
DeathStar Movie for Geo-Distributed Databases
Stressing databases using a movie review site

Samuel van den Houten1

Supervisors: Dr. Asterios Katsifodimos1, Oto Mráz1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Samuel van den Houten
Final project course: CSE3000 Research Project
Thesis committee: Dr. Asterios Katsifodimos, Oto Mráz, Prof.dr. Koen Langendoen

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Geo-distributed databases offer the scalability and
low latency that contemporary applications de-
mand, but are challenging to implement. It is there-
fore crucial that they are tested well. Established
benchmarks, such as TPC-C and YCSB-T, are lim-
ited and do not cover the entire set of workloads
that geo-distributed databases are subjected to. In
this paper, we discuss the adaptation of DeathStar
Movie - an existing benchmark for microservice
systems - for benchmarking these geo-distributed
databases. We set up an experiment in which
we ran this modified version of the benchmark on
four database systems: Detock, SLOG, Calvin, and
Janus. The results showed that DeathStar Movie
is capable of pushing these systems to their limits.
It also showed the different performance character-
istics of the systems, stemming from the different
ways in which they attempt to overcome the chal-
lenges posed by a geo-distributed setting.

1 Introduction
Geo-distributed databases are crucial for today’s large-scale,
worldwide applications. They are already used by large play-
ers within the industry to achieve high scalability and low
latency [1] [2]. Geo-distributed databases are also useful for
their ability to store data regionally, as this allows for com-
pliance with recent legislation dictating the storage location
of user data [3]. However, implementation of these systems
is challenging, especially when considering ACID transac-
tions and strict serializability. Common approaches can lead
to high abort rates or deadlock, hurting performance [4]. It is
therefore highly important that these geo-distributed database
systems are tested well.

In the present, geo-distributed databases are mostly tested
using industry-standard benchmarks like TPC-C [5] and
YCSB-T [6]. However, these benchmarks are limited in
scope and not capable of exposing all of the potential choke
points of geo-distributed databases [7]. TPC-C in particu-
lar was first released in 1992, which means that the database
systems it was designed to test are quite different from the
state-of-the-art.

Recognizing the need for additional benchmarking tools,
we propose the use of the DeathStar Movie benchmark [8]
for geo-distributed databases. This is an existing benchmark
originally developed for testing microservice systems, which
can be modified to target databases specifically. The main
research question for this paper is therefore: ”How do geo-
distributed databases perform on the DeathStar Movie bench-
mark?”.

This paper makes the following contributions:

• A modification of DeathStar Movie for benchmarking
geo-distributed databases, which extracts the underlying
database transactions from the original workload.

• An implementation of this modified design within the
codebase of Detock, a geo-distributed database

• An experiment in which we test six variations (”scenar-
ios”) of this implementation using four geo-distributed
database systems.

This paper proceeds as follows: In section 2 we will start
by providing background information on DeathStar Movie
and on the database systems we used for testing. In section 3
we follow up with a description of the modifications we made
to make DeathStar Movie applicable to distributed databases.
Section 4 contains a technical description of the experiment
along with the main results. In section 5 we reflect on the
ethical implications and reproducibility of the methods used.
Section 6 follows with describing the limitations of this pa-
per, comparisons with other research, and recommendations
for future work. In section 7 we end with the main conclu-
sions.

2 Background
This section includes background information on the bench-
mark and selected database systems. Section 2.1 starts by de-
scribing the original DeathStar Movie benchmark. In Section
2.2 we describe the database systems and protocols .

2.1 DeathStar Movie
DeathStar Movie is a benchmark for cloud microservices. It
is part of the larger DeathStarBench suite. It was first de-
scribed in 2019 by Gan Yu et al. [8], though this paper con-
siders an updated version found on Github [9]. DeathStar
Movie models a movie database and review website, akin to
IMDB or Letterboxd.

DeathStar Movie sets up a network of microservices and
MongoDB databases, along with Redis and Memcached
caches. A visualization of this can be seen in Figure 1. The
system allows movies to be added, along with their plot de-
scriptions and casts. Users can login and submit reviews. The
workload for this benchmark consists of repeatedly submit-
ting reviews through an HTTP endpoint, which are then writ-
ten to the databases and caches. This workload can be found
in the wrk directory of the DeathStar Movie repository [9].

While DeathStar Movie’s utility for evaluating cloud mi-
croservice systems is known, its use as a benchmark purely
for (geo-distributed) databases has not been extensively ex-
plored. It being the subject of this research therefore helps
in understanding the current landscape of benchmarks and
could justify its use alongside industry-standard benchmarks
like TPC-C.

2.2 Evaluated database systems
In this paper we evaluate DeathStar Movie with several geo-
distributed database systems: Detock, SLOG, Janus, and
Calvin. We use these different systems because they each
have a different protocol for handling transaction conflicts.
This has been shown to affect their performance characteris-
tics in different scenarios [10] [4].

Calvin was introduced in 2012 in a paper by Alexan-
der Thompson et al. [11] Its goal is to be a scalable dis-
tributed database with high availability and ACID transac-
tions. It allows for multiple replicas of database partitions,



Figure 1: DeathStar Movie architecture
Source: [9]

which are kept consistent by globally ordering every transac-
tion. Servers accumulate requests during 10ms epochs, after
which batches of transactions are shared with other servers
and executed in a deterministic order.

Janus is a protocol introduced by Shuai Mu et al. [12] in
2016. While some database systems use separate protocols
for concurrency control and generating consensus, Janus con-
solidates these into one protocol. This makes it perform par-
ticularly well when encountering high contention.

SLOG is a database system first described by Kun Ren et
al. [13] in 2019. It achieves much lower latency than preced-
ing systems like Calvin, while retaining high throughput. It
assigns a ”home” region to every record, which allows trans-
actions involving only a single home to skip the global order-
ing and be resolved faster.

Detock is a database system introduced in a 2023 paper by
Cuong D. T. Nguyen et al. [4] It improves on SLOG by elimi-
nating its global ordering layer entirely, reducing latency. In-
stead, it uses a new graph-based algorithm for deterministi-
cally scheduling the transactions at each region. This means
that the ordering graph will be created in the same way in ev-
ery region, with just the transaction data and no further com-
munication.

3 Adapting Deathstar Movie for
geo-distributed databases

In order to apply DeathStar Movie to geo-distributed
databases we needed to apply several changes to the original
benchmark. Firstly, we removed the microservices (blue in
Figure 1) and instead implemented the underlying transaction
directly. This eliminates the possibility of a bottleneck and fo-
cuses the benchmark solely on the database. We removed the
Redis and Memcached caches (yellow and purple in the fig-
ure) for the same reasons. Since we no longer use microser-
vices, we can combine the eight MongoDB databases (green
in the figure) into a single relational database with multi-
ple tables. While we could convert the databases to tables
one-to-one, we made some optimizations in this step. Some
databases, like CastInfo, are not used by the workload at all
and can therefore be removed. Some databases, like Review-
Storage, UserReview, and MovieReview store redundant data.
While this is useful for quick access for their corresponding
microservices, this redundancy is not needed when using a
single database. The final database schema resulting from
this process can be seen in Figure 2.

The original benchmark stores both a database that stores
just the submitted review and another that stores user records
which each have an array with their submitted reviews.
Adapting the benchmark into a relational schema means it
would be logical to only store a Reviews table. However, we
chose to keep storing the reviews with the user records as



Figure 2: Adapted database schema

well, since this increases transaction conflicts and therefore
strain on the database. However, since some of the databases
tested do not allow arrays as a datatype, this is instead imple-
mented as a counter that is raised every time a user submits a
review. The transaction that is used for the modified Death-
Star Movie, which we have named NewOrder, is described
by the following SQL code:

INSERT INTO reviews (user_id, movie_id, req_id,
text, rating, timestamp, review_id)
VALUES (
(SELECT user_id FROM users
WHERE username = <USERNAME>),
(SELECT movie_id FROM movies
WHERE title = <TITLE>),
<REQ_ID>,
<TEXT>,
<RATING>,
<TIMESTAMP>,
<REVIEW_ID>

);

UPDATE users
SET reviews = reviews + 1
WHERE username = <USERNAME>;

4 Experimental Setup and Results
This section documents the technical details of the experi-
ment as well as the results. Section 4.1 describes the general
setup we used. Section 4.2 follows with a description of the
experiment and the metrics. Sections 4.3 through 4.8 present
the various scenarios and their results.

4.1 General setup
The benchmark was run on a TU Delft cluster consisting
of 4 machines. Each machine was equipped with 2× AMD
EPYC 7H12 CPUs (128 cores, 256 threads total), along with
512GB of DDR4 RAM. The databases and benchmarks were
run within Docker containers based on Ubuntu 22.04. The
databases were configured to have 2 database regions and
2 partitions, which allowed for 2 machines per region. The

R0P1 R1P0 R1P1
R0P0 0.096 0.212 0.186
R0P1 0.112 0.151
R1P0 0.097

Table 1: Round-trip time between all configurations of regions R
and partitions P (ms)

round-trip latency between the different machines can be seen
in Table 1.

The benchmark framework allows the user to specify the
number of (virtual) clients simultaneously submitting trans-
actions. It also allows them to specify the fraction of transac-
tions that should interact with multiple database regions and
multiple database partitions. Unless specified otherwise, the
below benchmarks use 3000 virtual clients, 50% multi-region
transactions and 50% multi-partition transactions.

Prior to the workload, the databases are filled with 1000
users and 1000 movies [9], following the original bench-
mark. These records are distributed evenly across the dif-
ferent database partitions and regions. During the work-
load, transactions are randomly generated from valid users
and movies, along with a randomly generated string for the
review. Unless stated otherwise, transactions are submitted
concurrently from 3000 virtual clients.

4.2 Experiment
The experiment consists of running the benchmark on sev-
eral geo-distributed database systems: Detock [4], Slog [13],
Janus [12] and Calvin [11]. We used these systems because
they have different ways of handling transaction conflicts.
This means that their performance could be affected differ-
ently by changing scenarios [10].

The benchmark results are evaluated using the following
metrics:

• Throughput - Amount of transactions handled per sec-
ond

• Latency - Mean latency for transactions

• Bytes transferred - Total amount of bytes transferred
over the network

• Cost - Hypothetical cost in USD to run this experiment
on a commercial cloud network for 1 hour.

The Cost metric is calculated using the following formula:

Cost = N ∗A+
0.02G

D
∗ 3600

Where:

N is the number of machines used in the benchmark

A is the average hourly cost of deploying a m4.2xlarge
VM across 8 AWS regions: euw1, euw2, usw1,
usw2, use1 use2, apne1 and apne2

G is the amount of data transferred between database
regions in GB

D is the duration of the benchmark in seconds



We used a cost of 0.02$/GB as this is a common base rate for
inter-region transfers on AWS [14]. The experiment is run on
a compute cluster in order to provide a realistic scenario for a
geo-distributed database.

4.3 Baseline
The baseline scenario tests the effect of increasing the amount
of transactions that involve data from multiple database re-
gions. Because of the additional coordination needed, these
transactions put more strain on the system. This scenario is
controlled by the mh chance, which represents a percentage
of transactions that interact with data from different home
regions. The three records in a single-home transaction (a
User, Movie, and Review) will always come from the same
region as the server receiving the transaction. A multi-home
transaction will utilize a User from the local region, while
the Movie and Review will be from another region. This
results in database writes to 2 different regions. The other
scenarios all use a constant mh chance of 50%. All scenar-
ios also use a mp chance of 50%, which works similarly to
mh chance but instead controls the amount of transactions
utilizing records from multiple database partitions.

The results for the baseline scenario can be seen in Figure
3. Note that while the P50, P95 and P99 latencies are shown
for most systems, only P50 is shown for Janus and only P50
and P95 for Calvin. This is because the latter metrics had
large outliers, up to 50000ms. The results are generally as
expected, with the throughput of SLOG and Detock going
down as the fraction of multi-home transactions increases.
At very high multi-home percentages they are even outper-
formed by Calvin, which is unaffected due to its lack of a re-
gion system. We also observed Calvin transferring less data
for the same throughput, therefore also making it more cost-
effective. This trend continues in the other scenarios. We
observed spikes in latency for SLOG at lower mh chance,
though since these appear erratically and only in the P99 and
(partially) P95, these are assumed to be outliers.

4.4 Skew
In the skew scenario, data access is skewed, meaning some
records are accessed more than others. The benchmark picks
the records used in a transaction by generating a list of valid
IDs based on the target home and partition. By default, a
uniform random generator is used to index this list and get the
ID. The skew scenario uses a non-uniform random generator
instead, using the following formula:

Index = (A |B) mod M + 1

Where:

A ∼ U(0, Skew ∗M)

B ∼ U(0,M)

M is the maximum index for the ID candidate list

Skew is the skewness factor controlled by the benchmark

The results can be seen in Figure 4. As with the baseline
scenario, the P95 and P99 latencies consist mostly of outliers,
while the P50 latencies are generally constant. When looking

at the throughput, we can see that the skew factor has a min-
imal effect on SLOG, Detock and Calvin. However, it does
have a large effect on Janus, which goes from 30000 txn/s
to just 10000 txn/s when increasing the skew factor from 0.0
to 0.1. This suggests that Janus performs poorly when under
high contention.

4.5 Sunflower
In this scenario, the data access is skewed towards records
owned by a certain database region. While it could seem
natural for a benchmark to equally distribute the load over
the database regions, this is not realistic for geo-distributed
databases. As users are more active during the day, this is
when database traffic will be the heaviest. Due to differ-
ing time zones, this can lead to transactions being skewed
towards certain regions. This pattern is simulated in the
Sunflower scenario. This scenario is controlled by two pa-
rameters, sunflower home and sunflower chance. The
sunflower chance parameter is a percentage value that con-
trols the odds that the selected User record belongs to the
region set by sunflower home. The Movie and Review
records are selected as usual. The results for this scenario
can be found in Figure 5. These are generally as expected,
with SLOG and Detock showing a slight decrease in through-
put and an increase in latency as the sunflower chance gets
higher. As Calvin and Janus do not use regions, they are un-
affected. While the sunflower scenario does impact perfor-
mance for SLOG and Detock, this effect is not as strong as
with the baseline scenario. This could be because this sce-
nario still uses the default mh chance of 50%. This means
that even within a 100% sunflower chance scenario, half of
the Movie and Review records will still belong to the other
region. Using a lower mh chance could put more strain on
the sunflower region. Another option would be to use more
than two regions. This would allow the other regions to take
turns participating in the multi-home transactions, increasing
the relative difference in load between the sunflower region
and the others.

4.6 Scalability
In the scalability scenario we test the effect of increasing the
number of clients submitting transactions to the system at
once. The results for this scenario can be seen in Figure 6.
These results show that an increase in the number of clients
can allow the database systems to better utilize their capac-
ity. We saw the best performance around 103 clients. While
increasing the number of clients further showed a slight in-
crease in throughput for SLOG, Detock and Calvin, this came
paired with huge latency. Although Janus performed poorly
in all scenarios, it performed especially badly in this one. The
throughput plummeted at 104 clients and runs with any higher
number failed to finish. Since the other scenarios use the de-
fault number of 3000 clients, this could be partially responsi-
ble for the low throughput and high P95/P99 Janus suffered
from in the other scenarios.

4.7 Network Delay
In the network delay scenario the network has increased la-
tency, slowing down communication between nodes. This de-



0 20 40 60 80 100
Multi-Home Txns (%)

0

20000

40000

60000

80000

Th
ro

ug
hp

ut
 (t

xn
/s

)

Throughput

0 20 40 60 80 100
Multi-Home Txns (%)

0

500

1000

1500

La
te

nc
y 

(m
s)

Latency

0 20 40 60 80 100
Multi-Home Txns (%)

0.0

0.5

1.0

1.5

2.0

2.5

By
te

s T
ra

ns
fe

rre
d 

(M
B)

1e10 Bytes

0 20 40 60 80 100
Multi-Home Txns (%)

0

10

20

30

Co
st

 ($
)

Cost
Calvin Slog Detock Janus

Figure 3: Results baseline scenario

0.0 0.2 0.4 0.6 0.8 1.0
Skew factor (Theta)

0

20000

40000

60000

80000

Th
ro

ug
hp

ut
 (t

xn
/s

)

Throughput

0.0 0.2 0.4 0.6 0.8 1.0
Skew factor (Theta)

0

500

1000

1500

La
te

nc
y 

(m
s)

Latency

0.0 0.2 0.4 0.6 0.8 1.0
Skew factor (Theta)

0.0

0.5

1.0

1.5

2.0

By
te

s T
ra

ns
fe

rre
d 

(M
B)

1e10 Bytes

0.0 0.2 0.4 0.6 0.8 1.0
Skew factor (Theta)

0

10

20

30

Co
st

 ($
)

Cost
Calvin Slog Detock Janus

Figure 4: Results skew scenario

lay was simulated using the netem [15] Linux tool. For every
ms of added latency, we also added 0.1 ms of jitter. The re-
sults can be found in Figure 7. As expected, the through-
put steadily decreases for all systems as the latency increases.
However, we find that while Detock generally performs well
in the other experiments, it performs quite badly here. Any
delay from 100ms onward resulted in tiny throughput and
huge latency. This is despite Detock being specifically de-
signed for processing multi-region transactions with minimal
latency.

4.8 Packet Loss

In the packet loss scenario, a certain percentage of the pack-
ages is dropped, testing the performance on an unreliable net-
work. This was also simulated using netem. The results for
the packet loss scenario can be found in Figure 8. These re-
sults are again as expected, with throughput decreasing and
latency increasing when more packets are lost. We see the
same pattern as with the network delay scenario, with Detock
proving to be particularly sensitive to network disruptions.
However, the difference with the other systems is not quite as
drastic in this scenario.

5 Responsible Research

To improve reproducibility, the repository for this project will
include a README file describing the steps needed to run the
experiment. It will also include example commands where
needed. The code for this project will include code comments
to improve readability and encourage extension.

5.1 Benchmark environment
While an effort was made to keep the benchmarking envi-
ronment consistent, it could be hard for other researchers to
replicate it and obtain the same results. The benchmark was
run on a TU Delft cluster, which uses expensive server-grade
hardware and is not accessible to outsiders. Since this cluster
is used for other research projects as well, a spiking load from
these projects could have affected the experiment and made
the results unpredictable.

A solution to this would be to rerun the experiment in a
more easily reproducible environment with minimal variabil-
ity. This could be achieved with either dedicated, commodity
hardware (e.g., a Raspberry Pi cluster) or a cluster hosted on
a commercial cloud provider like AWS.

6 Discussion
This section discusses the limitations of our research and puts
our results in a broader context. Section 6.1 starts by describ-
ing the limited combinations of parameters we used. Section
6.2 follows by explaining the inherent subjectivity in adapting
DeathStar Movie. Section 6.3 compares our results to those
from other research. Section 6.4 ends by listing our recom-
mendations for future research.

6.1 Combining parameters
A major limitation of this paper is the fact that all of our
scenarios only changed one parameter at a time. For exam-
ple, other work includes experiments which change both the
mh chance and skew factor [4]. This also makes the bench-
marks more realistic, as a real database deployment would be
dealing with a mixture of all the scenarios we presented. In
particular, it would be valuable to combine the network delay



60 70 80 90 100
Sunflower (%)

0

20000

40000

60000

80000

Th
ro

ug
hp

ut
 (t

xn
/s

)

Throughput

60 70 80 90 100
Sunflower (%)

0

200

400

600

800

La
te

nc
y 

(m
s)

Latency

60 70 80 90 100
Sunflower (%)

0.0

0.5

1.0

1.5

2.0

By
te

s T
ra

ns
fe

rre
d 

(M
B)

1e10 Bytes

60 70 80 90 100
Sunflower (%)

0

10

20

30

Co
st

 ($
)

Cost
Calvin Slog Detock Janus

Figure 5: Results sunflower scenario

100 102 104 106

Clients

0

20000

40000

60000

80000

Th
ro

ug
hp

ut
 (t

xn
/s

)

Throughput

100 102 104 106

Clients

0

20000

40000

60000

La
te

nc
y 

(m
s)

Latency

100 102 104 106

Clients

0

1

2

3

By
te

s T
ra

ns
fe

rre
d 

(M
B)

1e10 Bytes

100 102 104 106

Clients

0

10

20

30

40

Co
st

 ($
)

Cost
Calvin Slog Detock Janus

Figure 6: Results scalability scenario

scenario with the others, as a geo-distributed deployment will
always have some significant inter-region latency. As men-
tioned in Section 4.5, combining the sunflower scenario with
the baseline scenario could make its effect more visible.

Another possibility for improving sunflower involved the
use of more than two regions. This would be more realistic
overall, as an application operating at a global scale would
likely use many regions. The amount of machines hosting the
database could also be used as an additional parameter. This
could then be combined with the scalability scenario to test
the horizontal scalability of the systems.

Future research could further investigate these combined
scenarios, though it would most likely only be able to include
a subset of the parameters seen in this paper.

6.2 Interpretation of DeathStar Movie

This paper uses a modified version of DeathStar Movie to
highlight its use for geo-distributed databases and to make it
more comparable to industry-standard benchmarks like TPC-
C and YCSB-T. However, this version is only one of many
possible interpretations of how to convert DeathStar Movie
to a benchmark for geo-distributed databases. Another re-
search team evaluating DeathStar Movie could come up with
a different interpretation, like keeping more redundancy or
keeping the microservices. This would almost certainly lead
to different results.

Since the adaptation of DeathStar Movie to a benchmark
for geo-distributed databases is such a subjective process,
there is no straightforward solution to this problem. One op-
tion would be to give a new name to the version of DeathStar
Movie used in this paper to distinguish it from the original.

6.3 Related work

While there are no other papers evaluating DeathStar Movie
for benchmarking geo-distributed databases, we can compare
our results to those from other benchmarks. The Detock paper
[4] evaluates SLOG, Detock, Calvin and Janus using YCSB.
The results from those experiments line up well with ours.
Particularly, they show Calvin’s ability to beat both SLOG
and Detock when handling high multi-home% transactions,
even though its design is more primitive. It also shows Janus
performing the worst, especially when data access is heavily
skewed.

6.4 Recommendations for future work

As mentioned above, we would like to see research combin-
ing multiple of the scenarios that appear in this paper.

In addition, we believe it would be valuable to conduct a
deeper investigation into the root cause of some of the more
surprising results from our experiment. Janus performed
poorly overall, while Detock fell far behind in network-
limited scenarios. Understanding the cause of these problems
could help with designing robust geo-distributed systems in
the future.

Finally, we recommend expanding the benchmark further.
While our version of DeathStar Movie is faithful to the orig-
inal by including only one transaction in the workload, this
makes it rather simple. Implementing multiple transactions,
like TPC-C and YCSB-T, could help it to become more real-
istic and well-rounded. These transaction could make use of
some of the currently unused MongoDB databases from the
original DeathStar Movie.



0 50 100 150 200 250
Extra delay (ms)

0

20000

40000

60000

80000

Th
ro

ug
hp

ut
 (t

xn
/s

)

Throughput

0 50 100 150 200 250
Extra delay (ms)

0

20000

40000

60000

80000

100000

La
te

nc
y 

(m
s)

Latency

0 50 100 150 200 250
Extra delay (ms)

0.0

0.5

1.0

1.5

2.0

By
te

s T
ra

ns
fe

rre
d 

(M
B)

1e10 Bytes

0 50 100 150 200 250
Extra delay (ms)

0

10

20

30

Co
st

 ($
)

Cost
Calvin Slog Detock Janus

Figure 7: Results network delay scenario

0 2 4 6 8 10
Packets lost (%)

0

20000

40000

60000

80000

Th
ro

ug
hp

ut
 (t

xn
/s

)

Throughput

0 2 4 6 8 10
Packets lost (%)

0

20000

40000

60000

80000

100000

La
te

nc
y 

(m
s)

Latency

0 2 4 6 8 10
Packets lost (%)

0.0

0.5

1.0

1.5

2.0

By
te

s T
ra

ns
fe

rre
d 

(M
B)

1e10 Bytes

0 2 4 6 8 10
Packets lost (%)

0

10

20

30

Co
st

 ($
)

Cost
Calvin Slog Detock Janus

Figure 8: Results packet loss scenario

7 Conclusion
We designed an adapted version of the DeathStar Movie
benchmark for testing geo-distributed databases. We then
conducted an experiment that tested four database systems
and six benchmark scenarios. This showed our adaptation of
DeathStar Movie to be a capable benchmarking tool, expos-
ing the strengths and weaknesses of the various systems it was
tested with. Janus had bad performance overall, with a par-
ticular weakness in scenarios with high contention. We also
observed poor performance from Detock in scenarios con-
straining the network. This is notable due to its advertised
low latency for cross-region transactions. To explore the ca-
pabilities of our implementation even further, we would like
to see larger-scale tests, along with tests combining multiple
scenarios into one.

References
[1] Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy,

Eric Rollins, Bart Samwel, Radek Vingralek, Chad
Whipkey, Xin Chen, Beat Jegerlehner, Kyle Littlefield,
and Phoenix Tong. F1 - the fault-tolerant distributed
rdbms supporting google’s ad business. In SIGMOD,
2012. Talk given at SIGMOD 2012.

[2] Tim Liu, Mundhra Rohit, and Alex Bai. Talk presented
at the HTAP Summit, September 2024. Available at
https://www.youtube.com/watch?v=Ddk6k9Js0nI.

[3] Kaustubh Beedkar, David Brekardin, Jorge-Arnulfo
Quiané-Ruiz, and V. Markl. Compliant geo-distributed
data processing in action. Proc. VLDB Endow.,
14:2843–2846, 2021.

[4] Cuong DT Nguyen, Johann K. Miller, and Daniel J.
Abadi. Detock: High performance multi-region transac-
tions at scale. Proceedings of the ACM on Management
of Data, 1(2):1–27, 2023.

[5] Transaction Processing Performance Council. TPC
Benchmark™ C Standard Specification, Revision 5.11,
2010.

[6] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe
Röhm. Ycsb+t: Benchmarking web-scale transactional
databases. In 2014 IEEE 30th International Conference
on Data Engineering Workshops, pages 223–230, 2014.

[7] Luyi Qu, Qingshuai Wang, Ting Chen, Keqiang Li,
Rong Zhang, Xuan Zhou, Quanqing Xu, Zhifeng Yang,
Chuanhui Yang, Weining Qian, and Aoying Zhou. Are
current benchmarks adequate to evaluate distributed
transactional databases? BenchCouncil Transactions on
Benchmarks, Standards and Evaluations, 2(1):100031,
2022.

[8] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An open-source benchmark
suite for microservices and their hardware-software im-
plications for cloud & edge systems. In Proceedings of
the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’19, page 3–18, New York,
NY, USA, 2019. Association for Computing Machinery.

https://www.youtube.com/watch?v=Ddk6k9Js0nI


[9] Christina Delimitrou. Deathstarbench movie re-
view application. https://github.com/delimitrou/
DeathStarBench/tree/master/mediaMicroservices,
2025. Accessed: 2025-06-02.

[10] Rachael Harding, Dana Van Aken, Andrew Pavlo, and
Michael Stonebraker. An evaluation of distributed con-
currency control. Proc. VLDB Endow., 10(5):553–564,
January 2017.

[11] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J. Abadi.
Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, pages 1–12. ACM, 2012.

[12] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang
Li. Consolidating concurrency control and consensus
for commits under conflicts. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation (OSDI’16), pages 517–532. USENIX
Association, 2016.

[13] Kun Ren, Dennis Li, and Daniel J. Abadi. Slog: Seri-
alizable, low-latency, geo-replicated transactions. Pro-
ceedings of the VLDB Endowment, 12(11), 2019.

[14] Amazon ec2 on-demand pricing. https://aws.amazon.
com/ec2/pricing/on-demand. Accessed: 2025-06-16.

[15] Stephen Hemminger. Network emulation with netem.
Linux Conf Au, 05 2005.

https://github.com/delimitrou/DeathStarBench/tree/master/mediaMicroservices
https://github.com/delimitrou/DeathStarBench/tree/master/mediaMicroservices
https://aws.amazon.com/ec2/pricing/on-demand
https://aws.amazon.com/ec2/pricing/on-demand

	Introduction
	Background
	DeathStar Movie
	Evaluated database systems

	Adapting Deathstar Movie for geo-distributed databases
	Experimental Setup and Results
	General setup
	Experiment
	Baseline
	Skew
	Sunflower
	Scalability
	Network Delay
	Packet Loss

	Responsible Research
	Benchmark environment

	Discussion
	Combining parameters
	Interpretation of DeathStar Movie
	Related work
	Recommendations for future work

	Conclusion

