil moisture routine is

transferred to the runoff response routine. In this routine the runoff delay is simulated. Two
types of runoff are distinguished:

-Quick runoff
-Slow runoff (baseflow)

Two reservoirs are defined to simulate these two processes: the upper zone (generating
quick runoff) and the lower zone (generating slow runoff). The available runoff water from
the sail routine in principle ends up in the lower zone, unless the percolation threshold,
PERC (mnvd), is exceeded, in which case the excess water ends up in the upper zone:

DLZ = min{ PERC, DQ}

(A.5)
DUZ = max{0,(DQ- P,)}
where LUZ is the volume of water added to the upper zone (mm) and OLZ is the volume of

water added to the lower zone (mm). In return, capillary flow from the upper zone to the soil
moisture routine occurs:

capillary flux:CFLUX*g (A.6)

C

where CFLUX (mnVd) is a user-defined parameter.
The upper zoneis a non-linear reservair:
Q, = K*uz®® (A7)

where Qp is the runoff from the upper zone (mm/d), K is the recession constant, UZ is the
storage in the upper zone and a (-) is a parameter which represents the non-linear behaviour
of runoff response. In order to prevent the outflow from exceeding the content of the upper
zone, asmaller time step is used for this reservair.

The value of parameter K is derived from three other parameters: a , KHQ (1/d) and HQ
(mm/d). The value of HQ is a certain level of the outflow rate, Qo, of the upper zone for
which the recession rate is known to be equal to KHQ. If UZyq is defined as the content of
the upper zone for which the outflow rateis equal to HQ, we have:

HQ=K*Uz, % =KHQ*UZ,,

Through dimination of UZq, we obtain:
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&HQ 8"
=K* —Q+ P K=KHQ"HQ? (A.8)
§KHQ
The value of K is aobtained from this equation (unit of K varies with value of ALPHA see
HBV Manual, chapter 8 (Swedish meteorological and hydrological Institute (SMHI), 1996)).

For a = 0, the unit of K equals (1/d).

HQ

The lower zone is a linear reservoir, which means the rate of runoff, Q; (mm/d), which
leaves this zone equals:

Q =K,*LZ (A.9)
where K, is the recession constant (1/d).

Subsequently the generated runoff (Qo + Q,) is transformed through the use of a unit
hydrograph in order to obtain a proper shape of the runoff hydrograph. The unit hydrograph
is triangularly shaped, with atime base equal to parameter maxbas (d).

Correction factors

If the long term water balance of the model is incorrect, the precipitation and potential
evaporation values can be corrected by factors PCORRR (-) and ECORR. (-) Instead of
PCORR, also different correction factors can be applied for rainfall (RFCF, (-)) and snowfall
(SFCF, (°)).

Furthermore, additional correction factors have been introduced for precipitation,
temperature and evaporation to account for e evation influences:

P(z) =(1+ PCALT *(z- z,))* P4
T(2) =T, - TCALT*(z- z) (A.10)

E(2) =(1- ECALT*(z- z,))*E,

where

z = dtitude (m)

Zret = referencealtitudelevel (m)

P(2) = precipitation as afunction of z (mm)

T(2) = temperature asa function of z (°C)

E(2 = evaporation as a function of z (mm)

PCALT = correction factor for precipitation (1/m)

TCALT = correction factor for temperature (°C/m)

ECALT = correction factor for evaporation (1/m)

Pret = observed precipitation at thereferencelevel (mm)
Tret = observed temperature at the reference level (°C)
Ee = observed evaporation at the reference level (mm)

For days with precipitation, the HBV-96 applies an exponential correction factor to the
measured potential evaporation:
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(P) =€ *7E,, (A1)

pot

HBV-96 also offers the option to discriminate between forest zones and other zones. Rates
of snowmelt and refreezing, are corrected by a factor FOCFMAX (-) in forest zones, while
evaporation rates are corrected by a factor CEVPFO (-).

A.2 SOBEK[River[model

The hydraulics of the Rhine are modeled in Sobek [Delft Hydraulics, 2000]. Sobek is a
hydraulic one-dimensional model. The bases of this model are the De Saint-Venant
equations. These equations in one dimension are:

Continuity of mass equation: TQ + A =0 (A.12)
™x 9t
| 1Q, 186 ‘ITh Q[Q
Momentum equation: - —-0———=0 (A.13)
it mEa T P Som

Where Q = discharge (m%s)
A; = Cross section flow area ()
A, = Total cross section area (m°)
x = distance along the channel (m)
t =time(s)
h  =water leve depth in the channel (m)
C = Chézy coefficient (m®%/s)
g = gravitational accderation (nm/s?)

The momentum equation consists of four terms', each describing a process that is involved
with the water transport. These terms are the local acceleration term, the convective
acceleration term, the water level gradient and the bottom friction term. Sobek uses these
terms to perform dynamic wave computations.

1 If necessary the momentum equation can be extended with wind shear stress, eddy |osses and
density differences.
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Figure A.4: Sobek-schematization of the Rhine

The Rhine is schematized from the upstream boundary Maxau to the downstream
boundaries far downstream of Lobith. Figure A.4 shows the Sobek-schematization of the
Rhine. The boundaries are located at Werkendam, Krimpen aan de L ek and Olst. A reach of
the Mosel from Cochem is added to this schematization. The Rhine is divided in several
reaches with representative cross-sections. These cross-sections describe the geometry and
the hydraulic roughness of the riverbed and floodplain. The outflow of the tributaries
computed by the hydrological model is used as inflow for the hydraulic model. L osses or
gains to groundwater calculated by the groundwater model are modeded as latera
discharges. The spatia resolution of the numerical model is 1000 meter and the temporal
resolutionis 1 hour.

A.3 Groundwater[model

Due to rapid changes in discharge that occur especialy during flood events, exchange of
water between the river and groundwater can have influence on the discharge. During the
rise, a large head between river and groundwater level will cause a loss of river water
towards soil, due to which river discharge reduces and groundwater leve rises. The falling
limb can cause the river head to drop below groundwater level, causing lateral inflow in the
river. This process was taken into account by a small groundwater procedure, modelled by
HKV consultants, modelling lateral flow in between Andernach and Lobith based on
Darcy’s law. The reach Andernach-Lobith was sub-divided in 7 reaches each having a
representative cross-section. A correction factor for travel time and wave attenuation is
applied. For more information about the groundwater module, see aso Barneveld and
Meijer (1997).

8 WL[] [Pelft[Hydraulics,[Pelft[University[dfTechnology,[KNMI,[RIZA



Propagation[¢flWeather[forecasts[yincertainties[in Master{thesis Precipitation[ihterpolation
flood[florecasting

B Precipitation[interpolation

The EPS forecasts used in this
research were interpolated to basin
centre time series, just like FEWS-
Rhine does. In this way it was easy to
check if FEWS-Rhine uses the EPS
forecasts in the same manner as was
donein this research.

The hydrology in FEWS-Rhine is
sub-divided in 118 sub-basins,
modelled in HBV. For eacht sub-
basin, EPS grids are interpolated to
basin centre time series that are
generated using Kriging method with
the 9 closest grid cells (see Figure
B.1. The white rectangles represent
the grid cells of the EPS forecast used
for interpolation to the yellow basin
centre). The output from the sub-
basinsisinput for the SOBEK routing
module.

Unfortunately an unknown variogram was applied. Therefore the inverse distance method
was used instead to approximate these numbers for the analysis of the ensemble members.
Theinverse distance method can be described with the following formula:

FigureB.1:  Grid cells used by FEWS-Rhine for
interpolating to the yellow wesather station

a’id(xv)
Istation (XO’ yO) = I:lign— (Bl)
al
i=1
with
b
/= n1/ D (B.2)
a1ob
j=1
where:
Z (% ,yi):Observation in point x ,y; [mm/hr]
/i Weight of observation 1(x,y)) [-]

1(Xo,Yo): Estimate at x,y; [mnvhr]

D:: Distance between Xo,yo and x; ,y; [km]

b: Power determining the weight of the distance [-]

n: Number of cells taken into account. Inthiscasen=9
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The power b is estimated to be equal to 2. The validity of this value was checked by
comparing precipitation sums created using the inverse distance method with sums observed
in FEWS-Rhine,
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Model[¢alibration

C Model[¢alibration

C.1 MLR[model

Below the plots for calibration and validation runs for the MLR model for Lobith are
presented. Plots of the data series and scatter plots of the observed versus the computed

discharge are shown.

The last validation period (2001-2002) involves only regression with measured discharges
since no reliable meteorological was available for this period.
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2000 n | 30
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Figure C.1: Calibration runfor MLR model a Lobith, , October 1997 until December 1998
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Figure C.2:
data

Scatter diagram of calibration run Lobith, October 1997 until December 1998, using observed
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Figure C.3:
data from HYMOD models

Scatter diagram of calibration run Lobith, October 1997 until December 1998, using computed
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Figure C.4:  Validation runfor MLR model at Lobith, September 1994 until February 1995
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Figure C5:  Scatter diagram of validation run Lobith, September 1994 until February 1995, using observed

data
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Figure C.6:

datafrom HYMOD models

Scatter diagram of validation run Lobith, September 1994 until February 1995, using computed
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Figure C.7:  Validation runfor MLR model at Lobith, October 2001 until January 2002

10000
2 8000 .o
E .
S
5 6000 -
=
(8]
2
©
3 4000
3
S 2000
0 T T
0 2000 4000 6000 8000
Observed discharge [m3/s]
optimum line ¢ scatter —rregression line

Figure C.8:  Scatter diagram of validation run Lobith, October 2001 until January 2002, using observed data
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C.2 HYMOD[RR[$ub[models

Below, calibration plots for the sub-models of Ruhr, Mosel and Neckar are presented. Asin
appendix section C.1 also the data series and scatters of observed versus computed

discharge are presented.
C.2.1 Mosel
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Figure C.9:  Calibration runfor HYMOD-RR model a Cochem for Mosel tributary, October 1997 until
December 1998
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Figure C.10: Scatter diagram of calibration run Mosel, October 1997 until December 1998
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Figure C.11: Validation runfor HYMOD-RR model at Cochem for Mosd tributary, September 1994 until
February 1994
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Figure C.12: Scatter diagram of validation run Maosel, September 1994 until February 1994
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C.2.2 Neckar
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Figure C.13: Calibration runfor HYMOD-RR model a Rockenau for Neckar tributary, October 1997 until

December 1998
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Figure C.14: Scatter diagram of calibration run Neckar, October 1997 until December 1998
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Figure C.15: Validation runfor HYMOD-RR mode at Rockenau for Neckar tributary, September 1994 until

February 1994
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Figure C.16: Scatter diagram of validation run Neckar, September 1994 until February 1994
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Figure C.17: Calibration runfor HYMOD-RR model a Schermbeck for Lippe tributary, October 1997 until
December 1998
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Figure C.18:
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Scatter diagram of calibration run Lippe, October 1997 until December 1998
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Figure C.19: Validation runfor HYMOD-RR mode at Schermbeck for Lippe tributary, September 1994 until

February 1994
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Figure C.20: Scatter diagram of validation run Lippe, September 1994 until February 1994
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D Test[tesults

Below the computations of EPS forecasts of January 20" until January 30" 1995 using the
MLR model are presented. All were computed using a state updating period for the
hydrological modds of 140 days. Fifteen days in advance are shown. Both measured and
EPS averaged daily accumulated precipitation is shown. The measured discharge and
hindcasted EPS computed discharges are given.

The accumulated distribution functions of the discharge are also given. The thresholds for
warning levels are given in green (14 m + MSL), orange (15 m+ MSL) and red (16 m +
MSL).
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FigureD.1:  January 20" 1995
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FigureD.2:  Empirical distribution January 20" 1995
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FigureD.3:  January 21" 1995
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FigureD.4: Empirical distribution January 21" 1995
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FigureD5:  January 22" 1995
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FigureD.6:  Empirical distribution January 22" 1995
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FigureD.7:  January 23" 1995
50 —1
\' ol = t=1
45 - —t=
40 A t=
I t=4
% 35 t=5
£ 301 t=6
(7] t=7
S
0n 20 t=8
o
w 20 - t=9
g I t=10
5’) 157 l Lewvel 1
10 - Lewvel 2
— s el 3
5 - I eve
0 R
0 2500 5000 7500 10000 12500 15000
Discharge [m3/s]
FigureD.8: Empirical distribution January 23" 1995
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FigureD.9:  January 24" 1995
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Figure D.10: Empirical distribution January 24™ 1995
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Figure D.11: January 25" 1995
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Figure D.12: Empirical distribution January 25" 1995
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Figure D.13: January 26" 1995
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Figure D.14: Empirical distribution January 26™ 1995
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Figure D.15: January 27" 1995
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Figure D.16: Empirical distribution January 27" 1995
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Figure D.17: January 28" 1995
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Figure D.18: Empirical distribution January 28" 1995
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Figure D.19: January 29" 1995
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Figure D.20: Empirical distribution January 29" 1995
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Figure D.21: January 30" 1995
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Figure D.22: Empirical distribution January 30" 1995
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E About[WL[][Pelftf(Hydraulics

WL | Delft Hydraulics is known as a knowledge institute or ‘kennisinstituut’, which
combines both consultancy work and research. Efforts are put into the expansion of
knowledge within and outside the company which can also serve a common purpose.

About 60 % of the work done at WL | Delft Hydraulics consists of consultancy assignments.
Theremainder 40 % consists of research which is mostly funded by governmental subsidy.

WL | Delft Hydraulics consists of 4 departments that are individually subdivided in several
work fields. Assignments are granted to the work field for which the assignment is suitable.
A unique part of the company is the software department. Here, the company develops its
own tools. Well-known programs such as the SOBEK series, Ddft3D, Deft-FEWS, and
RIBASIM have been developed and are maintained here.

There are also a number of supporting bodies. One of them is ‘ Research and Devel opment’,
which is responsible for managing research and research facilities such as the famous
‘gotenhal’ in which numerous amounts of tests were and are done, for example for the dams
in the estuarine area of the Netherlands.

inland wat Marine & coastal Marine, Coastal &
Lo t AIfELEr management Industrial IT & Delft software
SYSIEaS 9 infrastructure
Finance & Strategic Public
Facilities Personnel & Quality economic research & relations &
organization management affairs development marketing
Board of
directors

FigureE.1l:  Organogram of WL | Delft Hydraulics

The dept. of inland water systems consists of:
- Hood management and hydrology
River engineering and morphol ogy
Water quality and ecology
Regional and municipal water management
Integrated river basin management

This project was done for the dept. of inland water systems in the work field flood
management and hydrology. It is a part of a research project called flood risks. The
collaboration with KNM1 and RIZA proves that knowledge that can contribute to a better
flood management system is combined. Since research to flood risks serves a common
purpose, this project isfor the most funded with base subsidy of government.
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