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Summary

Quantum systems are in general not efficiently simulatable by classical means. If one wishes
to determine (some of) the eigenvalues of a Hamiltonian H that is associated with a quantum
system, there are two favoured strategies: Quantum simulation and quantum Monte Carlo
schemes. The former strategy uses an experimentally well-controllable quantum system that
emulates the system of interest, in a digital (i.e. universal) or analog manner. The latter,
albeit with a limited range of applicability, uses classical stochastic processes to efficiently
obtain (often low-lying) eigenvalues of H. Quantum Monte Carlo methods may suffer from
a sign problem when simulating fermionic or frustrated bosonic systems. This yields, for a
given accuracy, a simulation time that scales exponentially in the system size and the inverse
temperature.

Here, we consider stoquastic (sign-problem-free) Hamiltonians, which are conjectured to be
efficiently simulatable by means of Monte Carlo methods. We prove that a Trotterized version
of the imaginary-time (or euclidian-time) evolution signal F(τ) = 〈Φ| e−τH |Φ〉 (where τ ≥ 0)
can be obtained up to an ε-additive error by classical means in time poly(ε−1, n, L) (where
L is a property of the Trotterization scheme), provided that H is stoquastic and sufficiently
local. We additionally require the state |Φ〉 to obey two conditions on which we shall elaborate
later. We develop the Monte Carlo (MC) scheme that realizes the estimation of the signal F(τ)
and which does not depend on the Metropolis algorithm and its associated walker dynamics.
We present several extensions of the Monte Carlo scheme for determining other quantities of
interest, one of which is the partition function Z(β) = Tr

(
e−βH

)
. We furthermore discuss the

relation between the accuracy of these MC estimates and the extent to which the Hamiltonian
H is frustrated. We consider, in addition, a quantum-phase-estimation (QPE) based quantum
simulation scheme that determines the Trotterized version of the real-time evolution of state
|Φ〉, 〈Φ| e−itH |Φ〉, up to an ε-additive error. We inefficiently implement the quantum simulation
scheme on a classical computer. Using the spectral decomposition of H, one infers that the
decay rates of the imaginary-time evolution (MC) signal and the oscillation frequencies of the
real-time evolution (QPE) signal correspond to the eigenvalues of the stoquastic Hamiltonian
H. We employ the Matrix Pencil Method (particularly noise-resilient) to extract (some of) the
eigenvalues of H from the MC and QPE signals and investigate how its performance compares
for these two signals. We use the transverse-field Ising chain as an archetypal stoquastic system
to numerically study several aspects of the aforementioned MC and QPE methods. The Trotter
error that infects the MC and QPE signals is numerically shown to be approximately equal in
magnitude for both settings. We have established, analytically as well as numerically, that the
(sampling) noise that is imposed on the QPE signal is always at least that of the MC signal.
The (sampling) noise on the MC signal is shown, in addition, to vanish as τ → 0. Although
the Matrix Pencil Method performs equally well in the noiseless-signal setting in extracting
eigenvalues from the MC or QPE signals, we show numerically that in order to distinguish
the ground-state and first-excited-state of the transverse-field Ising chain in the noisy-signal
setting, the noise magnitude on the MC signal needs to be smaller than that for the QPE signal.
Parts of the spectrum of the transverse-field Ising chain in its intermediately strong-coupled
regime are reconstructed using the MC and QPE schemes, and we comment on the ability of
these schemes in doing so.
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I Introduction

T he state of a quantum system evolves in time according to the time-dependent Schrödinger equation:
i~ ∂
∂t
|Φ〉 = H |Φ〉 (where |Φ〉 represents the state of the system and H its Hamiltonian). If H were

to be time-independent, then the system state at time t, |Φ(t)〉, is given by e−iHt/~ |Φ(0)〉 – i.e. the initial
state |Φ(0)〉 is propagated by the propagation operator e−iHt/~. Suppose one wishes to determine (some
of) the eigenvalues of H. Since direct diagonalization of H is in general computationally intractable by
classical means (as will be argued below), other methods for finding its eigenvalues must be found. H is
Hermitian, and therefore the associated propagation operator can be decomposed as follows in terms of
its orthonormal set of eigenvectors {|ψj〉} and real-valued eigenvalues {Ej}:

∑
j e
−iEjt/~ |ψj〉〈ψj |. If one

is thus able to accurately and efficiently track |Φ(t)〉 as a function of time, the eigenvalues of H can be
estimated from the frequencies with which the elements of |Φ(t)〉 oscillate in time t. Apart from intrinsic
interest in the eigenvalues of H, having access to the eigenvalues allows one to calculate e.g. the partition
function Z = Tr

(
e−βH

)
, from which (other) physically relevant quantities can be obtained.

We consider a Hamiltonian that consists of n variables (e.g. n sites), where the ’state’ of each variable
lies in a σ-dimensional vector space. Then the state |Φ〉 of the whole system lives in a vector space of
dimensionality σn and H is a σn×σn matrix. Suppose one wants to simulate the abovementioned dynamics
of |Φ(t)〉 on a classical computer: The state |Φ〉 at each instance in time would take up an amount of storage
that is exponential in the number of variables n and the exponentiation of H to explicitly obtain e−iHt/~

(to determine the time dynamics of |Φ〉 exactly) requires exponentially large computational effort since H
consists of an exponential number of elements. In general, therefore, the simulation of quantum system
dynamics on a classical computer is inefficient ([1],[2]).

Exceptions to this rule are quantum Monte Carlo methods: With these techniques, one is able to esti-
mate e.g. the partition function or thermal averages of operators (and consequently low-lying eigenvalues)
of subclasses of Hamiltonians in poly(n) time by classical means. These methods often make use of the
correspondence between the time-dependent Schödinger equation (when transformed from real to imagi-
nary time: it → τ) and the diffusion equation: Expressing the Schrödinger equation in terms of spatial

coordinates and imaginary time (or euclidian time), one obtains ∂
∂τ

Φ(x, τ) =
(

~2

2m
∇2 − V (x)

)
Φ(x, τ),

which reduces to the diffusion equation when V (x) = 0 (a non-zero V is then compensated for at a later
stage) ([3]). The Monte Carlo methods that explicitly make use of this correspondence are called Diffusion
Monte Carlo methods (which is a particular group of projector Monte Carlo schemes) and are often used in
quantum chemistry settings. The propagation operator corresponding to the time-dependent Schrödinger
equation in imaginary time is e−τH/~. The dynamics of the state |Φ(τ)〉 is now not associated with a su-
perposition of oscillating signals (the frequencies of which would be proportional to the eigenvalues of H),
but with a superposition of decaying signals (where the decay rates are proportional to the eigenvalues of
H). Since the signals corresponding to higher-lying eigenvalues are exponentially suppressed as a function
of τ comparing to those associated with low-lying eigenvalues (which are the ones of primary interest in
many settings), the latter can often be estimated relatively efficiently by classical means.

The efficiency of these quantum Monte Carlo methods when used to simulate fermionic or frustrated
bosonic systems is generally limited by the sign problem: This causes the run-time of a Monte Carlo
algorithm for calculating the expectation value of an observable (to a given precision) to scale exponentially
in the system size n and inverse temperature β ([4]). This means that the quantum Monte Carlo method
does not succeed in determining properties of the system in poly(n) time by classical means.

To avoid the need for storage capacities and run-times that are exponentially large on classical com-
puters, one can thus choose either of two methods: Simulate the system classically if its Hamiltonian H
is fit to be efficiently simulated by a quantum Monte Carlo algorithm, or simulate the system by means
of quantum simulation. The latter method would use an experimentally well-controllable quantum system
of which the dynamics can be directly mapped to the dynamics of the state of the quantum system to be
simulated, in either a digital (universal) or analog manner. By thus tracking the state of the simulator as a
function of time, the time evolution of the state of the target system can be determined. The limitations of
quantum simulation are essentially threefold: The simulator needs to evolve according to the propagation
operator for a sufficiently large time interval to be able to determine e.g. the eigenvalues of the Hamilto-
nian, but the system will suffer from relaxation and decoherence due to interaction with its environment
(which is undesired if the system to be simulated is isolated). In addition, the Hamiltonian to be simulated
needs to be sufficiently local – i.e. H =

∑N
i=1 Hi, where N ≤ poly(n) and each Hi acts non-trivially on
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at most k variables of the system, such that k � n and k is possibly even independent of n. This avoids
the need for exponentiation of the σn × σn Hamiltonian and instead requires the exponentiation of many
σk×σk interaction terms. This technique is known as Trotterization (on which we shall elaborate in some
detail later on in this introductory chapter). We note that most Hamiltonians encountered in physics are
indeed local Hamiltonians. A third prominent limitation is the choice of the initial state |Φ〉: The only
eigenvalues of H that can be accurately estimated have an associated eigenstate with a sufficiently large
overlap with |Φ〉. |Φ〉 should thus be chosen with care, and this choice does require prior knowledge about
properties of Hamiltonian H. In addition, one should be able to prepare the n-qubit state |Φ〉 one a qubit
register by means of a circuit of poly(n)-depth.

A class of Hamiltonians that is generally fit for quantum Monte Carlo simulations is that of stoquastic
Hamiltonians: A (real-valued) Hamiltonian is stoquastic (in a particular basis B) if its off-diagonal elements
are non-positive: 〈x|H |y〉 ≤ 0, for x 6= y (|x〉 and |y〉 being elements of B). As a consequence, its associated
Gibbs density matrix e−τH is an element-wise non-negative matrix (for τ ∈ R+) and this property makes
it particularly suitable for Monte Carlo sampling since the simulations of these Hamiltonians cannot suffer
from a sign problem ([5]). As is apparent from its definition, stoquasticity is a basis-dependent property
– i.e. if a Hamiltonian is not stoquastic in a certain basis, one can try to find a basis transformation
such that the Hamiltonian becomes (approximately) stoquastic in the new basis and run a Monte Carlo
algorithm in this new basis. In [6], a systematic method is presented for obtaining a basis (if it exists) in
which a Hamiltonian is (approximately) stoquastic and thereby for easing the sign problem.

In this report, we develop a quantum Monte Carlo method that approximately obtains (a subset of) the
eigenvalues of stoquastic Hamiltonians by tracking the system dynamics in imaginary time, i.e. evolution
according to the non-negative propagation operator e−τH (where τ ≥ 0). Specifically, we prove that the
quantity F(τ) = 〈Φ| e−τH |Φ〉 (where |Φ〉 is a state of generally exp(n) complex-valued elements) can be
obtained, with a Trotter error that is generally efficiently suppressible and an additional ε-additive error,
in time poly(ε−1, n, L) when H =

∑N
i=1 Hi (where each Hi is stoquastic and acts non-trivially on at most

log(poly(n)), but typically O(1), variables of the system). We additionally require that |Φ〉 =
∑
x Φ(x) |x〉

(where {|x〉} is the basis in which the MC scheme is ran) is such that the quantity Φ(y)
Φ(x)∗ can be efficiently

obtained (for two given basis states |x〉 and |y〉) and a sample from |Φ(x)|2 can be efficiently drawn. L
(generally proportional to N) is a quantity that depends on the Trotterization scheme and corresponds to
the number of local imaginary-time propagation operators in the Trotterized version of e−τH . Estimating
F(τ) = 〈Φ| e−τH |Φ〉 can be efficiently done for ε ≥ 1

poly(n)
and L ≤ poly(n). By determining F(τ = ∆τk)

at k ∈ {0, 1, ...,K ≤ poly(n)}, we effectively obtain a noisy and Trotterized version of the signal g(k) =∑
j e
−∆τEjk| 〈Φ|ψj〉 |2. Obtaining (a subset of) the decay rates of this signal g as a function of k – which

equal the eigenvalues of H – is done by means of the Matrix Pencil Method (which is particularly noise-
resilient). The Monte Carlo samples that are required to determine F(τ) are obtained stochastically using
a method that is not based on the Metropolis algorithm (and its associated walker dynamics) and therefore
circumvents potential difficulties regarding walker distribution convergence that might be encountered in
e.g. diffusion MC simulations. We present several extensions of our MC scheme beyond the estimation of
imaginary-time state evolution, such as the estimation of the partition function Z = Tr

(
e−βH

)
.

We consider a quantum-phase-estimation (QPE) based quantum simulation scheme (which is ineffi-
ciently implemented on a classical computer) that produces the signal 〈Φ| e−itH |Φ〉. We effectively obtain
a noisy and Trotterized version of the signal

∑
j e
−i∆tEjk|〈Φ|ψj〉|2 at k ∈ {0, 1, ...,K ≤ poly(n)}. We then

make use of the Matrix Pencil Method to obtain oscillation frequencies of this signal (which equal the
eigenvalues of H). We study in particular whether this digital quantum simulation algorithm based on
QPE outperforms the aforementioned Monte Carlo algorithm for finding eigenvalues of stoquastic Hamil-
tonians – i.e. Hamiltonians that do not suffer from a sign problem. Since quantum Monte Carlo schemes
could in principle obtain useful properties in poly(n) time in this case, one might wonder whether a QPE-
based algorithm can provide additional benefits over the Monte Carlo scheme. In [7], the complexity of
classically applying the QPE scheme to a stoquastic Hamiltonian to obtain its ground state is investigated
by means of a projector MC scheme (that makes use of many MC walkers).

To investigate several aspects of the aforementioned quantum Monte Carlo method (and to make
comparisons to the QPE-based algorithm), we numerically study the one-dimensional Ising chain in a
transverse field in a proof-of-principle setting. This system is associated with the following Hamiltonian:

H =
∑N
i=1Hi = −J

(∑
iσ
z
i σ

z
i+1 + g

∑
iσ
x
i

)
, (1)
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which is stoquastic in the standard basis for g > 0. The number of bond Hamiltonians (Hi) is equal to
the number of variables of the system in this case (N = n) and they are all 2-local. This system, which
has been extensively studied (in e.g. [8]), is exactly solvable and exhibits a second-order phase transition
at T = 0 as a function of the dimensionless field variable at g = gc. For g � gc (the paramagnetic phase),
the ground state is given by |+〉⊗n and as g crosses gc from above, the system moves to the ferromagnetic
phase and the Z2 symmetry is broken. For g � gc, the ground state is degenerate and given by |0〉⊗n or
|1〉⊗n. We numerically study, amongst several other aspects, the magnitude of the noise that is imposed on
the MC and QPE signals, and the maximum allowed noise magnitude to recover – by means of the Matrix
Pencil Method – the ground-state en first-excited-state eigenvalues of the transverse-field Ising chain (in
the intermediately strong-coupled regime) from the MC and QPE signals.

In the remainder of this chapter, we will introduce concepts that are of central importance to the rest of
this report such as stoquastic Hamiltonians, frustration and Trotterization. In Chapter II, we will elaborate
further on the concept of quantum simulation, and specifically the use of quantum phase estimation for
digital quantum simulation. Chapter III will be used to introduce the Matrix Pencil Method as a means to
obtain eigenvalues of a Hamiltonian given the real-time or imaginary-time evolution of a state that evolves
according to this Hamiltonian. In Chapter IV, an elaborate description is given of the Monte Carlo scheme
that is used to efficiently track the imaginary-time dynamics of a state evolving according to a stoquastic
Hamiltonian (and several of its extensions). In Chapter V, we discuss the transverse-field Ising chain and
in particular compare the use of quantum phase estimation and our Monte Carlo scheme for determining
its eigenvalues. Chapter VI is used to present the conclusions of this report and points of further study.

I.1 Local and Stoquastic Hamiltonians

A (real-valued) Hamiltonian H is stoquastic in a basis B if all its off-diagonal elements are non-positive:
〈x|H |y〉 ≤ 0, for x 6= y (and states |x〉, |y〉 being elements of basis B). Consequently, its associated Gibbs
density matrix e−τH is element-wise non-negative (for τ ∈ R+). This can be shown as follows:

G ≡ τ max
x
〈x|H |x〉 I − τH. (2)

G is by construction an element-wise non-negative matrix (due to stoquasticity of H and τ ≥ 0). Expo-
nentiating on both sides of the previous equation yields:

e−τH = eGe−τ maxx〈x|H|x〉I = e−τ maxx〈x|H|x〉
∞∑
j=0

Gj

j!
, (3)

and since the product of element-wise non-negative matrices equals an element-wise non-negative matrix
itself, e−τH is an element-wise non-negative matrix.

This non-negativity property results in the absence of the sign problem when using Monte Carlo
procedures to simulate the system ([5]), and therefore renders its classical simulation more likely to be
computationally tractable. In Appendix A, we illustrate the appearance of the sign problem for a non-
stoquastic Hamiltonian by means of an example. In this report, we are particularly interested in local and
stoquastic Hamiltonians:

Definition I.1. Local Hamiltonians. A Hamiltonian H associated with an n-variable system is local if
it admits a decomposition into a set of Hermitian operators {Hi} – i.e.

∑N
i Hi – such that each Hi acts

non-trivially on at most log(poly(n)) (but typically O(1)) variables of the system.

We denote the number of variables on which Hi acts non-trivially (i.e. its locality) by k. We note that
although this locality k need not be the same for all i, we shall call a Hamiltonian H k-local if k is the
largest locality of all Hi’s in the decomposition of H. The number of terms N in the decomposition of H
might, in principle, be superpolynomial in the system size n. In this work, however, we focus in particular
on Hamiltonians for which N ≤ poly(n).

Definition I.2. Global and Piece-wise Stoquasticity. A real-valued Hamiltonian H is globally sto-
quastic in a basis B if: 〈x|H |y〉 ≤ 0 for x 6= y and where |x〉 and |y〉 are elements of B. If H is a k-local
Hamiltonian, then H is m-piece-wise stoquastic (where m ≥ k) in basis B if it admits a decomposition into
a set of m-local real-valued and Hermitian operators {H̃i} such that ( ∀i): 〈x| H̃i |y〉 ≤ 0 for x 6= y and
where |x〉 and |y〉 are elements of B.
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We note that a Hamiltonian being globally stoquastic is equivalent to it being (m = n)-piece-wise stoquas-
tic. Furthermore, any piece-wise stoquastic Hamiltonian is globally stoquastic as well, and a Hamiltonian
being m-piece-wise stoquastic implies it being (m + 1)-piece-wise stoquastic as well. In [9], the distinc-
tion between global and piece-wise stoquasticity of a local Hamiltonian is discussed in more detail. In
particular, the complexity of deciding whether a given Hamiltonian belongs to a particular stoquasticity
class is investigated. In the remainder of this work, we shall call a k-local and m-piece-wise stoquastic
Hamiltonian simply a local and piece-wise stoquastic Hamiltonian if m ≤ log(poly(n)). To demonstrate
the ubiquity of stoquastic Hamiltonians, we present some examples below.

Spin Hamiltonians: We consider a Heisenberg chain in a magnetic field, which is represented by the
following Hamiltonian:

H =
∑
i

Hi =
∑
i

(
Jx σ

x
i σ

x
i+1 + Jy σ

y
i σ

y
i+1 + Jz σ

z
i σ

z
i+1 +Bx σ

x
i +By σ

y
i +Bz σ

z
i

)
, (4)

where Jα, Bα ∈ R (for α ∈ {x, y, z}). In the standard (local σz) basis, the bond Hamiltonian Hi is given
by:

Hi =


Jz +Bz 0 Bx − iBy Jx − Jy

0 −Jz +Bz Jx + Jy Bx − iBy
Bx + iBy Jx + Jy −Jz −Bz 0
Jx − Jy Bx + iBy 0 Jz −Bz

 . (5)

The Hamiltonian H in eq. 4 is thus piece-wise stoquastic in the standard basis in the following parameter
regime:

Jx ≤ |Jy|, ∀Jz, Bx ≤ 0, By = 0, ∀Bz. (6)

For other parameter regimes, one might find a basis transformation that transforms the Hamiltonian to a
piece-wise stoquastic form when expressed in the new basis.

Real-Space Hamiltonians: We consider a system of n particles in d spatial dimensions, the state of
which is described by the vector R = (r1, r2, ..., rn) (which lies in a (dn)-dimensional vector space). The
particles live in a potential V (R), which itself depends on the state vector R. The Hamiltonian associated
with this system is the following:

H = − 1

2m
∇2

R + V (R), (7)

where ∇2
R = ∇2

r1
+∇2

r2
+ ...+∇2

rn . We consider the case of a general number of spatial dimensions d, such
that the vector R = (r1, r2, ..., rn) (where ri = (x1

i , x
2
i , ..., x

d
i )) describes the state of the system. Next, we

consider a discretized d-dimensional space in which the n particles can reside in small spatial patches of
volume ad. This allows for the expression of H in terms of the eigenbasis of the potential energy operator.
This eigenbasis is given by the set of states of all available spatial particle configurations {|R〉}, where

R = (r1, r2, ..., rn) and each ri equals q
(1)
i a x̂1 + q

(2)
i a x̂2 + ... + q

(d)
i a x̂d (where {q(1)

i , q
(2)
i , ..., q

(d)
i } are

integers and {x̂1, x̂2, ..., x̂d} represent the Cartesian unit vectors). Each individual kinetic energy operator
− 1

2m
∇2

ri can be rewritten as follows in terms of Cartesian coordinates:

− 1

2m
∇2

ri =
∑

q̂ ∈ {x̂1,x̂2,...,x̂d}

−|ri〉〈ri + aq̂|+ |ri〉〈ri − aq̂| − 2 |ri〉〈ri|
2m a2

, (8)

where each − 1
2m
∇2

ri operator acts on the ith particle as a kinetic energy operator, and effectively as
identity on the other n − 1 particles. The complete Hamiltonian H can thus be rewritten in the {|R〉}
basis as follows (where we identify diagonal elements and off-diagonal elements):

H = − 1

2m a2

n∑
i=1

∑
q̂ ∈ {x̂1,x̂2,...,x̂d}

(
|ri〉〈ri + aq̂|+ |ri〉〈ri − aq̂|

)
︸ ︷︷ ︸

off-diagonal terms

+
3

m a2

n∑
i=1

|ri〉〈ri|+ V (R)︸ ︷︷ ︸
diagonal terms

, (9)
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where we note that V (R) is obviously diagonal when expressed in its own eigenbasis. All off-diagonal
elements of H are non-positive in the {|R〉} basis and we thus conclude that H is stoquastic in this basis.
This would suggest that simulation of H by means of a Monte Carlo scheme might be computationally
tractable. However, the simulation of a fermionic (e.g. electronic structure) systems – which is a particular
case of the scenario described thus far – is known to be generally a computationally intractable task by
classical means, in particular for d > 1.

The above paradox can be resolved as follows: The aforementioned Hamiltonian and its state space
do not necessarily correspond to that of a fermionic system. In the formulation above, the spatial particle
configurations are not restricted to lie in a particular subspace, while the spatial configurations associated to
fermionic systems have to obey the symmetry postulate. One has to restrict the state space such that only
those states are available to the fermionic system that are anti-symmetric with respect to pair permutations.
This can, for instance, be realized by moving from the first-quantization setting as shown above to a
second-quantization setting by introducing fermionic creation and annihilation operators {c†k,σ, ck,σ} (where

k, σ ∈ {1 ↑, 1 ↓, 2 ↑, ...,V ↑,V ↓} labels the fermionic levels and we have restricted the discussion to spin- 1
2

particles), such as in the Fermi-Hubbard model:

H = −t
∑
〈k,l〉,σ

(
c†k,σcl,σ + c†l,σck,σ

)
+ U

∑
k

nk,↑nk,↓ − µ
∑
k

(
nk,↑ + nk,↓

)
, (10)

where the sum over 〈k, l〉 is a sum over nearest-neighbour sites, nk,σ equals c†k,σck,σ, t is the hopping
parameter, U the on-site interaction strength and µ the chemical potential. The label k labels a lattice
site, just as {q(1), q(2), ..., q(d) labels the available discretized positions of the particles in the discussion
above. The anti-symmetry of the states of the system are now ensured by the anti-commutation relations
of the fermionic creation and annihilation operators. One can examine the stoquasticity of the Fermi-
Hubbard Hamiltonian by transforming the fermionic creation and annihilation operators to spin matrices
by means of the Jordan-Wigner transformation. The Fermi-Hubbard can then be shown to be generally
non-stoquastic (in the standard basis) for positive hopping parameters (t > 0).

One could propose to set up a Monte Carlo algorithm in the {|R〉} basis for the stoquastic Hamiltonian
in eq. 9 and post-select on states that are anti-symmetric w.r.t pair permutations after a simulation run
to effectively simulate a fermionic system. However, the subspace of the complete Hilbert space associated
with eq. 9 that is anti-symmetric w.r.t pair permutations is arguably exponentially small. Therefore, post-
selection on anti-symmetric states will generally not be a computationally tractable manner of simulating
a fermionic system.

I.2 Frustration and its implications

As will become apparent in a later stage of this report, one of the factors that severely limits the ability to
estimate eigenvalues or the partition function of a stoquastic Hamiltonian (using the Monte Carlo method
developed in this report) in a computationally tractable way is frustration of Hamiltonian H. To gain
insight into when a Hamiltonian is frustrated and if so, to what extent it limits the functionality of the
Monte Carlo method, we introduce a number of useful concepts in this section.

We denote the set of n-variable local Hamiltonians H (defined in Definition I.1) by LH. The subset
C ⊂ LH corresponds to all H for which {Hi}Ni=1 is a commuting set. The subset S ⊂ LH is the set
associated with the Hamiltonians that are stoquastic (piece-wise and/or globally). D (⊂ S ⊂ LH) is the
subset of classical (diagonal) Hamiltonians. The subset of frustrated Hamiltonians is denoted by F ⊂ LH,
and its complement is given by the subset of frustration-free Hamiltonians:

Definition I.3. Frustration-Freeness. Suppose the local Hamiltonian H =
∑N
i Hi represents an n-

variable system (i.e. H ∈ LH). Furthermore, suppose H |ψ0〉 = E0 |ψ0〉 (where E0 is the ground state
energy of the n-variable system) and Hi

∣∣ψi0〉 = Ei0
∣∣ψi0〉 (where Ei0 is the ground state energy of the

subsystem labeled by i). Then Hamiltonian H is frustration-free if ( ∀i): Hi |ψ0〉 = Ei0 |ψ0〉 – i.e. the
ground state of the n-variable system |ψ0〉 simultaneously minimizes the energy of each individual Hi.

We note that if Hamiltonian H =
∑N
i Hi (∈ LH) consists of a commuting set of terms {Hi}, this

does not necessarily imply frustration-freeness: Although the ground state is necessarily an eigenstate of
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each Hi, it might not be the lowest energy eigenstate of each individual Hi. Therefore, frustration might
still occur. Stoquastic, or even classical (diagonal), Hamiltonians in LH can be frustrated as well. This is
schematically depicted in Figure 1.

Figure 1: The set of frustrated local
Hamiltonians (F ) is not restricted to
the class for which {Hi} are non-
commuting. Frustration of H can
occur if {Hi} is a commuting set as
well (C). Additionally, frustration
of Hamiltonian H can occur if it is
stoquastic (S), and even if it is clas-
sical (D).

It is clear from Definition I.3 that if one were to systematically set the smallest eigenvalue of each Hi
to zero, then the smallest eigenvalue of H =

∑N
i Hi is larger then zero if H is frustrated: Frustration

generally causes the eigenspectrum of H to be shifted upwards by an amount that we shall denote by Λ.
We develop in this report a quantum Monte Carlo method that efficiently obtains the signal F(τ) =

〈Φ| e−τH |Φ〉 (where τ ≥ 0) and the partition function Z(β) = Tr
(
e−βH

)
(where β ≥ 0) up to an ε-

additive error (provided that H ⊂ LH and H ⊂ S). This Monte Carlo scheme requires setting the
smallest eigenvalues of each Hi to zero (and thereby setting all eigenvalues to be non-negative). For
the scheme to indeed run efficiently, the desired accuracy ε should be at least of magnitude 1/poly(n).
Therefore, since the error is additive, accurate estimates of the aforementioned quantities can only be
obtained if they too are at least of magnitude 1/poly(n). This directly relates to the degree to which H
is allowed to be frustrated. The lower bounds for F(τ) and Z(β) in terms of the frustration Λ can be
obtained as follows (using the spectral decomposition of H in terms of its eigenvalues {Ej} and eigenstates
{|ψj〉}):

F(τ) = 〈Φ| e−τH |Φ〉 =
∑
j

e−τEj |〈Φ|ψj〉|2 ≥ e−τΛ |〈Φ|ψ0〉|2, (11a)

Z(β) = Tr
(
e−βH

)
=
∑
j

e−βEj ≥ e−βΛ. (11b)

We conclude that F(τ) and Z(β) are of at least 1/poly(n) size if τΛ ≤ log
(
poly(n)

)
and |〈Φ|ψ0〉|2 ≥

1/poly(n), and βΛ ≤ log
(
poly(n)

)
, respectively. In other words, given a particular scaling of Λ as a

function of the system size n, an accurate estimate can be obtained of F(τ) for a limited τ interval and of
Z(β) only above certain system temperatures.

In a quantum simulation setting (specifically a quantum-phase-estimation setting), the signal of interest
takes the form F(it) = 〈Φ| e−itH |Φ〉. A non-zero Λ does not impose the difficulty of the signal strength
being smaller than 1/poly(n) in that case. It does, however, offset the frequencies (by an amount Λ) with
which the signal oscillates in time t. Since higher frequencies are generally more difficult to obtain by
means of sampling of the signal than lower frequencies, frustration might impose difficulties in obtaining
the eigenvalues of H from the signal F(it).

I.3 Preliminaries

In this section we introduce several definitions that have not been introduced up to this point in the report.
In addition, we state several lemma’s which will be useful throughout its remainder.
Definition I.4. Induced Matrix Norm. Let A ∈ Rm×n. An induced matrix norm is a matrix norm
|| · ||a,b : Rm×n → R defined as:

||A||a,b = max
x
||Ax||a, such that ||x||b ≤ 1, (12)

where || · ||a is a vector norm on Rm and || · ||b is a vector norm on Rn. When the same vector norm is
used on both Rm and Rn, we write ||A||c = maxx ||Ax||c, such that ||x||c ≤ 1.
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Properties of the Induced Matrix Norm:

1. ||A|| ≥ 0, where the inequality holds iff A is the zero matrix (non-negativity).

2. ||αA|| = |α| ||A||, for α ∈ R (homogeneity).

3. ||A+B|| ≤ ||A||+ ||B|| (triangle inequality).

4. ||Ax|| ≤ ||A|| ||x||.

Proof. Suppose ||Ax|| > ||A|| ||x||, then ||A x
||x|| || > ||A|| (we note that x

||x|| is a vector of norm 1).

This contradicts the definition of the induced matrix norm ||A|| and thus the supposition is incorrect.
Therefore, ||Ax|| ≤ ||A|| ||x||.

5. ||AB|| ≤ ||A|| ||B|| (sub-multiplicativity).

Proof. ||AB|| = max||x||≤1 ||ABx|| ≤ max||x||≤1 ||A|| ||Bx|| = ||A|| max||x||≤1 ||Bx|| = ||A|| ||B||.

Throughout this report, whenever we speak of a matrix norm, we refer to the p = 2 - Induced Matrix Norm
defined as follows:

||A|| =
√
λmax

(
A†A

)
, (13)

where λmax denotes the largest eigenvalue.

Lemma I.1. Markov’s Inequality. Suppose X is a non-negative random variable and µ = E(X) is its
expectation value, then for a > 0:

Pr
(
X ≥ a

)
≤ µ

a
. (14)

Proof. For all a > 0, the following holds: µ = E(X) =
∑
α α Pr(X = α) ≥

∑
α≥a α Pr(X = α) ≥

a
∑
α≥a Pr(X = α) = a Pr(X ≥ a). And therefore Pr

(
X ≥ a

)
≤ µ

a
holds.

Lemma I.2. Chebyshev’s Inequality. Suppose X is a random variable with expectation value µ = E(X)
and non-zero variance σ2 = V ar(X), then for a > 0:

Pr
(∣∣X − µ∣∣ ≥ a σ) ≤ 1

a2
. (15)

Proof. Define the non-negative random variable Y = (X − µ)2. The expectation value of Y equals the
variance of X: E(Y ) = V ar(X). Applying Lemma I.1 to random variable Y yields: Pr

(
Y ≥ b2

)
= Pr

(
|X−

µ| ≥ b
)
≤ E(Y )

b2
= V ar(X)

b2
, for b > 0. Taking b ≡ aσ (and thus a > 0) then gives Pr

(
|X−µ| ≥ aσ

)
≤ 1

a2 .

Lemma I.2 states that the probability that a realization of random variable X deviates from its mean by
more than a times its standard deviation is not larger than 1

a2 . This inequality will prove to be very useful
for determining the accuracy of the estimates for our quantities of interest (which are obtained through a
quantum simulation procedure or a Monte Carlo procedure).

Definition I.5. (Ir)reducible Matrix. Suppose A is an n × n matrix with entries ai,j. Matrix A is
reducible if a partition of its index set {1, 2, ..., n} into non-empty and disjoint sets S1 and S2 exists such
that ai,j = 0 for i ∈ S1 and j ∈ S2. If such a partition does not exist, matrix A is irreducible.

Definition I.6. Variance of a Complex Random Variable. Suppose Z = X + iY (where X, Y ∈ R)
represents a complex random variable. The variance of Z is defined as follows:

V ar(Z) ≡ E
(
|Z|2

)
− |E

(
Z
)
|2 = V ar(X) + V ar(Y ). (16)

Definition I.7. Computational Tractability. If an algorithm takes computational resources that scale
polynomially in the system size, it is said to be computationally tractable (or efficient). If this scaling is
super-polynomial (typically exponential), it is considered computationally intractable (or inefficient).
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(Markov Chain) Monte Carlo: Suppose one wishes to calculate an expectation value of some observ-
able 〈O〉 (e.g. a thermal average of some observable). This expectation value is defined as:

〈O〉 =
∑
x∈ΩPr

(
O = O(x)

)
O(x), (17)

where O(x) denotes the realization of O at x and x lies in a sample space Ω. Instead of explicitly
calculating 〈O〉, one can sample the expectation value 〈O〉 by generating a set of independent samples
which are distributed according to Pr(O(x)) and calculate the associated sample average of O. Using
Lemma I.2, one can show that the sample average 〈Õ〉 estimates the true expectation value 〈O〉 to within

an ε-additive statistical error with probability 1− V ar(O)
N (where V ar(O) denotes the variance of observable

O)1, provided that the size of the sample set over which the sample average is calculated is N ε−2. This
will be used on numerous occasions throughout this work. This property is particularly useful in instances
where one wishes to calculate an expectation value of e.g. an operator associated to a physical system,
where the sample space Ω is exponentially large as a function of the system size. This would yield the
direct evaluation of 〈O〉 in eq. 17 computationally intractable and hence one wishes to indeed estimate
〈O〉 with a sample average using a number of samples that is a polynomial as a function of the system
size. The question is now how one generates a polynomial number of samples (distributed according to the
probability distribution of interest) in an amount of time that is polynomial in the system size as well. A
strategy that is often employed is Markov Chain Monte Carlo (MCMC), a particular and favoured variant
of which is the Metropolis algorithm ([10]). In the remainder of this section, we introduce several concepts
related to Markov chains and the Metropolis algorithm (primarily based on [11] and [12]). We note that
the sampling process in the Monte Carlo scheme for piece-wise stoquastic Hamiltonians that we develop in
Chapter IV differs from that of the MCMC schemes presented in this section, and does not make explicit
use of the Metropolis algorithm.

Markov chains belong to a particular class of correlated chains, and to illustrate how they differ from
uncorrelated chains, we first define the latter and afterwards define a Markov chain.

Definition I.8. Uncorrelated Chain. Suppose X1, X2, ..., XP are P random variables. The realizations
of each Xi lie in a sample space Ω. The chain X1, X2, ..., XP is uncorrelated if the probability of occurrence
of a particular sequence of realizations of each of the P random variables is statistically uncorrelated (P1(X)
denotes the independent probability of occurrence for a single X):

PrP (X1, X2, ..., XP ) = Pr1(X1)Pr1(X2)...P r1(XP ). (18)

Definition I.9. Markov Chain. Suppose X1, X2, ..., XP are P random variables. The realizations of
each Xi lie in a sample space Ω. The chain X1, X2, ..., XP is a Markov Chain if the probability of occurrence
of a particular sequence of realizations of each of the P random variables is as follows (defined in terms of
a transition probability T (X → X ′) for having a realization X ′ succeed a realization X):

PrP (X1, X2, ..., XP ) = Pr1(X1)T (X1 → X2)T (X2 → X3)...T (XP−1 → XP ), (19)

where
∑
X′ T (X → X ′) = 1. The probability of a realization X ′ succeeding a realization X in a Markov

chain thus depends on X, but not on the realizations preceding X in the chain.

For Markov chains to be practically useful in the context of Markov Chain Monte Carlo, they need to
satisfy a number of conditions. We now define these conditions on Markov chains and afterwards discuss
the Metropolis algorithm as a particular case of Markov Chain Monte Carlo methods.

Definition I.10. Time-Homogeneous Markov Chain. A Markov chain X1, X2, ..., XP (where the
realizations of each Xi lie in Ω) is time-homogeneous if, for X,X ′ ∈ Ω and i ∈ {1, 2, ..., P}, we have:

Pr
(
Xi+1 = X ′ |Xi = X

)
= T (X → X ′), ∀i. (20)

Definition I.11. Irreducible Markov Chain. A Markov chain X1, X2, ..., XP (where the realizations of
each Xi lie in Ω) is irreducible if ∀X,X ′ ∈ Ω, ∃ t ≥ 0 such that:

Pr
(
Xt = X ′ |X0 = X

)
> 0. (21)

1If V ar(O) is bounded, then the sample average 〈Õ〉 will equal the true expectation value 〈O〉 as the size of the sample
set goes to infinity.
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Definition I.12. Aperiodic Markov Chain. An irreducible Markov chain X1, X2, ..., XP (where the
realizations of each Xi lie in Ω) is aperiodic if ∀X ∈ Ω, we have:

gcd {t : Pr
(
Xt = X |X0 = X

)
> 0} = 1. (22)

In other words, the probability that realizations along a Markov chain will return to the realization at t = 0
in a periodic manner equals zero for an aperiodic Markov chain.

Definition I.13. Stationary Distribution. A distribution π on Ω with respect to the transition proba-
bility matrix T (defined by 〈X|T |X ′〉 ≡ T (X → X ′), ∀X,X ′ ∈ Ω) is a stationary distribution if:

π T = π, (23)

where π is defined to be a vector containing as elements π(X) (for all X ∈ Ω). In other words, the
distribution π gets propagated by the transition probability matrix T to itself.

Definition I.14. Ergodic Markov Chain. A Markov chain X1, X2, ..., XP (where the realizations of
each Xi lie in Ω) is ergodic if it is time-homogeneous, irreducible and aperiodic. If a Markov chain with
stationary distribution π is ergodic, then (∀Xinit, X ∈ Ω):

Pr
(
Xt = X |X0 = Xinit

)
→ π(X) , as t→∞. (24)

The Metropolis algorithm consists of generating an ergodic Markov chain with a desired stationary
distribution π. To that end, one must find a transition probability distribution T (X → X ′) (∀X,X ′ ∈ Ω)
which leads to the stationary distribution π. We define π(X, t) (where t denotes the MC step), which
becomes independent of t as t→∞ for an ergodic Markov chain. The change of π(X, t) to π(X, t+ 1) is
governed by the following master equation:

π(X, t+ 1)− π(X, t) = −
∑
X′

T (X → X ′) π(X, t) +
∑
X′

T (X ′ → X) π(X ′, t). (25)

The stationary distribution satisfies π(X, t) = π(X, t+ 1) and therefore we have:∑
X ′T (X → X ′) π(X, t) =

∑
X′

T (X ′ → X) π(X ′, t). (26)

A particular solution (the detailed balance solution) to this equation is:

T (X → X ′) π(X) = T (X ′ → X) π(X ′), ∀X,X ′ ∈ Ω. (27)

To cast the detailed balance solution in a form that is used for the Metropolis algorithm, we rewrite
the transition probability as T (X → X ′) = rXX′pXX′ (where rXX′ = rX′X and rXX′ is non-negative
(∀X,X ′ ∈ Ω), and

∑
X′ rXX′ = 1). We note that pXX′ ∈ [0, 1]. The detailed balance solution now gives

the following equation in terms of p:
pXX′

pX′X
=
π(X ′)

π(X)
. (28)

In the Metropolis algorithm, the quantities rXX′ and pXX′ respectively correspond to a trial step proba-
bility and a step acceptance probability.

Definition I.15. Metropolis Algorithm. Given a state X, one proposes a new state X ′ with a probability
rXX′ .

• The proposed step X → X ′ is accepted with probability pXX′ = 1 for π(X ′) ≥ π(X) and with
probability pXX′ = π(X ′)/π(X) if π(X ′) < π(X) (satisfying eq. 28).

• If the proposed step is not accepted, it is rejected and the system remains in X.

• If the proposed step is accepted, then X ′ replaces X.

This process is repeated for many Monte Carlo steps until arrival at the stationary distribution π.
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One can now calculate the sample average of a quantity of interest over some sample set, whose samples
are distributed according to the distribution of interest π and are generated by means of the Metropolis
algorithm. One obtains such a sample set by, after arrival at the stationary distribution π, taking every
X that is separated from the other X’s in the set by a number of MC steps that is at least the correlation
time (such that the samples in the sample set are statistically independent). For the evaluation of the
transition probability, one does not require knowledge of the normalization factor of the distribution of
interest π. We note that the number of MC steps equals the total number of trials, not only the successful
trials.

Definition I.14 ensures that after an (in principle) infinite number of Monte Carlo steps, one arrives at
the stationary distribution π provided that the Markov chain is ergodic. If one tries to calculate a sample
average of some quantity of interest associated with a physical system, the number of MC steps after which
convergence to the stationary distribution is ensured might in practice be superpolynomial as a function
of the system size (this number of steps depends on the spectral gap of the transition probability matrix
of the Markov chain), yielding the calculation computationally intractable. This is a prominent factor
limiting the computational tractability of Markov Chain Monte Carlo schemes.

I.4 Trotterization

To obtain an explicit expression for the propagation operator of a quantum system consisting of n variables
(which each can attain one of σ discrete values), one needs to exponentiate a σn × σn matrix – which is
generally intractable in terms of computational effort. To avoid this intractable exponentiation, one de-
composes the propagation operator into a repeated (M times) string of local propagation operators, where
the computation of these local propagation operators is tractable since they correspond to interactions of
locality k = log(poly(n)). The convergence of this decomposition as a function of M is guaranteed by the
Lie-Trotter formula. We note furthermore that even if Hamiltonian H is sparse, its associated propagation
operator might not be sparse and therefore even the storage of the propagation operator itself is inefficient
in general. Since the concept of Trotterization is of such central importance for the remainder of this
report, we will discuss it in some detail.

Suppose matrices A and B are Hermitian (and therefore also square) and of finite dimension. We
consider the decomposition of the operator eA+B into the product eAeB , where generally [A,B] 6= 0. The
Lie-Trotter formula relates these operators as follows ([2],[13]):

e−it(A+B) = lim
M→∞

(
e−itA/Me−itB/M

)M
, (29)

where t ∈ R+ and we have introduced the Trotter variable M . This result is useful in the setting of
real-time evolution of a system – i.e. the decomposition of the propagation unitary of the Schrödinger
equation (e−iHt). For imaginary-time evolution (which is encountered in quantum Monte Carlo settings),
the following holds:

e−τ(A+B) = lim
M→∞

(
e−τA/Me−τB/M

)M
, (30)

where τ ∈ R+.

In the remainder of this section, we consider the decomposition of e−t(A+B) into
(
e−tA/Me−tB/M

)M
,

where t ∈ R+ and A and B are Hermitian in the imaginary-time setting, but are anti-Hermitian in the
real-time setting. Specifically, we investigate in this section the error associated with this decomposition
for finite choices of M in the imaginary- and real-time settings.

I.4.1 Trotterization for Arbitrary-Time Evolution

We define SM ≡ e−t(A+B)/M and TM ≡ e−tA/Me−tB/M , and evaluate the expression SM − TM to find
an upper bound on the matrix norm ||SM − TM ||. By definition, e−t(A+B)/M and e−tA/Me−tB/M can be
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expanded as follows:

SM =

∞∑
j=0

(−t)j(A+B)j

j!M j
; TM =

∞∑
j=0

∞∑
l=0

(−t)jAj

j!M j

(−t)lBl

l!M l
=

∞∑
j=0

(−t)j

j!M j

j∑
l=0

(
j

l

)
AlBj−l. (31)

SM − TM =

∞∑
j=0

(−t)j

j!M j

(
(A+B)j −

j∑
l=0

(
j

l

)
AlBj−l

)
. (32)

The terms for which j = 0, 1 vanish in the expression for SM − TM (for any [A,B]). We therefore write:

SM − TM =

∞∑
j=2

(−t)j

j!M j

(
(A+B)j︸ ︷︷ ︸

α

−
j∑
l=0

(
j

l

)
AlBj−l︸ ︷︷ ︸
β

)
, (33)

where we have identified quantities α and β. We note that α corresponds to the sum of all products (with
j terms) of A and/or B matrices. β is the sum of all products (with j terms) of A and/or B matrices, with
the constraint that all A’s precede the B’s. It will be convenient to rewrite the terms α and β as follows:

α =
∑

x∈{0,1}j

j∏
r=1

{
A, if xr = 0
B, if xr = 1

}
; β =

∑
x∈{0,1}j

Aj−|x|B|x|, (34)

where x is a bit-string of j bits and |x| denotes the Hamming weight of string x. We now bound ||SM−TM ||
by using the triangle inequality for the matrix norm || · ||:

||SM − TM || ≤
∞∑
j=2

tj

j!M j
2j sup

x∈{0,1}j

∥∥∥∥∥
j∏
r=1

{
A, if xr = 0
B, if xr = 1

}
−Aj−|x|B|x|

∥∥∥∥∥︸ ︷︷ ︸
K(x)

. (35)

The term in || · ||’s (denoted by K(x)) attains its supremum value as a function of x for:

xsup =


{1}j/2{0}j/2 , for j even,

{1}(j−1)/2{0}(j+1)/2 , for j odd and ||A|| > ||B||,
{1}(j+1)/2{0}(j−1)/2 , for j odd and ||B|| > ||A||.

(36)

K(xsup) = supx∈{0,1}j K(x) can itself be upper bounded as follows:

K(xsup) ≤


j2

4
|| [A,B] || ||A||j/2−1 ||B||j/2−1 , for j even,

j2−1
4
|| [A,B] || ||A||(j−1)/2 ||B||(j−3)/2 , for j odd and ||A|| > ||B||,

j2−1
4
|| [A,B] || ||A||(j−3)/2 ||B||(j−1)/2 , for j odd and ||B|| > ||A||.

(37)

From this we conclude that for general j ∈ N, K(xsup) ≤ j2

4
|| [A,B] ||

(
||A||+ ||B||

)j−2

. The inequality in

eq. 35 now reduces to:

||SM − TM || ≤
∞∑
j=2

tj

j!M j
2j
j2

4
|| [A,B] ||

(
||A||+ ||B||

)j−2

. (38)

So that:

M2

t2
||SM − TM || ≤

∞∑
j=2

(
t
(
||A||+ ||B||

)
M

)j−2
2j−2 j2

j!
|| [A,B] ||. (39)

This expression reduces to (if no further assumptions about the matrix norms ||A|| and ||B|| are imposed):

||SM − TM || ≤ || [A,B] ||

(
e

2 (||A||+||B||) t
M

(
t2

M2
+

t

2
(
||A||+ ||B||

)
M

)
− t

2
(
||A||+ ||B||

)
M

)
. (40)
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Clearly, if [A,B] = 0, then SM = TM . If one assumes that
t
(
||A||+||B||

)
M

≤ 1, then:

M2

t2
||SM − TM || ≤

∞∑
j=2

2j−2j2

j!
|| [A,B] ||

≤
∞∑
j=0

2j−2j2

j!
|| [A,B] ||

=
3e2

2
|| [A,B] ||.

(41)

We thus find, provided that
t
(
||A||+||B||

)
M

≤ 1, that the absolute error of approximating e−t(A+B)/M by

e−tA/Me−tB/M is as follows:

||SM − TM || ≤
3e2

2
|| [A,B] || t

2

M2
. (42)

So in the parameter regime for which
t
(
||A||+||B||

)
M

≤ 1 the bound on the absolute error ||SM −TM || scales

as t2

M2 , instead of exponentially in t
M

(which holds in a general parameter regime).

Next, we consider the error of approximating e−t(A+B) =
(
SM
)M

by
(
e−tA/Me−tB/M

)M
=
(
TM
)M

.

We determine a bound on
∣∣∣∣∣∣(SM)M − (TM)M ∣∣∣∣∣∣ in terms of the bound on

∣∣∣∣SM − TM ∣∣∣∣ from eq. 42:

∣∣∣∣∣∣(SM)M − (TM)M ∣∣∣∣∣∣ =
∣∣∣∣∣∣ M∑
j=1

(
SM
)j−1(

SM − TM
)(
TM
)M−j∣∣∣∣∣∣

≤
M∑
j=1

∣∣∣∣∣∣(SM)j−1(
SM − TM

)(
TM
)M−j∣∣∣∣∣∣

≤
M∑
j=1

∣∣∣∣∣∣(SM)j−1
∣∣∣∣∣∣ ∣∣∣∣∣∣(SM − TM)∣∣∣∣∣∣ ∣∣∣∣∣∣(TM)M−j∣∣∣∣∣∣

≤
M∑
j=1

∣∣∣∣∣∣(SM − TM)∣∣∣∣∣∣
=M

∣∣∣∣∣∣(SM − TM)∣∣∣∣∣∣,

(43)

where the last inequality holds provided that ||SM || ≤ 1 and ||TM || ≤ 1. We conclude that if ||SM || ≤ 1,

||TM || ≤ 1 and
t
(
||A||+||B||

)
M

≤ 1, then:

∣∣∣∣∣∣(SM)M − (TM)M ∣∣∣∣∣∣ ≤ 3e2

2
|| [A,B] || t

2

M
. (44)

I.4.2 Trotterization for Real-Time Evolution

We now consider the particular case of trotterization for real-time evolution – i.e. the case for which the
operators A and B are anti-Hermitian. The operators SM ≡ e−t(A+B)/M and TM ≡ e−tA/Me−tB/M are
now unitaries (since exponentials of anti-Hermitian matrices are unitary) and therefore have unit norm:
||SM || = ||TM || = 1. This property allows for a slightly different analysis ([14]) in comparison to that of
the previous section, and results in an upper bound on the absolute Trotter error that scales as t2/M ,
regardless of the parameter regime.

By definition, a unitary operator U has the property U† = U−1. In addition, multiplying an operator
by a unitary does not change its matrix norm. We define operator FM ≡ T †MSM − I, whose norm equals
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the quantity of interest ||SM − TM ||:

||FM || = ||T †MSM − I|| = ||SM − TM ||. (45)

The derivative of operator FM with respect to t
M

is given by:

∂FM
∂(t/M)

= etA/M
(
A etB/M − etB/MA

)
︸ ︷︷ ︸

[A, etB/M ]

e−t(A+B)/M . (46)

The commutator [A, etB/M ] can be conveniently expressed in terms of the commutator [A,B] as follows:

∂

∂(t/M)

(
e−tB/M [A, etB/M ]

)
= −e−tB/M [A,B] etB/M . (47)

Integrating this expression over a time interval t
M

(a single time-slice) yields:

e−tB/M [A, etB/M ] = −
∫ t/M

0

e−sB [A,B] esBds. (48)

The explicit expression for [A, etB/M ] is now:

[A, etB/M ] = −etB/M
∫ t/M

0

e−sB [A,B] esBds. (49)

Using this expression for [A, etB/M ], we find for ∂FM
∂(t/M)

:

∂FM
∂(t/M)

= −etA/MetB/M
∫ t/M

0

e−sB [A,B] esBds e−t(A+B)/M . (50)

Integrating once again over a single time-slice yields:

FM = −
∫ t/M

0

(
erAerB

∫ r

0

e−sB [A,B]esBds e−r(A+B)

)
dr + FM (t/M = 0)︸ ︷︷ ︸

= 0

, (51)

where r and s are real parameters. We now bound the matrix norm ||SM − TM ||:

||SM − TM || = ||FM || =
∣∣∣∣∣∣∣∣∫ t/M

0

(
erAerB

∫ r

0

e−sB [A,B]esBds e−r(A+B)

)
dr

∣∣∣∣∣∣∣∣
≤
∫ t/M

0

∣∣∣∣∣∣erA∣∣∣∣∣∣︸ ︷︷ ︸
= 1

∣∣∣∣∣∣erB∣∣∣∣∣∣︸ ︷︷ ︸
= 1

∣∣∣∣∣∣∣∣∫ r

0

e−sB [A,B]esBds

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣e−r(A+B)
∣∣∣∣∣∣︸ ︷︷ ︸

= 1

dr

≤
∫ t/M

0

∫ r

0

∣∣∣∣∣∣e−sB∣∣∣∣∣∣︸ ︷︷ ︸
= 1

|| [A,B] ||
∣∣∣∣∣∣esB∣∣∣∣∣∣︸ ︷︷ ︸

= 1

ds dr

=

∫ t/M

0

r || [A,B] || dr = || [A,B] || t2

2M2
,

(52)

where in the last line we have (explicitly) assumed operators A and B to be time-independent. As in the

previous section, we bound
∣∣∣∣∣∣(SM)M − (TM)M ∣∣∣∣∣∣ using the bound on ||SM − TM ||:

∣∣∣∣∣∣(SM)M − (TM)M ∣∣∣∣∣∣ ≤M ||SM − TM || ≤ || [A,B] || t
2

2M
. (53)

We reiterate that this result holds provided that ||SM || ≤ 1 and ||TM || ≤ 1. Since SM and TM are unitary
operators in the current discussion, these conditions are always obeyed. We conclude that eq. 53 holds
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in any parameter regime if the time-independent operators A and B are anti-Hermitian (corresponding to
real-time propagation). In contrast, the error bound that was derived in the previous section for arbitrary-
time propagation (including imaginary-time propagation) scaling as t2/M holds only in the parameter

regime for which ||SM || ≤ 1, ||TM || ≤ 1 and
t
(
||A||+||B||

)
M

≤ 1.

I.4.3 Trotterizing Hamiltonian Dynamics (in Real- and Imaginary-Time)

We are mostly interested in exploiting the concept of Trotterization for efficiently simulating the dynamics
of a quantum system in either imaginary or real time (and thereby obtaining some of the eigenvalues of
its Hamiltonian). Suppose H =

∑N
i=1 Hi represents a k-local Hamiltonian of a quantum system. {Hi}Ni=1

is generally a set of non-commuting terms but can be divided into groups, such that within each group
all terms commute. For a given set {Hi}Ni=1, we denote the minimum possible number of these groups by
Γ. This number of groups is at most N (in the minimally separable case) and equals 1 in the trivial case
where all Hi’s commute with each other. The Hamiltonian H can thus be decomposed as H =

∑Γ
γ=1 Ĥγ ,

where all Ĥγ do not commute with each other, but the terms of which each individual Ĥγ is composed do
commute.

Using the results obtain thus far in this section, we evaluate the error associated with the following
(first-order) Trotterizations for Hermitian matrices H and finite M :

e−itH ≈
( Γ∏
γ=1

e−itĤγ/M
)M

, for real-time evolution, (54a)

e−τH ≈
( Γ∏
γ=1

e−τĤγ/M
)M

, for imaginary-time evolution. (54b)

By successively applying eq. 53 to the operator e−it
∑
γ Ĥγ , we find the following upper bound on the

absolute Trotter error for real-time Hamiltonian evolution:∣∣∣∣∣∣∣∣ e−itH − ( Γ∏
γ=1

e−itĤγ/M
)M ∣∣∣∣∣∣∣∣ ≤ Γ−1∑

γ′=1

∑
γ>γ′

|| [Ĥγ′ , Ĥγ ] || t
2

2M
. (55)

Similarly, we find the following upper bound on the absolute Trotter error for imaginary-time Hamiltonian

evolution for the operator e−τ
∑
γ Ĥγ (by successively applying eq. 44):∣∣∣∣∣∣∣∣ e−τH − ( Γ∏
γ=1

e−τĤγ/M
)M ∣∣∣∣∣∣∣∣ ≤ 3e2

Γ−1∑
γ′=1

∑
γ>γ′

|| [Ĥγ′ , Ĥγ ] || τ
2

2M
, (56)

which holds provided that
∣∣∣∣e−τH/M ∣∣∣∣ ≤ 1,

∣∣∣∣e−τĤγ/M ∣∣∣∣ ≤ 1 (∀γ) and
τ
(∑

γ ||Ĥγ ||
)

M
≤ 1. Γ has been defined

as being the smallest number of subsets into which the set {Hi}Ni=1 can be divided, such that within each
subset all Hi’s commute. We note that this number of subsets can, of course, always be taken bigger
than Γ (N in the most trivial case). This leads to an upper bound that is generally less tight than in the
Γ-subsets case, but which scales equally well in t and M .

Making sure that the number of subsets into which {Hi}Ni=1 is divided is minimal also brings about
another advantage: Suppose one wants to calculate the result of letting a Trotterized version of the
operators e−itH or e−τH act on a state |Φ〉. If one takes the number of subsets equal to N (the trivial
setting), then the number of subsequent operations required for the simulation will scale as MN . In
contrast, if one is able to identify Γ, then one can let the commuting propagation operators within each
subset act on the state in parallel. By doing this, the number of subsequent operations required for the
simulation will scale as MΓ.

A specific example of this grouping of the set {Hi}Ni=1 into subsets such that within each subset the Hi’s
commute is the checkerboard decomposition. Suppose we are simulating the dynamics of a spin system,
whose lattice is bipartite and whose interactions are of locality k = 2. In that case, Γ = 2. The simulation
in that case comprises of letting the two subsets of {Hi}Ni=1 act on the state of the system in an alternating
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fashion. For one-dimensional systems, this creates a checkerboard pattern as a function of time and the
single spatial component.

In the context of quantum simulation (by means of quantum phase estimation) or quantum Monte
Carlo methods, one is specifically interested in finding an upper bound on the absolute Trotter error on
the signals 〈Φ| e−itH |Φ〉 and 〈Φ| e−τH |Φ〉, respectively (where |Φ〉 is some normalized state of the system
that is being considered). Suppose operator ∆M denotes the difference between e−itH (in the real-time
setting) and e−τH (in the imaginary-time setting) and their Trotterized versions. Then we would like to
find an upper bound on the quantity

∣∣〈Φ|∆M |Φ〉
∣∣. The Cauchy-Schwarz inequality for inner products and

property 4 of the Induced Matrix Norm (introduced in the Preliminaries section) yield:∣∣〈Φ|∆M |Φ〉
∣∣ ≤ ∣∣∣∣〈Φ|∣∣∣∣︸ ︷︷ ︸

= 1

∣∣∣∣∆M |Φ〉
∣∣∣∣

≤
∣∣∣∣∆M

∣∣∣∣ ∣∣∣∣|Φ〉∣∣∣∣︸ ︷︷ ︸
= 1

.
(57)

The norm of the absolute error between the actual signal of interest and its Trotterized version is thus
upper bounded by the norm of the operator difference, for whom we have found upper bounds in this
section. We summarize the results of this section in Lemma I.3 below.

Lemma I.3. First-Order Trotter Decomposition. Given a k-local Hamiltonian H =
∑N
i Hi. Fur-

thermore, suppose the set {Hi}Ni=1 can be divided into a minimum of Γ subsets {Ĥγ}Γγ=1, such that within

each individual subset all Hi’s commute. Then the quantities
∣∣〈Φ| e−itH |Φ〉 − 〈Φ| (∏γ e

−itĤγ/M
)M |Φ〉∣∣

and
∣∣〈Φ| e−τH |Φ〉 − 〈Φ| (∏γ e

−τĤγ/M
)M |Φ〉∣∣ (where |Φ〉 is a normalized state and t, τ ∈ R+) are bounded

as follows: ∣∣∣〈Φ| e−itH |Φ〉 − 〈Φ| (∏
γ

e−itĤγ/M
)M |Φ〉∣∣∣ ≤ Γ−1∑

γ′=1

∑
γ>γ′

|| [Ĥγ′ , Ĥγ ] || t
2

2M
, (58a)

∣∣∣〈Φ| e−τH |Φ〉 − 〈Φ| (∏
γ

e−τĤγ/M
)M |Φ〉∣∣∣ ≤ 3e2

Γ−1∑
γ′=1

∑
γ>γ′

|| [Ĥγ′ , Ĥγ ] || τ
2

2M
, (58b)

where the second inequality holds provided that
∣∣∣∣e−τH/M ∣∣∣∣ ≤ 1,

∣∣∣∣e−τĤγ/M ∣∣∣∣ ≤ 1 (∀γ) and
τ
(∑

γ ||Ĥγ ||
)

M
≤ 1.

I.4.4 Higher-Order Trotter Decompositions

The upper bounds on the absolute Trotter error obtained thus far hold for first-order approximations –
TM = e−tA/Me−tB/M is the first-order approximant of operator SM = e−t(A+B)/M . This is manifested in
the fact that, as was shown above, the Taylor expansion around t

M
= 0 of the function SM − TM does not

contain any terms that are constant or linear in t
M

. Taking TM = e−tA/2Me−tB/Me−tA/2M results in the
Taylor expansion of SM −TM around t

M
= 0 not containing terms that are constant, linear or quadratic in

t
M

. This TM is therefore a second-order approximant of SM . In general, if TM is a pth-order approximant
of operator SM , then the nth derivative of the Taylor expansion of SM − TM around t

M
= 0 equals zero,

for n ∈ {0, 1, ..., p}.
The reason for considering higher-order approximants is that the scaling of the associated error bounds

is better as a function of M . Suppose e−itH/M and e−τH are approximated by the pth-order approximants

TM (p, t) and TM (p, τ), respectively. Then the upper bounds on
∣∣∣∣e−itH − (TM (p, t)

)M ∣∣∣∣ and
∣∣∣∣e−τH −(

TM (p, τ)
)M ∣∣∣∣ scale as t p+1/Mp and τ p+1/Mp, respectively (provided that in the case of imaginary-time

propagation, conditions similar to those mentioned in Lemma I.3 are obeyed) ([15],[16]).
The question is now how one constructs pth-order approximants of the operators e−itH/M and e−τH/M .

In [17], a widely used scheme is proposed for constructing pth order approximants: The first-order approx-

imants of e−itH/M and e−τH/M are TM (p = 1, t) =
∏Γ
γ=1 e

−itĤγ/M and TM (p = 1, τ) =
∏Γ
γ=1 e

−τĤγ/M ,

respectively. Their second-order approximants are TM (p = 2, t) =
∏1
γ=Γ e

−itĤγ/(2M)∏Γ
γ=1 e

−itĤγ/(2M)
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and TM (p = 2, τ) =
∏1
γ=Γ e

−τĤγ/(2M)∏Γ
γ=1 e

−τĤγ/(2M). Higher-order approximants are recursively de-
fined (starting from these second-order approximants) as follows:

TM
(
p+ 2, t

)
=
(
TM
(
p, vpt

))2

× TM
(
p, (1− 4vp)t

)
×
(
TM
(
p, vpt

))2

, (59a)

TM
(
p+ 2, τ

)
=
(
TM
(
p, vpτ

))2

× TM
(
p, (1− 4vp)τ

)
×
(
TM
(
p, vpτ

))2

, (59b)

where vp ≡ 1/
(
4− 41/(p+1)

)
.

For the practical implementation of the Trotterized versions of both the real-time and imaginary-time
evolution, it is important to consider the total number of k-local propagation operators required to simulate
e−itH and e−τH (for a given order p and Trotter variable M). For the scheme in eq. 59, the number of
these k-local propagation operators required to be implemented for the simulation of e−itH and e−τH for
p > 1 is 2MN 5

p
2
−1 (and for p = 1 is MN). Using the intrinsic parallelizability due to the grouping of

the k-local bond Hamiltonians into Γ groups, the number of required time slices needed to implement the
Hamiltonian evolution reduces to 2MΓ 5

p
2
−1 (where within each time slice, k-local propagation operators

working on separate subsystems can be simultaneously implemented).
Now suppose the Trotter error of implementing e−itH and e−τH by means of a pth-order approximant

and Trotter variable M is given by ε. As mentioned above, ε ∝ tp+1

Mp and ε ∝ τp+1

Mp in that case. For
a given ε, the number of k-local propagation operators into which the evolutions are decomposed then

scales as N 5p/2 t
1+1/p

ε1/p
and N 5p/2 τ

1+1/p

ε1/p
. Similarly, the number of time slices into which the simulation

can be decomposed (by making use of parallelization) scales as Γ 5p/2 t
1+1/p

ε1/p
and Γ 5p/2 τ

1+1/p

ε1/p
. We thus

conclude that for large p (i.e. high-order decompositions) and a given ε, the number of k-local propagation
operators in the Trotter decomposition scales approximately linearly in the evolution time of the system
under consideration (for real-time and imaginary-time evolution).

Figure 2 depicts the scaling of the number of local propagation operators as a function of the order
of the Trotterization scheme (according to the scheme from eq. 59). Clearly, for large p this number of
operators increases exponentially with p. Interestingly, in parameter regimes where ε � τ, t, the number
of operators first decreases as a function of p, before increasing exponentially for large p. We also indeed
see that for large p and a given ε, the number of local operators scales approximately linearly in τ(= t).
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Figure 2: Scaling of the number of local propagation operators (propagating in real time or imaginary
time) as a function of the order of the Trotterization scheme p (for p = 1, and p > 1 and even according
to eq. 59). The left figure depicts the scaling as a function of p for a fixed τ = t = 1 and several values of
ε. The right figure depicts the scaling as a function of p for a fixed ε = 0.1 and several values of τ = t.

As will be discussed in the coming chapters of this report, imaginary-time k-local propagation operators
can be implemented in a computationally tractable manner by classical means if the Hamiltonian H is
piece-wise stoquastic and if the interaction locality k is at most log(poly(n)). In contrast, the efficient
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implementation of real-time k-local propagation operators generally requires quantum machinery. We note
that in the latter case, a decomposition needs to be found of the k-local gates in terms of an elementary
set of 1-qubit and 2-qubit gates (generally to be implemented on a universal quantum computer).
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II Quantum Simulation

As discussed in the introductory chapter of this report, simulating a quantum system by classical means is
in general a computationally intractable task. Suppose one is given the task of obtaining the eigenvalues of
a (time-independent) Hamiltonian H associated with a quantum system consisting of n degrees of freedom,
where the ’state’ of each degree of freedom lies in a σ-dimensional vector space. The Hamiltonian itself is
then a σn×σn matrix, so direct diagonalization is generally inefficient. Given that the state of the system
evolves in time according to the Schrödinger propagation unitary e−itH , an alternative approach might be
to track the system state in time t and determine (some of) the frequencies with which the state elements
oscillate. These frequencies then correspond to the eigenvalues of the Hamiltonian.

The dimensionality of the Hilbert space of the quantum system is σn – i.e. exponentially large in the
system size. To classically store the state of the system therefore requires an amount of memory that
grows exponentially in the system size as well. In addition, exponentiating the σn × σn Hamiltonian to
obtain the propagation unitary (which is required to implement the time evolution) is a computationally
intractable task by classical means. If the Hamiltonian is sufficiently local, however, the latter task of
efficiently obtaining the propagation unitary can be solved by Trotterization of the unitary. The actual
implementation of the Trotterized propagation unitary, and the associated storing of the system state at
several instances in evolution time, can be done efficiently using a qubit register and a digital quantum
computer. Given for instance an n-qubit register, then the dimensionality of the Hilbert space of the qubit
register equals that of the system (for σ = 2). Storing the state of the system on the qubit register therefore
only requires a number of qubits that scales polynomially in the system size. The actual implementation
of the time evolution by means of the Trotterized propagation unitary (working on the qubit register) is
then implemented by means of a digital quantum computer. By now efficiently implementing the time
evolution for many different time intervals, the state of the system can be efficiently tracked in time t by
carefully measuring the state of the system for each of the different implemented time intervals.

When implementing a quantum simulation algorithm by means of e.g. quantum phase estimation,
only those eigenvalues that have associated eigenstates with sufficiently large overlap with the initial state
can be obtained through tracking the system state. It is therefore important to be able to systematically
prepare the quantum system in a preferred initial state. In the remainder of this section, we will discuss
digital quantum simulation in more detail (and the associated topics of state preparation, system evolution
and measurement). In addition, we will briefly discuss the concept of analog quantum simulation. Finally,
we will elaborately discuss a digital quantum simulation scheme based on quantum phase estimation.

II.1 Digital Quantum Simulation

Digital quantum simulation is a method that exploits a universal quantum computer to efficiently imple-
ment the time evolution (associated with some Hamiltonian H) of a quantum system that is initialized in
some state |Φ(0)〉. After the evolution has taken place, measurements are performed on the qubit registers
to extract useful information. For a digital quantum simulation algorithm to run efficiently, all three stages
of initial-state preparation, Hamiltonian evolution and measurement have to run using resources that scale
polynomially in the system size.

Since the Schrödinger propagation operator e−itH is a unitary operation, it can be expressed in terms
of the elements of some universal set of quantum gates. However, not any operator e−itH can be neces-
sarily decomposed into a set quantum gates that is of poly(n) size – i.e. not any mathematically allowed
Hamiltonian gives rise to a propagation operator that can be efficiently implemented on a digital quantum
computer.

A class of Hamiltonians that can be efficiently simulated is that of the finite-dimensional (i.e. finite
σ) and sufficiently local Hamiltonians ([1],[18]). This class of Hamiltonians includes most Hamiltonians
that appear in physics. The previously discussed concept of Trotterization is essential for the efficient
implementation of the time dynamics associated with the Hamiltonians in this class: The Schrödinger
evolution unitary is decomposed into an ordered time series of local propagation operators by means of
Trotterization. Each of these local propagation operators is then decomposed into a some universal set of
quantum gates – itself consisting in general of 1-qubit and 2-qubit gates.
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II.1.1 Initial-State Preparation & Hamiltonian Evolution

In order to demonstrate the fact that not any mathematically allowed Hamiltonian gives rise to a propaga-
tion operator that can be efficiently implemented on a universal quantum computer, we consider a counting
problem ([2]): Given a Hamiltonian H and its associated propagation unitary e−iHt (which works on an
n-qubit register), one can question whether it can be implemented by a circuit that is of size poly(n). This
question is closely related to the question of whether an arbitrary initial state |Φ(0)〉 can be prepared from
some n-qubit starting state using a circuit of poly(n) size.

Suppose we have g gates available to mimic the unitary evolution e−iHt, where each of the g gates acts
on at most k qubits. For any particular gate, we have

(
n
k

)g
available options (taking into account both

the g different gates, and the fact that each gate can work on
(
n
k

)
different sets of qubits). This number of

available gate choices can be upper bounded as follows:(
n
k

)
≤ nk

k!

ek =
∑∞
j=0

kj

k!
≥ kk

k!
=⇒ k! ≥

(
k/e
)k

(
n

k

)
≤
(ne
k

)k
=⇒

(
n

k

)g
≤
(ne
k

)kg
= O(nkg). (60)

Suppose now that one has access to quantum circuits consisting of d gates, then the total number of
distinct choices for this quantum circuit is bounded as follows:(

n

k

)gd
≤
(ne
k

)kgd
= O(nkgd) (61)

This set of distinct quantum circuits can produce a set of states (starting from some initial state) of size
that is at most that of the set of distinct quantum circuits. The size of this set of producable states is thus

also upper bounded by
(
ne
k

)kgd
= O(nkgd).

Suppose that one wishes to obtain an ε-estimate of a state |Φ〉 by application of the quantum circuit
(starting from initial state |Φ(0)〉). The n-qubit state |Φ〉 can be expressed in a basis {|x〉} (of size 2n) as
|Φ〉 =

∑
x Φ(x) |x〉. Due to normalization, |Φ〉 lies on the unit sphere (in 2n+1 real dimensions) defined by∑

x |Φ(x)|2 =
∑
x

(
Re
(
Φ(x)

)2
+ Im

(
Φ(x)

)2)
= 1. The surface area of this unit (2n+1 − 1)-sphere is given

by:

S2n+1−1(r = 1) =
2π2n

Γ(2n)
, (62)

where Γ(n) = (n − 1)! (for n > 0). The surface area spanned by the points that are ε-close to |Φ〉 is
approximately equal to the volume of a sphere in 2n+1− 1 real dimensions of radius ε. The volume of this
(2n+1 − 2)-sphere is given by:

V2n+1−2(r = ε) =
2π2n−1/2ε2

n+1−1

(2n+1 − 1)Γ(2n − 1/2)
. (63)

The number of distinguishable ε-estimates of n-qubit states |Φ〉 is thus given by:

N (n, ε) =
S2n+1−1(r = 1)

V2n+1−2(r = ε)
=
√
π
(
2n+1 − 1

)Γ(2n − 1/2)

Γ(2n)

1

ε2n+1−1
. (64)

If the quantum circuit (consisting of d unitary operations) were to be used to obtain ε-estimates of n-qubit
states, then the number of producable states (upper bounded by (ne

k
)kgd) has to be at least equal to

N (n, ε):

N (n, ε) =
(ne
k

)kgd
. (65)

The number of required unitaries per quantum circuit (d) that satisfies this condition is:

d =
1

gk ln
(
ne
k

)( ln
(√

π
(
2n+1 − 1

)Γ(2n − 1/2)

Γ(2n)

)
+
(
2n+1 − 1

)
ln(1/ε)

)
= O

(
2n ln(1/ε)

ln(n)

)
. (66)

We thus conclude that – for a given accuracy ε – there exist n-qubit states of which an ε-estimate cannot
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be efficiently obtained by means of implementation of a set of local unitary operations. This means, for
instance, that not any desired initial state can be prepared on a qubit register with polynomial resources.
In [19], it is argued in a more general sense that although one describes the state of a many-body system
(of size n) as a vector in a Hilbert space, the vast majority of states in the Hilbert space is not reached
through Hamiltonian dynamics in poly(n) time. Therefore, one concludes that the vast majority of states
in the Hilbert space is not physical as they are only produced after exponentially long times.

As mentioned above, the time dynamics according to most Hamiltonians encountered in physical sys-
tems can be efficiently implemented using a universal quantum computer. Also, numerous useful initial
states can be efficiently prepared on a universal quantum computer. In [20], for example, the authors
efficiently prepare a Hartree-Fock state on a superconducting-qubit register. The efficient preparation
of Hartree-Fock states, due to their generally large overlap with low-lying eigenstates, is an important
algorithmic primitive for quantum simulation of quantum chemistry and condensed matter systems.

II.1.2 Measurement

After the propagation unitary e−itH has been (approximately) applied to the initial state |Φ(0)〉 to obtain
the final state |Φ(t)〉 = e−itH |Φ(0)〉, one has to perform measurements on the qubit register to extract useful
information. One can try to characterize the final system state |Φ(t)〉 through quantum state tomography
([21]). However, quantum state tomography in general requires resources that scale exponentially in the
system size. Instead of using quantum state tomography to explicitly obtain the final system state, one can
try to efficiently extract quantities of interest such as correlation functions and operator spectra directly.

II.2 Analog Quantum Simulation

Another way in which a quantum system can be simulated by quantum means is through analog quantum
simulation ([18]). Analog quantum simulation differs from digital quantum simulation in that an analog
quantum simulation platform cannot simulate any local quantum system, but rather emulates a particular
other quantum system. The Hamiltonian of the system to be simulated Hsystem is directly mapped onto
the Hamiltonian of the simulator Hsimulator: Hsystem ←→ Hsimulator. The simulator is a system that is
experimentally well-controllable, while the system to be simulated is generally not experimentally well-
controllable. The simulation of the quantum system of interest by means of the simulator system can be
realized if an invertible mapping exists that determines a correspondence between all operators and states
of the simulated system and the simulator ([22]).

An advantage of analog quantum simulation is that if the simulator naturally evolves in the same way as
the system to be simulated (i.e. their Schrödinger propagators are equal), then there is in principle no need
for Trotterization of the Schrödinger propagator. Other advantages of analog quantum simulation relate
to state preparation and measurement: Because the system and simulator are so similar, the preparation
of desired initial states can occur naturally in processes that mimic the natural relaxation of system to be
simulated to an equilibrium state. Direct measurement of some physical quantities in the simulator system
yield information on their analog counterparts in the system to be simulated.

Prominent physical realizations of analog quantum simulators include: Cold atomic gases in optical
lattices, which can be used for simulating Bose-Hubbard models and, in particular, the associated superfluid
to Mott insulator phase transition ([23]). Superconducting circuits (and the related concepts of circuit-
QED) which can be used to study (and control) strong light-matter interactions ([24]).

II.3 Quantum Phase Estimation

Quantum phase estimation is used to efficiently determine the phases of eigenvalues of a unitary U . When
choosing the unitary U = e−iH∆t (the propagation operator of the Schrödinger equation), the eigenvalues
of a Hamiltonian H can be approximately obtained. Hence, quantum phase estimation is useful as the
basis for a digital quantum simulation scheme. We do note that only those eigenvalues that have associated
eigenstates that overlap significantly with the initial state |Φ〉 can be obtained. When H is non-stoquastic
(and can thus suffer from a sign problem), quantum phase estimation is particularly useful. In later stages
of this report, we compare a quantum-phase-estimation-based algorithm to a Monte Carlo method (closely
resembling quantum phase estimation) for stoquastic Hamiltonians that will be extensively discussed in
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the next chapters. We specifically consider here a form of quantum phase estimation where the unitary
U is efficiently implemented to act on a qubit register by means of a digital quantum simulator, but the
post-processing procedure to actually obtain the phases of the eigenvalues of U is performed classically.
This differs from the approach that is described in e.g. [25], where the post-processing to obtain the
eigenvalues requires a machine that can efficiently implement the Quantum Fourier Transform (such as
a digital quantum simulator). In the current approach of classical post-processing, the use of quantum
phase estimation to determine multiple eigenvalues arises more naturally.

Figure 3 schematically depicts a basic quantum circuit which is used for quantum phase estimation. It
involves an n-qubit register and a single ancillary qubit. The state of the composite system can be tracked
through the circuit as follows (where R(θ) ≡ e−iθσz/2):

I : |+〉a ⊗ |Φ〉 ,

II :
1√
2

(
|0〉a ⊗ |Φ〉+ Uk |1〉a ⊗ |Φ〉

)
,

III :
1√
2

((
e−iθ/2 |0〉a

)
⊗ |Φ〉+ Uk

(
eiθ/2 |1〉a

)
⊗ |Φ〉

)
,

IV :
1

2

((
e−iθ/2I + eiθ/2Uk

)
|0〉a ⊗ |Φ〉+

(
e−iθ/2I − eiθ/2Uk

)
|1〉a ⊗ |Φ〉

)
.

(67)

The probability to measure state |0〉 (m = 0) on the ancillary qubit after application of the depicted gates
is then given by:

Pr
(
m = 0 | k, θ

)
=

1

2
+

1

4

(
eiθ 〈Φ|Uk |Φ〉+ e−iθ

(
〈Φ|Uk |Φ〉

)∗)
=


1
2

+ 1
2
Re
(
〈Φ|Uk |Φ〉

)
, for θ = 0,

1
2
− 1

2
Im
(
〈Φ|Uk |Φ〉

)
, for θ = π

2
.

(68)
In the last expression, we have restricted ourselves to θ = 0 and θ = π

2
. As will become apparent shortly

hereafter, these are the parameter values of interest.
We choose U = e−iH∆t (where ∆t ∈ R+ is fixed, H is Hermitian and has 2n possibly degenerate

eigenvalues). Using the spectral decomposition of H (in terms of its eigenstates {|ψj〉} and eigenvalues
{Ej}), the ’signal’ 〈Φ|Uk |Φ〉 can be rewritten as

∑
j |〈ψj |Φ〉|

2e−iEj∆tk. Using the expression in eq. 68,
one can determine (a subset of) the eigenvalues of H, provided that Pr(m = 0 | k, θ = {0, π

2
}) can be

efficiently evaluated for a range of k values.
Since the direct evaluation, and therefore the implementation, of U = e−iH∆t is inefficient, U should be

Trotterized to give Ũ ≡
(
TM (p,∆t)

)M
(where the ordered real-time series TM (p,∆t) has been introduced

in the previous chapter), where the Trotterization is of pth order. Since the Trotterized version of U
corresponds to a product of local (unitary) propagation operators, Ũ is itself a unitary operator as well.
Therefore, quantum phase estimation is in practice used to obtain the phases of the eigenvalues of unitary
Ũ , which converge to the eigenvalues of U in the limit of large Trotter variable M .

Figure 3: Basic quantum phase esti-
mation circuit with a single ancillary
qubit and an n-qubit register (initial-
ized in state |Φ〉). Quantum algo-
rithms based on this basic circuit can
be used to determine the phases of the
eigenvalues of the unitary U efficiently.
This is done by applying the unitary
U on the n-qubit register a varying
number of k times (conditioned on the
ancillary qubit) and measuring the re-
sulting state of the ancillary qubit (in
the standard basis) sufficiently many
times for each k. The single-qubit H
gates denote Hadamard gates.
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If one would be able to perform the experiment corresponding to the circuit depicted in Figure 3 many
times for a particular k ∈ N (half of the times for θ = 0 and half of the times for θ = π

2
), the true

values of Pr
(
m = 0 | k, θ = {0, π

2
}
)

can be approximately obtained. Thereby, the signal 〈Φ| Ũk |Φ〉 can
be approximately obtained as well. Suppose that for θ = 0 and a given k, the experiment is repeated
|Σ| times to obtain a set Σ of independent realizations of the ancillary-qubit state to be measured. The
expectation value of the measurement outcome and its squared value are (using the expressions from eq.
68):

〈m〉 =
∑
m

Pr(m | k, θ = 0)m = Pr(m = 1 | k, θ = 0) =
1

2
− 1

2
Re
(
〈Φ| Ũk |Φ〉

)
, (69a)

〈m2〉 =
∑
m

Pr(m | k, θ = 0)m2 = Pr(m = 1 | k, θ = 0) =
1

2
− 1

2
Re
(
〈Φ| Ũk |Φ〉

)
. (69b)

Pr(m = 0|k, θ = 0) thus equals 1−〈m〉, and its approximate value is obtained by sampling the expectation
value 〈m〉. The variance of the measurement outcome m is:

V ar(m) = 〈m2〉 − 〈m〉2 =
1

4
− 1

4

(
Re
(
〈Φ| Ũk |Φ〉

))2

. (70)

The sampled expectation value of m, denoted by m̃, is determined by averaging the measurement outcome
m over |Σ| independent realizations and therefore its variance is given by:

V ar(m̃) =
V ar(m)

|Σ| =
1

4|Σ|

(
1−

(
Re
(
〈Φ| Ũk |Φ〉

))2
)
. (71)

From eq. 68, Re
(
〈Φ| Ũk |Φ〉

)
equals 2Pr(m = 0 | k, θ = 0) − 1, and thus Re

(
〈Φ| Ũk |Φ〉

)
sampled

equals

1− 2m̃. The variance of the sampled quantity Re
(
〈Φ| Ũk |Φ〉

)
sampled

is thus:

V ar
(
Re
(
〈Φ| Ũk |Φ〉

)
sampled

)
= V ar(1− 2m̃) = 4V ar(m̃) =

1

|Σ|

(
1−

(
Re
(
〈Φ| Ũk |Φ〉

))2
)
. (72)

Using the fact that Re
(
〈Φ| Ũk |Φ〉

)
∈ R, we infer that V ar

(
Re
(
〈Φ| Ũk |Φ〉

)
sampled

)
≤ 1
|Σ| . An equivalent

analysis for the (θ = π
2

)-case yields V ar
(
Im
(
〈Φ| Ũk |Φ〉

)
sampled

)
= 1
|Σ|

(
1−

(
Im
(
〈Φ| Ũk |Φ〉

))2
)
≤ 1
|Σ| .

Suppose that the number of samples for both the (θ = 0)-case and the (θ = π
2

)-case is taken to be
|Σ| = N ε−2, then by means of Chebyshev’s inequality (see Lemma I.2):2

Pr

(∣∣∣Re( 〈Φ| Ũk |Φ〉 )
sampled

−Re
(
〈Φ| Ũk |Φ〉

)∣∣∣ ≤ ε) ≥ 1− 1

N ,

P r

(∣∣∣Im( 〈Φ| Ũk |Φ〉 )
sampled

− Im
(
〈Φ| Ũk |Φ〉

)∣∣∣ ≤ ε) ≥ 1− 1

N .

(73a)

(73b)

We note that these last upper bounds for the variance of the real- and imaginary parts of the signal at a
given k disregard the time dependence of the variance (i.e. the dependence of the variance on variable k):
Although the variance of Re

(
〈Φ| Ũk |Φ〉

)
sampled

and Im
(
〈Φ| Ũk |Φ〉

)
sampled

is indeed upper bounded by

1/|Σ| (which is a time-independent quantity), it oscillates within this time-independent bound between 0
and 1/|Σ|. In particular, the variance of Re

(
〈Φ| Ũk |Φ〉

)
sampled

and that of Im
(
〈Φ| Ũk |Φ〉

)
sampled

attain

their maximum value when Re
(
〈Φ| Ũk |Φ〉

)
and Im

(
〈Φ| Ũk |Φ〉

)
are respectively equal to zero, and their

minimum value (zero variance) when their norm equals unity.3

We now consider the variance of the estimates of the (complex-valued) signal of interest:

〈Φ| Ũk |Φ〉sampled = Re
(
〈Φ| Ũk |Φ〉

)
sampled

+ i Im
(
〈Φ| Ũk |Φ〉

)
sampled

. (74)

2We note that since m ∈ {0, 1} here, one could use the Chernoff-Hoeffding inequality as well (leading to a better
confidence of 1− exp(−N ) instead of 1− 1/N ). However, Chebyshev’s inequality does suffice for the current discussion.

3Using eq. 68, one can intuitively infer that when the norm of Re
(
〈Φ| Ũk |Φ〉

)
or Im

(
〈Φ| Ũk |Φ〉

)
equals unity the

variance vanishes: At those points, Pr(m = 0 | k, θ = {0, π2 }) equals 0 or 1, which obviously implies that the sampled
probability equals the exact probability, hence the absence of sampling noise.
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Since Re
(
〈Φ| Ũk |Φ〉

)
sampled

, Im
(
〈Φ| Ũk |Φ〉

)
sampled

∈ R, the variance of 〈Φ| Ũk |Φ〉sampled is given by:

V ar
(
〈Φ| Ũk |Φ〉sampled

)
= V ar

(
Re
(
〈Φ| Ũk |Φ〉

)
sampled

)
+ V ar

(
Im
(
〈Φ| Ũk |Φ〉

)
sampled

)
=

1

|Σ|

(
1−

(
Re
(
〈Φ| Ũk |Φ〉

))2
)

+
1

|Σ|

(
1−

(
Im
(
〈Φ| Ũk |Φ〉

))2
)

=
1

|Σ|

(
2−

(
Re
(
〈Φ| Ũk |Φ〉

))2

−
(
Im
(
〈Φ| Ũk |Φ〉

))2
)

=
1

|Σ|

(
2−

∣∣〈Φ| Ũk |Φ〉∣∣2)
(75)

To bound the variance of 〈Φ| Ũk |Φ〉sampled, we first bound
∣∣〈Φ| Ũk |Φ〉∣∣2: The Cauchy-Schwarz inequality

for inner products and property 4 of the Induced Matrix Norm (introduced in Section I.3 Preliminaries)
yield: ∣∣〈Φ| Ũk |Φ〉∣∣ ≤ ∣∣∣∣〈Φ|∣∣∣∣︸ ︷︷ ︸

= 1

∣∣∣∣Ũk |Φ〉∣∣∣∣ ≤ ∣∣∣∣Ũk∣∣∣∣ ∣∣∣∣|Φ〉∣∣∣∣︸ ︷︷ ︸
= 1

−→
∣∣〈Φ| Ũk |Φ〉∣∣2 ≤ ∣∣∣∣Ũk∣∣∣∣2. (76)

The quantity Ũk corresponds to a product of unitary matrices (Ũ is a unitary matrix as well). A product
of unitary matrices is itself a unitary. Since the matrix norm of a unitary matrix equals unity, we find the
following bounds on

∣∣〈Φ| Ũk |Φ〉∣∣2:

0 ≤
∣∣〈Φ| Ũk |Φ〉∣∣2 ≤ 1. (77)

This yields the following bounds for the variance of 〈Φ| Ũk |Φ〉sampled:

1

|Σ| ≤ V ar
(
〈Φ| Ũk |Φ〉sampled

)
≤ 2

|Σ| . (78)

Assuming that the Trotter error is efficiently suppressed, one can also determine the behaviour of the
variance of 〈Φ| Ũk |Φ〉sampled = 〈Φ|Uk |Φ〉sampled (within the aforementioned bounds) as a function of
t = ∆t k using the spectral decomposition of H:

V ar
(
〈Φ| Ũk |Φ〉sampled

)
=

1

|Σ|

(
2−

∣∣∣∑
j

e−iEjt
∣∣〈ψj |Φ〉∣∣2∣∣∣2)

=
1

|Σ|

(
2−

∑
j,k

e−i(Ej−Ek)t
∣∣〈ψj |Φ〉∣∣2 ∣∣〈ψk|Φ〉∣∣2)

=
1

|Σ|

(
2−

∑
j

∣∣〈ψj |Φ〉∣∣4 − 2
∑
j<k

cos
(
(Ej − Ek)t

)∣∣〈ψj |Φ〉∣∣2 ∣∣〈ψk|Φ〉∣∣2).
(79)

The variance of 〈Φ| Ũk |Φ〉sampled is thus a function that is lower bounded by 1
|Σ| and upper bounded by 2

|Σ|
and oscillates in between these bounds with frequencies that depend on the differences between eigenvalues
of H. At t = 0, the minimum at 1

|Σ| is attained and the other values at which the lower and upper bounds

are reached depend on the spectrum of H (which is the quantity to be determined). We note that if (for
some a ∈ {0, 1, ..., 2n − 1}); ∣∣〈ψj |Φ〉∣∣2 ≈ {1, for j = a,

0, for j 6= a,
(80)

i.e. |Φ〉 is chosen such that the signal is dominated by a single eigenvalue of H, then the variance of
〈Φ| Ũk |Φ〉sampled approximately equals 1

|Σ| for all t. If |Φ〉 is chosen such that two eigenvalues of H

dominate the signal to equal extents (for some a, b ∈ {0, 1, ..., 2n − 1});

∣∣〈ψj |Φ〉∣∣2 ≈


1
2
, for j = a,

1
2
, for j = b,

0, for j 6= a, b,

(81)
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then the variance of 〈Φ| Ũk |Φ〉sampled approximately oscillates between 1
|Σ| and 2

|Σ| with a single frequency

equal to (Eb − Ea). We shall demonstrate this numerically as well in later stages of this report.
For the Monte Carlo scheme presented later in this report, a similar region of low variance is located

at t = 0. However, in that case the variance of the signal of interest goes to zero at t = 0 (instead of
going to 1

|Σ| such as the QPE signal). These regions of relatively low variance might be exploited to obtain
higher-quality estimates of the eigenvalues of H to be determined.

We repeat that the process of measuring the ancillary-qubit a total of 2|Σ| times (for a given k) for many
values of k ∈ {0, 1, ...,K} produces a noisy and Trotterized version of the signal g(k) = 〈Φ| e−iH∆tk |Φ〉 =
〈Φ|Uk |Φ〉 (where the noise originates from the finite sampling of the ancillary-qubit state). When the
quantum-phase-estimation scheme is run on e.g. a non-error-corrected NISQ device, the variable K is
limited by the coherence times of the qubits involved and the fact that the implemented gates are noisy.
The spectral decomposition of Hamiltonian H yields the following expression for g(k):

g(k) =
∑
j

e−iEj∆tk|〈ψj |Φ〉|2. (82)

By analyzing the signal g(k), and in particular its oscillation frequencies as a function of t = ∆t k, (a
subset of) the eigenvalues of Hamiltonian H can be obtained. There are several methods for solving this
problem, such as the Discrete Fourier Transform (DFT), Prony’s method ([26]) and the Matrix Pencil
Method ([27],[28],[29]). The Matrix Pencil Method can, in principle, be regarded as a generalization of
(amongst others) Prony’s method. In this report, we consider the Matrix Pencil Method because of its
efficiency and noise-tolerance ([27]).

Post-processing methods such as the Matrix Pencil Method in particular determine the quantities
e−iEj∆t instead of the eigenvalues Ej directly. Therefore, one is only able to potentially determine a
subset S = {Ej |Ej∆t ∈ [0, 2π) ∧ |〈ψj |Φ〉|2 ≥ 1/poly(n)} of the eigenvalues {Ej}j . By carefully tweaking
∆t and |Φ〉, one can thus obtain the desired subset of eigenvalues. In the next chapter, it will be shown
that subset S is at most of size poly(n), and for two Ej ’s to be distinguishable, the gap between their
associated Ej∆t’s cannot be too small in the presence of noise.

We note that the eigenvalues e−iEj∆t of unitary U , as well as the eigenvalues of Trotterized unitary Ũ ,
have unit norm. However, due to finite sampling, one determines a noisy version of the signal g(k). This
noise results in the fact that the apparent eigenvalues of Ũ might have norms that slightly deviate from
unity (and therefore Ũ might seem to be slightly non-unitary). To ensure that the output estimates for
the eigenvalues Ej are real (as they should be due to the Hermiticity of H), we take them to be the real

parts of the expression i
log(zj)

∆t
(where zj denotes the apparent eigenvalue of Ũ).

We conclude this section by noting that the picture of quantum phase estimation that has been sketched
here is a simplified one for the following reasons:

1. The string of gates produced by the Trotter decomposition of unitary U (Ũ ≡
(
TM (p,∆t)

)M
) is

assumed to act on the n-qubit register in a noiseless and error-free manner.

2. All qubits involved are assumed to remain coherent throughout single experiment rounds. As was
mentioned before, in reality the limited coherence time would severely limit the value for K, and
thereby the time interval over which the state dynamics can be tracked.

3. The outcome of the measurements of the ancillary-qubit state are assumed to be completely trust-
worthy.

4. The state |Φ〉 is assumed to be prepared on an n-qubit register using a circuit of poly(n) size. As was
shown in the previous section, this efficient preparation is not always feasible for any n-qubit state.

We stress that the discussion of quantum-phase-estimation-based quantum simulation in this section is not
limited to stoquastic Hamiltonians, and generally applies to any sufficiently local Hamiltonian.
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III Signal Analysis

Q uantum phase estimation can thus be used to approximately obtain a signal of the form 〈Φ| e−iHt |Φ〉
– i.e. the overlap between state |Φ〉 and the state that has evolved over time t (starting from |Φ〉).

Snapshots of this signal are obtained at times k∆t. The spectral decomposition of Hamiltonian H yields
the following expression for this signal:

g(k) =

2n∑
j=1

∣∣〈ψj |Φ〉∣∣2(e−iEj∆t)k. (83)

Given a noisy version of the signal g(k) at K ≤ poly(n) points (k ∈ {0, 1, ...,K − 1}), the task is to obtain
a subset of the (possibly degenerate) eigenvalues of H, which correspond to the oscillation frequencies of
g(k) in time.

In Chapter IV of this report, we introduce a Monte Carlo scheme that can be used to efficiently obtain,
up to an ε-additive error, a noisy version of the signal 〈Φ| e−τH |Φ〉 (τ ∈ R+), provided that H is piecewise
stoquastic and consists of sufficiently local interactions. The signal g(k) in this case is given by:

g(k) =

2n∑
j=1

∣∣〈ψj |Φ〉∣∣2(e−Ej∆τ)k. (84)

Given a noisy version of g(k) at K ≤ poly(n) data points (k ∈ {0, 1, ...,K−1}), the task is again to obtain
the (possibly degenerate) eigenvalues of H, which now correspond to the decay rates of g(k) in time.

There are several methods for obtaining a subset of the Ej ’s from the signal g(k), such as the Z-
Transform (Discrete-Time Laplace Transform), Prony’s method ([26]) and the Matrix Pencil Method
([27],[28]). In this report, we consider the Matrix Pencil Method because of its noise-tolerance ([27]).

We define zj ≡ e−iEj∆t in the setting of QPE, and zj ≡ e−∆τEj for the Monte Carlo algorithm. The
Matrix Pencil Method determines a subset of these zj ’s. For QPE, the zj ’s lies along the unit circle. As
mentioned in the previous chapter, for the sake of distinguishability of the eigenvalues Ej in a particular
subset the associated Ej∆t’s must lie in the interval [0, 2π). For the Monte Carlo algorithm, all zj ’s lie in
the interval (0, 1] (provided that the lowest eigenvalue of H is non-negative). This is illustrated in Figure
4.

Figure 4: Illustration of the position of the zj ’s in the complex plane in the case of real-time Hamiltonian
propagation and in the case of imaginary-time Hamiltonian propagation. The eigenvalues of the (unitary)
propagation operator of the Schrödinger equation e−iHt lie on the complex unit circle. The eigenvalues of
the imaginary-time propagation operator e−τH (τ ∈ R+) lie on the positive real axis on the interval (0, 1]
(when the lowest eigenvalue of H is set to zero, or at least set to be positive).
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III.1 Matrix-Pencil Method

We reiterate that the task for which we make use of the Matrix Pencil Method ([27],[28],[29]) can be
formulated as follows: Suppose we are given a set of noisy values of a signal g(k),

g(k) =

R∑
j=1

cje
λjk =

R∑
j=1

cjz
k
j , (85)

where zj ≡ eλj , then determine (a subset of) the parameters {λj} (and possible of {cj}). The number of
parameters λj to be determined is R. In the case of the Monte Carlo scheme and the QPE scheme we
have λj = −Ej∆τ (∈ R) and λj = −iEj∆t (∈ C), respectively.

The basic idea comprises of setting up a generalized eigenvalue problem, the solution of which is given
by the set {zj}. One is effectively given a noisy signal y(k) (for k ∈ {0, 1, ...,K − 1}), which is related to
the original signal g(k) by:

y(k) = g(k) + η(k) =

R∑
j=1

cjz
k
j + η(k), (86)

where η(k) denotes e.g. the sampling noise. We introduce the following matrix Y , containing all K data
points of the noisy signal y(k) (for k ∈ {0, 1, ...,K − 1}) and the pencil parameter L (whose function will
become apparent shortly):

Y =


y(0) y(1) . . . y(L)
y(1) y(2) . . . y(L+ 1)

...
...

...
y(K − L− 1) y(K − L) . . . y(K − 1)


(K−L)×(L+1)

=

R∑
j=1

cj


1 zj . . . zLj
zj z2

j . . . zL+1
j

...
...

...

zK−L−1
j zK−Lj . . . zK−1

j

 . (87)

Matrix Y thus equals the sum of R rank-1 matrices. The rank of a matrix A =
∑
j Aj (where each Aj has

the same dimensions) is at most the sum of the ranks of the Aj matrices – i.e. rank(A) ≤
∑
j rank(Aj).

Therefore, rank(Y ) ≤ R.
In principle, taking K ≥ 2R will suffice to extract the R values of interest {zj} from signal g(k) (i.e.

the noiseless signal). However, since the signal y(k) is noise-contaminated, one must generally take K � R
to ensure a high quality of the estimates of {zj}.

Noiseless Signal: We first consider the noiseless case: η(k) = 0 (∀k). The set {zj} now corresponds
to the set of generalized eigenvalues of the matrix pair {Y1, Y2}, where Y1 and Y2 are the matrices that are
obtained by respectively deleting the last column and the first column of matrix Y (we note that Y1 and
Y2 are square matrices for L = K/2). To illustrate this, we consider the representation of the matrices Y1

and Y2 in terms of the Vandermonde Matrices (Z1, Z2), which contain the unique zj ’s to be determined:

Y1 = Z1CZ2 ; Y2 = Z1CZ0Z2, (88)

where the matrices Z0, Z1, Z2 and C are defined as follows:

Z1 ≡


1 1 . . . 1
z1 z2 . . . zR
...

...
...

zK−L−1
1 zK−L−1

2 . . . zK−L−1
R


(K−L)×R

; Z2 ≡


1 z1 . . . zL−1

1

1 z2 . . . zL−1
2

...
...

...

1 zR . . . zL−1
R


R×L

(89a)

Z0 ≡ diag(z1, z2, ..., zR) ; C ≡ diag(c1, c2, ..., cR). (89b)
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We consider the linear matrix pencil Y2 − zY1 = Z1C
(
Z0 − zI

)
Z2. If z equals zj (for j ∈ {1, 2, ..., R}),

then the jth row (and column) of Z0− zI equals zero. In that case, the jth column of Z1 and the jth row
of Z2 are annihilated in the expression above for the matrix pencil.

We now differentiate between three parameter regimes: L < R, L > K −R and R ≤ L ≤ K −R. This
last parameter regime is non-empty only for K ≥ 2R.

• L < R: In this parameter regime, the rank of matrix Z2 generically equals L. Furthermore, we have
(for any L):

C
(
Z0 − zI

)
Z2 =


c1(z1 − z) c1(z1 − z)z1 . . . c1(z1 − z)zL−1

1

c2(z2 − z) c2(z2 − z)z2 . . . c2(z2 − z)zL−1
2

...
...

...

cR(zR − z) cR(zR − z)zR . . . cR(zR − z)zL−1
R


R×L

. (90)

If z equals zj , then the jth row of C
(
Z0 − zI

)
Z2 equals zero. However, since L < R, C

(
Z0 − zI

)
Z2

has full column rank irrespective of whether or not z equals any of the zj ’s. The rank of C
(
Z0−zI

)
Z2

thus equals L for any z. This implies that the rank of the matrix pencil Y2− zY1 = Z1C
(
Z0− zI

)
Z2

does not depend on whether or not parameter z equals any of the zj ’s.

• L > K −R: In this parameter regime, the rank of matrix Z1 generically equals K−L. Furthermore,
we have (for any L):

Z1C
(
Z0 − zI

)
=


c1(z1 − z) c2(z2 − z) . . . cR(zR − z)
c1(z1 − z)z1 c2(z2 − z)z2 . . . cR(zR − z)zR

...
...

...

c1(z1 − z)zK−L−1
1 c2(z2 − z)zK−L−1

2 . . . cR(zR − z)zK−L−1
R


(K−L)×R

.

(91)
If z equals zj , then the jth column of Z1C

(
Z0 − zI

)
equals zero. However, since L > K − R,

Z1C
(
Z0 − zI

)
has full row rank irrespective of whether or not z equals any of the zj ’s. The rank

of Z1C
(
Z0 − zI

)
thus equals K − L for any z. This implies that the rank of the matrix pencil

Y2 − zY1 = Z1C
(
Z0 − zI

)
Z2 does not depend on whether or not parameter z equals any of the zj ’s.

• R ≤ L ≤ K −R: In this parameter regime, matrices Z1 and Z2 are both rank-R matrices. In
particular, matrix Z1 has full column rank and matrix Z2 has full row rank. The R × R matrix
C
(
Z0− zI

)
has rank R if z 6= zj (for j ∈ {1, 2, ..., R}), and rank R− 1 if z = zj (for j ∈ {1, 2, ..., R}).

For matrices A and B, Rank(AB) = Rank(B) if A has full column rank and Rank(AB) = Rank(A)
if B has full row rank. Since Z1 has full column rank and Z2 has full row rank in this parameter
regime, the rank of the matrix pencil equals:

Rank
(
Y2 − zY1

)
= Rank

(
Z1C

(
Z0 − zI

)
Z2

)
= Rank

(
C
(
Z0 − zI

)
Z2

)
= Rank

(
C
(
Z0 − zI

))
=

{
R, for z 6= zj (∀j ∈ {1, 2, ..., R}),
R− 1, for z = zj (for any j ∈ {1, 2, ..., R}).

(92)

In the current parameter regime, the rank of the matrix pencil Y2 − zY1 thus equals R if parameter
z does not equal any of the zj ’s and its rank is reduced to R − 1 if z does equal any of the zj ’s.
In the other parameter regimes mentioned above, the rank of the matrix pencil does not depend on
whether or not z equals any of the zj ’s.

Provided that R ≤ L ≤ K − R (and thus K ≥ 2R), the unique generalized eigenvalues of the matrix
pair {Y1, Y2} are given by zj (for j ∈ {1, 2, ..., R}) because the zj ’s reduce the rank of the matrix pencil
Y2−zY1 by one. In the remainder of this discussion, we assume the pencil parameter L to be in the regime
R ≤ L ≤ K −R unless stated otherwise.

The matrices Y1 and Y2 are generally not square matrices (they are only square if L = K/2) and not
full-rank. Since a matrix is invertible if and only if it is full-rank, Y1 and Y2 are generally not invertible.
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Generalized eigenvalue problems (GEP) such as Y2xj = zjY1xj encountered here are generally solved by
solving the associated eigenvalue problem (EP) Y −1

1 Y2xj = zjxj (if Y1 were full-rank). If Y1 (or Y2) is
indeed not full-rank, a Moore-Penrose pseudo-inverse (denoted by ’+’) is used in the translation from GEP

to EP. The Moore-Penrose pseudo-inverse of a matrix A is defined as A+ ≡
(
A†A

)−1
A†. The eigenvalue

problem to be solved to find the parameters zj (for j ∈ {1, 2, ..., R}) in that case is thus Y +
1 Y2xj = zjxj .

The matrix Y +
1 Y2 is an L× L matrix that can be written in terms of Z0, Z1, Z2 and C as follows:

Y +
1 Y2 =

(
Z1CZ2

)+
Z1CZ0Z2 = Z+

2 C
+ Z+

1 Z1︸ ︷︷ ︸
= I

CZ0Z2 = Z+
2 C+C︸ ︷︷ ︸

= I

Z0Z2 = Z+
2 Z0Z2. (93)

Since the Moore-Penrose pseudo-inverse of a matrix A has the same rank as A, and Z2 has rank R (given
that R ≤ L ≤ K−R), Z+

2 has rank R as well. Since the R×L matrix Z2 has full row rank, the L×R matrix
Z+

2 has full column rank. Using eq. 93, one can thus infer the rank of matrix Y +
1 Y2 to be equal to the rank

of Z0, which is equal to R (≤ L). Since the rank of a matrix equals its number of non-zero eigenvalues,
Y +

1 Y2 has R eigenvalues that are non-zero (and are equal to the zj ’s) and L−M zero eigenvalues. The R
non-zero eigenvalues that one finds when solving the eigenvalue problem associated with Y +

1 Y2 are thus
equal to the zj ’s (from which the λj ’s can be determined).

Figure 5 depicts the results of application of the Matrix Pencil Method to a noiseless signal. We
consider separately a decaying signal and an oscillating signal, and for both cases we depict respectively
the estimates of the decay rates and oscillation frequencies as a function of the number of measurement
points of the signal (K). The true decay rates/oscillation frequencies (the eigenvalues Ej) have been
generated at random and all the cj ’s are set equal to 1/R. The pencil parameter is set to be L = K/2.
In the regime K ≥ 2R, the eigenvalues are resolved both for the decaying and the oscillating signal, as
expected based on the discussion in this section. In the regime K < 2R, the eigenvalues are not resolved
and the estimates seem to be some sort of averaged value of the true eigenvalues.
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Figure 5: Estimates of the decay rates (of a decaying signal) and oscillation frequencies (of an oscillating
signal) as a function of K (the number of equidistant points at which the signals are measured). The
estimates are obtained from applying the Matrix Pencil Method to the noiseless signals g(k) =

∑R
j=1 cjz

k
j ,

where zj = −Ej∆τ (in the case of the decaying signal) and zj = −iEj∆t (in the case of the oscillating
signal). All cj ’s are set equal to 1/R and the Ej ’s have been produced at random. The time interval over
which the signals are analyzed is 3 (the values of ∆τ and ∆t are both equal to 3/K). The pencil parameter
is set to be L = K/2.
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Noisy Signal: In the presence of (sampling) noise, an additional pre-filtering step is required to obtain
the estimates of the parameters zj . This includes carrying out a singular-value decomposition (SVD) of
the data matrix Y :

Y = U Σ V †, (94)

where Σ is a diagonal matrix containing all singular values ({σ}) of Y , and U and V are unitary matrices
that are composed of the eigenvectors of Y Y † and Y † Y , respectively.

The data matrix Y is filtered by truncating all singular values for which σ
σmax

< TF , where TF is
a variable threshold (the truncation factor) and σmax denotes the largest singular value. The R non-
truncated (dominant) singular values are used to construct the diagonal matrix Σ′. The left-singular and
right-singular eigenvectors associated with these truncated singular values are respectively deleted from

matrices U and V to obtain matrices U ′ and V ′. The new data matrix Y ′ = U ′ Σ′
(
V ′
)†

has now been
filtered to reduce the effects of noise. As in the noiseless signal case, the sub-matrices Y ′1 and Y ′2 are
obtained from Y ′ by deleting the last column and the first column, respectively. To obtain estimates of
the parameters zj , the eigenvalue problem

(
Y ′1
)+
Y ′2xj = zjxj should now be solved.

The pencil parameter L is one of the variables governing the noise-tolerance of the method and should
ideally be taken to be K/3 < L < K/2 ([27],[30]). For these values of L, the variance in the estimates of
the parameters zj has been found to be minimum in [27] and [30]. Unless indicated otherwise, we shall
take L = K/2 in the remainder of this report.

After having obtained the estimates of the parameters {zj}, one can estimate the parameters {cj} as
well: Using the noise-contaminated signal y(k) and the estimates of {zj}, one finds the approximate values

of {cj} by solving the least-squares minimization problem mincj
∑
k

∣∣y(k) −
∑
j cj
(
zj
)k∣∣2. The estimates

of {zj} and {cj} together form the reconstructed signal which is less noise-contaminated than the original
signal y(k).

We furthermore note that in the Matrix Pencil Method described here, R is essentially an emergent
quantity depending on how many singular values are larger than TF ∗σmax in the SVD of the data matrix
Y . This is done since in principle one does not know a priori with how many eigenstates of the Hamiltonian
the state |Φ〉 has a significant overlap. In contrast, in [30] the value of R is fixed due to a change in the
SVD truncation protocol: There, in any instance, only the largest R singular values (where R is a fixed
number) of the SVD of the data matrix Y are kept, while all the other singular values are discarded.

We have discussed above that in a noiseless-signal setting, all R eigenvalues can be exactly obtained
(for a proper choice of the pencil parameter) provided that K ≥ 2R, irrespective of whether the signal
is oscillating or decaying. We have presented a well-known pre-filtering method to reduce the effects of
noise in the case of a noisy signal, and have mentioned that in that case one should take K � 2R. One
might wonder, however, how large the magnitude of the noise can be for the eigenvalues to be accurately
extracted from the noisy signal. In [31], it has been shown that the ability to extract all R eigenvalues
from a signal that is purely oscillatory by means of the Matrix Pencil Method shows a sharp transition
as a function of K. Specifically, the relation between K and the minimum gap between the eigenvalues
∆ is relevant. That is, the following is proved in [31]: Given that λj ∈ [0, 2π), ∀j. If K > 1/∆ + 1,
then there exists a polynomial time algorithm that provides estimates of the cj’s and λj’s, where these
estimates converge to the exact values at an inverse polynomial rate in terms of the magnitude of the noise
||η|| =

∑
k|η(k)|2. This statement is tight in the following sense: If K < (1 − ε)/∆, then there exists

two sets {cj},{λj} and {cj}′,{λj}′ (each with minimum gap ∆) where one would need ||η|| ≤ exp(−εR)
(i.e. noise that is exponentially small in magnitude) in order to tell these two sets apart. Both of these
statements are based on an analysis of the condition number of the Vandermonde matrices Z1 and Z2. We
reiterate that it was shown in [31] that these claims hold for a purely oscillating signal. They are therefore
applicable to the quantum-phase-estimation setting. It is an open question whether similar statements
hold for purely decaying – i.e. Monte Carlo – signals. This will thus be an interesting and relevant point
of future research.

In the settings considered in this report, the signal g(k) is a sum of generally 2n components, where
each (possible degenerate) component is associated with an eigenvalue of the Hamiltonian. Therefore one
would naively take R to be approximately 2n. Since one generally requires K ≥ 2R – and even K � 2R in
the presence of noise – and K ≤ poly(n) must hold for the algorithm to run efficiently, the effective number
of components that can be extracted from the signal will be no more than poly(n) (and can therefore not be
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2n). There are two ways in which the number of components in the signal g(k) can indeed be reduced to be
poly(n) instead of exp(n): One can reside in a parameter regime in which the degeneracies of Hamiltonian
H are such that the number of distinct eigenvalues of H are poly(n) (if this parameter regime exists). This
is e.g. the case when the eigenvalues of a Hamiltonian form bands which are separated by gaps, and one
wishes to find an estimate of each band. In addition, one has the freedom to choose the state |Φ〉: The
coefficient cj of component j equals |〈ψj |Φ〉|2. Since one takes |Φ〉 to be a state that has relatively large
overlap with some set of eigenstates of interest and normalization requires

∑
j |〈ψj |Φ〉|

2 = 1, the coefficients
cj for the vast majority of components in the signal will be very small. One can thus attempt to choose
|Φ〉 such that the effective number of components in the signal will be poly(n).
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IV Monte Carlo Scheme for Local and Stoquastic Hamiltonians

In this chapter, we examine whether the decaying signal (i.e. the signal g(k) that was introduced in Chapter
III for ∆t = 0 and ∆τ non-zero), from which the eigenenergies of H are to be estimated by means of the
Matrix Pencil Method, can be obtained efficiently by classical means for Hamiltonians that are sufficiently
local and piece-wise stoquastic. This is done by first examining whether a single matrix element of the
Gibbs density matrix associated with these Hamiltonians can be efficiently obtained by classical means.
The discussion of the estimation of the single Gibbs density matrix element is then generalized to the
estimation of the aforementioned signal of interest. We discuss the errors that arise when estimating this
signal and the efforts one can undertake to suppress them. We additionally examine whether the partition
function associated with these Hamiltonians can be classically determined in a computationally tractable
manner. We provide an overview of the chapter near its end and in addition discuss how the algorithms
presented in this chapter might be useful in a quantum computing setting as well.

IV.1 Efficiently determining single matrix elements of the Gibbs density matrix

We first analyze whether the quantity 〈x| e−τH |x′〉 (where τ ∈ R+, and |x〉, |x′〉 are (bit-string) basis
states of a basis in which H is piece-wise stoquastic) can be obtained classically in an efficient way. We
note that this quantity equals a single element of the Gibbs density matrix associated with Hamiltonian
H (which is the Hamiltonian of which one wishes to determine the eigenvalues) at inverse temperature
β = τ . The system of which H is the Hamiltonian consists of n degrees of freedom (that are here taken to
be qubits). We suppose that H is local (see Definition I.1). The locality of the Hi’s is denoted by k. We
stress that these Hi’s, and their localities (which are all log(poly(n)) at most), generally do not have to
be equivalent for all i: The interactions between different degrees of freedom need not be translationally
invariant for example.

We require the decomposition of e−τH into a string of local propagation operators. Since generally
[Hi, Hj ] 6= 0 (for i 6= j), we will need to employ a Trotterization scheme. The decomposition, by means of
Trotterization, of e−τH into an ordered string of local propagation operators e−alτ/M Hi (where al ∈ (0, 1]
depends on the Trotterization scheme, and al = 1 ∀l if p = 1) has been discussed extensively in Section
I.4. In the current discussion, we take for granted a non-zero Trotter error due to a finite Trotter variable
M and note that this Trotter error is generally suppressible with polynomial resources (see Section I.4 of
this report). The length of the ordered string of local propagation operators is denoted by L and equals

MN for p = 1, and 2MN 5
p
2
−1 for p > 1 (when using the scheme introduced in [17]).

We shall denote each of the local propagation operators e−alτ/M Hi by Gl (where l ∈ {1, ..., L}). e−τH
is thus represented by

∏L
l=1 Gl, which is obtained through a Trotterization scheme of a given order p and

for a given Trotter variable M . If H is piece-wise stoquastic, then each of the propagation operators Gl
will be element-wise non-negative (since τ ∈ R+).

In general, each Gl is reducible (see Definition I.5). However, it consists of Bl (for 1 ≤ Bl ≤ poly(n))
element-wise non-negative sub-matrices – which each act on distinct sets of basis states – that are them-
selves irreducible. We denote these non-negative and irreducible sub-matrices by Gbl , where b ∈ {1, ..., Bl}
and Gl = ⊕Blb=1G

b
l . The set of bit string basis states on which the irreducible sub-matrix Gbl acts is denoted

by Sbl , where ∪bSbl ⊆ {0, 1}n (note that Gl can also have a non-zero null-space). For these non-negative
and irreducible matrices Gbl , the following Perron-Frobenius Theorem holds (see Theorem 8.4.4 in [32]):

Theorem IV.1. Perron-Frobenius Theorem. Suppose Gbl ∈ R h×h and all elements
(
Gbl
)
i,j
≥ 0 (i.e.

Gbl is an element-wise non-negative matrix). Additionally, Gbl is irreducible, then:

1. There is at least one eigenvalue λbl of Gbl that is real and non-negative. All other eigenvalues of Gbl
are smaller than or equal to λbl in magnitude.

2. There exists an associated unique and strictly positive eigenstate |φ〉bl ( =
∑
x∈Sb

l
φbl (x) |x〉, where

φbl (x) > 0, ∀x ) of Gbl , for which Gbl |φ〉bl = λbl |φ〉bl .

Note that since Gl acts non-trivially on at most log(poly(n)) qubits, the maximum eigenvalue λbl and the
corresponding eigenstate |φ〉bl =

∑
x∈Sb

l
φbl (x) |x〉 of the square (sub-)matrix Gbl are efficiently computable

by classical means.
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We can set the lowest eigenvalue of all Hi’s to be zero (λmin(Hi) = 0), and thus the corresponding
largest eigenvalue of the non-negative Gl’s to 1. We therefore conclude that the eigenvalues of Gl must all
be either smaller than or equal to unity (according to the Perron-Frobenius Theorem). Gl is Hermitian
(since Hi is Hermitian ∀i and τ ∈ R) and therefore its eigenvalues are additionally real (in the current
setting, Gl is even symmetric since its entries are real-valued). Furthermore, since Gl = e−alτHi (and
τ ∈ R+, al ∈ (0, 1]), all eigenvalues of Gl are larger than 0. Gl is thus a positive definite matrix and
in particular its eigenvalues lie in the interval (0, 1], ∀l. We additionally note that since Gbl denote the
aforementioned sub-matrices of Gl and Gl itself is Hermitian, Gbl is Hermitian as well (∀b).

Using the fact that Gl can be decomposed into sub-matrices Gbl which each act on distinct sets of basis
sets, we state the following property of the eigenvalues of the Gbl ’s in terms of those of Gl: The set of
eigenvalues of Gbl is a subset of the set of eigenvalues of Gl: {ωbl } ⊆ {ωl}, ∀b. Therefore, ωmin(Gl) ≤
ωmax(Gbl ) ≤ ωmax(Gl). For the specific choice of Gl here, we thus conclude that 0 < λbl ≤ 1 (since
ωmax(Gbl ) = λbl ), ∀b. This turns out to be a useful property later on.
We now present the following theorem (inspired by unpublished work by S. Bravyi), and provide its proof
afterwards:

Theorem IV.2. (S. Bravyi, M.E. Stroeks, B.M. Terhal). Suppose |x〉 (where x ∈ {0, 1}n) denotes the
state of an n-qubit register ( {|x〉} is an orthonormal set). Furthermore, suppose f(τ) = 〈x| e−τH |x′〉 =
〈x|G1G2 ... GL |x′〉, where:

1. τ ∈ R+,

2. Gl =
(
e−alτ/MHi

)
j

is a Hermitian matrix, where i ∈ {1, ..., N}, j ∈ {1, ...,M}, al ∈ (0, 1] ( {al}Ll=0

depends on the Trotterization scheme) and l ∈ {1, ..., L} labels the time slice,

3. H =
∑N
i=1 Hi, where each Hi acts non-trivially on at most log(poly(n)), or typically O(1), qubits. Hi

is Hermitian and stoquastic in the ’x’-basis, ∀i (hence Gl is element-wise non-negative and Hermitian,
∀l),

4. λmin(Hi) = 0 ( ∀i) so that ωmax(Gl) = 1 ( ∀l), where ’ω’ denotes an eigenvalue of Gl.

Then f(τ) can be estimated with absolute error ε in time poly(ε−1, n, L). The algorithm runs efficiently
for ε ≥ 1

poly(n)
and L ≤ poly(n).

Proof. The proof of Theorem IV.2 consists of two steps: To construct an estimator for f(τ) and to show
that the absolute error of this estimator can be bounded according to the theorem.

By inserting L − 1 complete sets of basis states in between the Gl operators, we can express f(τ) as
follows:

f(τ) =
∑

x1,x2,...,xL−1

〈x0|G1 |x1〉 〈x1|G2 |x2〉 ... 〈xL−1|GL |xL〉 , (95)

where |x0〉 = |x〉 and |xL〉 = |x′〉 are fixed basis states. f(τ) thus corresponds to the sum of an exponential
number of products of matrix elements of G1, ..., GL. Evidently, only terms for which all the matrix
elements in the product are non-zero contribute to the sum. Potentially non-zero terms in the sum can be
efficiently constructed using Algorithm 1 below.

Algorithm 1: Efficiently constructing a (potentially) non-zero term from the sum in eq. 95.

Start off with state |x0〉, which is in some set S
b(1)
1 of states that are connected through non-zero

matrix elements of G1. If |x0〉 is not in any of the sets Sb1, then output 0.
for l ∈ {1, ..., L− 1} do

Pick a state |xl〉 ∈ Sb(l)l with probability Pl(xl−1 → xl) = 1

λ
b(l)
l

〈xl−1|Gl |xl〉
φ
b(l)
l

(xl)

φ
b(l)
l

(xl−1)
(where

φ
b(l)
l (xl−1) ≡ 〈xl−1|φ〉b(l)l and φbl (xl) ≡ 〈xl|φ〉

b(l)
l are both positive since |φ〉b(l)l can be chosen

to be the strictly positive eigenstate of G
b(l)
l , see Theorem IV.1). The state |xl〉 can

additionally be part of some set S
b(l+1)
l+1 of states that are connected through non-zero matrix

elements of Gl+1 – and if it is not in any of these sets, then output 0.
end
The last factor, 〈xL−1|GL |xL〉, simply equals the matrix element of GL between the state |xL−1〉
and the fixed state |xL〉. If this matrix element equals zero, then output 0.
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For each of the steps xl−1 → xl (where l ∈ {1, ..., L − 1}), the associated probability distribution Pl
can be shown to be normalized:

∑
xl

Pl(xl−1 → xl) =
∑
xl

1

λbl
〈xl−1|Gl |xl〉

φbl (xl)

φbl (xl−1)
=
∑
xl∈Sbl

1

λbl
〈xl−1|Gbl |xl〉

φbl (xl)

φbl (xl−1)

=
1

φbl (xl−1)

1

λbl
〈xl−1|Gbl

∑
xl∈Sbl

|xl〉φbl (xl) =
1

φbl (xl−1)

1

λbl
〈xl−1|λbl |φ〉bl =

〈xl−1|φ〉bl
φbl (xl−1)

= 1. (96)

We can now express f(τ) in terms of these Pl’s as follows:

f(τ) =
∑

x1,x2,...,xL−1

〈x0|G1 |x1〉 〈x1|G2 |x2〉 ... 〈xL−1|GL |xL〉 =

∑
x1,x2,...,xL−1

P1(x0 → x1)P2(x1 → x2) ... PL(xL−1 → xL)R(x0, x1, ..., xL), (97)

where |x0〉 and |xL〉 are fixed basis states and R(x0, x1, ..., xL) ≡
∏L
l=1 λ

b(l)
l

φ
b(l)
l

(xl−1)

φ
b(l)
l

(xl)
.

We define x ≡ (x0, x1, ..., xL). Then PL(xL−1 → xL)R(x) is an unbiased estimator of f(τ) – that
is, f(τ) = E

(
PL(xL−1 → xL)R(x)

)
) – if x is drawn from the following high-dimensional probability

distribution:
Π(x) ≡ P1(x0 → x1)P2(x1 → x2)...PL−1(xL−2 → xL−1). (98)

Drawing a set Σ of independent x’s from Π(x) can efficiently be done by following the steps (except for
the last one) in Algorithm 1 above. To show that Π(x) itself is a normalized distribution, we successively
exploit the normalization property of each individual Pl:∑

x1,x2,...,xL−1

Π(x) =
∑
x1

(
P1(x0 → x1)

∑
x2

(
P2(x1 → x2)...

∑
xL−1

(
PL−1(xL−2 → xL−1)

)
...
))

= 1. (99)

We have thus obtained an unbiased estimator of f(τ) and a way of calculating sample averages of this
estimator. In order to complete the proof, we consider the variance of the value of the unbiased estimator:
σ2 = E

(
P 2
L(xL−1 → xL)R2(x)

)
− E

(
PL(xL−1 → xL)R(x)

)2
= E

(
P 2
L(xL−1 → xL)R2(x)

)
−
(
f(τ)

)2
. The

quantity that is left to determine (or at least bound) is thus E
(
P 2
L(xL−1 → xL)R2(x)

)
, which is done in a

similar way as has been done for E
(
PL(xL−1 → xL)R(x)

)
above:

E
((
PL(xL−1 → xL)R(x)

)2)
=

∑
x1,x2,...,xL−1

Π(x)
(
PL(xL−1 → xL)R(x)

)2
, (100)

where again |x0〉 = |x〉 and |xL〉 = |x′〉 are fixed. Inserting the expressions for Π(x) and PL(xL−1 →
xL)R(x) yields:

E
((
PL(xL−1 → xL)R(x)

)2)
=

∑
x1,x2,...,xL−1

P1(x0 → x1)P2(x1 → x2)...PL−1(xL−2 → xL−1)
(
PL(xL−1 → xL)

)2( L∏
l=1

λ
b(l)
l

φ
b(l)
l (xl−1)

φ
b(l)
l (xl)

)2

,

(101)

which, using Pl(xl−1, xl) = 1

λb
l

〈xl−1|Gt |xl〉 φbl (xl)

φb
l
(xl−1)

, reduces to:

∑
x1,x2,...,xL−1

λ
b(1)
1 〈x0|G1 |x1〉

φ
b(1)
1 (x0)

φ
b(1)
1 (x1)

λ
b(2)
2 〈x1|G2 |x2〉

φ
b(2)
2 (x1)

φ
b(2)
2 (x2)

... λ
b(L)
L 〈xL−1|GL |xL〉

φ
b(L)
L (xL−1)

φ
b(L)
L (xL)

× PL(xL−1 → xL). (102)
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We now define the non-negative quantity Ql(x, y) ≡ λbl 〈x|Gl |y〉
φbl (x)

φb
l
(y)

. By exploiting the Hermiticity of

Gbl , Ql(x, y) can be shown to have the following property:

∑
x

Ql(x, y) =
∑
x

〈x|Gl |y〉λbl
φbl (x)

φbl (y)
=
∑
x∈Sb

l

〈x|Gbl |y〉λbl
φbl (x)

φbl (y)
=
(
λbl
)2 〈φ|bl |y〉

φbl (y)
=
(
λbl
)2 ≤ 1. (103)

Ql(x, y) thus satisfies 0 ≤ Ql(x, y) ≤ 1, ∀x, y and ∀l ∈ {1, 2, ..., L}. Using this property of Ql(x, y), we
infer:

E
((
PL(xL−1 → xL)R(x)

)2)
=

∑
x1,x2,...,xL−1

Q1(x0, x1)︸ ︷︷ ︸
≤1

Q2(x1, x2) ... QL(xL−1, xL) PL︸︷︷︸
≤1

≤
∑

x1,x2,...,xL−1

Q2(x1, x2)Q3(x2, x3) ... QL(xL−1, xL)

≤
∑

x2,x3,...,xL−1

Q3(x2, x3)Q4(x3, x4) ... QL(xL−1, xL)

...

≤ 1,

(104)

where in the last few steps in eq. 104 we have successively used the property of Ql(x, y) in eq. 103. We
thus conclude that the variance of the unbiased estimator PL(xL−1 → xL)R(x) is bounded as follows:

σ2 ≤ 1−
(
f(τ)

)2 ≤ 1. (105)

If we now draw a set Σ of (independent) x’s from Π(x) using Algorithm 1 above, then f(τ) can be
estimated as follows:

f̃(τ) =
1

|Σ|
∑
x∈Σ

PL(xL−1 → xL)R(x), (106)

where |Σ| denotes the size of the set Σ. The standard deviation of the quantity f̃(τ) is now σ√
|Σ|

. Hence

if we take |Σ| = N ε−2, then by means of Chebyshev’s inequality:

Pr
(∣∣f̃(τ)− f(τ)

∣∣ ≥ ε) ≤ σ2

N ≤
1

N . (107)

Pr
(∣∣f̃(τ)− f(τ)

∣∣ ≤ ε) ≥ 1− 1

N . (108)

This completes the proof of Theorem IV.2.

Since H is Hermitian, f(τ) can be decomposed as follows:

f(τ) = 〈x| e−τH
∣∣x′〉 =

2n∑
j=1

〈x|ψj〉
〈
ψj
∣∣x′〉 e−τEj , (109)

where {|ψj〉} and {Ej} respectively denote the sets of eigenstates and eigenvalues of H. Using a Monte
Carlo algorithm such as the one described above, we can efficiently obtain a set {f̃(∆τ k)}Kk=1 (for K ≤
poly(n)) of noisy measurements of f(τ) at the points {∆τ k}Kk=1 (which all lie on the positive real axis)
in polynomial time. Using this set of estimates of f(τ), we would now like to estimate (a subset of) the
eigenvalues {Ej} of Hamiltonian H. The Matrix Pencil Method as described in the previous chapter will
again be the tool for solving this problem.

The coefficient of the signal in eq. 109 associated with eigenvalue Ej equals the product of the overlaps
between the eigenstate |ψj〉 and the basis states |x〉 and |x′〉. Since we are mostly interested in a particular
set of eigenvalues (such as the lowest lying set) we must choose a pair of basis states (|x〉 and |x′〉) that
has considerable overlap with the eigenstates that are part of this set. To ensure a larger success rate
at completing this task, we must systematically select a set of pairs of basis states ({|x〉 , |x′〉}) that
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collectively has sufficiently large overlap with the particular set of eigenstates. For this reason, we consider
superpositions of basis states in the following section.

IV.2 Considering superpositions of basis states

Ideally, we would be able to exploit superpositions of basis states to ensure sufficient overlap with a selected
set of eigenstates of H. We would then choose a state which is known to have sufficient overlap with e.g.
the ground state (and the first few excited states), such as a Hartree-Fock state.

We consider a particular class of superpositions of generally an exponential number of basis states:

|Φ〉 =

2n∑
x=1

Φ(x) |x〉 , (110)

where Φ(x) ∈ C (∀x) and normalization ensures that
∑
x

∣∣Φ(x)
∣∣2 = 1. We now consider the task of

estimating the following quantity: F(τ) = 〈Φ| e−τH |Φ〉 =
∑2n

j=1

(∑
x,y Φ(x)Φ(y) 〈x|ψj〉 〈ψj |y〉

)
e−τEj . We

note that F(τ) is a real-valued quantity.
We present the following extension of Theorem IV.2 and provide its proof afterwards:
Theorem IV.3. (M.E. Stroeks, B.M. Terhal). Suppose |x〉 (where x ∈ {0, 1}n) denotes the state
of an n-qubit register ( {|x〉} is an orthonormal set). Furthermore, suppose F(τ) = 〈Φ| e−τH |Φ〉 =
〈Φ|G1G2 ... GL |Φ〉, where:

1. |Φ〉 =
∑2n

x=1 Φ(x) |x〉, where Φ(x) ∈ C (∀x) and
∑
x

∣∣Φ(x)
∣∣2 = 1,

2. τ ∈ R+,

3. Gl =
(
e−alτ/MHi

)
j

is a Hermitian matrix, where i ∈ {1, ..., N}, j ∈ {1, ...,M}, al ∈ (0, 1] ( {al}Ll=0

depends on the Trotterization scheme) and l ∈ {1, ..., L} labels the time slice,

4. H =
∑N
i=1 Hi, where each Hi acts non-trivially on at most log(poly(n)), or typically O(1), qubits. Hi

is Hermitian and stoquastic in the ’x’-basis, ∀i (hence Gl is element-wise non-negative and Hermitian,
∀l),

5. λmin(Hi) = 0 ( ∀i) so that ωmax(Gt) = 1 ( ∀t), where ’ω’ denotes an eigenvalue of Gl.

Assume additionally that Φ(y)
Φ(x)∗ (where z∗ denotes the complex conjugate of z) can be efficiently calculated

for given x and y and we can efficiently draw samples from P (x) =
∣∣Φ(x)

∣∣2. Then F(τ) can be estimated
with absolute error ε in time poly(ε−1, n, L). The algorithm runs efficiently for ε ≥ 1

poly(n)
and L ≤ poly(n).

Proof. The proof of this theorem strongly resembles the proof of Theorem IV.2. We rewrite the object of
interest F(τ) as follows:

F(τ) = 〈Φ| e−τH |Φ〉 =
∑
x,y

Φ(x)Φ(y) 〈x| e−τH |y〉︸ ︷︷ ︸
f(τ ;x,y)

=
∑
x,y

|Φ(x)|2 Φ(y)

Φ(x)∗
f(τ ;x, y)

=
∑

x0,x1,...,xL

|Φ(x0)|2 Φ(xL)

Φ(x0)∗
〈x0|G1 |x1〉 〈x1|G2 |x2〉 ... 〈xL−1|GL |xL〉 , (111)

where we have set |x〉 = |x0〉 and |y〉 = |xL〉 (we note that these basis states are no longer fixed in

the current discussion). We now use Pl(xl−1 → xl) = 1

λb
l

〈xl−1|Gl |xl〉 φbl (xl)

φb
l
(xl−1)

to obtain the following

expression for F(τ) (just like was done in the previous section for f(τ)):

F(τ) =
∑

x0,x1,...,xL

|Φ(x0)|2P1(x0 → x1)P2(x1 → x2) ... PL(xL−1 → xL)︸ ︷︷ ︸
Π̃(x)

× Φ(xL)

Φ(x0)∗

L∏
l=1

λ
b(l)
l

φ
b(l)
l (xl−1)

φ
b(l)
l (xl)︸ ︷︷ ︸

R(x)

,

(112)
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where x ≡ (x0, x1, ..., xL). By thus sampling from the distribution Π̃(x) (which is normalized due to the
normalization property of state |Φ〉 and the constituent Pl’s) and calculating a sample average ofR(x) ∈ C,
we can estimate F(τ) without bias (except for the bias introduced by the Trotter error): F(τ) = E

(
R(x)

)
.

A factor that governs the efficiency of this estimation is the ability to efficiently calculate Φ(y)
Φ(x)∗ for a given

x and y and to efficiently draw samples from P (x) =
∣∣Φ(x)

∣∣2. We shall come back to this point at the
end of this section. We note furthermore that since F(τ) ∈ R, it holds that Re

(
F(τ)

)
= F(τ). Therefore,

F(τ) = Re
(
F(τ)

)
= Re

(
E
(
R(x)

))
. Since E(Z) ≡ E

(
Re(Z)

)
+ iE

(
Im(Z)

)
for a complex random variable

Z, it holds that Re
(
E(Z)

)
= E

(
Re(Z)

)
. We thus conclude that F(τ) = E

(
Re
(
R(x)

))
. We shall use this

property near the end of this section.
To determine whether F(τ) can be estimated efficiently, we must determine the variance of the unbiased

estimator R(x) ∈ C. This variance is given by:

σ2
F = E

(∣∣R(x)
∣∣2)− ∣∣∣E(R(x)

)∣∣∣2︸ ︷︷ ︸
= |F(τ)|2 = F(τ)2

≤ E
(∣∣R(x)

∣∣2), (113)

where the inequality holds because |F(τ)|2 ≥ 0 (since |F(τ)| ∈ R). To obtain an upper bound on the
variance, we shall investigate this expression in more detail (in a way closely resembling the analysis of
the variance of f(τ) in the previous section):

E
(∣∣R(x)

∣∣2) =
∑
x

Π̃(x)
∣∣R(x)

∣∣2
=
∑
x

|Φ(xL)|2 〈x0|G1 |x1〉 〈x1|G2 |x2〉 ... 〈xL−1|GL |xL〉
L∏
l=1

λ
b(l)
l

φ
b(l)
l (xl−1)

φ
b(l)
l (xl)

=
∑
x

|Φ(xL)|2 Q1(x0, x1)Q2(x1, x2) ... QL(xL−1, xL),

(114)

where in the last step we identify Ql(x, y) = 〈x|Gl |y〉λb(l)l

φ
b(l)
l

(x)

φ
b(l)
l

(y)
. This quantity has been shown in Section

IV.1 to have the properties:
∑
xQl(x, y) ≤ 1 and 0 ≤ Ql(x, y) ≤ 1 (∀l). By consecutively exploiting the

former property for all Ql’s and the normalization property of state |Φ〉, the variance can be shown to be
upper bounded by unity:

σ2
F ≤ 1. (115)

When a set Σ of independent samples {x} distributed according to Π̃(x) is obtained, an unbiased
estimate of F(τ) can be computed by calculating the sample average of R(x) over the sample set Σ:

F̃(τ) =
1

|Σ|
∑
x ∈Σ

R(x), (116)

where |Σ| denotes the size of set Σ. We note that since R(x) ∈ C, the quantity F̃(τ) will generally be

complex-valued as well. The variance of F̃(τ) is now given by
σ2
F
|Σ| ≤

1
|Σ| . Since Var

(
F̃
)

= Var
(
Re(F̃)

)
+

Var
(
Im(F̃)

)
≥ Var

(
Re(F̃)

)
, we note that the variance of the real part of observable F̃ (which itself is a

real-valued random variable) is also upper bounded by 1
|Σ| . Furthermore, we have previously shown that

E
(
Re
(
R(x)

))
= F(τ), so that the mean value of Re(F̃) equals F(τ). Hence if we take |Σ| = N ε−2, then

by means of Chebyshev’s inequality:

Pr
(∣∣Re(F̃(τ)

)
−F(τ)

∣∣ ≥ ε) ≤ 1

N . (117)

Pr
(∣∣Re(F̃(τ)

)
−F(τ)

∣∣ ≤ ε) ≥ 1− 1

N . (118)

F(τ) can thus be estimated with absolute error ε in time poly(ε−1, n, L). This completes the proof of
Theorem IV.3.
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As is stated in Theorem IV.3, the efficiency of the evaluation of F(τ) depends on the ability to, for each

Monte Carlo sample, efficiently obtain the quantity Φ(y)
Φ(x)∗ and a sample from the distribution

∣∣Φ(x)
∣∣2. Since

|Φ〉 is a superposition of generally exponentially many terms, the trivial strategy of storing the complete
state |Φ〉 to obtain the quantities of interest will not be computationally tractable. The extent to which
the aforementioned quantities of interest can be efficiently obtained depends on the exact form of the state
|Φ〉 =

∑
x Φ(x) |x〉. In many practical settings, |Φ〉 is such that one can define a function f : {0, 1}n → C

which takes as input the n-bit string x, and efficiently outputs the corresponding coefficient Φ(x) (this is
e.g. the case for (matrix) product states or states produced by very low-depth quantum circuits). Thereby,

given x and y, the fraction Φ(y)
Φ(x)∗ can be efficiently obtained. A potential strategy for the efficient sampling

from distribution
∣∣Φ(x)

∣∣2 is the Metropolis algorithm (see Definition I.15): By setting up a Markov Chain

Monte Carlo scheme, one can (attempt to) sample from the distribution
∣∣Φ(x)

∣∣2 in poly(n) time. Whether
or not the sampling can indeed be conducted in poly(n) time depends on with what pace the ’walkers’

equilibrate to a distribution that closely resembles
∣∣Φ(x)

∣∣2 (the stationary distribution). We note that

in many interesting cases one can also obtain strategies to sample from
∣∣Φ(x)

∣∣2 that do not depend on
the Metropolis algorithm, and do not require the introduction of walker dynamics. An example of such a
strategy is presented in the next chapter of this report.

IV.3 Extension to Non-Hermitian Propagation Operators

Since Gl equals e−alτ/M Hi and Hi is Hermitian (it corresponds to a physical observable), Gl is Hermitian
as well. However, to make use of the Theorems from the previous sections in a setting that is more general
than the estimation the eigenvalues of stoquastic Hamiltonians, we consider an extension of Theorems IV.2
and IV.3 to the case for which the local propagation operators Gl are not Hermitian (which is the case
when e.g. Hi itself is not Hermitian). Since Theorem IV.2 is equivalent to a particular case of Theorem
IV.3, we consider the estimation of quantity F(τ) = 〈Φ|G1G2...GL |Φ〉 from the previous section, where
we now lift the condition of Gl being Hermitian.

In addition to the n-qubit register, we exploit a single ancillary qubit. The matrices Gl are still element-
wise non-negative. The state |a〉 denotes the state of the single ancillary qubit. By making use of the
single ancillary qubit, the propagation operators can be symmetrized as follows:

Fl ≡

{
Gl ⊗ |0〉〈1|+G†l ⊗ |1〉〈0| , if l is odd

Gl ⊗ |1〉〈0|+G†l ⊗ |0〉〈1| , if l is even.
(119)

In this form, Fl (the ’new’ propagation operator) is element-wise non-negative and Hermitian. It is
important to note that each Gl acts on a subset of the n-qubit register and that Fl acts on the same subset
of the n-qubit register, as well as on the ancillary qubit.

What is left to prove is that estimating the signal for the string of Fl’s is equivalent to estimating the
signal for the string of Gl’s. Specifically, we want to prove the following identity: 〈Φ|G1G2...GL |Φ〉 =
〈Φ| ⊗ 〈0|F1F2...FL |Φ〉 ⊗ |Lmod 2〉, for L ∈ Z+. This is done below by means of induction.

• For L = 1:

〈Φ| ⊗ 〈0|F1

∣∣Φ′〉⊗ |1〉 = 〈Φ| ⊗ 〈0|
(
G1 ⊗ |0〉〈1|+G†1 ⊗ |1〉〈0|

) ∣∣Φ′〉⊗ |1〉
= 〈Φ|G1

∣∣Φ′〉⊗ 〈0|0〉 〈1|1〉+ 〈Φ|G†1
∣∣Φ′〉⊗ 〈0|1〉 〈0|1〉

= 〈Φ|G1

∣∣Φ′〉 ,
(120)

where |Φ〉 and |Φ′〉 can be all possible (potentially unnormalized) n-qubit states.

• Assuming the identity 〈Φ|G1G2...GL |Φ′〉 = 〈Φ| ⊗ 〈0|F1F2...FL |Φ′〉 ⊗ |Lmod 2〉 (for all sets of two
n-qubit states {|Φ〉 , |Φ′〉}) holds for L, it holds for L+ 1 as well:

Making use of the definition in eq. 119, we write FL+1 as follows:

FL+1 = GL+1 ⊗ |Lmod 2〉〈L+ 1mod 2|+G†L+1 ⊗ |L+ 1mod 2〉〈Lmod 2| . (121)

The quantity of interest – in the case of the length of the operator string being L+ 1 – can now be
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rewritten as follows:

〈Φ| ⊗ 〈0|F1F2...FLFL+1

∣∣Φ′〉⊗ |L+ 1mod 2〉 = 〈Φ| ⊗ 〈0|F1F2...FLGL+1

∣∣Φ′〉︸ ︷︷ ︸
|Φ̃〉

⊗ |Lmod 2〉

= 〈Φ|G1G2...GL

∣∣∣Φ̃〉
= 〈Φ|G1G2...GLGL+1

∣∣Φ′〉 ,
(122)

where in the second equality we have used the aforementioned presumption (note that
∣∣∣Φ̃〉 ≡

GL+1 |Φ′〉 is an n-qubit state). This equation holds for all sets of two n-qubit states {|Φ〉 , |Φ′〉}.

We conclude, by induction, that the identity 〈Φ|G1G2...GL |Φ′〉 = 〈Φ|⊗〈0|F1F2...FL |Φ′〉⊗|Lmod 2〉 holds
for all L ∈ Z+. Therefore 〈Φ|G1G2...GL |Φ〉 = 〈Φ| ⊗ 〈0|F1F2...FL |Φ〉 ⊗ |Lmod 2〉 (for L ∈ Z+) holds as
well, since it is the particular case of the previous identity corresponding to |Φ〉 = |Φ′〉. Hence determining
the signal 〈Φ|G1G2...GL |Φ〉 (up to an absolute ε error) can be efficiently done in the case of non-Hermitian
Gl’s by introducing a single ancillary qubit and determining the signal 〈Φ| ⊗ 〈0|F1F2...FL |Φ〉 ⊗ |Lmod 2〉
(where Fl is defined in eq. 119) using the methods developed in the previous sections.

Remark. Extension of Theorem IV.3: Assuming access to a single ancillary qubit (in addition to the
n-qubits) and fulfillment of the conditions set in Theorem IV.3 with the exception that Gl is allowed to
be non-Hermitian ( ∀l), the quantity 〈Φ|G1G2...GL |Φ〉 can be obtained up to an ε-additive error in time
poly(ε−1, n, L).

IV.4 Short-Time Simulations

Thus far, we have not restricted the allowed values that τ can attain other than them being real and
non-negative. In this section, we argue why taking τ to be a small (real-valued and non-negative) quantity
is beneficial for the quality of the simulations considered here. There are four reasons to believe that taking
τ small is indeed advantageous:4

1. For a given number of Monte Carlo samples (|Σ|), the (sampling) noise contaminates the signals to
be determined to a given extent (the variance is upper bounded by 1/|Σ|). Since the signals decay in
imaginary time τ , there will inevitably be a point in imaginary time after which the noise dominates
the signal to be determined. To avoid this effect, one must choose a measurement τ -interval at
sufficiently small τ such that, for a given number of Monte Carlo samples, the signal dominates the
noise within that interval.

2. In the previous sections, the variance of a single realization (for a single Monte Carlo sample) of
the observables of interest (PL(xL−1 → xL)R(x) and R(x)) has been upper bounded by unity
(which, clearly, is a time-independent quantity). To arrive at this upper bound on the variance,
we used that both f(τ) and F(τ) are real-valued and therefore their square is non-negative: σ2

f ≤
1 −

(
f(τ)

)2 ≤ 1 and σ2
F ≤ 1 −

(
F(τ)

)2 ≤ 1. Since the signals f(τ) and F(τ) are not known
before running the simulation, upper bounding these variances by this τ -independent unit bound
is reasonable, and useful in proving Theorems IV.2 and IV.3. However, since f(τ) = 〈x| e−τH |x′〉
and F(τ) = 〈Φ| e−τH |Φ〉 both equal unity at τ = 0, the aforementioned variances must equal zero
there. In fact, the unity variance bounds are only tight when limτ→∞. For small τ , the variances are
smaller than the time-independent bounds due to the fact that the signals have non-zero magnitude.
One can therefore try to exploit this fact to reduce the noise on the approximated signals.

3. As was extensively discussed in the introductory chapter of this report, the systematic Trotter error
imposed on the signals to be determined grows with τ . Therefore, choosing the measurement τ -
interval to be at relatively small τ (for a given Trotter variable M) suppresses the systematic error
originating from Trotterization.

4These four reasons are not necessarily mutually independent.
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4. The algorithms presented in the previous sections determine the signals of interest up to an additive
constant ε, where for the algorithm to run efficiently ε must be at least 1/poly(n). Therefore, the
signals are only estimated well if they themselves are also of size at least 1/poly(n) (and preferably
larger). As was discussed in the introductory chapter, frustration of the Hamiltonian H is one of the
effects that reduces the magnitudes of the signals. In particular, we have shown in Section I.2 that
the signals are of size at least 1/poly(n) if τΛ ≤ log(poly(n)) ∧ | 〈Φ|ψ0〉 |2 ≥ 1/poly(n) (where Λ
denotes the degree to which the Hamiltonian H is frustrated). For a given Λ, therefore, τ must be
chosen relatively small.

In the next chapter, the claim of improved quality of the simulations when choosing small τ values will
also be supported by means of numerical results. In fact, one wants to choose ∆τ so small that all k ∆τ
for k ∈ {0, 1, ...,K} (and a given K) lie at sufficiently small τ . We do note that ∆τ must not be chosen so
small that discretization errors start to play a role when numerically obtaining the signal.

IV.5 Determining the Partition Function

Thus far we have focused on extracting eigenvalues of a Hamiltonian H from the real-time or imaginary-
time evolution of the state of a system with Hamiltonian H. To further study a system and its physical
properties, one might also consider determining its canonical partition function Z(β) (at inverse tempera-
ture β = 1

kBT
∈ R+). This partition function is directly related to quantities such as the Helmholtz free

energy F = −kBT ln
(
Z(β)

)
and the specific heat CV = ∂〈E〉

∂T
(where 〈E〉 = − ∂ln(Z)

∂β
). By studying e.g.

the derivatives of the Helmholtz free energy – and in particular discontinuities of these derivatives – one
can investigate the occurrence of phase transitions of the system.

In this section we argue that, using similar reasoning as for the quantities f(τ) and F(τ) (introduced
in the previous sections), the partition function Z(β) can be efficiently obtained by classical means (up to
an ε-additive error and a Trotter error) for sufficiently local and piece-wise stoquastic Hamiltonians. The
partition function is given by the following expression (where {|x〉} constitutes the basis in which e−βH is
expressed):

Z(β) = Tr
(
e−βH

)
=
∑
x

〈x| e−βH |x〉 =
∑
j

∑
x

e−βEj |〈ψj |x〉|2 =
∑
j

e−βEj , (123)

where {ψj} and {Ej} respectively denote the eigenstates and eigenvalues of H. The partition function
thus equals the sum over all eigenvalues of e−βH . Since β ∈ R+ and Ej ∈ R, ∀j (since H is Hermitian),
the partition function is a real-valued quantity. For the estimation algorithm discussed here, we shall use
the expression

∑
x 〈x| e

−βH |x〉. We now present the following theorem, and provide its proof afterwards.

Theorem IV.4. (S. Bravyi, M.E. Stroeks, B.M. Terhal). Suppose |x〉 (where x ∈ {0, 1}n) denotes the
state of an n-qubit register ( {|x〉} is an orthonormal set). Furthermore, suppose Z(β) = Tr

(
e−βH

)
=∑

x 〈x| e
−βH |x〉 =

∑
x 〈x|G1G2 ... GL |x〉, where:

1. β ∈ R+,

2. Gl =
(
e−alβ/MHi

)
j

is a Hermitian matrix, where i ∈ {1, ..., N}, j ∈ {1, ...,M}, al ∈ (0, 1] ( {al}Ll=0

depends on the Trotterization scheme) and l ∈ {1, ..., L} labels the time slice,

3. H =
∑N
i=1 Hi, where each Hi acts non-trivially on at most log(poly(n)), or typically O(1), qubits. Hi

is Hermitian and stoquastic in the ’x’-basis, ∀i (hence Gl is element-wise non-negative and Hermitian,
∀l),

4. λmin(Hi) = 0 ( ∀i) so that ωmax(Gl) = 1 ( ∀l), where ’ω’ denotes an eigenvalue of Gl.

Then Z(β) can be estimated with absolute error ε in time poly(ε−1, n, L). The algorithm runs efficiently
for ε ≥ 1

poly(n)
and L ≤ poly(n).
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Proof. We consider the Trotterized expression for the partition function Z(β) and insert L − 1 complete
sets of basis states to obtain the following expression:

Z(β) =
∑
x

〈x|G1G2...GL |x〉 =
∑

x0,x1,...,xL−1

〈x0|G1 |x1〉〈x1|G2 |x2〉 ... 〈xL−1|GL |x0〉 , (124)

where |x〉 = |x0〉 is a variable basis state. We note that each term in the sum in eq. 124 corresponds to
a string of basis states of length L, where the starting basis state always coincides with the final basis

state in the string (here denoted by |x0〉 = |xL〉). We now use Pl(xl−1 → xl) = 1

λb
l

〈xl−1|Gl |xl〉 φbl (xl)

φb
l
(xl−1)

to obtain the following expression for Z(β):

Z(β) =
∑

x0,x1,...,xL−1

P1(x0 → x1)P2(x1 → x2)...PL−1(xL−2 → xL−1)︸ ︷︷ ︸
Π(x)

PL(xL−1 → x0)

×
L∏
l=1

λ
b(l)
l

φ
b(l)
l (xl−1)

φ
b(l)
l (xl)︸ ︷︷ ︸

R(x)

, (125)

where x ≡ (x0, x1, ..., xL−1). The distribution Π(x) is normalized due to the normalization property of
each constituent Pl. By sampling from Π(x) (in the same manner as described in the previous sections of
this chapter) and calculating the sample average of PL(xL−1 → x0)R(x), one can estimate (a Trotterized
version of) Z(β) in an unbiased manner. Note that PL(xL−1 → x0) is part of the estimator since for a
given x = (x0, x1, ..., xL−1) it is a fixed quantity. This is again due to the fact, as mentioned above, for
each string of basis states the starting basis state must coincide with the final basis state.

To determine whether Z(β) can be determined efficiently, we now consider the variance of the unbiased
estimator PL(xL−1 → x0)R(x). This variance is given by:

σ2
Z = E

((
PL(xL−1 → x0)R(x)

)2
)
− E

(
PL(xL−1 → x0)R(x)

)2

︸ ︷︷ ︸
Z(β)2

≤ E
((

PL(xL−1 → x0)R(x)
)2
)
, (126)

where the inequality holds because Z(β)2 ≥ 0 (since Z(β) ∈ R). We now examine this expression for the
variance in more detail to obtain an upper bound for it:

E
((

PL(xL−1 → x0)R(x)
)2
)

=
∑
x

Π(x)
(
PL(xL−1 → x0)R(x)

)2

=
∑
x

〈x0|G1 |x1〉〈x1|G2 |x2〉 ... 〈xL−1|GL |x0〉PL(xL−1 → x0)

×
L∏
l=1

λ
b(l)
l

φ
b(l)
l (xl−1)

φ
b(l)
l (xl)

=
∑
x

Q1(x0, x1)Q2(x1, x2)...QL(xL−1, x0)PL(xL−1 → x0),

(127)

where we identify Ql(x, y) = 〈x|Gl |y〉λbl
φbl (x)

φb
l
(y)

, which has been shown to have the properties:
∑
xQl(x, y) ≤

1 and 0 ≤ Ql(x, y) ≤ 1 (∀l). By now using these properties of Ql(x, y) and the fact that 0 ≤ PL ≤ 1, we
show that the variance σ2

Z is upper bounded by unity:

σ2
Z ≤ 1. (128)

When a set Σ of independent samples {x} distributed according to Π(x) is obtained, an unbiased
estimate of Z(β) can be computed by calculating the sample average of PL(xL−1 → x0)R(x) over the
sample set Σ:

Z̃(β) =
1

|Σ|
∑
x∈Σ

PL(xL−1 → x0)R(x), (129)
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where |Σ| denotes the size of set Σ. The standard deviation of Z̃(β) now equals σZ√
|Σ|

. Hence if we take

|Σ| = N ε−2, then by means of Chebyshev’s inequality:

Pr
(
|Z̃(β)− Z(β)| ≥ ε

)
≤ σ2

Z

N ≤
1

N . (130)

Pr
(
|Z̃(β)− Z(β)| ≤ ε

)
≥ 1− 1

N . (131)

Z(β) can thus be estimated with absolute error ε in time poly(ε−1, n, L). This completes the proof of
Theorem IV.4.

Ideally, one would obtain an estimate of the partition function (denoted by Z̃(β)) up to a relative
error ε: 1 − ε ≤ Z̃/Z ≤ 1 + ε. Such an estimate will be of high quality irrespective of the magnitude
of Z, while an estimate of Z(β) up to an ε-additive error will be of high quality only if Z is a relatively
large quantity. An algorithm that provides an estimate of Z(β) up to a relative error ε is called a fully
polynomial-runtime approximation scheme (FPRAS). The range of systems for which such an FPRAS has
been obtained, however, is limited. In [33], an FPRAS is obtained for the partition function of a family of
stoquastic Hamiltonians associated with spin systems with ferromagnetic spin-spin interactions (including
the ferromagnetic XY model and the ferromagnetic Ising model on any graph). More recently ([34]), an
FPRAS was obtained for the partition function of the transverse-field Ising model at temperatures above a
threshold that (amongst other variables) depends on the maximum interaction strength between the spins.

Since our algorithm obtains an ε-additive estimate of Z(β) in an efficient manner for ε ≥ 1/poly(n),
one requires Z(β) to be at least 1/poly(n) for the estimate to be accurate. As discussed in Section I.2
of this report, for our scheme the size of Z(β) is directly related to the extent to which Hamiltonian H
is frustrated: If Hamiltonian H is frustrated by an amount Λ, then Z(β) is of size at least 1/poly(n) if
βΛ ≤ log(poly(n)). For a given scaling of the frustration with the system size Λ(n), the Monte Carlo

scheme described in this section will only provide accurate estimates of Z(β) for β ≤ log(poly(n))
Λ(n)

. Z(β)
can thus be accurately obtained using our scheme in a high-temperature regime, where the minimum
temperature in this regime increases progressively with the (scaling) of the degree of frustration. We thus
conclude that our scheme provides an accurate estimate of Z(β) = Tr

(
e−βH

)
if H is sufficiently local and

piece-wise stoquastic, and in addition H is mildly frustrated and the system temperature is not too low.

IV.6 Overview

In this section, we provide a short overview of the approximation schemes discussed in this chapter for
the quantities f(τ) (a single matrix element of the Gibbs density matrix), F(τ) (the overlap between an
initial system state and its imaginary-time-evolved counterpart) and the Z(β) (the partition function).
We have argued in this chapter that these quantities, after applying a Trotterization scheme and inserting
complete sets of basis states, correspond to a sum of exponentially many terms (the direct evaluation of
which is, obviously, not computationally tractable). Using a classical stochastic scheme, one can estimate
the quantities of interest up to an ε-additive error in a computationally tractable manner – given that the
Hamiltonian is sufficiently local and piece-wise stoquastic. We have schematically depicted (an impression
of) the classical stochastic schemes in Figure 6. In the representation used in Figure 6, single terms from
the sums that make up the quantities f(τ), F(τ) and Z(β) correspond respectively to paths from a fixed
basis state to another fixed basis state, paths from a variable basis state to another variable basis state
(where the choice of these variable basis states depends on |Φ〉) and closed loops starting from variable
basis states. If one wishes to estimate f(τ), F(τ) or Z(β), one must sample |Σ| of these associated paths
using the algorithm described in the previous sections and calculate the sample average of an observable
over the sample set Σ. The form of these observables for the quantities f(τ), F(τ) and Z(β) have also
been discussed in the previous sections. By obtaining bounds on the variance of the sample average of
these observables, we have shown that the quantities of interest can indeed be obtained up to an ε-additive
error.
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(a) f(τ) = 〈x| e−τH |y〉. (b) F(τ) = 〈Φ| e−τH |Φ〉. (c) Z(β) =
∑
x 〈x| e−βH |x〉.

Figure 6: Schematic representation of the algorithms used to determine f(τ) = 〈x| e−τH |y〉, F(τ) =
〈Φ| e−τH |Φ〉 and Z(β) =

∑
x 〈x| e

−βH |x〉 as described in this chapter. The black dots represent basis
states (from a basis in which Hamiltonian H is piece-wise stoquastic) and each of the red paths connecting
several basis states corresponds to a single term in the sum that makes up the quantities f(τ), F(τ) and
Z(β). For the case of estimating a single matrix element of e−τH (depicted in (a)), all red paths begin
at the same basis state (|x〉) and end at the same basis state (|y〉). For the case of estimating the signal
〈Φ| e−τH |Φ〉 (depicted in (b)), the red paths can begin at different basis states and end at different basis
states. When estimating the partition function Tr

(
e−βH

)
(depicted in (c)), the red paths begin at any

basis state (|x〉) and end at that same basis state – i.e. the red paths form closed loops. We note that all
paths should be of length L (which depends on the Trotterization scheme).

IV.7 Use of the Monte Carlo Scheme in a Quantum Computing Setting

We have discussed the use of Theorem IV.3 for efficiently tracking the imaginary-time state evolution of a
system with a sufficiently local and piece-wise stoquastic Hamiltonian (by classical means). In addition, we
have discussed how one can obtain eigenvalues of the Hamiltonian from this imaginary-time state evolution
using the Matrix Pencil Method. We note, however, that the set of operators satisfying the conditions
stated for the Gl’s in Theorem IV.3 does not solely include local imaginary-time propagators for stoquastic
Hamiltonians. The use of Theorem IV.3 can be extended to e.g. determining the overlap between an initial
state |Φ〉 and a state G1G2...GL |Φ〉 to which a set of L (classical) quantum gates has been applied.5 By
determining this overlap, one can investigate the action of particular quantum circuits on a state |Φ〉. The
set of (well-known) quantum gates that fit in the framework of Theorem IV.3 are the Pauli-X, CNOT,
SWAP and Toffoli gates:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ; SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ;

Pauli-X =

(
0 1
1 0

)
; TOFF =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

(132)

In fact, these operators are all symmetric basis-state permutation matrices. Therefore, we note that they
form a small (and relatively plain) subset of all operators that in principle fit in the framework of Theorem
IV.3. We do note that permutation matrices that are not symmetric fit in the framework of Theorem IV.3
as well.

5Provided that one can efficiently determine
Φ(y)

Φ(x)∗ for a given x and y, and one can efficiently sample from the distri-

bution |Φ(x)|2.
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The signal F(τ), that was discussed in the context of imaginary-time state propagation, lies on the
interval (0, 1] for all τ ∈ R+. In contrast, the quantity 〈Φ|G1G2...GL |Φ〉 (where the Gl’s are now any of
the above gates) lies on the interval [−1, 1]: This quantity is the inner product between |Φ〉 and another
norm-1 state G1G2...GL |Φ〉 and can therefore lie anywhere in between −1 and +1. Since the classical
stochastic scheme from Theorem IV.3 estimates 〈Φ|G1G2...GL |Φ〉 up to an ε-additive error, we note that
here as well the estimates will only be of high quality if 〈Φ|G1G2...GL |Φ〉 is at least 1/poly(n) in norm.

Although one is able to efficiently estimate 〈Φ|G1G2...GL |Φ〉 (where the Gl’s are now quantum gates
that fit in the framework of Theorem IV.3) by classical means, it is worth discussing the usefulness of
this estimate: Suppose one wishes to determine the overlap between an input state and an output state
of some quantum circuit (containing arbitrary quantum gates). Some of the gates in this circuit might fit
in the framework of Theorem IV.3. In a general setting, one would not only like to determine the action
of a set of gates on an initial state, but also have the resulting state physically available so that other
gates (which might not fit in the framework of Theorem IV.3) can be applied to it. In that case, one is
required to actually apply all gates to a qubit register. Only when one arrives at a point after which solely
quantum gates that fit in the framework of Theorem IV.3 are going to be applied, it is in principle useful
to classically estimate the quantity discussed here.

A more elaborate and general discussion of the ability to simulate quantum circuits by means of classical
stochastic schemes is given in [35]. In addition, the author identifies the crucial steps in Simon’s and Shor’s
algorithm that ensure the exponential speed-ups and discusses instances in which these algorithms would
be efficiently simulatable by classical means.

IV.7.1 (Proposing) A Hybrid Algorithm for Estimating Eigenvalues of Stoquastic
Hamiltonians

We have noted in Chapter II that the quantum-phase-estimation-based digital quantum simulation scheme
discussed there is idealized for a number of reasons. The implementation of the quantum simulation scheme
on actual current noisy intermediate-scale quantum (NISQ) devices would reduce its performance compared
to an ideal implementation. Due to the resemblance between the quantum-phase-estimation-based digital
quantum simulation scheme and the classical Monte Carlo scheme discussed in the current chapter, we
propose the exploration of hybrid algorithms to alleviate the computational stress on current NISQ devices.
One could try to design algorithms that make use of both the classical scheme and the quantum scheme
to e.g. attempt reducing the number of physical qubits (and their coherence times) required for running
a particular simulation algorithm.
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V Ising Chain in a Transverse Field

T o apply the methods developed thus far to a physical system, we consider the Ising chain in a
transverse field in this section. This system has been extensively studied ([8]) and will serve as

a proof-of-principle framework for the Monte Carlo algorithm developed here. The system consists of
spin- 1

2
particles at fixed positions (on a lattice) interacting via an Ising interaction. They are exposed

to an external magnetic field that is applied in the transverse direction. The system exhibits a quantum
phase transition (at T = 0) as a function of a dimensionless transverse field variable g at g = gc = 1. Its
Hamiltonian is given by:

H = −J
(∑

i

σzi σ
z
i+1 + g

∑
i

σxi

)
, (133)

where J > 0 (for a ferromagnetic interaction) and g ≥ 0, and H is thus stoquastic in the standard basis.
Note that the field can be chosen to point in the x-direction without loss of generality: The Hamiltonian

can be transformed to H̃ = UHU† by the unitary transformation U =
⊗

i exp
( iθσzi

2

)
, which alters the

direction of the field in the transverse plane while preserving the spectrum.
In a (second-order) phase transition such as the paramagnetic to ferromagnetic transition of a two-

dimensional Ising model, the phase transition occurs as a function of temperature: The system is in the
paramagnetic phase (with a net zero magnetization) above the Curie temperature, and in the ferromagnetic
phase (with a net non-zero magnetization) below the Curie temperature. The equilibrium configuration
of a system is given (at any temperature) by the minimum of the Helmholtz free energy. Above the Curie
temperature, the Helmholtz free energy exhibits a single minimum as a function of magnetization (at
zero magnetization). Below the Curie temperature, the Helmholtz free energy exhibits two minima as a
function of magnetization (both at non-zero magnetization). We note that throughout a process of going
from T > TC to T < TC , the equilibrium configuration clearly changes, while the ground state of the
system remains the same. This is due to the fact that the ground state of the system is a property of
its (temperature independent) Hamiltonian H. This behaviour of the two-dimensional Ising lattice differs
from that of a transverse-field Ising chain system in the following sense: For the transverse-field Ising
chain, a phase transition occurs at T = 0 as a function of the transverse field strength g (instead of as a
function of temperature). Since the Helmholtz free energy is defined to be F ≡ E − TS (where E is the
internal energy and S the entropy of the system), at T = 0 the minimum of the free energy coincides with
the ground state (for any g). If the equilibrium configuration changes (due to a phase transition), we thus
conclude that this should be directly related to a change in the ground state of the system. This is indeed
the case for the transverse-field Ising chain.

The phase transition at T = 0 as a function of g can be characterized by the ground states in two
parameter limits:

• Strong-coupling limit (g � gc): In this limit, the Hamiltonian is dominated by the field terms and
the ground state is given by |GS〉g>>gc ≈ |+〉

⊗n. This corresponds to a paramagnetic (disordered)
phase. The p-particle excitations correspond to states |−〉q1 |−〉q2 ... |−〉qp

∏
i6=q1,q2,...,qp |+〉i, which

equals the ground state with spin flips at p (generally non-adjacent) positions q1, ..., qp along the
chain. These p-particle excited states are

(
n
p

)
-fold degenerate.

• Weak-coupling limit (g � gc): In this limit, the Hamiltonian is dominated by the Ising inter-
action terms and the ground state is given by either |GS〉g<<gc ≈ |0〉

⊗n or |GS〉g<<gc ≈ |1〉
⊗n

– i.e. the spins will be either all pointing up or all pointing down. The system now resides in a
ferromagnetic (ordered) phase. The excitations w.r.t. the ground state correspond to domain walls
separating ferromagnetic regions of opposite spin: The lowest energy excitation corresponds to the
state |. . . 00000111 . . .〉 (a single domain wall), the second-to-lowest energy excitation corresponds
to the state |. . . 11100011 . . .〉 (two domain walls) etc. These p domain wall excited states are ap-
proximately 2

(
n
p

)
-fold degenerate. If one imposes periodic boundary conditions, only even p values

correspond to valid excitations.

As the system moves from being in the strong coupling limit to being in the weak coupling limit, it crosses
the g = gc critical point and the Z2-symmetry is spontaneously broken (the system ends up in either |0〉⊗n
or |1〉⊗n). This second order phase transition between the two coupling regimes is accompanied by an
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avoided level-crossing at g = gc between the ground state and an excited state, the sharpness of which
progressively increases with system size and leads to a point of non-analyticity (in the ground state energy
as a function of g) at gc in the infinite size limit.

Since eq. 133 can be written as H =
∑N
i Hi, where N = n

(
= poly(n)

)
and Hi = −J

(
σzi σ

z
i+1 + g σxi

)
is 2-local and stoquastic in the standard basis for g > 0, Theorem IV.3 ensures that a Trotterized version
of 〈Φ| e−τH |Φ〉 (where |Φ〉 =

∑
x Φ(x) |x〉, Φ(x) ∈ R and τ ≥ 0) can be efficiently estimated with absolute

error ε = 1
poly(n)

, if the number of local propagation operators in the Trotter decomposition (L) is at

most poly(n). To run the Monte Carlo algorithm that is used to obtain this estimate, the imaginary-
time propagation operator e−τH must be decomposed (by means of Trotterization) in terms of the local
propagation operators e−alτ/M Hi . These local propagation operators corresponding to eq. 133 are given
by:

e−τ̃Hi =



sinh(λτ̃)√
1+g2

+ cosh(λτ̃) 0 g sinh(λτ̃)√
1+g2

0

0 − sinh(λτ̃)√
1+g2

+ cosh(λτ̃) 0 g sinh(λτ̃)√
1+g2

g sinh(λτ̃)√
1+g2

0 − sinh(λτ̃)√
1+g2

+ cosh(λτ̃) 0

0 g sinh(λτ̃)√
1+g2

0 sinh(λτ̃)√
1+g2

+ cosh(λτ̃)

 ,

(134)
where λ = J

√
1 + g2 and τ̃ = alτ/M . For g ≥ 0, this operator is element-wise non-negative but reducible.

By performing a basis transformation corresponding to a permutation of the 2-site standard basis states
|01〉 and |10〉, we obtain a block-diagonal representation of e−τHi , where the blocks along the diagonal are
irreducible (and non-negative) themselves:

e−τ̃Hi =



sinh(λτ̃)√
1+g2

+ cosh(λτ̃) g sinh(λτ̃)√
1+g2

0 0

g sinh(λτ̃)√
1+g2

− sinh(λτ̃)√
1+g2

+ cosh(λτ̃) 0 0

0 0 − sinh(λτ̃)√
1+g2

+ cosh(λτ̃) g sinh(λτ̃)√
1+g2

0 0 g sinh(λτ̃)√
1+g2

sinh(λτ̃)√
1+g2

+ cosh(λτ̃)

 .

(135)
We identify the sets of states (in the 2-site standard basis) connected through non-zero elements of e−τHi

as: S(1) = {|00〉 , |10〉} and S(2) = {|01〉 , |11〉}. After setting the lowest eigenvalue of each Hi to zero, the
eigenvalues of the propagation operator e−τHi lie in the interval (0, 1] on the real axis.

The signal to be analyzed as a function of imaginary time τ to obtain the eigenvalues of H is:

F(τ) = 〈Φ| e−τH |Φ〉 ≈ 〈Φ|G1G2...GL |Φ〉 , (136)

where Gt = e−alτ/M Hi , and al and L ≤ poly(n) depend on the Trotterization scheme. For a first-order
Trotterization scheme, L = MN and al = 1, ∀l. Due to the fact that the set {Hi} can be divided into two
subsets such that within each subset all terms commute, the application of the operators can be parallelized
such that only 2M time slices are required (i.e. a checkerboard decomposition). The setting described
here is a particular case of the setting described in Theorem IV.3 since the form of Gl is l-independent –
i.e. the bond Hamiltonian Hi is the same for all i.6 By identifying the block matrices along the diagonal
of Gl (G

(1)
l and G

(2)
l ) and finding their (largest) positive eigenvalue λ

(1)
l and λ

(2)
l , and their associated

positive eigenstates |φ〉(1)
l and |φ〉(2)

l (which are guaranteed to exists due to Theorem IV.1), the Monte
Carlo scheme described in the previous chapter can be constructed. In the remainder of this section we
investigate several aspects of the Monte Carlo scheme by applying it to the transverse field Ising model,
and in particular to reconstructing parts of its spectrum.

The spectrum of the transverse field Ising model is depicted in Figure 7 (when setting the smallest
eigenvalues of all Hi’s to zero). It is worth considering in some more detail what happens when one sets the
smallest eigenvalues of all Hi’s to zero. The Hamiltonian H =

∑
iHi has eigenvalues {Ej} and eigenstates

{ψj}:
H |ψj〉 = Ej |ψj〉 , ∀j. (137)

6Efficiently obtaining an absolute ε-estimate F(τ) is equally possible for a site-dependent Ising interaction strength Ji
and transverse field strength gi (as long as gi ≥ 0 ∀i in the chosen basis).
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When setting the smallest eigenvalue of each Hi to zero, the ’new’ Hamiltonian becomes
∑
i

(
Hi −

λmin(Hi)I
)
:∑

i

(
Hi − λmin(Hi)I

)
|ψj〉 = H |ψj〉 −

(∑
i

λmin(Hi)
)
I |ψj〉 =

(
Ej −

∑
i

λmin(Hi)
)
|ψj〉 , ∀j. (138)

We thus conclude that the ’new’ Hamiltonian
∑
i

(
Hi−λmin(Hi)I

)
has the same set of eigenstates {|ψj〉}

as H, but its spectrum is shifted by an amount
∑
i λmin(Hi) to become {Ej−

∑
i λmin(Hi)}. We note that

in the case of the transverse-field Ising chain, the quantity
∑
i λmin(Hi) is g-dependent. All eigenvalues

at a fixed g are thus shifted by the same amount when setting the smallest eigenvalue of each Hi to zero,
but this amount does vary with the field strength g.
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Figure 7: Eigenspectrum of the Ising chain in a transverse field (obtained by direct diagonalization of H)
as a function of the dimensionless field strength g for several values of system size. The lowest eigenvalue
of all bond Hamiltonians Hi is set to zero. This allows for direct observation of the extent to which
Hamiltonian H is frustrated: The system is maximally frustrated at g = gc = 1 and frustration free at
g = 0 and g � gc. The ground state degeneracy that is present for g < gc is seen to be lifted at the critical
point g = gc. Additionally, the sharpness of the ground state energy curve as a function of g around g = gc
is seen to increase progressively with system size (the curve is known to display a point of non-analyticity
at g = gc in the infinite size limit [8]).

V.1 Choice of the State |Φ〉

A point of particular importance is the choice of state |Φ〉: The signal F(τ) =
∑
j e
−τEj

∣∣〈Φ|ψj〉∣∣2 can be
used to obtain a subset of the Ej ’s for which the overlap of |Φ〉 with the associated eigenstates |ψj〉 is
sufficiently large. Choices for |Φ〉 for which the overlap with a particular eigenstate |ψj〉 will be (nearly)
zero, will lead to not being able to determine the associated eigenvalue Ej : Suppose the overlap scales as

1
exp(n)

, then the associated component of the signal to be analyzed is exponentially small in the system size

and hence the algorithm is inefficient for obtaining this eigenvalue. Even if the overlap is of size 1
poly(n)

,
the eigenvalue Ej might still not be efficiently attainable: This is due to the fact that we obtain a noisy
version of the signal F(τ) and the magnitude of the decaying signal corresponding to eigenvalue Ej might
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become of the same order as the magnitude of the noise (which itself depends on the number of Monte
Carlo samples used to obtain F at point τ). When using the Matrix Pencil Method to determine the decay
rates of F(τ) as a function of τ , the noise is (mostly) filtered out in the SVD truncation step. It is thus
of importance to have prior knowledge about the form of the eigenstates of which one wants to obtain
the associated eigenvalues (as it is in the case of quantum-phase-estimation-based quantum simulation).
To obtain e.g. the ground state eigenvalues of the transverse field Ising chain Hamiltonian H, one must
choose |Φ〉 to have considerable overlap with |+〉⊗n for g � gc and with |0〉⊗n or |1〉⊗n for g � gc.

In Figure 8, we have depicted the spectrum for the transverse field Ising chain (for n = 7) that has
been obtained through direct diagonalization. In addition, the quantities 〈0|⊗nH |0〉⊗n and 〈+|⊗nH |+〉⊗n
have been plotted as a function of the dimensionless field variable g. Clearly, in the regime g � gc, the
state |0〉⊗n almost coincides with the ground state. Similarly, in the regime g � gc, the state |+〉⊗n
almost coincides with the ground state. For ground state calculations, therefore, |Φ〉 can be chosen |0〉⊗n
and |+〉⊗n in the weak coupling and strong coupling regimes, respectively. It is apparent from Figure 8
that the states |0〉⊗n and |+〉⊗n have significant overlap with states other than the ground state near the
point gc. Therefore, one might in principle use these states as |Φ〉 to extract excited state eigenvalues
through the aforementioned Monte Carlo procedure. However, since the Hamiltonian has 2n (possibly
degenerate) eigenstates, the states |0〉⊗n and |+〉⊗n might not have sufficiently large overlap with any of
the excited states for the Monte Carlo scheme to properly extract the associated eigenvalues. Instead, one
constructs a state |Φ〉 in a systematic manner, such that it is highly likely that it has sufficiently large
(at least 1/poly(n)) overlap with some eigenstates of interest. Below, we construct such a state that has
large overlap with the ground state and first excited state of the transverse field Ising model in the strong
coupling regime.
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Figure 8: Eigenspectrum of
the Ising chain in a transverse
field obtained by direct diago-
nalization for n = 7. The ex-
pectation values 〈0|⊗nH |0〉⊗n
and 〈+|⊗nH |+〉⊗n are plot-
ted as a function of g as
well. In the parameter regimes
g � gc and g � gc, the
ground states closely resemble
the states |0〉⊗n and |+〉⊗n, re-
spectively.

By using the available information about the eigenstates of the transverse field Ising chain, we now
construct a state |Φ〉 that has at least 1

poly(n)
overlap between the ground state and the (n-fold degenerate)

first excited state in the g � gc regime. We consider the following state:

|Φ〉 =
1√
2

( n∏
i=1

|+〉i︸ ︷︷ ︸
|ψp=0〉

+

n∑
q=1

1√
n
|−〉q

∏
i 6=q

|+〉i︸ ︷︷ ︸
|ψp=1,q〉

)
. (139)

This state is chosen such that | 〈Φ|ψp=0〉 |2 =
∑n
q=1 | 〈Φ|ψp=1,q〉 |2 = 1

2
– i.e. the Ep=0 (ground state) and

Ep=1 (excited state) components of the F(τ) signal thus have equal magnitudes in the regime g � gc.
Hereafter we shall call this state |Φoptimal(p = 0, 1)〉. Since the Monte Carlo procedure is going to be ran
in the standard basis, we now consider the decomposition of |Φoptimal(p = 0, 1)〉 in terms of standard-basis
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states:

|Φoptimal(p = 0, 1)〉 =
1√
2

n∑
q=1

( 1

n

n∏
i=1

|+〉i +
1√
n
|−〉q

∏
i 6=q

|+〉i
)

=
1

2

n∑
q=1

(( 1

n
+

1√
n

)
|0〉q +

( 1

n
− 1√

n

)
|1〉q

)∏
i6=q

|+〉i

=
1

2(n+1)/2

n∑
q=1

((( 1

n
+

1√
n

)
|0〉q +

( 1

n
− 1√

n

)
|1〉q

)∑
x∈{0,1}n
\{0,1}q

|x〉

)
,

(140)

where
∑
x∈{0,1}n
\{0,1}q

|x〉 denotes an equal superposition of (n−1)-bit strings that exclude the bit in register q.

As extensively discussed in the previous chapter, an essential feature of the state |Φ〉 =
∑
x∈{0,1}n Φ(x) |x〉

(where Φ(x) ∈ R ∀x in the current discussion) in our Monte Carlo scheme is that one can efficiently obtain

the quantity Φ(y)
Φ(x)

(for a given x, y ∈ {0, 1}n) and one can efficiently sample from the distribution
(
Φ(x)

)2
.

For ground state calculations in the strong-coupling regime, we shall take:

|Φ〉 = |+〉⊗n =
1

2n/2
∑
x∈{0,1}n |x〉 . (141)

In that case, Φ(x) = 1

2n/2 , ∀x. Therefore, the quantity Φ(y)
Φ(x)

is efficiently obtainable since it equals unity

for any x, y. Furthermore, the distribution (Φ(x))2 equals 1/2n for any x. One can thus efficiently sample
from this distribution since sampling from it corresponds to selecting, uniformly at random, a bit string
from {0, 1}n (which is a computationally tractable task).

For ground state and first excited state calculations in the strong-coupling regime, we take |Φ〉 =
|Φoptimal(p = 0, 1)〉. From eq. 140, one can infer the function Φ(x) ({0, 1}n → R) that gives the coefficient
of the state |Φ〉 associated with an n-bit string x:

Φ(x) =
1

2(n+1)/2

(( 1

n
+

1√
n

)(
n− |x|

)
+
( 1

n
− 1√

n

)
|x|
)
, (142)

where Φ(x) in this case depends only on the Hamming weight |x| of bit string x. We thus conclude that

given bit strings x and y, the quantity Φ(y)
Φ(x)

can be efficiently determined. Furthermore, since Φ(x) only

depends on n and |x|, the distribution (Φ(x))2 also only depends on these quantities. This implies that one
can sample from this distribution with resources that scale polynomially in n: First, one draws a Hamming
weight |x| from the distribution (Φ(x))2 = (Φ(|x|))2. Then, given |x|, one constructs at random an n-bit
string with this Hamming weight |x|. This latter step can be efficiently implemented by starting from some
n-bit string with Hamming weight |x| (such as {1}|x|{0}n−|x|) and then randomly and one-by-one assigning
the n bits a new position along the string. Obviously, once a bit has been placed at a particular position
along the string, this position is no longer available for other bits to be placed at. In that way, an n-bit
string with Hamming weight |x| (where |x| has been drawn efficiently from (Φ(x))2) can be constructed in
an efficient way. An n-bit string can thus be sampled from (Φ(x))2 efficiently for |Φoptimal(p = 0, 1)〉. We
thus conclude that for the states |+〉⊗n and |Φoptimal(p = 0, 1)〉, one does not have to reside to methods
such as the Metropolis algorithm for sampling from (Φ(x))2.

In the remainder of this chapter, we investigate several features of our Monte Carlo scheme and, in
particular, discuss its performance compared to quantum-phase-estimation-based quantum simulation.

V.2 Monte Carlo and Quantum Phase Estimation Signals

In Figure 9, we have depicted the Monte Carlo signals F(τ) for a transverse-field Ising chain of length
n = 7 at g = 4 ∗ gc for |Φ〉 = |+〉⊗n and |Φ〉 = |Φoptimal(p = 0, 1)〉. In addition, the real and imaginary
parts of the QPE signal for |Φ〉 = |+〉⊗n and |Φ〉 = |Φoptimal(p = 0, 1)〉 are displayed. |Σ| is set to be 4000.
The Trotter variable M is taken to be 60 and the implemented Trotterization scheme is of order 1. Apart
from the region near t = 5 and τ = 5, no significant systematic deviation of the signals w.r.t. the exact
signals due to Trotterization can be observed. We note that, as expected, the MC signal values lie in the
interval (0, 1], while the QPE signal values lie in the interval [−1, 1].
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Figure 9: The evolution of the states |+〉⊗n (in (a), (b) and (c)) and |Φoptimal,p=0,1〉 (in (d), (e) and
(f)) of a ferromagnetic Ising chain in a transverse field (for n = 7 and g = 4 ∗ gc) is tracked in imaginary
time τ (in (a) and (d)) and in real time t (in (b), (c), (e) and (f)). The signals shown in (a) and (d)
are obtained by the previously discussed Monte Carlo scheme. The signals shown in (b), (c), (e) and (f)
are obtained by quantum phase estimation (that is inefficiently implemented on a classical computer). In
both cases, the time interval is taken to be 5 and time increment has been taken to be 0.05 (i.e. K = 100).
The Trotter variable is taken to be M = 60. |Σ| is set to be 4000.

The upper three figures correspond to |Φ〉 = |+〉⊗n. For this choice of |Φ〉, the signals are clearly
dominated by a single eigenvalue – i.e. the MC signal decays (approximately) with a single decay rate,
and the QPE signals oscillate (approximately) with a single oscillation frequency. The lower three figures
correspond to |Φ〉 = |Φoptimal(p = 0, 1)〉. For this choice of |Φ〉, there are two eigenvalues present in the
signals. The MC signal is a superposition of a rapidly decaying signal and a slowly decaying signal (both
with approximately equal amplitudes). Similarly, the QPE signals correspond to a slowly oscillating signal
with a superposed rapidly oscillating signal (both with approximately equal amplitudes). In Table 1, we
give the overlaps between the two choices of |Φ〉 considered here and their overlaps with the five lowest-lying
eigenstates of the transverse-field Ising chain at g = 4 ∗ gc.

|〈Φ|ψ0〉|2 |〈Φ|ψ1〉|2 |〈Φ|ψ2〉|2 |〈Φ|ψ3〉|2 |〈Φ|ψ4〉|2

|Φ〉 = |+〉⊗n 0.97252 2.9613 · 10−30 7.7037 · 10−32 6.2400 · 10−32 4.9303 · 10−32

|Φ〉 = |Φoptimal(p = 0, 1)〉 0.48626 0.48628 5.2077 · 10−31 6.7041 · 10−31 3.0814 · 10−33

Table 1: Overlap between the states {|Φ〉 = |+〉⊗n , |Φ〉 = |Φoptimal(p = 0, 1)〉} and the five lowest-lying
eigenstates of the transverse-field Ising chain at g = 4 ∗ gc (and n = 7).
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As has been stressed in previous stages of this report, the MC signals have a finite lifetime: After some
point in τ , their magnitude will become smaller than the noise amplitude. In addition, it is clear from
Figure 9 that the high-energy part of the Monte Carlo signals dies out rather quickly (the speed with
which it dies out obviously depends on the excited-state energy). If one thus wants to efficiently capture
high-energy eigenvalues, one should choose the measurement interval to lie at sufficiently small τ values.

By analyzing the signals depicted in Figure 9 by means of the Matrix Pencil Method, one can estimate
the lowest-lying eigenvalue (upper three figures) and the two lowest-lying eigenvalues (lower three figures)
of the transverse-field Ising chain at g = 4 ∗ gc. In Section V.4, these eigenvalues are estimated for several
values of g to (partially) reconstruct the spectrum of the transverse-field Ising chain.

In order to explore aspects of the Trotter error that is imposed on the Monte Carlo and QPE signals,
we have determined the absolute error of these (noisy) signals w.r.t. their exact counterparts for the
transverse-field Ising chain of length n = 6 at g = 4 ∗ gc. In particular, we have implemented the N -term
first order and the Γ = 2-term (checkerboard) first order decomposition. We have depicted the absolute
errors of the signal estimates for |Φ〉 = |+〉⊗n as a function of the Trotter variable M in Figure 10, together
with the upper bounds derived in the introductory chapter of this report. The variables τ and t are fixed
and both equal 4. The absolute errors can be seen to be well below their upper bounds. Despite the fact
that a Γ = 2-term (checkerboard) decomposition provides an advantage in terms of simulation speed (due
to the associated parallelization opportunities), it does not provide a significant advantage in terms of
the absolute errors in this case. Furthermore, the obtained absolute errors do not notable differ between
the imaginary-time (MC) and real-time (QPE) propagation settings. We note that the noise magnitude
is (approximately) constant as a function of M ; the apparent increase of the noise magnitude (the error
’spread’) at large M is due to the log-scale on the y-axis.
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Figure 10: Comparison of the absolute Trotter error as a function of the Trotter variable M between
the imaginary-time case and the real-time case. The noisy and Trotterized versions of the signals
〈+|⊗n e−τH |+〉⊗n (in (a)) and 〈+|⊗n e−itH |+〉⊗n (in (b)) for a ferromagnetic Ising chain in a trans-
verse field (for g = 4 ∗ gc and n = 6) are evaluated for a fixed value of the variables τ and t (both equal
4) and several values of M . The Trotterization schemes that have been employed to determine the signal
errors are the first-order N -term and the first-order Γ(= 2)-term schemes. The associated error bounds
that were derived in Section I.4 of this report are included in matching colors.
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V.3 Temporal Dependence of the Noise on the MC and QPE Signals

We have argued in Chapter IV and Section of this report that the Monte Carlo and QPE signals (〈Φ| e−τH |Φ〉
and 〈Φ| e−itH |Φ〉, respectively) are obtained up to an ε-additive error and an efficiently suppressible Trot-
ter error. The former effectively corresponds to noise. We have derived that the variance of a Monte Carlo
estimate of F(τ) (at some τ) is upper bounded by 1/|Σ|, where |Σ| is the number of samples taken to
estimate the signal at each instance in time. In addition, we have shown that the variance of the QPE
estimate is lower bounded by 1/|Σ| and upper bounded by 2/|Σ|. In this section, we explore these features
numerically in the setting of the transverse-field Ising chain. In particular, we shall numerically study how
the variance behaves within the aforementioned bounds for both the Monte Carlo and the QPE signal.

In Chapter II, we have shown that the variance of the estimate of the real part of the QPE signal, and
that of the imaginary part of the QPE signal respectively have the following time-dependence:

1

|Σ|
(
1−

(
Re(〈Φ| e−itH |Φ〉)

)2)
;

1

|Σ|
(
1−

(
Im(〈Φ| e−itH |Φ〉)

)2)
. (143)

The variance of the estimates of the complete QPE signal were found to have the following time-dependence:
1
|Σ|

(
2− |〈Φ| e−itH |Φ〉|2

)
. In particular, we have shown that if the QPE signal essentially contains a single

component (i.e. a single eigenvalue), then the variance of the complete signal is constant in time and given
by 1/|Σ|. If the QPE signal essentially contains two components, then the variance of the complete signal
oscillates in time between 1/|Σ| and 2/|Σ| with a frequency that equals the difference between the two
eigenvalues associated with these components.

In Chapter IV, we have shown that the variance of the MC signal is upper bounded by the following
τ -dependent quantity:

(
1−F(τ)2

)
/|Σ|, which indeed leads to the τ -independent upper bound of 1/|Σ|.

First, we set |Φ〉 equal to |+〉⊗n. For this choice of |Φ〉 and g = 4 ∗ gc, the Monte Carlo and QPE
signals essentially contain only a single component: Namely, that of the ground state. We examine the
variance in the MC and QPE signals as follows: We estimate the MC and QPE signals at some τ and t
using |Σ| = 200. We run this simulation for 500 times for the same τ and t and determine the variance of
the estimates over this set of size 500. We then repeat this procedure for many different values τ and t, to
examine how the variance changes with τ and t. The results for |Φ〉 = |+〉⊗n are depicted in Figure 11.
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Figure 11: The variance in the Monte Carlo samples and quantum phase estimation samples are plotted as
a function of the (imaginary) time over which the system has evolved. Each sample is obtained by means
of a |Σ| = 200 simulation, and the variance is determined of 500 of such samples at each instance in time.
The data obtained is from a simulation of a ferromagnetic Ising chain in a transverse field (for g = 4 ∗ gc,
n = 7, M = 60 and |Φ〉 = |+〉). In (a) (MC scheme), the time-independent variance bound (1/|Σ|)
is plotted along with the time-dependent bound (

(
1− F(τ)2

)
/|Σ|) and the sample variances obtained by

running the MC scheme. In (b) (QPE), the time-independent variance bound (1/|Σ|) is plotted along with
the time-dependent variances of the real- and imaginary part of the QPE signal. The sample variances (of
the real- and imaginary part of the signal, as well as those of the complete signal) that are obtained by
running the QPE algorithm are plotted as well.
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Figure 11 numerically confirms several aspects: The variances of the MC signal, of the real part of the
QPE signal and of the imaginary part of the QPE signal are upper bounded by 1/|Σ|. Furthermore, the
variance of the MC signal is upper bounded by a τ -dependent quantity that goes to zero as τ → 0 (since
F(τ = 0) equals unity). Furthermore, since the QPE signal essentially only consists of a single (ground
state) component, the variance of the complete QPE signal remains approximately constant (at 1/|Σ|) as
a function of time. We note clear deviations of the variances of the real and imaginary parts of the QPE
signal from their exact counterparts at large times. This is due to the Trotter error, which becomes more
pronounced at large times. We note that this deviation is not present for the variance of the complete
signal: The deviation that is imposed on the variance of the real and imagnary parts of the QPE signal
due to the Trotter error in this case is such that the variance of the complete signal is unaffected by the
Trotter error.

We now take |Φ〉 = |Φoptimal(p = 0, 1)〉 to numerically study the behaviour of the variance of the MC
and QPE estimates when the signals contain two components: Namely, the ground state and first-excited
state components. The variance of the MC and QPE signal estimates – including their bounds – are
depicted in Figure 12. We note that the scales of the y-axis and x-axis in Figure 12 are different from
those in Figure 11. For the time interval considered in Figure 12, the Trotter error is not as pronounced
as it is in the large time regime of Figure 11.

The τ -dependent upper bound ((1−F(τ)2)/|Σ|) on the variance of the MC signal estimates converges
to the τ -independent bound (1/|Σ|) faster than in Figure 11. This is due to the fact that the signal
F(τ) decays more rapidly since it now contains a high-energy component as well. Since the signals now
essentially contain two components, the variance of the complete QPE signal estimates will no longer be
constant as a function of time. In fact, it oscillates between its lower bound (1/|Σ|) and upper bound
(2/|Σ|). The frequency with which it oscillates equals the difference between the two eigenvalues present
in the signal (the solid black curve in Figure 12b is 1

|Σ| (3/2− 1/2 cos((E1 − E0)t)).

0.0 0.5 1.0 1.5 2.0
τ

0.000

0.002

0.004

0.006

0.008

0.010

Va
ria

nc
e

(a) Monte Carlo Scheme.
τ-independent variance bound
τ-dependent variance bound
variance of MC samples

0.0 0.5 1.0 1.5 2.0
t

(b) Quantum Phase Estimation.
t-independent 
 variance bounds
t-dependent 
 variance (Re)
variance of QPE 
 samples (Re)
t-dependent 
 variance (Im)
variance of QPE 
 samples (Im)
t-dependent 
 variance (complete 
 signal)
variance of QPE 
 samples (complete 
 signal)

Figure 12: The variance in the Monte Carlo samples and quantum phase estimation samples are plotted
as a function of the (imaginary) time over which the system has evolved. Each sample is obtained by
means of a |Σ| = 200 simulation, and the variance is determined of 500 of such samples at each instance
in time. The data obtained is from a simulation of a ferromagnetic Ising chain in a transverse field (for
g = 4 ∗ gc, n = 7, M = 60 and |Φ〉 = |Φopt,p=0,1〉). In (a) (MC scheme), the time-independent variance
bound (1/|Σ|) is plotted along with the time-dependent bound (

(
1−F(τ)2

)
/|Σ|) and the sample variances

obtained by running the MC scheme. In (b) (QPE), the time-independent variance lower bound (1/|Σ|)
and upper bound (2/|Σ|) are plotted along with the time-dependent variances of the real- and imaginary
part of the QPE signal. The sample variances (of the real- and imaginary part of the signal, as well as
those of the complete signal) that are obtained by running the QPE algorithm are plotted as well. Note
that the (imaginary-) time interval over which the variance is tracked is smaller than in Figure 11.

V.4 Estimates of the Spectrum of the Transverse-Field Ising Chain

Now that several features of the Monte Carlo (i.e. imaginary-time) and QPE (i.e. real-time) signals have
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been numerically established, we turn to extracting eigenvalues from these signals by means of the Matrix
Pencil Method.

First, we consider ground state estimates from the Monte Carlo signal at g = 3∗gc. We set |Φ〉 = |+〉⊗n
and determine 〈Φ| e−τH |Φ〉 for τ ∈ [0, 5] and several values of the Trotter variable M . This is done for both
|Σ| = 200 and |Σ| = 4000. Figure 13 depicts the relative error in the MC signal 〈Φ| e−τH |Φ〉 compared
to its noiseless and Trotter-error-free counterparts, as well as the relative error in the associated estimates
of the ground state energy. For both the |Σ| = 200 and |Σ| = 4000 cases, the systematic deviation of the
MC signal w.r.t. its exact counterpart can be seen to be the largest in the small M and large τ limit. As
described in the introductory chapter of this report, this can be attributed to the Trotter error. The τ
interval for which the Trotter error is negligible becomes progressively larger as the Trotter variable M is
increased. Furthermore, it is clear that the signal for which |Σ| = 200 is noisier than the signal for which
|Σ| = 4000.

The bottom part of Figure 13 displays the relative error in the ground state energy estimates obtained
from the |Σ| = 200 and |Σ| = 4000 signals for several values of M . At M = 1, the relative error is about
100%. At M = 25, the relative error has reduced to a few percent. We note that the noise magnitude in

the case of the |Σ| = 4000 signal is about
√

4000
200
≈ 4.47 times smaller than in the case of the |Σ| = 200

signal. Despite this difference in noise magnitude, it is apparent from Figure 13 that the associated ground
state energy estimates follow approximately the same trend as a function of M . The Matrix Pencil Method
thus suppresses the noise relatively efficiently when determining this ground state energy.
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Figure 13: Simulation of the ferromagnetic Ising chain in a transverse field (for g = 3 ∗ gc and n = 7).
In (a) and (b), the relative error [%] of the MC signal F(τ) (w.r.t. its noiseless and Trotter-error-free
counterpart) is plotted for |Φ〉 = |+〉⊗n as a function of τ and the Trotter variable M (for K = 50). The
number of samples at each instance in τ (i.e. |Σ|) is taken to be 200 in (a) and 4000 in in (b). In (c),
the associated estimates of the ground state energy from the signals F(τ) are plotted as a function of the
Trotter variable M , for both the |Σ| = 200 and the |Σ| = 4000 case. The truncation factor (defined in
Chapter III) is set to be 10%.
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We now set |Φ〉 = |Φoptimal(p = 0, 1)〉 and attempt to estimate simultaneously the ground-state energy
and the first-excited-state energy in the region g > gc, thereby reconstructing part of the spectrum of the
transverse-field Ising chain. We estimate the eigenvalues using both the Monte Carlo signals and the QPE
signals, as well as their exact – i.e. Trotter-error-free and noiseless – counterparts. The Trotter variable is
set to be M = 60 and the number of measurement points in real or imaginary time equals K = 100. We
estimate the eigenvalues for several values of g(> 1) using the Matrix Pencil Method and set the truncation
factor to 2%. The results are depicted in Figure 14.

At the start of this chapter, the degeneracies of the eigenvalues of the transverse-field Ising chain in
the two coupling regimes were discussed. These degeneracies are such that in the strong-coupling regime,
there are approximately n distinct eigenvalues, while in the weak-coupling regime, there are approximately
n/2 distinct eigenvalues. In Chapter III, it was discussed that if the MC or QPE signals were not noisy,
then the quantities e−∆τEj and e−i∆tEj (respectively) can be obtained exactly if K ≥ 2R (where R is the
number of distinct e−∆τEj ’s and e−i∆tEj ’s). R is thus poly(n) in the weak-coupling and strong-coupling
regimes. Therefore, in these regimes and in the noiseless setting, all distinct eigenvalues can be obtained
exactly since K can efficiently be chosen to be poly(n) as well. In a more general setting, however, the
number of distinct eigenvalues will not be poly(n) and instead will be exp(n). Therefore, even in the
noiseless setting, the exp(n) distinct eigenvalues cannot be obtained exactly in an efficient manner (since
K can be at most poly(n)). To make for a fair discussion, we shall therefore consider a scenario for which
K < 2R: In the intermediate regime, which includes the regime that is considered in Figure 14, the number
of distinct eigenvalues for a chain of length n = 7 will be 53 just below gc and 54 just above gc.

7 If we
thus take K = 100, then K < 2R will hold. However, as discussed in earlier stages of this report, one can
make sure that the effective number of distinct eigenvalues in the signal will be rather small by carefully
choosing their associated coefficients in the signal (i.e. by carefully choosing the state |Φ〉).
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Figure 14: Spectral estimates of the ferromagnetic Ising chain in a transverse field (in the g & 1 regime for
n = 7), which are obtained by analyzing the evolution of |Φoptimal,p=0,1〉 in real time (QPE) and imaginary
time (MC scheme) using the Matrix Pencil Method. In the MC setting and QPE setting we consider the
Trotterized and noise-infected signals, as well as their noiseless and Trotter-error-free counterparts. In
all instances, the time interval is taken to be 2.5 and time increment has been taken to be 0.025 (i.e.
K = 100). The truncation factor is chosen to be 2%.

7Note that the ground state degeneracy that is present at g < gc is lifted at g > gc.
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We infer from Figure 14 that the excited-state eigenvalue is extracted from the QPE signal with a
higher accuracy than from the MC signal. That is, the noise is suppressed more effectively for the QPE
signal than it is for the MC signal when determining the excited-state eigenvalue. Furthermore, it is clear
that the eigenvalues are extracted from the MC signal quite well in the large-g regime, while in the g & 1
regime the excited-state eigenvalue is not extracted well – even for the noiseless MC signal. The reason
for this is the following: The state |Φoptimal(p = 0, 1)〉 is known to have a large overlap with the ground
state |ψ0〉 and the first-excited state |ψ1〉 in the large-g regime (see Table 1 for g = 4 ∗ gc). For smaller
values of g (while g & 1), the overlap of the state |Φoptimal(p = 0, 1)〉 with other higher-lying eigenstates
of H becomes progressively larger. These higher-lying eigenstates correspond to components in the MC
signal that decay rapidly and therefore will quickly have a magnitude that is smaller than that of the
noise. This leads to the fact that in the SVD truncation step of the Matrix Pencil Method, effectively only
two components are extracted: One ground-state component, and one mixed excited-state component.
The eigenvalue that is then associated with the mixed excited-state component is some type of average of
the actual eigenvalues of the excited-state components. One can resolve this by truncating the SVD less
severely – i.e. choosing a smaller truncation factor. This will be demonstrated numerically shortly. This
does, however, lead to a worse suppression of the noise and the quality of the eigenvalues estimates (in the
large-g regime) will therefore be lower. This, in turn, can be resolved by taking the sample size |Σ| larger,
thereby reducing the noise magnitude in the first place.

We note that the effect of averaging of the excited state eigenvalues is less dominantly present in
the case of the QPE signal: Although the state |Φoptimal(p = 0, 1)〉 will similarly have significant overlap
with other higher-lying eigenstates of H, their associated components in the QPE signal will not die out.
Therefore, the number of singular values in the SVD above the truncation factor threshold will be larger.
As a result, the excited state eigenvalues are resolved more accurately.

To gain more insight into the averaging process as a result of a (too) large truncation factor, we have
estimated the eigenvalues from the QPE signal for a transverse-field Ising chain of length n = 7 at g = 4∗gc
for several values of the truncation factor. Figure 15 depicts the results of these spectral estimates as a
function of the sample size |Σ|. Since for g = 4 ∗ gc the overlap of |Φoptimal(p = 0, 1)〉 with the ground
state and first excited state is approximately equal (see Table 1) and the associated components in the
QPE signal remain of equal magnitude in time, we expect the estimate of the eigenvalues for (too) large
truncation factors to be roughly midway between the actual eigenvalues of the ground state and first
excited state. From Figure 15, we conclude that this is indeed the case. We note that the deviation from
this midway point for small sample sizes |Σ| is a consequence of more pronounced noise on the signal to
be analyzed. We furthermore note that the transition from being able to distinguish the two eigenvalues
(at relatively small truncation factors) to not being able to do so (at larger truncation factors) is abrupt
as a function of the truncation factor.

Figure 15: Spectral estimates of the transverse-field ferromagnetic Ising chain (for n = 7 and at g = 4∗ gc)
from the real-time (QPE) evolution of the state |Φoptimal(p = 0, 1)〉 for several values of |Σ| and TF . The
exact eigenvalues are plotted as well.
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We now demonstrate that the low quality of the eigenvalue estimates from the MC signal in the
g & 1 regime is indeed due to the choice of the truncation factor. In Figure 16, we have estimated the
eigenvalues from the MC signal for three different values of the truncation factor: 2%, 0.2% and 0.02%. The
estimates from the Trotter-error-free and noiseless signal, as well as from the (efficiently obtained) noisy
and Trotterized signal are depicted. The estimates from the Trotter-error-free and noiseless MC signals
become of higher quality in the g & 1 regime as the truncation factor is chosen to be smaller. However, the
associated estimates from the Trotterized and noisy MC signals become progressively more noise-infected
for smaller values of the truncation factor: At TF = 0.2%, the estimates of the ground-state energy are
still accurate, while the excited-state eigenvalue cannot be resolved. At TF = 0.02%, the estimates are
dominated by noise.

The estimates of the eigenvalues at TF = 0.02% from the Trotter-error-free and noiseless MC signals
demonstrate that, in principle, high-quality eigenvalue estimates in the g & 1 are possible. That is, by
choosing |Σ| arbitrarily large – and thereby making the noise arbitrarily small – the eigenvalue estimates
in the g & 1 regime are accurate. However, since |Σ| can be at most poly(n), one must explore whether a
|Σ| that is poly(n) suffices to accurately estimate the eigenvalues of a system of general system size n. As
will be mentioned in the Conclusions and Outlook chapter of this report, this will be a relevant point of
further research.
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MCScheme (no Trotter Error, no Noise): TF = 0.02. MCScheme (M= 60,  Σ = 12000): TF = 0.02.
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Figure 16: Spectral estimates of the ferromagnetic Ising chain in a transverse field (in the intermediately
strong-coupling regime for n = 7), which are obtained by analyzing the evolution of |Φoptimal,p=0,1〉 in
real time (QPE) and imaginary time (MC scheme) using the Matrix Pencil Method. We consider the
Trotterized and noise-infected signals in the Monte Carlo setting, as well as their noiseless and Trotter-
error-free counterparts. In all instances, the time interval is taken to be 2.5 and time increment has been
taken to be 0.025 (i.e. K = 100). The truncation factor is taken to be 2% in the top two figures, 0.2% in
the middle two figures and 0.02% in the bottom two figures.

62



V.5 Convergence of Eigenvalue Estimates as a Function of Sample Size |Σ|

In Chapter III, it was concluded that if the MC and QPE signals would be noiseless and would contain R
eigenvalues, then these eigenvalues could be obtained exactly for K ≥ 2R – regardless of whether the signal
is a MC or a QPE signal. In earlier stages of the current chapter, we have concluded that the magnitude
of the noise that is imposed on the QPE signal is always at least that of the noise that is imposed on the
MC signal. In addition, we have concluded that the Trotter errors that are imposed on the MC and QPE
signals are comparable in magnitude. Given the noisy MC and QPE signals, we now examine numerically
(and in the context of the transverse-field Ising chain) how large |Σ| has to be in both settings in order for
two eigenvalues to be distinguishable.

In Figure 17, we have depicted the spectral estimates that were obtained by analyzing the real-time and
imaginary-time evolution of the state |Φoptimal,p=0,1〉 at g = 4 ∗ gc. This analysis is performed for many
different values of |Σ|. The truncation factor is taken to be 3%. It is clear that the Matrix Pencil Method
is very effective at extracting eigenvalues from the real-time (QPE) evolution signal: The two eigenvalues
have already been distinguished when the sample set Σ contains only a few samples. In addition, the noise
is almost completely filtered out at |Σ| = O(102). In comparison, when analyzing the MC signal, the two
eigenvalues are distinguished at around O(102). Although the noise is filtered out for the ground-state
energy estimate at around O(102)−O(103), the excited-state energy estimate remains slightly noisy even
up until the point where the sample set Σ contains a few thousand samples. We attribute this to the
fact that the excited-state component of the MC signal rather rapidly becomes smaller in magnitude than
the noise that is imposed on the signal, resulting in only a relatively small interval in τ over which this
component of the signal can effectively be measured.

We conclude that although the magnitude of the noise that is imposed on the QPE signal is always
at least that of the noise that is imposed on the MC signal, and in a noiseless setting the eigenvalues can
in principle be extracted equally well, the Matrix Pencil Method accurately extracts the eigenvalues from
the QPE signal at a |Σ| that is smaller than that for the MC signal.
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Figure 17: Spectral estimates of the ferromagnetic Ising chain in a transverse field (for n = 7 and at
g = 4 ∗ gc) as a function of the sample size |Σ|. The spectral estimates are obtained by analyzing the
evolution of |Φoptimal,p=0,1〉 in real time (QPE) and imaginary time (MC scheme) using the Matrix Pencil
Method (both for a time interval of 2 and K = 100). The exact eigenvalues associated with the ground
state and the first excited state are plotted as well. The truncation factor (TF ) is taken to be 3%.
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VI Conclusions and Outlook

The classical simulation of quantum systems is in general not a computationally tractable task: It requires
memory and computational resources that scale exponentially in the system size. We consider obtaining
(some) eigenvalues of a stoquastic – i.e. a sign-problem-free – Hamiltonian H by means of tracking the
evolution of the system state in time. We differentiate between the evolution of the system state in real
time and imaginary time. In both cases, we examine the use of the Matrix Pencil Method in extracting
eigenvalues of H from the state evolution signal. These eigenvalues correspond to the oscillation frequencies
of the real-time evolution signal, and to decay rates of the imaginary-time evolution signal. The real-
time evolution signal is obtained through a quantum-phase-estimation (QPE) based quantum simulation
scheme (which is inefficiently implemented on a classical computer). The imaginary-time signal is obtained
through a Monte Carlo (MC) scheme that is implemented in a computationally tractable manner on a
classical computer. Since stoquastic Hamiltonians are conjectured to be efficiently simulatable by classical
means, it is interesting to examine whether QPE provides an advantage over the MC scheme for extracting
eigenvalues of Hamiltonians in this class. We perform simulations of the ferromagnetic transverse-field Ising
chain (which is piece-wise stoquastic in the standard basis) in order to explore some of the properties of
the MC scheme and QPE scheme numerically.

We have developed in this report the aforementioned Monte Carlo scheme that can be used to obtain
eigenvalues of piece-wise stoquastic Hamiltonians by tracking the system state in imaginary time. In
other words, we track evolution of the system state according to the imaginary-time propagation operator
e−τH (where τ ≥ 0). This propagation operator is element-wise non-negative for stoquastic Hamiltonians.
In particular, we show that the quantity F(τ) = 〈Φ| e−τH |Φ〉 (where |Φ〉 is a state of generally exp(n)
elements) can be obtained up to a Trotter error and an ε-additive error in time poly(ε−1, n, L) when
H =

∑N
i=1 Hi (where each Hi is stoquastic and acts non-trivially on at most log(poly(n)), or typically

O(1), variables of the system). We additionally require that |Φ〉 =
∑
x Φ(x) |x〉 (where {|x〉} is the basis in

which the MC scheme is ran) is such that the quantity Φ(y)
Φ(x)∗ can be efficiently obtained (for two given basis

states |x〉 and |y〉) and a sample from |Φ(x)|2 can be efficiently drawn. L is a quantity that depends on the
Trotterization scheme that is used to decompose the propagator e−τH into a product of local propagation
operators. L is generally proportional to N . The algorithm for estimating F(τ) = 〈Φ| e−τH |Φ〉 runs
efficiently for ε ≥ 1

poly(n)
and L ≤ poly(n). By estimating F(τ = ∆τk) at k ∈ {0, 1, ...,K ≤ poly(n)}, one

obtains a noisy and Trotterized version of the signal g(k) =
∑
j e
−∆τEjk|〈Φ|ψj〉|2. By analyzing the signal

g(k) by means of the Matrix Pencil Method, (a subset of) the decay rates of g(k) can be obtained. These
decay rates correspond to the eigenvalues of Hamiltonian H. We have established several extensions of this
Monte Carlo scheme, one of which is using the scheme to obtain (the Trotterized version of) the partition
function Z(β) of a piece-wise stoquastic Hamiltonian up to an ε-additive error. We have discussed, in
addition, how the use of scheme can be extended to determining the overlap between an initial and a final
state of a quantum circuit consisting of a particular set of (classical) gates.

The quantum-phase-estimation based quantum simulation scheme is used to obtain the real-time evo-
lution of the state |Φ〉: 〈Φ| e−itH |Φ〉. In particular, a Trotterized version of this signal is obtained up to
an ε-additive error. By estimating the value of the signal at times ∆t k (for k ∈ {0, 1, ...,K ≤ poly(n)}),
one obtains a noisy and Trotterized version of the signal g(k) =

∑
j e
−i∆tEjk|〈Φ|ψj〉|2. By analyzing the

signal g(k) by means of the Matrix Pencil Method, (a subset of) its oscillation frequencies can be obtained.
These oscillation frequencies correspond to the eigenvalues of Hamiltonian H.

The ε-additive errors that are imposed on the MC and QPE signals effectively correspond to sampling
noise. The magnitude of this noise on the MC signal is directly related to the number of Monte Carlo
samples (the MC sample size) that are used to estimate the quantity F(τ) at each instance in τ . The
magnitude of the noise on the QPE signal is determined by the number of measurements that are performed
of the ancillary qubit state (the QPE sample size) for each value of t. We have shown – analytically as
well as numerically – that, for a given MC/QPE sample size, the variance of the QPE signal estimate is
always at least that of the MC estimate, but does never exceed twice the variance of the MC estimate.
In addition, we have determined numerically that the Trotter error that is imposed on the MC and QPE
signals is approximately equal in magnitude for both settings.

We have established that in the noiseless signal case, the eigenvalues can be extracted from the decaying
(MC) signal and from the oscillating (QPE) signal equally well using the Matrix Pencil Method (provided
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that K is sufficiently large). It was found numerically that in the noisy signal setting, in order to distinguish
the ground-state and first-excited-state eigenvalues of the transverse-field Ising chain at intermediately
strong coupling, the MC sample size needs to be larger (by about two orders of magnitude) than the QPE
sample size. Since in the noiseless-signal setting the Matrix Pencil Method performs equally well for a MC
as for a QPE signal, and the magnitude of the sampling noise on the QPE signal is always at least that
on the MC signal, we conclude that the Matrix Pencil Method performs worse in extracting (multiple)
eigenvalues from a MC signal than from a QPE signal. To prove more rigourously that the Matrix Pencil
Method for extracting eigenvalues from a QPE signal indeed outperforms that for extracting eigenvalues
from a MC signal in the presence of noise, we will have to perform an analysis for the MC signal that is
similar as the one for QPE signals in [31] in the future.

Since the MC signal can be expressed as g(k) =
∑
j e
−∆τEjk|〈Φ|ψj〉|2, one of the aspects that governs

its magnitude is the value of the eigenvalues {Ej}. If one would set the smallest eigenvalue of each Hi to
zero (which is a feature of the MC scheme considered here), then the smallest eigenvalue of H can be non-
zero due to frustration of Hamiltonian H. Therefore, the magnitude of the MC signal is directly related to
the extent to which H is frustrated. The MC signal can be obtained efficiently up to an ε-additive error,
where ε ≥ 1/poly(n). If one thus wishes to estimate the MC signal within reasonable accuracy, the signal
can not be exponentially small as a function of the system size. This applies to the estimation of the
partition function Z(β) equivalently. As a result, estimates of the MC signal (and the partition function)
can only be obtained accurately and in an efficient manner if the Hamiltonian is mildly frustrated. We note
that the τ and β interval in which the MC signal and partition function (respectively) can be accurately
obtained relates directly to the degree of frustration: For a given scaling of the degree of frustration with
the system size Λ(n), the partition function can for instance be accurately estimated for β ≤ log(poly(n))

Λ(n)

(i.e. in some high-temperature regime). The scaling of the degree of frustration of a Hamiltonian H with
the system size (Λ(n)) is thus a prominent factor limiting the range of applicability of the MC scheme
considered here. The frustration of (stoquastic) Hamiltonians will therefore be a relevant point of further
study.

We have argued that there are several reasons to believe that estimating the signal F(τ) on a τ interval
that lies in the small-τ regime is beneficial. These (not necessarily mutually independent) reasons are:
Since the signal F(τ) decays as a function of τ , there will be a point in τ after which the noise magnitude
exceeds that of the signal itself. The Trotter error that is imposed on the signal increases with τ , and
in fact even vanishes at τ = 0. The sampling noise on the signal increases with τ and saturates to a
maximum value at large values of τ (the sampling noise vanishes at τ = 0 as well). As discussed above,
the diminishing effect of frustration on the magnitude of F(τ) is less pronounced at small values of τ .

We intend to explore, in addition, how the MC scheme for estimating F(τ) and Z(β) for stoquastic
Hamiltonians that is developed here might be extended to estimation of e.g. thermal averages of an
observable O:

〈O〉 =
Tr
(
O e−βH

)
Z(β)

. (144)

We note that this observable O will need to be element-wise non-negative when expressed in the basis
in which the MC scheme is ran. Extensions of the MC scheme to estimations of 〈O〉 may allow for a
more direct estimation of interesting physical quantities of stoquastic Hamiltonian systems. We do note,
however, that due to the partition function Z(β) in the denominator (which itself might not be known
to high accuracy), being able to efficiently determine 〈O〉 using our Monte Carlo scheme with sufficient
accuracy seems implausible in general.

We believe that it will be interesting to investigate whether the equivalence between the quantum-
phase-estimation based scheme and the Monte Carlo scheme that have been discussed in this report can
be used to develop a hybrid algorithm. The current machinery (NISQ devices) that is required to run the
quantum-phase-estimation based scheme efficiently is limiting in terms of the number of available qubits
and their coherence times. Therefore, a compelling point of study might be how the MC scheme that
is developed here might alleviate the computational stress on NISQ devices and specifically their use for
efficiently running large-scale QPE schemes.

Another point of further study is the following: Suppose one is given a (simple) graph G of n vertices,
then the n× n Laplacian matrix is given by:

L ≡ D −A, (145)
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where D is the degree matrix of graph G (a diagonal matrix whose entries equal the number of vertices
to which a given vertex is connected) and A is the adjacency matrix of graph G (where 〈x|A |y〉 = 0 if
vertices x and y are not connected, 〈x|A |y〉 = 1 if vertices x and y are connected and 〈x|A |x〉 = 0, ∀x).
The Laplacian matrix L is a stoquastic matrix. Since L is Hermitian, the signal 〈Φ| e−τL |Φ〉 (where τ ≥ 0
and |Φ〉 is some state) equals a superposition of decaying signals, the decay rates of which correspond to
the eigenvalues of L. Although L is stoquastic, it is not necessarily local (in the sense of Definition I.1).
Therefore, Trotterization schemes in which one exploits locality cannot be used directly and one has to
exploit other properties of L to be able to fit it in the Monte Carlo framework of Theorem IV.3 (by means
of altered Trotterization schemes). One way of potentially doing this is to assume sparsity of matrix L. By
further developing this subject of further study, we can examine whether eigenvalues of sparse Laplacian
matrices can be obtained efficiently by classical means.
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A Appendix: The Sign Problem

To gain insight into when the sign problem occurs in a Monte Carlo simulation, we consider a world-line
Monte Carlo simulation of a one-dimensional Heisenberg chain (with periodic boundary conditions) ([36]).
The Hamiltonian of such a system is the following:

H =

n∑
i=1

Hi = J

n∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1

)
, (146)

where σαn+1 = σα1 (α ∈ {x, y, z}) and each of the bond Hamiltonians Hi acts non-trivially on two spins
and is therefore of locality k = 2. The partition function is given by Z(β) = Tr

(
e−βH

)
. The following

first-order Trotter decomposition in terms of the individual bond Hamiltonians Hi can now be performed:

Z(β) ≈ Tr
(
(e−∆τH1e−∆τH2 ... e−∆τHn)M

)
, (147)

where ∆τ = β/M .
We shall work in the standard basis (local-σz basis), with the associated basis states denoted by {|x〉}.

The Hilbert space of the spin system is of dimensionality 2n and the completeness relation is thus given by∑2n

x=1 |x〉〈x| = I. By inserting complete sets of basis states in the expression from eq. 147 and by noting

that Tr(A) =
∑2n

x=1 〈x|A |x〉, we obtain the following expression for Z(β):

Z(β) =
∑

x0,x1,...,xMn−1

〈x0| e−∆τH1 |x1〉〈x1| e−∆τH2 |x2〉 ... 〈xn| e−∆τH1 |xn+1〉 ... 〈xMn−1| e−∆τHn |x0〉 .

(148)
We can imagine each term in this sum as comprising a loop consisting of Mn nodes, where each node
represents a state |xl〉 (for l ∈ {0, 1, ...,Mn − 1}). The nodes are connected by non-zero matrix elements
of the e−∆τHi operators, which propagate the state |xl〉 to |xl+1〉 in imaginary-time.

To proceed, we investigate further the form of the propagation operators e−∆τHi . To that extent, we
express the bond Hamiltonians Hi explicitly in the standard basis:

Hi = J


1/4 0 0 0
0 −1/4 1/2 0
0 1/2 −1/4 0
0 0 0 1/4

 . (149)

The propagation operator e−∆τHi can be conveniently calculated by means of its Taylor expansion:∑∞
k=0

(−∆τ)k

k!

(
Hi
)k

.
(
Hi
)k

can be determined explicitly by diagonalizing Hi in terms of its eigenstates
{|ψj〉} and eigenvalues {λj}:

Hi
J

=

2n∑
j=1

λj |ψj〉〈ψj | −→


1
0
0
0

 ,


0

1/
√

2

1/
√

2
0

 ,


0

−1/
√

2

1/
√

2
0

 ,


0
0
0
1


︸ ︷︷ ︸{

|ψj〉
}

;
1

4
,

1

4
,
−3

4
,

1

4︸ ︷︷ ︸{
λj

} . (150)

Since Hi is Hermitian,
(
Hi
J

)k
=
∑2n

j=1(λj)
k |ψj〉〈ψj |. Filling in the expression for

(
Hi
)k

(using the

explicit expressions for {|ψj〉} and {λj}) in the Taylor expansion representation of e−∆τHi , we represent
e−∆τHi in the standard basis as follows:

e−∆τHi = e∆τJ/4


e−∆τJ/2 0 0 0

0 cosh(∆τJ/2) − sinh(∆τJ/2) 0
0 − sinh(∆τJ/2) cosh(∆τJ/2) 0

0 0 0 e−∆τJ/2

 . (151)

The propagation operator e−∆τHi couples only the pairs of states |xl〉 and |xl+1〉 for which 〈xl| e−∆τHi |xl+1〉
is non-zero. Every loop (represented by a single term in the sum from eq. 148) thus consists of a set of
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nodes {|x0〉 , |x1〉 , ..., |xMn−1〉} (denoted by x) where each pair of adjacent states |xl〉 and |xl+1〉 on the
loop obeys 〈xl| e−∆τHi |xl+1〉 6= 0. Otherwise, the term in the sum from eq. 148 would equal zero and
therefore not contribute to Z(β). The allowed propagation plaquettes in imaginary-time between two
neighbouring spins for the system considered here are visualized in Figure 18.

Figure 18: All allowed propagation plaquettes in the imaginary-time direction between two neighbouring
spins on the chain, according to the Heisenberg Hamiltonian.

Each world line configuration is denoted by a set of states x and the corresponding term in the sum of
eq. 148 is denoted by the weight W (x). The partition function thus reduces to:

Z(β) =
∑
x

W (x). (152)

Suppose we wish to estimate the expectation value of an observable O. This expectation value can be
expressed in terms of the weights W (x) as follows:

〈O〉 =
Tr
(
e−βHO

)
Tr
(
e−βH

) =

∑
xW (x)O(x)∑

xW (x)
. (153)

The sampling of the world line configurations can be efficiently done by means of local updates of the
configurations and global updates (e.g. loop algorithm). These two types of updates collectively make for
an ergodic updating scheme ([36]).

It is of importance to note that e−∆τHi has off-diagonal elements in the standard basis which might
become negatively valued. In particular, when J > 0 (and the coupling between neighbouring spins on the
chain is thus anti-ferromagnetic) the non-zero off-diagonal elements of e−∆τHi become negatively valued.
However, this does not directly imply that the simulation suffers from a sign problem: A sign problem
might occur when negatively valued terms appear in the sum of eq. 148. A factor 〈xl| e−∆τHi |xl+1〉 might
be negative (if it coincides with the abovementioned off-diagonal terms), but a weight W (x) in eq. 148
consists of a product of Mn of these factors. As long as an even number of these Mn factors is negatively
valued, the overall weight will remain positive and a sign problem will be absent. For bipartite lattices (in
our case for n even) this will always be the case. For non-bipartite lattices (n is odd and frustration can
occur), negative weights in eq. 148 might appear and can cause a sign problem. Figure 19 displays one
world line configuration corresponding to a positive weight and one associated to a negative weight for the
case where n = 3 and M = 2.

The appearance of negative weights W (x) yields direct sampling from the distribution W (x)∑
xW (x)

in-

tractable. Instead, we consider sampling from a (non-negative) distribution (of a related system) that is

given by |W (x)|∑
x |W (x)| and which includes the signs of the weights (sign(x)) in the quantity being sampled:

〈O〉 =

∑
x |W (x)| sign(x)O(x)∑

x |W (x)| sign(x)
=

∑
x |W (x)| sign(x)O(x)/

∑
x |W (x)|∑

x |W (x)| sign(x)/
∑

x |W (x)| =
〈signO〉′

〈sign〉′ , (154)

where the prime indicates that the expectation value is determined by sampling from the alternative
distribution |W (x)|∑

x |W (x)| .

The denominator in eq. 154 is of particular interest and we therefore study it in more detail:

〈sign〉′ =

∑
x |W (x)| sign(x)∑

x |W (x)| . (155)
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Figure 19: Two world line
configurations for an anti-
ferromagnetic Heisenberg
chain (with periodic bound-
ary conditions) consisting
of n = 3 spins. The Trot-
terization parameter M is
chosen to be 2. The left con-
figuration corresponds to a
positive weight W (x), while
the right configuration is
associated with a negatively
valued weight.

By noting that Z =
∑

xW (x) =
∑

x |W (x)| sign(x) (the partition function of the original system)
Z′ =

∑
x |W (x)| (the partition function of the related system with only non-negative weights), we relate

〈sign〉′ to these partition functions as follows:

〈sign〉′ =
Z

Z′
=

e−βF

e−βF ′
= e−β∆F = e−βn∆f , (156)

where ∆F = F−F ′ and ∆f is the Helmholtz free energy density difference (which is an intensive quantity).
We conclude that 〈sign〉′ decreases exponentially with the inverse temperature β and system size n. If
one would draw N independent samples to determine 〈sign〉′, the relative error in the estimate of 〈sign〉′
would be:

σsign
〈sign〉′ =

√(
〈sign2〉′ − (〈sign〉′)2

)
/N

〈sign〉′ =

√
1− (〈sign〉′)2

√
N〈sign〉′

≈ eβn∆f

√
N

, (157)

where the last equality holds for large n and β. Similarly, the relative error in the numerator of eq. 154
scales exponentially in n and β. The expectation value 〈O〉 thus equals the quotient of two stochastically
determined quantities, whose relative errors scale exponentially in n and β. The time needed to compute
〈O〉 with a given accuracy is thus exponentially large as a function of the system size n and inverse
temperatures β. We thus encounter a sign problem, yielding this Monte Carlo simulation of a large
frustrated anti-ferromagnetic Heisenberg chain at low temperature intractable (in the chosen basis). We
do note that the appearance of a sign problem is representation dependent. That is, if a Monte Carlo
simulation would have been performed in another basis or representation, the sign problem might be
absent. The current discussion merely serves as an illustration of how the sign problem can occur in a
Monte Carlo simulation.
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B Appendix: Code

In this appendix, we include our code that is used to track the real-time and imaginary-time of a one-
dimensional8 spin system with Hamiltonian (where k denotes the locality of the interactions):

H =
∑
i

Hi =
∑
i

(
Jx σ

x
i σ

x
i+1... σ

x
i+k +Jy σ

y
i σ

y
i+1... σ

y
i+k +Jz σ

z
i σ

z
i+1... σ

z
i+k + gx σ

x
i + gy σ

y
i + gz σ

z
i

)
, (158)

where k is a variable to be chosen. We note that although our code does not include this feature, the
MC scheme and QPE scheme do allow for the quantities k, {Jx, Jy, Jz} and {gx, gy, gz} to be a function
of i. We note that one has a choice of multiple Trotterization schemes that can be implemented for the
real-time or imaginary-time tracking of the system state. The code employs the Matrix Pencil Method to
extract estimates of eigenvalues from the MC and QPE signals. The user is responsible for ensuring that
the Hamiltonian H is piece-wise stoquastic. A pseudocode is depicted in Figure 20.

Figure 20: Pseudocode implementing the real-time (QPE) and imaginary-time (MC) tracking of the state of
a one-dimensional spin chain with a piece-wise stoquastic Hamiltonian H. Using the evolution trajectories
of this state, estimates of eigenvalues of H are obtained by means of the Matrix Pencil Method.

8Note that the code can in principle be extended to simulate systems of higher spatial dimensionality.
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StoqMC.py

1 ' ' '
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 This code t racks the ( Tro t t e r i z ed ) evo lu t i on o f the s t a t e o f a (1D) sp in system of s i z e n in im−
4 aginary ( Euc l id ian ) and r e a l time . The r e a l time evo lu t i on i s i n e f f i c i e n t l y tracked in gene ra l .
5 The imganary evo lu t i on i s e f f i c i e n t l y tracked given the Hamiltonian i s piece−wise s t oqua s t i c wi−
6 th i n t e r a c t i o n s o f ( gene ra l ) l o c a l i t y k = log ( poly (n) ) . The i n t e r a c t i o n s need not be t r an s l a t i o−
7 na l l y i nva r i an t . Using the Matrix Penc i l Method , the e i g enva lue s o f the Hamiltonian are estimat−
8 ed from the s t a t e evo lu t i on s .
9

10 This main code f i l e (StoqMC . py ) c a l l s f unc t i on s from the separate code f i l e s ( StoqMCfunctions . p−
11 y ) and ( StoqMCsimulation . py ) . The f i l e s StoqMCfunctions . py and StoqMCsimulation . py conta in desc−
12 r i p t i o n s o f each funct i on that i s c a l l e d in t h i s main code f i l e .
13
14 We note that the Hamiltonian o f the sp in system used here i s o f the form ( where p e r i od i c bounda−
15 ry cond i t i on s are imposed ) :
16 H = sum i ( J x ∗X i ∗ . . . ∗ X i+k + J y ∗Y i ∗ . . . ∗ Y i+k + J z ∗ Z i ∗ . . . ∗ Z i+k
17 + g∗X i + g y ∗Y i + g z ∗ Z i ) .
18 We note i t i s the use r s own r e s p o n s i b i l i t y to make sure that the Hamiltonian i s expressed in a
19 ba s i s in which i t i s p iece−wise s t oqua s t i c ( i f p o s s i b l e ) .
20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 ' ' '
22 import numpy as np
23 import matp lo t l ib . pyplot as p l t
24 import StoqMCfunctions as f
25 import StoqMCsimulations as s
26
27 # I n i t i a l i z a t i o n
28 N = 7 # Length o f Spin Chain
29 M = 60 # Number o f Trotter Steps
30 Jx = 0 # X Spin−Spin In t e r a c t i on Strength
31 Jy = 0 # Y Spin−Spin In t e r a c t i on Strength
32 Jz = −1 # Z Spin−Spin In t e r a c t i on Strength
33 g = −4 # ( External ) Transverse Magnetic F ie ld ( in x d i r e c t i o n )
34 gy = 0 # ( External ) Magnetic F ie ld ( in y d i r e c t i o n )
35 gz = 0 # ( External ) Magnetic F ie ld ( in z d i r e c t i o n )
36 k = 2 # Loca l i t y o f the Spin−Spin I n t e r a c t i o n s
37 numsamples = 4000 # Sample S i ze at each in s tance in time ( | Sigma | )
38 measpoints = 101 # Number o f Measurement Points in time (K)
39 tau increment = 0.025 # Time Increment ( Measured Time In t e r v a l = K∗Time Increment )
40 checkerboard = 0 # 0 ( Tr i v i a l Trotter Decomposition ) , 1 ( Checkerboard Decomposition : when

in use , i t i s assumed that k = 2 and n i s even )
41 L = np . i n t ( measpoints /2) # Penc i l Parameter
42 t r u n c a t i o n f a c t o r = 1∗10∗∗(−4) # Truncation Factor
43
44 g fu l lmeas = np . z e ro s ( measpoints ) # I n i t i a l i z a t i o n o f No i s l e s s and Trotter−E r r o r l e s s

Decaying S igna l
45 ftaumeas = np . z e ro s ( measpoints ) # I n i t i a l i z a t i o n o f Noise− and Trotter−Error In f e c t ed

Decaying S igna l (MC Signa l )
46 QPEnontrots ignalrea l = np . z e ro s ( measpoints ) # I n i t i a l i z a t i o n o f Real Part o f N o i s l e s s and Trotter−

E r r o r l e s s O s c i l l a t i n g S igna l
47 QPEnontrotsignalimag = np . z e ro s ( measpoints ) # I n i t i a l i z a t i o n o f Imag Part o f No i s l e s s and Trotter−

E r r o r l e s s O s c i l l a t i n g S igna l
48 QPEsampled reals ignal = np . z e ro s ( measpoints ) # I n i t i a l i z a t i o n o f Real Part o f Noise− and Trotter−

Error In f e c t ed O s c i l l a t i n g S igna l ( Real Part QPE Signa l )
49 QPEsampled imagsignal = np . ze ro s ( measpoints ) # I n i t i a l i z a t i o n o f Imag Part o f Noise− and Trotter−

Error In f e c t ed O s c i l l a t i n g S igna l ( Imag Part QPE Signa l )
50
51 # I n i t i a l i z a t i o n o f the s t a t e |Phi>
52 # |+>:
53 #p h i c o e f f i c i e n t s = np . ones (2∗∗N) /(2∗∗(N/2) ) # |\Phi> = |+>
54 # | Phi {opt , p=0,1}>:
55 alpha = 1/((N+1)∗∗(1/2) )
56 beta = (N/(N+1) ) ∗∗(1/2)
57 p h i c o e f f i c i e n t s = np . z e ro s (2∗∗N)
58 p h i l a b e l s = np . arange (2∗∗N)
59 ph i b inary = np . f l i p (np . unpackbits (np . reshape ( ph i l ab e l s , (1 ,2∗∗N) ) . astype (np . u int8 ) , ax i s = 0) , ax i s =

0) [ 0 :N , : ]
60 f o r i in range (N) :
61 p h i c o e f f i c i e n t s = p h i c o e f f i c i e n t s + ( ph i b inary [ i , : ] == 0) . astype ( i n t ) ∗( alpha + beta ) / ( (2 ) ∗∗(1/2) )

/( (2∗∗ (N−1) ) ∗∗(1/2) )
62 p h i c o e f f i c i e n t s = p h i c o e f f i c i e n t s + ( ph i b inary [ i , : ] == 1) . astype ( i n t ) ∗( alpha − beta ) / ( (2 ) ∗∗(1/2) )

/( (2∗∗ (N−1) ) ∗∗(1/2) )
63 p h i c o e f f i c i e n t s = p h i c o e f f i c i e n t s /( (N∗( alpha ∗∗2 + beta ∗∗2) + N∗(N−1)∗ alpha ∗∗2) ∗∗(1/2) )
64
65 e i gva lda ta = np . z e ro s ( (4 , 100 ,1 ) , dtype = np . complex ) # I n i t i a l i z a t i o n o f Storage Matrix f o r

Eigenvalue Estimates
66 g f u l l d a t a = np . z e ro s ( (1 , measpoints ) ) # I n i t i a l i z a t i o n o f Storage Matrix f o r

I d e a l i z e d Decaying S igna l
67 f taudata = np . z e ro s ( (1 , measpoints ) ) # I n i t i a l i z a t i o n o f Storage Matrix f o r

MC Signa l
68 qpedata = np . ze ro s ( (1 , measpoints ) , dtype = np . complex ) # I n i t i a l i z a t i o n o f Storage Matrix f o r

I d e a l i z e d O s c i l l a t i n g S igna l
69 qpenoisydata = np . z e ro s ( (1 , measpoints ) , dtype = np . complex ) # I n i t i a l i z a t i o n o f Storage Matrix f o r

QPE Signa l
70
71 f o r m in range (1) :
72 #numsamples = np . i n t (4546∗1 .25∗1 .25∗∗ x [m] )
73
74 f o r Q in range ( measpoints ) :
75 tau = tau increment ∗(Q) # 'Time ( Imaginary and/ or Real ) '
76
77 # Calcu late the Matrix Element D i r e c t l y and I n e f f i c i e n t l y Implement the QPE Procedure ( ! ! ! USE

ONLY FOR SMALL N ! ! ! )
78 Gful l , Fu l lHe igva l s , Ful lHeigvecs , QPEsampled real , QPEsampled imag , r e a l t n on t r o t e vo l u t i on ,

t r i v i a l t r o t t e r bound , CBtrotterbound = s . fullHandQPE (k ,N,M, Jx , Jy , Jz , g , tau , p h i c o e f f i c i e n t s ,
numsamples , checkerboard )

79 g fu l lmeas [Q] = np . matmul (np . matmul (np . t ranspose ( p h i c o e f f i c i e n t s ) , Gfu l l ) , p h i c o e f f i c i e n t s )
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80 QPEsampled reals ignal [Q] = QPEsampled real
81 QPEsampled imagsignal [Q] = QPEsampled imag
82 QPEnontrots ignalrea l [Q] = np . r e a l ( r e a l t n o n t r o t e v o l u t i o n )
83 QPEnontrotsignalimag [Q] = np . imag ( r e a l t n o n t r o t e v o l u t i o n )
84 #Ntermtrotterbound [Q] = t r i v i a l t r o t t e r b o u n d
85 #Twotermtrotterbound [Q] = CBtrotterbound
86
87 # Simulate St r ing o f Local Imaginary Time Propagation Operators
88 Gtrot = s . GtrotSim (k ,N,M, Jx , Jy , Jz , g , tau )
89
90 # Simulate Connected Sets o f States , and Eigens ta t e s & Eigenvalues o f the Block Diagonal

Matr ices
91 maxeigval , pose igvec , connectedstates , numsets = s . DiagBlocksEig (M,N, Gtrot )
92
93 # Obtain | Sigma | Samples o f High−Dimensional Probab i l i t y D i s t r i bu t i on ( Pi ) and Estimate the MC

Signa l at tau (F( tau ) )
94 i f checkerboard == 0 :
95 f tau = s . PiandFTau ( maxeigval , pose igvec , connectedstates , numsets ,M,N, k , Gtrot , numsamples ,

p h i c o e f f i c i e n t s )
96 i f checkerboard == 1 :
97 f tau = s . PiandFTauCB( maxeigval , pose igvec , connectedstates , numsets ,M,N, k , Gtrot , numsamples ,

p h i c o e f f i c i e n t s )
98 ftaumeas [Q] = ftau
99

100 pr in t (m, ' step ' ,Q) # To ind i c a t e the prog re s s o f the s imulat ion
101
102 # Construct Complete QPE S igna l s ( with and without Noise and Trotter Error ) us ing t h e i r Real and

Imaginary Parts
103 QPEsampled signal = QPEsampled reals ignal + 1 j ∗QPEsampled imagsignal
104 QPEnontrotsignal = QPEnontrots ignalrea l + 1 j ∗QPEnontrotsignalimag
105
106 # Store State Evolut ion Data in Storage Matr ices
107 ftaudata [m, : ] = ftaumeas
108 g f u l l d a t a [m, : ] = g fu l lmeas
109 qpenoisydata [m, : ] = QPEsampled signal
110 qpedata [m, : ] = QPEnontrotsignal
111
112 # Implement Matrix Penc i l Method to obtain Eigenvalue Estimates from State Evolut ion Data
113 g en e r a l i z e d e i g va l s , I = s . MatrixPencilMethod ( f taudata [m, : ] , measpoints , L , t r u n c a t i o n f a c t o r )
114 g e n e r a l i z e d e i g v a l s = g e n e r a l i z e d e i g v a l s [ g e n e r a l i z e d e i g v a l s >= 10∗∗(−10) ]
115 e i g v a l e s t i m a t e s = np . s o r t (−np . log ( g e n e r a l i z e d e i g v a l s . r e a l ) / tau increment )
116 e i gva lda ta [ 0 , 0 : np . s i z e ( e i g v a l e s t i m a t e s ) ,m] = e i g v a l e s t i m a t e s
117
118 g en e r a l i z e d e i g va l s , I = s . MatrixPencilMethod ( g f u l l d a t a [m, : ] , measpoints , L , t r u n c a t i o n f a c t o r )
119 g e n e r a l i z e d e i g v a l s = g e n e r a l i z e d e i g v a l s [ g e n e r a l i z e d e i g v a l s >= 10∗∗(−10) ]
120 e i g v a l e s t i m a t e s = np . s o r t (−np . log ( g e n e r a l i z e d e i g v a l s . r e a l ) / tau increment )
121 e i gva lda ta [ 1 , 0 : np . s i z e ( e i g v a l e s t i m a t e s ) ,m] = e i g v a l e s t i m a t e s
122
123 g en e r a l i z e d e i g va l s , I = s . MatrixPencilMethod ( qpenoisydata [m, : ] , measpoints , L , t r u n c a t i o n f a c t o r )
124 g e n e r a l i z e d e i g v a l s = g e n e r a l i z e d e i g v a l s [ np . abs ( g e n e r a l i z e d e i g v a l s ) >= 10∗∗(−10) ]
125 e i g v a l e s t i m a t e s = np . s o r t (1 j ∗np . log ( g e n e r a l i z e d e i g v a l s ) / tau increment )
126 e i gva lda ta [ 2 , 0 : np . s i z e ( e i g v a l e s t i m a t e s ) ,m] = e i g v a l e s t i m a t e s
127
128 g en e r a l i z e d e i g va l s , I = s . MatrixPencilMethod ( qpedata [m, : ] , measpoints , L , t r u n c a t i o n f a c t o r )
129 g e n e r a l i z e d e i g v a l s = g e n e r a l i z e d e i g v a l s [ np . abs ( g e n e r a l i z e d e i g v a l s ) >= 10∗∗(−10) ]
130 e i g v a l e s t i m a t e s = np . s o r t (1 j ∗np . log ( g e n e r a l i z e d e i g v a l s ) / tau increment )
131 e i gva lda ta [ 3 , 0 : np . s i z e ( e i g v a l e s t i m a t e s ) ,m] = e i g v a l e s t i m a t e s
132
133 # Plot the Imaginary and Real Time State Evolut ion
134 f . p ropagat i on p lo t ( measpoints , tau increment , numsamples , g fu l l da ta , ftaudata , qpedata , qpenoisydata , M)
135
136 # Save State Evolut ion Data and Eigenvalue Estimate Data
137 ' ' '
138 np . save ( ' e i gva lda ta g ' , e i gva lda ta )
139 np . save ( ' f taudata ' , f taudata )
140 np . save ( ' g f u l l d a t a ' , g f u l l d a t a )
141 np . save ( ' qpenoisydata ' , qpenoisydata )
142 np . save ( ' qpedata ' , qpedata )
143 ' ' '

StoqMCfunctions.py

1 import numpy as np
2 import matp lo t l ib . pyplot as p l t
3
4 def p ropagat i on p lo t ( measpoints , tau increment , numsamples , g fu l l da ta , ftaudata , qpedata , qpenoisydata ,

M) :
5 ep s i l on = np . sq r t (10/ numsamples )
6 f i g , axs = p l t . subp lot s (1 ,3 )
7 p l t . s ubp l o t s ad ju s t ( wspace = 0 .35 )
8 f i g . s e t s i z e i n c h e s (21 , 7 . 0 )
9 axs [ 0 ] . p l o t (np . arange ( measpoints ) ∗ tau increment , g f u l l d a t a [ 0 , : ] , 'k ' , l a b e l= ' Exact $\\ l a ng l e \\Phi |

eˆ{−\\tau H} |\\Phi \\ rang le$ ' )
10 axs [ 0 ] . s e t x l a b e l ( ' $\\ tau$ ' , f o n t s i z e = 23)
11 axs [ 0 ] . s e t y l a b e l ( ' $\\ l a ng l e \\Phi | eˆ{−\\tau H} |\\Phi \\ rang le$ ' , f o n t s i z e = 20 , labe lpad = 7)
12 axs [ 0 ] . s e t t i t l e ( ' $\mathbf{( a )}$ Monte Carlo Scheme . ' , f o n t s i z e = 18)
13 axs [ 0 ] . f i l l b e t w e e n (np . arange ( measpoints ) ∗ tau increment , g f u l l d a t a [0 , : ] − eps i l on , g f u l l d a t a [ 0 , : ]+

eps i l on , c o l o r= ' l i g h t g r e y ' , l a b e l= '90% con f idence bounds ' ) # Confidence bounds
14 axs [ 0 ] . s e t y l im (0 , 1 . 0 5 )
15 axs [ 0 ] . s e t x l im (−0.01 ,( measpoints−1)∗ tau increment +0.01)
16 axs [ 0 ] . p l o t (np . arange ( measpoints ) ∗ tau increment , f taudata [ 0 , : ] , ' o ' , c o l o r= ' f i r e b r i c k ' , markers ize =5.5 ,

l a b e l = ' Estimates f o r $M=$ '+s t r (M) )
17 axs [ 0 ] . l egend ( f o n t s i z e =10,prop={ ' s i z e ' : 17})
18 axs [ 0 ] . g r id ( alpha = 0 . 4 )
19 axs [ 0 ] . xax i s . s e t t i ck pa rams ( l a b e l s i z e =17)
20 axs [ 0 ] . yax i s . s e t t i ck pa rams ( l a b e l s i z e =17)

73



21 axs [ 1 ] . p l o t (np . arange ( measpoints ) ∗ tau increment , np . r e a l ( qpedata [ 0 , : ] ) , 'k ' , l a b e l= ' Exact $Re(\\
l a ng l e \\Phi | eˆ{− i t H} |\\Phi \\ rang l e ) $ ' )

22 axs [ 1 ] . s e t x l a b e l ( ' $t$ ' , f o n t s i z e = 23)
23 axs [ 1 ] . s e t y l a b e l ( ' $Re(\\ l a ng l e \\Phi | eˆ{− i t H} |\\Phi \\ rang l e ) $ ' , f o n t s i z e = 20 , labe lpad = 7)
24 axs [ 1 ] . f i l l b e t w e e n (np . arange ( measpoints ) ∗ tau increment , np . r e a l ( qpedata [ 0 , : ] )−eps i l on , np . r e a l (

qpedata [ 0 , : ] )+eps i l on , c o l o r= ' l i g h t g r e y ' , l a b e l= '90% con f idence bounds ' ) # Confidence bounds
25 axs [ 1 ] . s e t t i t l e ( ' $\mathbf{(b)}$ Real Part QPE Signa l . ' , f o n t s i z e = 18)
26 axs [ 1 ] . s e t y l im (−1.05 ,1 .05)
27 axs [ 1 ] . s e t x l im (−0.01 ,( measpoints−1)∗ tau increment +0.01)
28 axs [ 1 ] . p l o t (np . arange ( measpoints ) ∗ tau increment , np . r e a l ( qpenoisydata [ 0 , : ] ) , ' o ' , c o l o r= ' roya lb lue ' ,

markers ize =5.5 , l a b e l = ' Estimates f o r $M=$ '+s t r (M) )
29 axs [ 1 ] . l egend ( f o n t s i z e =10,prop={ ' s i z e ' : 17})
30 axs [ 1 ] . g r id ( alpha = 0 . 4 )
31 axs [ 1 ] . xax i s . s e t t i ck pa rams ( l a b e l s i z e =17)
32 axs [ 1 ] . yax i s . s e t t i ck pa rams ( l a b e l s i z e =17)
33 axs [ 2 ] . p l o t (np . arange ( measpoints ) ∗ tau increment , np . imag ( qpedata [ 0 , : ] ) , 'k ' , l a b e l= ' Exact $Im(\\

l a ng l e \\Phi | eˆ{− i t H} |\\Phi \\ rang l e ) $ ' )
34 axs [ 2 ] . s e t x l a b e l ( ' $t$ ' , f o n t s i z e = 23)
35 axs [ 2 ] . s e t y l a b e l ( ' $Im(\\ l a ng l e \\Phi | eˆ{− i t H} |\\Phi \\ rang l e ) $ ' , f o n t s i z e = 20 , labe lpad = 7)
36 axs [ 2 ] . f i l l b e t w e e n (np . arange ( measpoints ) ∗ tau increment , np . imag ( qpedata [ 0 , : ] )−eps i l on , np . imag (

qpedata [ 0 , : ] )+eps i l on , c o l o r= ' l i g h t g r e y ' , l a b e l= '90% con f idence bounds ' ) # Confidence bounds
37 axs [ 2 ] . s e t t i t l e ( ' $\mathbf{( c )}$ Imaginary Part QPE Signa l . ' , f o n t s i z e = 18)
38 axs [ 2 ] . s e t y l im (−1.05 ,1 .05)
39 axs [ 2 ] . s e t x l im (−0.01 ,( measpoints−1)∗ tau increment +0.01)
40 axs [ 2 ] . p l o t (np . arange ( measpoints ) ∗ tau increment , np . imag ( qpenoisydata [ 0 , : ] ) , ' o ' , c o l o r= ' seagreen ' ,

markers ize =5.5 , l a b e l = ' Estimates f o r $M=$ '+s t r (M) )
41 axs [ 2 ] . l egend ( f o n t s i z e =10,prop={ ' s i z e ' : 17})
42 axs [ 2 ] . g r id ( alpha = 0 . 4 )
43 axs [ 2 ] . xax i s . s e t t i ck pa rams ( l a b e l s i z e =17)
44 axs [ 2 ] . yax i s . s e t t i ck pa rams ( l a b e l s i z e =17)

StoqMCsimulations.py

1 import numpy as np
2 from sc ipy . l i n a l g import expm
3
4 ' ' '
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 ' GtrotSim ' takes as input the l o c a l i t y , system s i z e , Trotter var iab l e ,
7 i n t e r a c t i o n strength , magnetic f i e l d , and tau . I t outputs an array co−
8 nta in ing the Trot t e r i z ed imaginary−time propagat ion operator .
9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 ' ' '
11 def GtrotSim (k ,N,M, Jx , Jy , Jz , g , tau ) :
12 Pau l i s = np . z e ro s ( [ 2 , 2 , 4 ] , dtype = np . complex128 )
13 Pau l i s [ : , : , 0 ] = np . array ( [ [ 1 , 0 ] , [ 0 , 1 ] ] )
14 Pau l i s [ : , : , 1 ] = np . array ( [ [ 0 , 1 ] , [ 1 , 0 ] ] )
15 Pau l i s [ : , : , 2 ] = np . array ( [ [0 ,−1 j ] , [ 1 j , 0 ] ] )
16 Pau l i s [ : , : , 3 ] = np . array ( [ [ 1 , 0 ] , [ 0 , − 1 ] ] )
17 s eq in t = np . ze ro s ( ( k , 3 ) )
18 Int = np . z e ro s ( [ 2∗∗ k ,2∗∗k , 3 ] )
19 MagInt = np . z e ro s ( [ 2∗∗ k ,2∗∗k , 3 ] )
20 seqmagx = np . z e ro s (1)
21 Gsing le = np . z e ro s ( [ 2∗∗ k ,2∗∗k , 1 ] )
22 Gtrot = np . z e ro s ( [ 2∗∗ k ,2∗∗k ,M∗N] )
23
24 f o r j in range (k ) :
25 s eq in t [ j , 0 ] = 1
26 s eq in t [ j , 1 ] = 3
27 s eq in t [ j , 2 ] = 2
28 i f j == 0 :
29 seqmagx [ j ] = 1
30
31 # I n t e r a c t i o n s with neighbour ing s i t e s
32 f o r m in range (3) :
33 f o r i in range (k−1) :
34 i f i == 0 :
35 Intper = np . kron ( Pau l i s [ : , : , i n t ( s eq in t [ i ,m] ) ] , Pau l i s [ : , : , i n t ( s eq in t [ i +1,m] ) ] )
36 e l s e :
37 Intper = np . kron ( Intper , Pau l i s [ : , : , i n t ( s eq in t [ i +1,m] ) ] )
38 Int [ : , : ,m] = Intper . r e a l
39 # I n t e r a c t i o n s with ex t e rna l ( t r an sve r s e ) magnetic f i e l d
40 f o r i in range (k−1) :
41 i f i == 0 :
42 MagInt = np . kron ( Pau l i s [ : , : , i n t ( seqmagx [ i ] ) ] , Pau l i s [ : , : , 0 ] )
43 e l s e :
44 MagInt = np . kron ( MagInt , Pau l i s [ : , : , 0 ] )
45
46 subHi = Jx∗ Int [ : , : , 0 ] + Jz∗ Int [ : , : , 1 ] + Jy∗ Int [ : , : , 2 ] + g∗MagInt
47 # Resca l ing subHi such that lambda min = 0
48 e igva luesubHi = np . l i n a l g . e i g ( subHi ) [ 0 ]
49 e igvector subHi = np . l i n a l g . e i g ( subHi ) [ 1 ]
50 subHiRescaled = np . matmul (np . matmul ( e igvectorsubHi , ( np . diag ( e igva luesubHi ) − np . amin ( e igva luesubHi ) ∗

np . eye (2∗∗k) ) ) ,np . l i n a l g . inv ( e igvector subHi ) )
51
52 Gsing le = expm(−tau∗ subHiRescaled /M)
53 Gtrot = np . repeat ( Gsing le [ : , : , np . newaxis ] , M∗N, ax i s = 2)
54 Gtrot [ np . abs ( Gtrot ) < 10∗∗(−10) ] = 0
55
56 return Gtrot
57
58 ' ' '
59 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60 ' DiagBlocksEig ' takes as input the system s i z e , Trotter var iab l e , and
61 Gtrot . I t outputs the maximum e igenva lue and a s s o c i a t ed s t r i c t l y posi−
62 t i v e e i g envec to r o f a l l i r r e d u c i b l e and element−wise non−negat ive blo−
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63 cks along the d iagona l o f the l o c a l propagat ion opera to r s .
64 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 ' ' '
66 def DiagBlocksEig (M,N, Gtrot ) :
67 maxeigval = np . z e ro s ( ( np . shape ( Gtrot [ : , : , 0 ] ) [ 0 ] ,M∗N) )
68 pose igvec = np . z e ro s ( ( np . shape ( Gtrot [ : , : , 0 ] ) [ 0 ] , np . shape ( Gtrot [ : , : , 0 ] ) [ 0 ] ,M∗N) )
69 connec teds ta te s = np . ones ( ( np . s i z e ( Gtrot [ : , : , 0 ] ) +1,np . s i z e ( Gtrot [ : , : , 0 ] ) +1,M∗N) ) ∗(−1)
70 numsets = np . ze ro s (M∗N)
71
72 f o r t in range (M∗N) :
73 connec t ed ind i c e s = np . c [ np . nonzero ( Gtrot [ : , : , t ] ) [ 0 ] , np . nonzero ( Gtrot [ : , : , t ] ) [ 1 ] ]
74 numsetss ing = 0
75 cse tcheck = np . array ([ [−1 ,−1] , [−1 ,−1]])
76
77 f o r m in range (np . shape ( connec t ed ind i c e s ) [ 0 ] ) :
78 c s e t = np . reshape ( connec t ed ind i c e s [m, : ] , ( 1 , 2 ) )
79 i f ( ( np . reshape ( c s e t . astype ( i n t ) , ( 2 , ) ) ) . t o l i s t ( ) in cse tcheck . t o l i s t ( ) ) == False :
80
81 n = 0
82 whi le n < np . shape ( c s e t ) [ 0 ] :
83 s tar tnode = cs e t [ n , 1 ]
84 n += 1
85 newnodes = np . where ( connec t ed ind i c e s [ : , 0 ] == startnode )
86 f o r i in range (np . s i z e ( newnodes ) ) :
87 c s e t = np . unique (np . vstack ( ( cset , connec t ed ind i c e s [ np . asarray ( newnodes ) [ 0 , i ] , : ] )

) , ax i s = 0)
88
89 cse tcheck = np . concatenate ( ( csetcheck , c s e t ) , ax i s = 0)
90 connectedset = c s e t
91
92 Gb = np . ze ro s ( ( i n t ( ( np . shape ( connectedset ) [ 0 ] ) ∗∗(1/2) ) , i n t ( ( np . shape ( connectedset ) [ 0 ] )

∗∗(1/2) ) ) )
93 f o r i in range ( i n t ( ( np . shape ( connectedset ) [ 0 ] ) ∗∗(1/2) ) ) :
94 f o r j in range ( i n t ( ( np . shape ( connectedset ) [ 0 ] ) ∗∗(1/2) ) ) :
95 Gb[ i , j ] = ( ( Gtrot [ : , : , t ] ) [ connectedset [ : , 0 ] , connectedset [ : , 1 ] ] ) [ i ∗ i n t ( ( np . shape (

connectedset ) [ 0 ] ) ∗∗(1/2) )+j ] . r e a l
96
97 maxeigval [m, t ] = np .max(np . l i n a l g . e i g (Gb) [ 0 ] )
98 pose igvec [ 0 : i n t ( ( np . shape ( connectedset ) [ 0 ] ) ∗∗(1/2) ) , numsetssing , t ] = abs ( ( np . l i n a l g . e i g (

Gb) [ 1 ] ) [ : , np . argmax (np . l i n a l g . e i g (Gb) [ 0 ] ) ] )
99

100 connec teds ta te s [ 0 : np . shape ( connectedset ) [ 0 ] , ( 2 ∗ numsetss ing ) : ( 2∗ numsetss ing+2) , t ] =
connectedset

101 numsetss ing = numsetss ing + 1
102 numsets [ t ] = numsetss ing
103
104 return maxeigval , pose igvec , connectedstates , numsets
105
106 ' ' '
107 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
108 ' PiandFtau ' takes as input the l o c a l i t y , system s i z e , Trotter va r i ab l e
109 , the s e t o f connected s t a t e s and the a s s o c i a t ed maximum e igenva lue s
110 and s t r i c t l y p o s i t i v e e i g enve c t o r s o f the b locks along the d iagona l o f
111 the l o c a l propagat ion operators , Gtrot , numsamples and the elements o f
112 the s t a t e Phi . I t implements an N−term f i r s t −order Tro t t e r i z a t i on sch−
113 eme and s e t s up the s t o c h a s t i c proce s s to est imate F( tau ) . I t outputs
114 the est imate o f F( tau ) .
115 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
116 ' ' '
117 def PiandFTau ( maxeigval , pose igvec , connectedstates , numsets ,M,N, k , Gtrot , numsamples , p h i c o e f f i c i e n t s ) :
118 f tau = 0
119 f o r samples in range ( numsamples ) :
120 z e r o t h s t a t e = (np . where (np . cumsum( p h i c o e f f i c i e n t s ∗∗2) > np . random . rand (1) ) [ 0 ] ) [ 0 ]
121 x0 = np . reshape (np . f l i p (np . unpackbits ( z e r o t h s t a t e . astype (np . u int8 ) , ax i s =0) , ax i s =0) [ 0 :N] , (N, 1 ) )
122 phi0 = p h i c o e f f i c i e n t s [ z e r o t h s t a t e ]
123
124 xMN = np . ze ro s ( (N, 1 ) )
125
126 x = np . concatenate ( ( np . concatenate ( ( x0 , np . z e ro s ( (N,M∗N−1) ) ) , ax i s = 1) , xMN) , ax i s = 1)
127 P = np . ze ro s (M∗N)
128 s ing leR = np . ze ro s (M∗N)
129
130 f o r t in range (M∗N) :
131 i f t == 0 :
132 x l e f t = np . r o l l ( x [ : , t ] , −t ) [ 0 : k ]
133 x l e f t d e c = in t (np . a r r ay2 s t r i ng ( x l e f t . astype ( i n t ) ) . r ep l a c e ( ' [ ' , ' ' ) . r ep l a c e ( ' ] ' , ' ' ) . r ep l a c e ( '

' , ' ' ) , 2)
134
135 f o r c in range ( i n t ( numsets [ t ] ) ) :
136 i f np . any ( connec teds ta te s [ : , 2 ∗ c , t ] == x l e f t d e c ) == True :
137 r i g h t s e t = c
138 lambdat = (( maxeigval [ : , t ] ) [ maxeigval [ : , t ] != 0 ] ) [ r i g h t s e t ]
139 randnum = np . random . rand (1)
140
141 i f t < M∗N:
142 Pot xr i ght dec = np . ones ((2∗∗k) ∗∗2) ∗(2∗∗k + 1)
143 Pot xr i ght dec = connec teds ta te s [ np . argwhere ( connec teds ta te s [ : , 2 ∗ r i gh t s e t , t ] ==

x l e f t d e c ) ,2∗ r i g h t s e t +1, t ]
144 Pot xr i gh t dec = Pot xr i ght dec [ Pot x r i gh t dec != 2∗∗k + 1 ]
145
146 ph ix t = np . z e ro s (np . s i z e ( Pot x r i gh t dec ) )
147 phix tmin = np . z e ro s (np . s i z e ( Pot x r i gh t dec ) )
148 Prob = np . ze ro s (np . s i z e ( Pot x r i gh t dec ) )
149 f o r i in range (np . s i z e ( Pot x r i gh t dec ) ) :
150 e i g i nd ex r i gh t = np . argwhere (np . unique ( connec teds ta te s [ : , 2 ∗ r i gh t s e t , t ] ) ==

Pot xr i ght dec [ i ] ) − 1
151 ph ix t [ i ] = pose igvec [ e i g index r i gh t , r i gh t s e t , t ]
152 e i g i n d e x l e f t = np . argwhere (np . unique ( connec teds ta te s [ : , 2 ∗ r i gh t s e t , t ] ) == x l e f t d e c )

− 1
153 phix tmin [ i ] = pose igvec [ e i g i n d e x l e f t , r i gh t s e t , t ]
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154 Prob [ i ] = ( Gtrot [ i n t ( x l e f t d e c ) , i n t ( Pot x r i gh t dec [ i ] ) , t ] / lambdat∗ ph ix t [ i ] /
phix tmin [ i ] ) . r e a l

155 i f randnum < np . sum( Prob ) :
156 s ing leR [ t ] = lambdat∗phix tmin [ i ] / ph ix t [ i ]
157 P[ t ] = Prob [ i ]
158 x r i gh t de c = Pot xr i ght dec [ i ]
159 xr i ght = np . f l i p (np . f l i p (np . unpackbits ( x r i gh t de c . astype (np . u int8 ) ) , ax i s =0) [ 0 : k

] , ax i s =0)
160 x [ : , t + 1 ] = np . r o l l (np . concatenate ( ( xr ight , np . r o l l ( x [ : , t ] , −(t ) ) [ k :N] ) ) , t )
161 x l e f t = (np . r o l l ( x [ : , t + 1 ] , −(t + 1) ) ) [ 0 : k ]
162 break
163
164 i f t == M∗N−1:
165 Lth s t a t e b in = x [ : , t +1]
166 Lth s ta t e = in t (np . a r r ay2 s t r i ng ( L th s t a t e b in . astype ( i n t ) ) . r ep l a c e ( ' [ ' , ' ' ) . r ep l a c e ( ' ] ' , '

' ) . r ep l a c e ( ' ' , ' ' ) , 2)
167 phiL = p h i c o e f f i c i e n t s [ L th s ta t e ]
168
169 Pi = np . prod (P [ 0 :M∗N] )
170 R = np . prod ( s ing leR )
171 es t imator fo rF = phiL/ phi0 ∗R
172 f tau = ftau + est imator fo rF /numsamples
173
174 return f tau
175
176 ' ' '
177 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
178 'PiandFtauCB ' takes as input the l o c a l i t y , system s i z e , Trotter var ia−
179 ble , the s e t o f connected s t a t e s and the a s s o c i a t ed maximum e igenva lue s
180 and s t r i c t l y p o s i t i v e e i g enve c t o r s o f the b locks along the d iagona l o f
181 the l o c a l propagat ion operators , Gtrot , numsamples and the elements o f
182 the s t a t e Phi . I t implements an Gamma−term ( checkerboard f o r k=2 and
183 even system s i z e ) f i r s t −order Tro t t e r i z a t i on scheme and s e t s up the s−
184 t o cha s t i c proce s s to est imate F( tau ) . I t outputs the est imate o f F( tau ) .
185 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
186 ' ' '
187 def PiandFTauCB( maxeigval , pose igvec , connectedstates , numsets ,M,N, k , Gtrot , numsamples , p h i c o e f f i c i e n t s ) :
188 f tau = 0
189 f o r samples in range ( numsamples ) :
190 z e r o t h s t a t e = (np . where (np . cumsum( p h i c o e f f i c i e n t s ∗∗2) > np . random . rand (1) ) [ 0 ] ) [ 0 ]
191 x0 = np . reshape (np . f l i p (np . unpackbits ( z e r o t h s t a t e . astype (np . u int8 ) , ax i s =0) , ax i s =0) [ 0 :N] , (N, 1 ) )
192 phi0 = p h i c o e f f i c i e n t s [ z e r o t h s t a t e ]
193
194 xM2 = np . ze ro s ( (N, 1 ) )
195
196 x = np . concatenate ( ( np . concatenate ( ( x0 , np . z e ro s ( (N,M∗2−1) ) ) , ax i s = 1) , xM2) , ax i s = 1)
197 P = np . ze ro s (M∗N)
198 s ing leR = np . ze ro s (M∗N)
199
200 f o r t in range (M∗2) :
201 x l e f t d e c = np . z e ro s (np . i n t (N/2) )
202 r i g h t s e t = np . ze ro s (np . i n t (N/2) )
203 lambdat = np . z e ro s (np . i n t (N/2) )
204 randnum = np . random . rand (np . i n t (N/2) )
205 xr i ght saved = np . z e ro s (N)
206
207 i f t == 0 :
208 x l e f t = x [ : , 0 ]
209 f o r i in range (np . i n t (N/2) ) :
210 i f np . remainder ( t , 2 ) == 0 :
211 x l e f t d e c [ i ] = in t (np . a r r ay2 s t r i ng ( x l e f t [2∗ i : 2∗ i +2] . astype ( i n t ) ) . r ep l a c e ( ' [ ' , ' ' ) .

r ep l a c e ( ' ] ' , ' ' ) . r ep l a c e ( ' ' , ' ' ) , 2)
212 i f np . remainder ( t , 2 ) == 1 :
213 x l e f t d e c [ i ] = in t (np . a r r ay2 s t r i ng ( ( np . r o l l ( x l e f t ,−1) [2∗ i : 2∗ i +2]) . astype ( i n t ) ) .

r ep l a c e ( ' [ ' , ' ' ) . r ep l a c e ( ' ] ' , ' ' ) . r ep l a c e ( ' ' , ' ' ) , 2)
214
215 f o r c in range ( i n t ( numsets [ np . i n t (np . round ( t /2) ∗N/2 + np . remainder ( t , 2 ) + 2∗ i ) ] ) ) :
216 i f np . any ( connec teds ta te s [ : , 2 ∗ c , np . i n t (np . round ( t /2) ∗N/2 + np . remainder ( t , 2 ) + 2∗ i ) ]

== x l e f t d e c [ i ] ) == True :
217 r i g h t s e t [ i ] = c
218 lambdat [ i ] = ( ( maxeigval [ : , np . i n t (np . round ( t /2) ∗N/2 + np . remainder ( t , 2 ) + 2∗ i ) ] ) [

maxeigval [ : , np . i n t (np . round ( t /2) ∗N/2 + np . remainder ( t , 2 ) + 2∗ i ) ] != 0 ] ) [ np . i n t (
r i g h t s e t [ i ] ) ]

219
220 i f t < M∗2 :
221 f o r i in range (np . i n t (N/2) ) :
222 Pot xr i gh t dec = np . ones ( (2∗∗2) ∗∗2) ∗(2∗∗2 + 1)
223 Pot xr i ght dec = connec teds ta te s [ np . argwhere ( connec teds ta te s [ : , 2 ∗ np . i n t ( r i g h t s e t [ i ] )

, np . i n t (np . round ( t /2) ∗N/2 + np . remainder ( t , 2 ) + 2∗ i ) ] == x l e f t d e c [ i ] ) ,2∗np . i n t
( r i g h t s e t [ i ] ) +1,np . i n t (np . round ( t /2) ∗N/2 + np . remainder ( t , 2 ) + 2∗ i ) ]

224 Pot xr i gh t dec = Pot xr i ght dec [ Pot x r i gh t dec != 2∗∗2 + 1 ]
225
226 ph ix t = np . z e ro s (np . s i z e ( Pot x r i gh t dec ) )
227 phix tmin = np . z e ro s (np . s i z e ( Pot x r i gh t dec ) )
228 Prob = np . z e ro s (np . s i z e ( Pot x r i gh t dec ) )
229 f o r p in range (np . s i z e ( Pot x r i gh t dec ) ) :
230 e i g i nd ex r i gh t = np . argwhere (np . unique ( connec teds ta te s [ : , 2 ∗ np . i n t ( r i g h t s e t [ i ] ) , np

. i n t (np . round ( t /2) ∗N/2 + np . remainder ( t , 2 ) + 2∗ i ) ] ) == Pot xr i ght dec [ p ] ) −
1

231 ph ix t [ p ] = pose igvec [ e i g index r i gh t , np . i n t ( r i g h t s e t [ i ] ) , np . i n t (np . round ( t /2) ∗N/2
+ np . remainder ( t , 2 ) + 2∗ i ) ]

232 e i g i n d e x l e f t = np . argwhere (np . unique ( connec teds ta te s [ : , 2 ∗ np . i n t ( r i g h t s e t [ i ] ) , np .
i n t (np . round ( t /2) ∗N/2 + np . remainder ( t , 2 ) + 2∗ i ) ] ) == x l e f t d e c [ i ] ) − 1

233 phix tmin [ p ] = pose igvec [ e i g i n d e x l e f t , np . i n t ( r i g h t s e t [ i ] ) , np . i n t (np . round ( t /2) ∗N
/2 + np . remainder ( t , 2 ) + 2∗ i ) ]

234 Prob [ p ] = ( Gtrot [ i n t ( x l e f t d e c [ i ] ) , i n t ( Pot x r i gh t dec [ p ] ) ,np . i n t (np . round ( t /2) ∗N
/2 + np . remainder ( t , 2 ) + 2∗ i ) ] / lambdat [ i ]∗ ph ix t [ p ] / phix tmin [ p ] ) . r e a l

235 i f randnum [ i ] < np . sum( Prob ) :
236 s ing leR [ np . i n t ( t ∗N/2 + i ) ] = lambdat [ i ]∗ phix tmin [ p ] / ph ix t [ p ]
237 P[ np . i n t ( t ∗N/2 + i ) ] = Prob [ p ]

76



238 x r i gh t de c = Pot xr i ght dec [ p ]
239 xr i ght = np . f l i p (np . f l i p (np . unpackbits ( x r i gh t de c . astype (np . u int8 ) ) , ax i s =0)

[ 0 : 2 ] , ax i s =0)
240 xr i ght saved [2∗ i : 2∗ i +2] = xr i ght
241 break
242
243 i f np . remainder ( t , 2 ) == 1 :
244 xr i gh t saved = np . r o l l ( xr ight saved , 1)
245
246 x [ : , t + 1 ] = xr i ght saved
247 x l e f t = x [ : , t + 1 ]
248
249 i f t == M∗2−1:
250 Lth s t a t e b in = x [ : , t + 1 ]
251 Lth s ta t e = in t (np . a r r ay2 s t r i ng ( L th s t a t e b in . astype ( i n t ) ) . r ep l a c e ( ' [ ' , ' ' ) . r ep l a c e ( ' ] ' , '

' ) . r ep l a c e ( ' ' , ' ' ) , 2)
252 phiL = p h i c o e f f i c i e n t s [ L th s ta t e ]
253
254 Pi = np . prod (P [ 0 :M∗N] )
255 R = np . prod ( s ing leR )
256 es t imator fo rF = phiL/ phi0 ∗R
257 f tau = ftau + est imator fo rF /numsamples
258
259 return f tau
260
261 ' ' '
262 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
263 'FullHandQPE ' takes as input the l o c a l i t y , system s i z e , Trotter var ia−
264 ble , i n t e r a c t i o n strength , magnetic f i e l d , tau , e lements o f the s t a t e
265 Phi , numsamples and the cho i ce o f T ro t t e r i z a t i on schemes . I t ( ! i n e f f i −
266 c i e n t l y ! ) implements the exact d i a gona l i z a t i on o f H, the exact ca l cu l−
267 at ion o f the MC s igna l , and the QPE scheme .
268 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
269 ' ' '
270 def fullHandQPE (k ,N,M, Jx , Jy , Jz , g , tau , p h i c o e f f i c i e n t s , numsamples , checkerboard ) :
271 Pau l i s = np . z e ro s ( [ 2 , 2 , 4 ] , dtype = np . complex128 )
272 Pau l i s [ : , : , 0 ] = np . array ( [ [ 1 , 0 ] , [ 0 , 1 ] ] )
273 Pau l i s [ : , : , 1 ] = np . array ( [ [ 0 , 1 ] , [ 1 , 0 ] ] )
274 Pau l i s [ : , : , 2 ] = np . array ( [ [0 ,−1 j ] , [ 1 j , 0 ] ] )
275 Pau l i s [ : , : , 3 ] = np . array ( [ [ 1 , 0 ] , [ 0 , − 1 ] ] )
276 Intcompl = np . ze ro s ( [ 2∗∗N,2∗∗N,3∗N] )
277 MagIntcompl = np . z e ro s ( [ 2∗∗N,2∗∗N,N] )
278 seqmagx = np . z e ro s (N)
279 s eq in t = np . ze ro s ( (N, 3 ) )
280 H i = np . z e ro s ( [ 2∗∗N,2∗∗N,N] )
281 HiRescaled = np . ze ro s ( [ 2∗∗N,2∗∗N,N] )
282 HRescaled = np . ze ro s ( [ 2∗∗N,2∗∗N] )
283 G = np . ze ro s ( [ 2∗∗N,2∗∗N] )
284 GtrotQPE = np . ze ro s ((2∗∗N,2∗∗N,N) , dtype=np . complex )
285 GtrotQPEsingleoperator = np . z e ro s ((2∗∗N,2∗∗N) , dtype=np . complex )
286 GnontrotQPE = np . ze ro s ((2∗∗N,2∗∗N) , dtype=np . complex )
287
288 f o r j in range (k ) :
289 s eq in t [ j , 0 ] = 1
290 s eq in t [ j , 1 ] = 3
291 s eq in t [ j , 2 ] = 2
292 i f j == 0 :
293 seqmagx [ j ] = 1
294
295 f o r i in range (N) :
296 f o r m in range (3) :
297 l = 2
298 f o r p in range (N−1) :
299 i f p == 0 :
300 Intpercompl = np . kron ( Pau l i s [ : , : , i n t ( s eq in t [ np . remainder ( i ,N) ,m] ) ] , Pau l i s [ : , : , i n t (

s eq in t [ np . remainder ( i +1,N) ,m] ) ] )
301 e l s e :
302 Intpercompl = np . kron ( Intpercompl , Pau l i s [ : , : , i n t ( s eq in t [ np . remainder ( i+l ,N) ,m] ) ] )
303 l = l+1
304 Intcompl [ : , : , i + N∗m] = Intpercompl . r e a l
305
306 l = 2
307 f o r p in range (N−1) :
308 i f p == 0 :
309 Intmagpercompl = np . kron ( Pau l i s [ : , : , i n t ( seqmagx [ np . remainder ( i ,N) ] ) ] , Pau l i s [ : , : , i n t (

seqmagx [ np . remainder ( i +1,N) ] ) ] )
310 e l s e :
311 Intmagpercompl = np . kron ( Intmagpercompl , Pau l i s [ : , : , i n t ( seqmagx [ np . remainder ( i+l ,N) ] ) ] )
312 l = l+1
313 MagIntcompl [ : , : , i ] = Intmagpercompl . r e a l
314
315 f o r i in range (N) :
316 H i [ : , : , i ] = Jx∗ Intcompl [ : , : , i ] + Jz∗ Intcompl [ : , : ,N+i ] + Jy∗ Intcompl [ : , : , 2 ∗N+i ] + g∗MagIntcompl

[ : , : , i ]
317 # Resca l ing each H i such that lambda min ( H i ) = 0
318 e igva lueHi = np . l i n a l g . e i g ( H i [ : , : , i ] ) [ 0 ]
319 e i gvec to rH i = np . l i n a l g . e i g ( H i [ : , : , i ] ) [ 1 ]
320 HiRescaled [ : , : , i ] = np . matmul (np . matmul ( e igvectorHi , ( np . diag ( e igva lueHi ) − np . amin ( e igva lueHi ) ∗

np . eye (2∗∗N) ) ) ,np . l i n a l g . inv ( e i gvec to rH i ) )
321 #HiRescaled [ : , : , i ] = H i [ : , : , i ]
322 GtrotQPE [ : , : , i ] = expm(−(1 j ) ∗ tau∗HiRescaled [ : , : , i ] /M)
323 HRescaled = HRescaled + HiRescaled [ : , : , i ]
324 Fu l lHe igva l s = np . l i n a l g . e i g ( HRescaled ) [ 0 ]
325 Ful lHe igvecs = np . l i n a l g . e i g ( HRescaled ) [ 1 ]
326 G = (expm(−tau∗HRescaled ) ) . r e a l
327 GnontrotQPE = expm(−(1 j ) ∗ tau∗HRescaled )
328 r e a l t e v o l u t i o n o v e r l a p n o n t r o t = np . matmul (np . matmul (np . t ranspose ( p h i c o e f f i c i e n t s ) ,GnontrotQPE) ,

p h i c o e f f i c i e n t s )
329
330 # Calcu la t ing Trotter Bounds
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331 # Firs t−Order N−Term Decomposition
332 commutatornorm = 0
333 f o r i in range (N−1) :
334 f o r n in range (N−1− i ) :
335 j = i + 1 + n
336 commutatornorm = commutatornorm + np . l i n a l g . norm(np . matmul ( HiRescaled [ : , : , i ] , HiRescaled [ : , : ,

j ] ) − np . matmul ( HiRescaled [ : , : , j ] , HiRescaled [ : , : , i ] ) , ord = 2)
337 t r i v i a l t r o t t e r b o u n d = commutatornorm∗ tau ∗∗2/(2∗M)
338 # Firs t−Order Checkerboard Decomposition
339 H even = np . z e ro s ((2∗∗N,2∗∗N) )
340 H odd = np . ze ro s ((2∗∗N,2∗∗N) )
341 f o r i in range (N) :
342 i f np . remainder ( i , 2 ) == 0 :
343 H even = H even + HiRescaled [ : , : , i ]
344 i f np . remainder ( i , 2 ) == 1 :
345 H odd = H odd + HiRescaled [ : , : , i ]
346 CBtrotterbound = np . l i n a l g . norm(np . matmul ( H even , H odd ) − np . matmul (H odd , H even ) , ord = 2) ∗ tau

∗∗2/(2∗M)
347 ' ' '
348 normcheck = 0
349 f o r i in range (N) :
350 normcheck = normcheck + np . l i n a l g . norm( HiRescaled [ : , : , i ] , ord = 2)
351 pr in t ( normcheck∗ tau/M)
352 ' ' '
353
354 GtrotQPEsingleoperator = GtrotQPE [ : , : , 0 ]
355 f o r i in range (N−1) :
356 i f checkerboard == 0 :
357 GtrotQPEsingleoperator = np . matmul ( GtrotQPEsingleoperator , GtrotQPE [ : , : , i +1])
358 i f checkerboard == 1 :
359 i f i < np . i n t (N/2)−1:
360 GtrotQPEsingleoperator = np . matmul ( GtrotQPEsingleoperator , GtrotQPE [ : , : , 2 ∗ ( i +1) ] )
361 i f i >= np . i n t (N/2)−1:
362 GtrotQPEsingleoperator = np . matmul ( GtrotQPEsingleoperator , GtrotQPE [ : , : , 2 ∗ ( i−np . i n t (N/2)

+1)+1])
363 GtrotQPEsingleoperator = np . l i n a l g . matrix power ( GtrotQPEsingleoperator , M)
364 r e a l t e v o l u t i o n o v e r l a p = np . matmul (np . matmul (np . t ranspose ( p h i c o e f f i c i e n t s ) , GtrotQPEsingleoperator )

, p h i c o e f f i c i e n t s )
365
366 # sampling from r e a l and imaginary part s o f r e a l t e v o l u t i o n o v e r l a p
367 r e a l p a r t o v e r l a p = np . r e a l ( r e a l t e v o l u t i o n o v e r l a p )
368 imagpart over lap = np . imag ( r e a l t e v o l u t i o n o v e r l a p )
369 p r o b a n c i l l a z e r o = 1/2 + 1/2∗ r e a l p a r t o v e r l a p
370 p rob anc i l l a p i two = 1/2 − 1/2∗ imagpart over lap
371
372 rand zero = np . random . rand ( numsamples , 1)
373 rand pitwo = np . random . rand ( numsamples , 1)
374
375 p rob anc i l l a z e r o s amp l ed = np . mean ( ( rand zero < p r o b a n c i l l a z e r o ) . astype ( i n t ) )
376 prob anc i l l a p i two sampl ed = np . mean ( ( rand pitwo < p rob anc i l l a p i two ) . astype ( i n t ) )
377
378 samp l ed r ea lpa r t ove r l ap = 2∗ prob anc i l l a z e r o s amp l ed − 1
379 sampled imagpart over lap = 1 − 2∗ prob anc i l l a p i two sampl ed
380
381 return G, Ful lHe igva l s , Ful lHeigvecs , sampled rea lpar t ove r l ap , sampled imagpart over lap ,

r e a l t e v o l u t i o n o v e r l a p n o n t r o t , t r i v i a l t r o t t e r bound , CBtrotterbound
382
383 ' ' '
384 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
385 ' MatrixPencilMethod ' takes as input a ( no i sy ) s i gna l , measpoints , the
386 penc i l parameter L and the t runcat ion f a c t o r . I t outputs the e s t imate s
387 o f the parameters z { j } .
388 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
389 ' ' '
390 def MatrixPencilMethod ( s i gna l , measpoints , L , t r u n c a t i o n f a c t o r ) :
391
392 Y = np . ze ro s ( ( measpoints−L ,L + 1) , dtype = np . complex )
393 f o r i in range ( measpoints−L) :
394 Y[ i , : ] = s i g n a l [ i : L + i + 1 ]
395
396 # Without t runcat ing the Y1 and Y2 SVD ' s ( unstab le when s i g n a l i s no i sy )
397 ' ' '
398 Y1 = Y[ : , 0 : L ]
399 Y2 = Y[ : , 1 : L + 1 ]
400 g e n e r a l i z e d e i g v a l s = np . l i n a l g . e i g (np . matmul (np . l i n a l g . pinv (Y2) ,Y1) ) [ 0 ]
401 g e n e r a l i z e d e i g v a l s = g e n e r a l i z e d e i g v a l s [ g e n e r a l i z e d e i g v a l s > 10∗∗(−10) ]
402 I = np . matmul (np . l i n a l g . pinv (Y2) ,Y2)
403 ' ' '
404
405 # Truncating the Y1 and Y2 SVD ' s ( a l l ows f o r no i sy s i g n a l )
406 Y1 = Y[ : , 0 : L ]
407 Y2 = Y[ : , 1 : L + 1 ]
408 u1 , sigma1 , vh1 = np . l i n a l g . svd (Y1) # SVD Y1
409 u2 , sigma2 , vh2 = np . l i n a l g . svd (Y2) # SVD Y2
410 # Locating the s e t o f l a r g e s t s i n gu l a r va lues
411 r e l evan ta rg s1 = np . argwhere ( sigma1/np .max( sigma1 ) > t r u n c a t i o n f a c t o r )
412 r e l evan ta rg s2 = np . argwhere ( sigma2/np .max( sigma2 ) > t r u n c a t i o n f a c t o r )
413
414 sigma1 = sigma1 [ sigma1/np .max( sigma1 ) > t r u n c a t i o n f a c t o r ]
415 sigma matrix1 = np . diag ( sigma1 )
416 sigma2 = sigma2 [ sigma2/np .max( sigma2 ) > t r u n c a t i o n f a c t o r ]
417 sigma matrix2 = np . diag ( sigma2 )
418
419 vh1prime = np . t ranspose (np . take (np . t ranspose ( vh1 ) , r e l evantargs1 , ax i s = 1) )
420 vh2prime = np . t ranspose (np . take (np . t ranspose ( vh2 ) , r e l evantargs2 , ax i s = 1) )
421 u1prime = np . take (u1 , r e l evantargs1 , ax i s = 1)
422 u2prime = np . take (u2 , r e l evantargs2 , ax i s = 1)
423
424 vh1prime = np . reshape ( vh1prime , (np . shape ( vh1prime ) [ 1 ] , np . shape ( vh1prime ) [ 2 ] ) )
425 vh2prime = np . reshape ( vh2prime , (np . shape ( vh2prime ) [ 1 ] , np . shape ( vh2prime ) [ 2 ] ) )
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426 u1prime = np . reshape ( u1prime , (np . shape ( u1prime ) [ 0 ] , np . shape ( u1prime ) [ 1 ] ) )
427 u2prime = np . reshape ( u2prime , (np . shape ( u2prime ) [ 0 ] , np . shape ( u2prime ) [ 1 ] ) )
428
429 Y1 truncatedSVD = np . matmul (np . matmul ( u1prime , s igma matrix1 ) , vh1prime )
430 Y2 truncatedSVD = np . matmul (np . matmul ( u2prime , s igma matrix2 ) , vh2prime )
431 g e n e r a l i z e d e i g v a l s = np . l i n a l g . e i g (np . matmul (np . l i n a l g . pinv ( Y1 truncatedSVD ) , Y2 truncatedSVD ) ) [ 0 ]
432 I = np . matmul (np . l i n a l g . pinv ( Y1 truncatedSVD ) , Y1 truncatedSVD ) # Check
433
434 return g en e r a l i z e d e i g va l s , I
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