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INTRODUCTION 

Since it was first applied on the automotive industry (Court 1939), more than six decades ago, the 

hedonic approach has rapidly developed as one of the most widely used analytical framework for 

estimating the implicit prices of attributes pertaining to heterogeneous goods. Considering the 

highly complex nature of real estate which consists of building, land and neighbourhood 

characteristics, it soon became a prime target for hedonic price modelling where it was applied 

for various purposes, among which the estimation of the marginal contribution of urban 

externalities – namely environmental ones – to market values. The introduction and the 

generalization of the personal computer in the late 1970s – early 1980s then allowed hedonics to 

spread and eventually dominate the development of computer assisted mass appraisal (CAMA) 

systems, first in the United-States and later on in the rest of the world, particularly where property 

values form the basis of the local tax system.  

The popularity of hedonic price modelling for mass appraisal purposes stems from several 

factors. Firstly, it rests on multiple regression analysis (MRA), a conceptually sound and most 

powerful analytical device that combines probability theory with calculus, thereby allowing 

sorting out crossed influences that affect property values. Secondly, it perfectly fits the very 

definition of market value, expressed as “the most probable price” that should be paid for in a 

competitive and transparent market setting. A market value being a probability distribution, it 

calls for a statistical treatment which conveys objectivity through direct market reading, is easily 

reproducible and offers adequate testing of result reliability; MRA does provide for such 

qualities. Thirdly, the hedonic approach is not confined to producing value estimates as it adds 

most useful insights into the causal dimensions of property value determination. Thus, it is 

viewed as a decision making tool that brings about market intelligence, even more so when used 
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in combination with geographic information systems (GIS), a “natural”, and increasingly 

imperative, complement for adequately handling spatial issues.  

In order to apply though, all these advantages require that somewhat restrictive assumptions be 

met. In short, variables as well as model residuals should be normally distributed, the relationship 

between the dependent variable and the descriptors should be linear, exogenous variables should 

be independent from one another while the error terms should be both independent and 

homoskedastic. The model’s failure to comply with such restrictions due to the presence of 

excessive multicollinearity, heteroskedasticity and spatial autocorrelation may result in parameter 

estimates – that is, implicit prices of property attributes - not being reliable anymore. As shall be 

discussed later on, most problems encountered with MRA can be dealt with successfully through 

data transformation, appropriate market segmentation and adequate model specification as well as 

through resorting to suitable spatial modelling procedures.  

Yet, the hedonic approach remains structurally bound to assuming a priori some functional 

relationship between sale prices and property attributes, based on either deductive or inductive 

grounds, or both. Whether this should be considered as a strength or a drawback of the method 

depends on the research “ideology” of the modeller; which is why hedonic price modelling, 

considered as the orthodox way in mass appraisal practice, is being challenged by other non-

econometric, more flexible, approaches such as artificial neural networks (ANN) (Worzala et al., 

1995), pattern recognition, fuzzy logic and rough set theory, all of which are data driven 

techniques, hence freed from the need to provide a theoretical explanation to value. Ultimately, 

this raises the following question: is understanding the dynamics of real estate markets 

prerequisite to reliably predicting property values? 

In this paper, several methodological issues pertaining to hedonic price modelling are discussed 

in the light of past empirical research performed since 1995 in Quebec, Canada, and mainly in 

Quebec City. Section 1 looks at the rationale and conceptual framework underlying the hedonic 

approach. In Section 2, the functional form issue is addressed with particular reference to the 

measurement of proximity effects on house values. Section 3 looks at ways to account for a major 

determinant of property prices, namely accessibility to urban services. In Section 4, the spatial 

dependence issue is investigated and alternate modelling procedures designed at handling spatial 

autocorrelation are discussed. Finally, the paper concludes on the relevance of the hedonic 

approach for appraisal purposes. 
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1. HEDONIC PRICE MODELLING – THE CONCEPTUAL FRAMEWORK 

While the formulation of the hedonic theory is associated with Rosen’s (1974) seminal paper, the 

use of MRA for hedonic pricing can be traced back to Court (1939) who applied the concept to 

the automotive industry and, later on, to Stone (1956), Griliches (1961) and Lancaster (1966). 

Since then, Rosen’s approach has been applied to a wide range disciplines, among which housing 

(Bajari and Kahn, 2005), public economics, environmental economics, labour markets and, to a 

lesser extent, marketing and industrial organization (Berry et al., 1995; Goettler and Shachar, 

2001; Benkard and Bajari, 2005). Similarly, topics dealt with through hedonic price modelling 

prove to be most diverse, from estimating the value of urban air quality (Graves et al., 1988) to 

building price indexes (Griliches, 1971; Hoesli et al., 1997a) to analyzing market power and 

quality differentials in the food industry (Gorman, 1980; Nevo, 2001), to name just a few. Being, 

by and large, highly competitive with characteristics that are openly known to both buyers and 

sellers, the housing market turned out to be an ideal ground for applying hedonics. While single-

family houses clearly dominate the hedonic literature, rental housing (Sirmans and Benjamin, 

1989 & 1991; Jud and Winkler, 1991; Des Rosiers and Thériault, 1996; Hoesli et al., 1997b) as 

well as commercial properties (Benjamin et al., 1990; Sirmans and Guidry, 1993; Mejia and 

Benjamin, 2002; Des Rosiers et al., 2005) have also been analyzed using the hedonic framework.  

From a conceptual point of view, the hedonic theory applies to heterogeneous goods and rests 

upon the assumption that the market price of a complex good (Z) is a direct function of the utility, 

or profit, derived from the quantity of the n attributes it is composed of. The market price for Z 

results from equilibrium between supply and demand, based on known characteristics. Each 

consumer, or buyer, is assigned a bid function (θ ) reflecting his willingness-to-pay for the good 

with θ  being expressed as a function of both the quantity of the n attributes composing Z and the 

level of utility (υ) derived for a given level of income (y) and a given structure of preferences (α). 

The bid function may be written as follows: 

( )αy,nzz .,,...,1 υθθ =   (1) 

Similarly, the individual supply function (φ ) defines the minimal price a producer (seller) is 

willing to accept for Z considering its attributes and the expected profit (π ), for a given 

production level ( M ) and cost function ( β ); φ  may be written as follows: 

  ( )βπφφ ,Mnzz .,,...,1=          (2) 



 4

Market equilibrium is reached for each attribute at the tangency point of bid and supply functions.  

In Exhibit 1, all dimensions other than the Z1 attribute are held constant, with the dotted, envelope 

curve representing the hedonic, or implicit, price function for Z1. Generalizing this scheme leads 

to a family of envelope curves (hedonic prices) whereby market equilibrium is reached for all n 

attributes. 

Exhibit 1 : Determining Implicit Price for Attribute 1z  

 

Rosen’s (1974) contribution brought out two major limitations of the hedonic framework. Firstly, 

as displayed in Exhibit 1, the hedonic function amalgamates supply and demand factors, thereby 

inducing an identification problem. Secondly, the linearity of the hedonic function may be 

seriously questioned in light of empirical evidence pointing toward the non-linear behaviour of 

several phenomena, in particular with respect to the shaping of real estate values. For instance, 

the marginal contribution of either liveable area or lot size to house value is known to be 

decreasing. Finally, a third issue raised by Tyrvainen (1997) refers to the need for homogeneous 

household preferences to apply throughout the specific market under analysis for implicit prices 

to be derived. This is of paramount importance in an appraisal context since, as put by Epple and 

Platt (1998), households in any jurisdiction tend to differ in both preferences and income; not 

accounting for the heterogeneity dimension could then lead to severe fiscal inequities where 

appraised values are used for tax purposes. 
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With respect to the first point, Straszheim (1987) argues that hedonic modelling practice has led 

to clearly distinguishing demand from supply determinants and that, anyway, implicit prices are 

actually estimated from the relationship for each housing attribute. As for the non-linearity and 

spatial heterogeneity issues, they are the focus of the following sections. 
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2. URBAN EXTERNALITIES AND THE FUNCTIONAL FORM ISSUE -                                                 
MEASURING PROXIMITY EFFECTS  

Richardson (1977), Berry and Bednarz (1979) as well as Hoch and Waddell (1993) all pointed out 

that rents and property values ultimately result, at any point in space, from the overlapping effect 

of access and neighbourhood attributes. Hence the particular emphasis laid upon neighbourhood, 

environmental and access variables in the hedonic literature. Indeed, measuring the extent to 

which urban externalities deriving from either residential or non-residential uses are capitalized 

into surrounding property values emerges as a dominant field of application for hedonics (Grether 

and Mieszkowski, 1980; Guntermann and Colwell, 1983; Colwell, Gujral and Coley, 1985; 

Colwell, 1990; Des Rosiers et al., 1996, 1999, 2000 & 2001; Kestens et al., 2004); environment-

oriented analyses, in particular, prove quite abundant (Des Rosiers, 2002; Simons and Saginor, 

2006). In spite of the limitations of the method, it remains the most widely accepted tool for 

untangling the complex cross-influences between the numerous dimensions affecting property 

values and rents. 

Investigating the effect of externalities on house values raises the fundamental issue of the 

functional form of the hedonic function (Linemann, 1980). While non-linearity in the parameters 

of the function will lead to using non-linear estimation procedures instead of the standard 

Ordinary Least Squares (OLS) method, non-linearity in the data may usually be handled 

successfully through some appropriate mathematical transformation on the variables. Indirectly 

though, coping with non-linearity calls for the market segmentation issue to be likewise addressed 

since the choice of a functional form may be sample-dependent. For that reason, market 

segmentation has also been well researched in the hedonic literature (Bajic, 1985; Adair, Berry 

and McGreal, 1996; Goodman and Thibodeau, 2003). 

In this section, two cases will be considered based on previous research. In the first case study, 

the impact of a high voltage transmission line (HVTL) on house values is measured using dummy 

variables while the second case study involves a more sophisticated transformation meant at 

capturing the joint, non-monotonic influence of distance to, and size of, nearest primary school on 

values. 
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2.1 Measuring the Impact of a HVTL on House Prices 

2.1.1 Context of study and database:  

Since 1990, there have been numerous hedonic analyses on estimating the impact of HVTLs on 

house values, among which those by Colwell (1990), Delaney and Timmons (1992), Hamilton 

and Schwann (1995), Kinnard and Dickey (1995) and Des Rosiers (2002). Most studies 

concentrate on estimating the lessening influence of a HVTL with increasing distance from the 

line or easement, using either discontinuous, dummy variables or some transformed continuous 

descriptor. While also dealing with that issue, Des Rosiers’s (2002) study adopts a micro-spatial 

approach to impact measurement and focuses on what goes on along the line, using a series of 

dummy variables that describes in detail the position and orientation of the line and pylons 

relative to adjacent and nearby houses as well as the level of visual encumbrance to households.  

The study is based on a sample of 507 single-family houses sold over the 1991-96 period in the 

City of Brossard (pop.: 69,000 by 1996), located in the Greater Montreal area, Canada, on the 

south shore of Saint-Lawrence River. The study area, which is between 250 and 500 metres wide, 

is bounded by three major highways, with a 315 Kv. transmission line running through its centre. 

Overall mean house price for the global sample stands at 169 600 Can$. The HVTL corridor itself 

is about three kilometres long and 60 metres wide, with IVA (Improved Visual Appearance) 

conical steel pylons reaching, in most cases, between 48 and 55 metres in height; within the study 

area, 26 such pylons are numbered. The span between pylons varies from 200 to 350 metres, 

minimal clearance between conductors and ground level standing from a low of 11 metres to a 

high of 20 metres. While the neighbourhood topography is flat with little tree planting around the 

HVTL structure, a cycling path is designed along its east side. 

A major feature of this case study is the asymmetrical location of the line, which is within 50 

metres of the eastern boundary of the easement, as opposed to 15 metres on the west side. 

Overall, 383 houses have a limited, moderate or pronounced - rear, side or front - view on the 

line, with 34 being directly adjacent to it. The average distance to the external boundary of the 

HVTL easement stands at 248 metres. The analysis includes some 25 property descriptors 

pertaining to physical, neighbourhood, environmental, access, fiscal and sales time attributes as 

well as a series of HVTL-related descriptors: linear distance to the line and easement as well as 

dummy distance variables (50 and 100 m. increments) ; dummy variables to control for pylons’ 

position relative to houses that are adjacent to the easement (house facing pylon, located one, two 
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or three lots away from pylon, or mid-span located); and a series of interactive dummy 

descriptors to account for the combined extent of the view on the HVTL structures and the 

orientation of the property with respect to the easement. While both linear and log-linear 

functional forms were used, HVTL distance variables were also applied several transformations - 

including logarithmic, square root, inverse, quadratic and gamma. The analysis was first 

performed on the global sample, and then on a series of submarkets, among which the east and 

west areas.  

2.1.2: Major findings:  

Some fifty models were calibrated, whose results are not shown here. Both explanatory and 

predictive performances prove excellent, with adjusted R-Squares being, by and large, well in 

excess of 0.90 while prediction error (SEE) usually stands well below 10 percent. All parameter 

estimates display signs and magnitudes that are in line with theoretical expectations. In particular, 

findings corroborate previous research in that they suggest that negative visual impacts on 

values – as measured with both dummy and continuous variables - tend to decrease rapidly with 

distance, and are no more significant beyond 150 metres. Findings also suggest that « net visual 

encumbrance» reaches a maximum for houses located between 50 and 100 metres from the 

easement boundary - with values dropping by some 5% to 12% of mean price - and tends to 

disappear beyond 150 metres.  

Since our purpose here is to illustrate how location dummies allow for capturing discontinuous 

effects along the HVTL structure, we shall now focus on findings obtained for the global sample 

as well as for the east and west areas and pertaining to adjacent properties. By and large, the 

residential property which is both adjacent to a HVTL easement and facing a pylon (FACNGPYL) 

experiences a significant drop in value due to resulting visual encumbrance. This drop, which 

averages 9.6% of mean house price in the global sample, reaches 14% in the west area where a 15 

metres setback with respect to the HVTL easement is found. In the east area however, 

characterized by a 50 metres setback, a direct view on a pylon has no significant impact on prices.  

In contrast, a property located one or two lots away from a pylon (12LOTPYL) usually benefits 

from a market premium which mirrors the improved visual clearance and increased intimacy thus 

generated. Results obtained with the global sample show price increases averaging 11.6% 

(1LOTPYL) and 8.7% (2LOTPYL) of mean house value, respectively. For adjacent properties 

belonging to the east area, being one lot distant from a pylon translates into a premium of 15.7% 
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whereas no significant price impact is detected in the west area: due to a reduced setback, the 

pronounced visual encumbrance tends to cancel out proximity advantages. In turn, the premium is 

significant at a two-lot distance (10.3%).  

Finally, a property located three lots away from a pylon or at mid-span (3LOTMID) will, by and 

large, experience a significant price drop as a consequence of the visual encumbrance caused by 

conductors in the HVTL corridor section with low minimal clearance relative to ground level. 

Results obtained with the global sample suggest a 4.7% depreciation, as opposed to 7.7% in the 

east area. In the west area, a mid-span location (MIDSPAN) results in a 7.4% price drop. 

Exhibit 2 summarizes these findings, which, for the first time, tend to confirm on sound statistical 

grounds that being adjacent to a HVTL easement will not necessarily cause a house to depreciate 

and may even increase its value where proximity advantages (enlarged visual field, increased 

intimacy) exceed drawbacks. In this case, a micro-spatial approach resorting to location dummies 

proves an efficient way of capturing proximity effects. 

2.2 Coping With the Non-Monotonicity of the Hedonic Function –                                  
The Case of Primary Schools 

Our second example on the measurement of proximity effects investigates both school size and 

proximity to elementary schools as potential determinants of residential prices, with a focus on 

identifying the functional form that best accounts for the non-monotonicity of the hedonic 

function with respect to either parameters (Des Rosiers et al., 2001). 

2.2.1 Previous research and context of study:  

Relatively few authors have dealt with the impact that access to, and proximity of, primary 

schools exert on house values, and none has ever addressed the size issue, at least explicitly. 

Using 1,044 residential sales transacted between 1969 and 1977 in seven primary school 

neighbourhoods in western and south-western Lubbock, Texas, Guntermann and Colwell (1983) 

extensively investigate the impact primary schools have on house values. Their model includes an 

access variable - the inverse of the distance in miles to the nearest school - designed at capturing 

the fall in value beyond a critical distance d*, as well as a variable which captures the negative 

externality effect within d*. Thus, d* can be defined as that very distance where disadvantages 

due to school proximity are counterbalanced by the access factor. Findings indicate that both 

access and externality variables are statistically significant, giving a net accessibility effect over 

the entire area surrounding a primary school. This suggests that the access factor remains
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Exhibit 2:  Impact of HVTL Structures on the Market Value of Adjacent Properties  
– City of Brossard, Canada, 1991-1996 

HVTL % Impact
Attribute

Global Sample

House facing pylon: FACNGPYL -9,6%

One lot away from pylon: 1LOTPYL 11,6%

Two lots away from pylon: 2LOTPYL 8,7%

Three lots away from pylon 3LOTMID -4,7%
or mid-span location:

-9,6%

11,6% 8,7%

-4,7%

-10,0%

-5,0%

0,0%

5,0%

10,0%

15,0%

%
 Im

pa
ct

FACNGPYL 1LOTPYL 2LOTPYL 3LOTMID

Global Sample

East Area ( 150 ft. setback to HVTL)

House facing pylon: FACNGPYL n.s.

One lot away from pylon: 1LOTPYL 15,7%

Two lots away from pylon: 2LOTPYL n.s.

Three lots away from pylon 3LOTMID -7,7%
or mid-span location:

0,0%

15,7%

0,0%

-7,7%

-10,00%

-5,00%

0,00%

5,00%

10,00%

15,00%

20,00%

%
 Im

pa
ct

FACNGPYL 1LOTPYL 2LOTPYL 3LOTMID

East Area

West Area (50 ft. setback to HVTL)

House facing pylon: FACNGPYL -14,0%

One lot away from pylon: 1LOTPYL n.s.

Two lots away from pylon: 2LOTPYL 10,3%

Mid-span location: MIDSPAN -7,4%
(sig. 0.07)

N.B.:
 Percentage price impacts reported here are an average of all significant coefficients derived from various functional forms and should  
therefore be viewed as indicators only. Besides, they reflect "gross" location impacts due to a view on pylons and conductors alone.
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overwhelming in guiding households’ location choices. As for the value of d*, it ranges from 165 

to 1,320 feet from the school, with the maximum R-Squared being achieved at a d* of 742 feet. 

The current study is based on a subset of some 4,300 bungalows (one-story, single-family 

detached houses) sold on the territory of the Quebec Urban Community (QUC, pop.: 675,000 by 

the time of study) between January 1990 and December 1991 and 116 elementary schools spread 

all over the territory. Sale price, used as the model dependent variable, ranges from a minimum 

of 35,000 to a maximum of 238,000 $Can., with median price standing at 81,000 $Can. Up to 42 

descriptors are used in the model, including detailed information on residential transactions, 

building and site characteristics, outbuildings, local tax rates, neighbourhood and access 

attributes as well as census (socio-economic) and environmental features. The spatial links 

between variables are processed via a regional GIS (Geographic Information System) equipped 

with spatial statistics capabilities (Des Rosiers and Thériault, 1995). 

Primary schools are classified into three size categories: small (200 pupils and below), medium 

(201-500 pupils) and large ones (over 500 pupils). The vast majority of them (81) are medium-

size establishments, while small and large schools number 16 and 19 units, respectively. 

Euclidian distances to the nearest school, expressed in kilometres, are based on centroïd-to-

centroïd calculations, not on distances to establishment outer peripheral boundaries. Although the 

measurement bias thus generated remains negligible in most cases, it should be borne in mind 

when interpreting distance coefficients - as well as optimal distances - pertaining to large 

schools.  

2.2.2 Handling non-monotonicity through a gamma transformation: 

While an easy access to a nearby school remains an overwhelming advantage for households with 

school-age children (Guntermann and Colwell, 1983), too great proximity to a school may be 

assumed to drive house prices down because of traffic, noise and, eventually, risk of damage to 

property. An optimal distance from school should then exist, whereby the net positive impact on 

house value is maximized. A similar rationale could be applied to school size, with both small 

and large school displaying advantages over middle-size institutions, which may be large enough 

to generate negative externalities without though providing adequate sporting amenities and 

after-school social interaction opportunities. If this is right, negative externalities ensuing from 

school size should reach a maximum for mid-size schools. 
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Non-monotonicity is usually dealt with in the economic literature using a quadratic function. 

While relatively easy to handle within a linear analytical framework, such a function adequately 

captures nonlinear phenomena involving a minimum or a maximum, provided though these 

follow a symmetrical, regular pattern. Wherever it is not so, the quadratic form remains a quite 

rigid mathematical device which only imperfectly mirrors the reality. In the case of an 

elementary school, it is reasonable to assume that the negative externalities due to noise and 

traffic will affect house values downwards, but only within a relatively short radius from the 

establishment. In contrast, the drop in value beyond the optimal distance due to a reduced access 

is expected to be relatively smooth and to extend over a larger area. In other words, because 

location and amenity factors do not operate symmetrically in space, each portion of the price-

distance curve on either side of the function maximum should be expected to command 

substantially different slopes. A similar asymmetry may characterize the price-size relationship. 

Modelling such a pattern requires a flexible tool, which can eventually adapt to various situations 

and research concerns. It will be shown here that the gamma transformation, which has been 

successfully applied in the case of shopping centres (Des Rosiers et al., 1996), meets these 

requirements.  

2.2.3 Solving for the price-distance relationship: 

The gamma distribution is a probability density function given by: 

f (x)  = K * x (α-1) e (-x / β)  for x > 0 (3) 

 = 0  for x = 0, 

where α and β  are positive parameters and K  is a constant. It can be demonstrated that, for 

specific values of the parameters α and β, the gamma distribution turns into an exponential 

distribution, a chi-square distribution or even approaches a normal distribution. Moreover, the 

lower the value of β the steeper the slope beyond the maximum. This is precisely the flexibility 

needed to deal with our research concern. In the following mathematical development, distance 

to the nearest primary school is used as the critical dimension to isolate, while all other 

descriptors are control variables. Integrating the gamma function into the hedonic equation 

results in a generalized gamma formulation which is given by: 

SALEPRICE = K1 * DSCHOOL (α1-1) e (-DSCHOOL / β1) * Φ (SCHLSIZE) e (Σ Bi*Zi + e), 
  (4) 
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where Φ (SCHLSIZE) is a function of school size - specified later on - while the Σ Bi*Zi term 

accounts for the control variables. Applying a logarithmic transformation then gives: 

LnSALEPRICE = Ln K1 + (α1-1)  Ln DSCHOOL – DSCHOOL / β1  

 + Ln Φ (SCHLSIZE) + Σ Bi Zi + e (5) 

The first derivative of the gamma function provides a measure of the "optimal" distance away 

from a nearby school in order for a property to have its value maximized. Optimal distance 

(DSCHOOL*) can be determined by solving for the first derivative set to zero. Thus, we can 

write:  

d LnSALEPRICE / d DSCHOOL = (α1-1)  1/ DSCHOOL - 1 / β1  (6) 

Hence:  DSCHOOL* = (α1-1) β1   (7) 

The mathematical requirement for a maximum to be reached though is that the second derivative 

of the function with respect to DSCHOOL be negative, which gives: 

d2 LnSALEPRICE / d DSCHOOL 2  < 0  (8) 

Hence:  (α1-1) / DSCHOOL 2 > 0   (9) 

Because squared distance is always positive, this condition is met as long as the alpha parameter 

is greater than unity.  

2.2.4 Addressing the price-size relationship: 

Turning to the price-size issue, a similar gamma transformation is now performed on the size 

variable. In this case however, excessive collinearity between school size terms requires that it be 

adapted using the Box-Cox procedure (1964). The detailed procedure followed is reported in Des 

Rosiers et al. (2001). 

The ensuing model thus provides for a double-gamma transformation expressed as: 

LnSALEPRICE = Ln K1 + (α1-1)  Ln DSCHOOL – DSCHOOL / β1  
 + Ln (K2 - 1/2β2) - (α2-1)  Ln SCHLSIZE   
 + (1/2β2) SCHLSIZE 2 +  Σ Bi Zi + e, (10) 

where Ln K1 + Ln (K2 - 1/2β2) = δ,      (11) 
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which represents the constant term of the double-gamma transformation on both distance-to-

school and school size. Solving for the first and second derivatives with respect to school size, we 

can write:  

d LnSALEPRICE / d SCHLSIZE = - (α2-1) / SCHLSIZE  + SCHLSIZE / β2 (12)  

and:  

d2 LnSALEPRICE / d SCHLSIZE 2  = (α2-1) / SCHLSIZE 2  + 1 / β2 > 0  (13) 

Setting the first derivative to 0, the value-minimizing school size can then be determined as 

follows: 

SCHLSIZE* = √—(α2-1) β2   (14) 

Overall model performances obtained with a semi-log functional form prove quite good 

(Adjusted R-Square: 0.832; SEE: 0.0985; F Ratio: 531.4), with 37 of the 40 independent 

variables emerging as statistically significant at the 0.001 level. As for collinearity, it is well 

under control; while VIFs are understandably higher for primary school variables, they remain 

within the critical threshold of 10 (Neter et al., 1985).  

Substituting the double-gamma transformation for the initial distance-to-school and school size 

terms in the semi-log hedonic equation corroborates research assumptions, as shown in Exhibit 3. 

Findings provide strong empirical evidence that the gamma function efficiently captures 

households' residential preferences with respect to proximity of, and access to, primary schools. 

Most interestingly, house values are maximized at a 407 metres distance from the nearest school. 

Allowing for a walking pace of two kilometres an hour – a reasonable pace for a not-too-

reluctant child -, this implies a twelve minutes walk from home. It is also consistent with the 

upper limit identified by the Guntermann and Colwell’s (1983) study. 

As for the modified gamma function applied to school size, findings suggest that negative 

proximity effects first increase with school size, reach a maximum at a critical size of 365 pupils 

and decrease thereafter. Again, they tend to corroborate Guntermann and Colwell’s (1983) view 

that larger schools offer leisure services valued by households and which are therefore 

internalized into residential prices.  

Exhibit 4 provides a useful illustration of both price-distance and price-size relationships.
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Exhibit 3: Main Regression Findings for Primary School Variables – Quebec Urban Community, Canada, 1990-1991 

Name of Variable 
Regression 
Coefficient T value Probability > |T| 

LnDSCHOOL*** 0.0275 5.62 0.000 

DSCHOOL*** -0.0001 -11.08 0.000 

LnSCHLSIZE** -0.0207 -2.17 0.030 

SCHLSIZE2** 0.0000 2.09 0.036 

 Alpha Beta  

Gamma parameters on 
Distance-to-school 1.03 14 782 

Optimal Distance (m.) 
407 

Gamma parameters on 
School Size 1.02 6.45E+06 

Value Minimizing Size (# pupils) 
365 

Exhibit 4: House Values, Distance-to-School and School Size 
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3. HEDONIC MODELLING AND ACCESSIBILITY TO URBAN SERVICES 

3.1 Defining Accessibility – Objective or Subjective Concept? 

Accessibility to goods and services is a complex notion which completely pervades territorial 

issues (Hansen, 1959); for that reason, it can be considered as one of the main determinants of 

property values (Des Rosiers et al., 2000), although its influence will differ depending on the 

configuration of the urban fabric (Kestens et al., 2004). Together, accessibility and mobility are 

central to understanding transportation and urban dynamics. Hanson (1995) points out that 

accessibility refers to the number of opportunities available within a certain distance or travel 

time while mobility refers to the ability to move between different activity sites. According to 

Levy and Lussault (2003) though, accessibility cannot be defined by itself since it depends on 

context-specific criteria: transportation networks and technology on the supply side; personal 

values, natural constrains (e.g. weather) and sociological acceptability on the demand side.  

Previous research show that Euclidean distances to the CBD and various urban amenities, as well 

as travel times to schools and shopping centres, are useful, objective measures of the phenomenon 

which can be easily assessed using information from transportation networks. However, other 

perceptual, hence subjective dimensions are at stake, which are driven by households’ 

preferences, family structure and life cycle as well as by income and motorization constraints. 

The resulting utility functions affect home location choices and, consequently, housing markets as 

a whole.  

Accessibility is usually seen as an interaction potential mostly driven by socio-economic forces 

(Handy and Neimeier, 1997; Levinson, 1998). Thus, the accessibility potential of any location – 

or attraction point - could be expressed as a direct function of the number of opportunities it 

offers as a destination for households while being inversely related to its distance (or travel time) 

to residential places. This forms the conceptual grounds for gravity models as applied in urban 

studies during the seventies (Curry, 1972; Cliff et al., 1974; Johnston, 1973). During the eighties, 

Fotheringham (1981 & 1986) developed the behavioural theories needed to analyze competing 

destinations. For Boots and Kanaroglou (1988) as well as for Tiefelsdorf (2003) though, spatial 

structure effects explain much of the spatial heterogeneity in the distance decay patterns and 

should therefore be controlled for before accessibility measures are derived.  

Research on accessibility leads to questioning the “objective”, supply-driven definition which is 

traditionally attached to this concept. Rather than being viewed as homogeneous in space, it could 
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be argued that accessibility to urban amenities is likely to vary according to the type of amenity 

considered (e.g. workplaces versus leisure places) as well as among social groups. If this is so, 

then how do both measures (i.e. supply-driven and demand-driven indices) compare as 

determinants of location rents and house prices? The following section investigates that issue. For 

that purpose, hedonic modelling is applied to some 952 single-family houses sold in Quebec City 

between 1993 and 1996. Firstly, a principal component analysis (PCA) is performed on a series of 

15 travel time variables computed on the Quebec Metropolitan Area (QMA) road network, 

resulting in two supply-driven accessibility indices. Then, “subjective”, demand-driven indices of 

accessibility based on actual purpose-specific trips made by individuals and households are built 

for Quebec City using fuzzy logic. A gravity-based centrality index is also designed as a control 

variable to be used jointly with the latter. House prices are finally regressed on a series of land, 

building and neighbourhood variables, with PCA-derived and demand-driven accessibility indices 

being used alternately in the equation. 

3.2 Using Factor Analysis to Derive Overall, Supply-Driven Accessibility Indices 

The regional GIS used for this study includes, among other things, detailed information on the 

QMA road and street network as of 1991. Using the TransCAD transportation-oriented software, 

it was possible to compute, for each property in our database, the best route (shortest distance and 

trip duration) to main employment centres, to schools, colleges and university as well as to 

neighbourhood, local and regional shopping centres. The computation algorithm developed for 

that purpose identifies 52,500 street segments (acting as directional links) and 19,250 nodes 

(acting as street intersections), of which 10,472 are within Quebec City’s limits. Distances and 

travel times by car and on foot to the nearest amenity are computed for every street node in the 

network and then assigned to all related properties. Only travel times are considered in this paper. 

As a result, 15 accessibility attributes are defined, as reported in Exhibit 5. Using these 

simultaneously in a single equation would of course induce severe collinearity in the model. To 

reduce its extent, one may limit the number of descriptors to a minimum, thereby causing a partial 

loss of information. Another option – developed here - is to resort to factor analysis (Thurstone, 

1947; Rummel, 1970) in order to generate independent complex variables used as substitutes for 

initial attributes.  

The principal components method (PCA), with a Varimax rotation, is thus applied to each initial 

travel time variable. Outlined by Hotelling (1933), this method essentially involves an orthogonal 

transformation of a set of variables (x1, x2, ..., xm) into a new set of mutually independent 
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components, or factors (y1, y2, ..., ym) (King, 1969). Each component thus obtained consists of a 

linear combination of all initial variables (Tabachnick and Fidell, 1996) which are assigned a 

specific weight that vary among components. The first component is to have the highest variance 

among the “m” set of components, thereby accounting for a dominant portion of the variance 

observed in the data. The Varimax saturation obtained in the process for each variable and within 

each factor also indicates to what extent a given attribute contributes to the phenomenon captured 

by the factor. Only the most significant components will be retained by the analyst on the grounds 

of either their eigenvalue or percentage of variance explained.  

The rotated factor analyses performed on access attributes result in two components being 

retained. As shown in Exhibit 5, they jointly explain more than 75 percent of the total variance, 

with Component (Factor) 1 accounting – after rotation - for 42 percent, as opposed to 33 percent 

for Component (Factor) 2. The information provided by the rotated component matrix points 

toward a quite straightforward interpretation: Factor 1 accounts for accessibility to regional 

services while Factor 2 refers to local accessibility. 

3.3 Resorting to Fuzzy Logic to Derive “Subjective” Accessibility Indices 

3.3.1 The 2001 Origin-Destination survey: 

From mid September to mid December 2001, the Ministry of Transport of Quebec (MTQ) and 

the Quebec City Transit Authority (RTC) conducted a large Origin-Destination (O-D) survey 

involving 68,121 persons living in 27,839 households and describing 174,243 daily trips. Each 

household has its home located on a 1:20,000 map using street addresses. Each person belongs to 

a specific household and is characterized by his/her age, gender, occupation (worker, student, 

retired, unemployed, etc.) and ownership of a car driver licence. Households were ultimately 

classified as follows: lone person, childless couple, two-parent family (father and mother with 

children), lone-parent family (father or mother with children), and other households (either 

multi-generational or more than two adults, with and without children). 

The origin and destination points of each trip reported by respondents are located in space using 

several geocoding methods yielding highly accurate spatial references (identifying either the 

building or the city block). Each trip is described by several attributes including its purpose 

(work, school, shopping, grocery, leisure, health care and restaurant), transportation mode (car 

driver, car passenger, walk, bus, bike, etc.) and departure time. Trip duration is estimated using a 

computational procedure (Thériault et al., 1999) linking origin and destination points of each trip 
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Exhibit 5: Using Factor analysis to Derive Overall Accessibility Indices 

Total Variance Explained
Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Component Total % of Variance Cumulative % Total % of Variance Cumulative %
1 9.683 64.556 64.556 6.313 42.086 42.086
2 1.668 11.122 75.678 5.039 33.592 75.678

Extraction Method: Principal Component Analysis.  

Rotated Component Matrix a

.6466 .3518

.7584 .5554

.5572 .7276

.5455 .6708

.3511 .7967

.9107 .2421

.9156 .2737

.6101 .5335

.8933 .1427

.3198 .7009

.4070 .7762

.0106 .7237

.2733 .8475

.8009 .2968

.8753 .3606

Travel time to nearest highway entrance by car (minutes)
Travel time to nearest regional shopping center by car (minutes)
Travel time to nearest local shopping center by car (minutes)
Travel time to nearest neighbourhood shopping center by car (minutes)
Travel time to nearest highschool by car (minutes)
Travel time to nearest college or university by car (minutes)
Travel time to Laval University by car (minutes)
Travel time to Downtown Quebec by car (minutes)
Travel time to Downtown Ste-Foy by car (minutes)
Travel time to La Capitale shopping center by car (minutes)
Walking time to nearest neighbourhood shopping center (minutes)
Walking time to nearest primary school (minutes)
Walking time to nearest highschool (minutes)
Walking time to nearest college or university (minutes)
Walking time to Laval University (minutes)

1 2
Component

Extraction Method: Principal Component Analysis.  
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 3 iterations.a. 
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to the nearest street corner. The best route, expressed as the shortest distance (km) and duration 

(minutes), is then computed on this basis and added to the GIS.  

Previous research (Thériault et al., 2005) clearly suggests that trip durations significantly differ 

between purposes as well as among individual and household profiles, thereby reinforcing the 

idea that accessibility is not homogeneous and that “objective”, supply-driven measures may not 

be sufficient to capture trip-specific behavioural patterns. 

3.3.2 Designing perceptual accessibility indices: 

In as much as perception of accessibility fluctuates with the valuation each individual or 

household puts on each activity (trip purpose) and destination suitability, then travel time is a 

derived demand (Axhausen and Gärling, 1992). As pointed out by Kim and Kwan (2003), 

accessibility measurements should incorporate travel time thresholds since people adjust their 

willingness to travel according to the duration of both activities and trips. Developing a flexible 

methodology which includes personal trip duration thresholds associated with physical 

simulation of best-suited routes can thus enhance our understanding of accessibility. That is the 

purpose of this sub-section. With this in mind, we operationally define accessibility as the ease 

with which persons, living at a given location, can move to reach activities and services which 

they consider as most important. 

Such a definition makes accessibility, a mostly behavioural and subjective concept, quite distinct 

from centrality which mainly relies on structural features and relates to proximity to urban 

amenities. In order to measure demand-driven accessibility, a procedure is designed which uses 

median and 90th percentile ranks to qualify travel distance satisfaction thresholds. At this point, 

the choice for specific thresholds remains arbitrary but it could be made more rigorous if 

empirical data on travel behaviour were available. For the purpose of this paper, it is assumed that 

[1] any travel time smaller than the observed median (C50) during the O-D survey leads to an 

acceptable destination; [2] a travel time larger than the 90th percentile of actually reported trip 

(C90) is likely to be unsatisfactory; and [3] that intermediate cases yield satisfactory levels 

obtained through linear interpolation (fuzzy membership).  

Suitability indices may thus be expressed as: 

501 CDS ijij ≤∀=  (15a) 
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where: 

Sij: Suitability index of travelling from residential location i to activity location j 
Dij : Travel time by car from residential location i to activity location j (minutes) 

C50 : 50th percentile of the observed car travel durations (minutes) 
C90 : 90th percentile of the observed car travel durations (minutes) 

Computing the sum of suitability indices over every service locations assesses the raw suitability 

of each residential location (Equation 16). Equation 17 is used to rescale values between 0 and 

100, using the city-wide maximum local raw suitability value as the denominator. This procedure 

is applied to every set of trip purpose and type of individual or household reported in the O-D 

survey. Maps were built for each accessibility index. Provided examples are Exhibits 5a (to 

restaurants) and 5b (to the labour market of women and men). 
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Ai : Raw suitability of residential location i (sum of suitable weighted opportunities) 

and : 

 niAAA
AA

n

i
i ,...,1,),...,,max(100

21

* ∈⎟
⎠
⎞⎜

⎝
⎛= , where: (17) 

Ai
* : Accessibility index of residential location i relative to the most suitable place. 

3.3.3 Controlling for urban centrality : 

While accessibility and urban centrality are two distinct concepts, purpose-specific accessibility 

indices (e.g. accessibility to jobs) may to some extent capture part of urban centrality features; 

hence the need to control for the latter.  In this study, a gravity-based model of interaction flows 

proposed by Tiefelsdorf (2003) is developed in order to account for interactions between any pair 

of residential and activity places. The following formulation assumes that [1] individual flows are 

independent from one another and that [2] interaction flows between any pairs of places are 

mutually independent (Thériault et al., 2005; Tiefelsdorf, 2003). Considering the actual features 
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of Quebec City’s road and highway networks, such assumptions are viewed as realistic. Thus, we 

can put: 

 d
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µ = , where: (18) 

ijµ : Expected number of car trips between locations i and j 

iP : Total population at residential location i 

jP : Total number of potential activities at location j 
Dij : Travel time by car from residential location i to activity location j (minutes) 

Estimation of parameters was done using actual car-based trips reported by inhabitants of Quebec 

City during the O-D survey. In order to reduce the heaviness of the mathematical treatment 

involved by this operation, a 500 metres-radius hexagonal grid covering the entire QMA was 

created, resulting in 563 residential grid cells within Quebec City and 533 activity cells (work 

places and other amenities) within the QMA being defined. Each O-D location was then assigned 

to one cell and cell-to-cell travel times between home and activity centres were modelled using 

local street corners. Finally, O-D survey data were expanded (Thériault and Des Rosiers, 2004) in 

order to provide a reliable estimate of residential and activity potentials of each grid cell. 

For each residential location, summing potential flows over all activity places provides an 

estimate of interaction with the overall urban amenities from that place (Equation 19). Equation 

20 rescales values between 0 and 100, using the city-wide local maximum estimated flow as the 

denominator. 
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iM : Estimated total flow for residential location i 
   n : Number of residential locations 
  m : Number of activity locations 
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Mi
*: Centrality index of residential location i relative to the maximum potential. 
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3.4 Hedonic Price Modelling and Accessibility – Comparing the Two Approaches 

In this section, a series of twelve hedonic price models are built in order to test the 

appropriateness of accessibility and centrality indices. The database consists of a randomly 

selected sample of 952 single-family houses sold within the Quebec City limits between 1993 and 

1996. Typical physical attributes are used as property descriptors (lot size, architectural type, 

living area, apparent age, number of washrooms, presence of a fireplace, excavated pool, attached 

or detached, single or double garage, etc.). A time variable (Month93Jan) is also included in order 

to assess the temporal drift on sale prices which, over that period, experienced a sustained drop. 

Finally, the overall, unstandardized local tax rate (OvllTaxRate) accounts for differentials in the 

local tax burden among the 13 municipalities forming the then QUC and which have since then 

been amalgamated in 2002. Considering that sale prices range from $50,000 to $460,000, a semi-

log functional form is used with the natural logarithm of sale price as the dependent variable. 

Model 1 includes only building, time and fiscal attributes. In Model 2, CPA-derived accessibility 

indices are added on. Finally, Models 3 to 12 combine specific, demand-driven accessibility 

indices – expressed as interactions between trip purpose and household profile - with the 

centrality index. Due to excessive collinearity, the latter could not enter Model 2. Overall model 

performances and full regression results for Models 1 to 3 are reported in Exhibit 6 while 

Exhibit 7 only reports regression results pertaining to accessibility and centrality indices obtained 

with Models 4 to 12.  

As can be seen from Model 1, all property-specific coefficients as well as time and taxation 

variables emerge as highly significant, with signs and magnitudes being in line with theoretical 

expectations. As expected, living area, apparent age and overall tax rate explain a large proportion 

of price variations. When added on, Access Factors 1 and 2 (Model 2), reflecting physical 

accessibility to regional and local amenities, respectively, substantially improve model 

performances while leaving most coefficients unchanged. As for findings from Models 3 to 

12, they clearly suggest that, even when controlling for urban centrality, accessibility to work and 

to other amenities emerge as significant, positive determinants of house values, thereby 

corroborating the view that accessibility is heterogeneous by nature. Moreover, it is worth noting 

that perceptual indices of accessibility far outweigh the centrality index, as shown by the Beta 

coefficients in Exhibit 7.  
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To summarize, while PCA-derived, objective measures of accessibility based on travel time to the 

nearest facility yield good results from a merely statistical point of view, perceptual accessibility 

indices obtained with fuzzy logic allow to investigate commuting patterns and travel behaviour 

with greater insight and to design indicators of accessibility that are trip-purpose and household-

status specific. 
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Exhibit 6: Modelling the Effect of Accessibility on House Prices 

Model Summary and Regression Results (Dependent Variable: LnSalePrice $) 

Model R R Square Adjusted R Square F Value Prob. SEE Maximum VIF 

1 .858 .736 .731 144.49 .002 .17959 3.050 
2 .884 .782 .777 166.95 .008 .16330 3.053 
3 .874 .763 .758 142.63 .003 .17040 3.060 

 
 Model 1 Model 2 Model 3 
 Unstdz. 

B 
Std. 

Error 
Standzd.

Beta 
t 

Value
Unstdz. 

B 
Std. 

Error 
Standzd.

Beta 
t 

Value
Unstdz. 

B 
Std. 

Error 
Standzd.

Beta 
t 

Value
(Constant) 11.68731 .04746 246.3 11.55619 .05250 220.1 11.50028 .05038 228.3
LotSize (m2) .00003 .00002 .031 1.6 .00008 .00002 .078 4.3 .00008 .00002 .080 4.2
Bungalow * Living Area .00235 .00018 .357 13.3 .00231 .00016 .351 14.4 .00228 .00017 .346 13.6
Cottage * Living Area .00249 .00013 .569 19.4 .00250 .00012 .571 21.3 .00247 .00012 .565 20.2
Attached * Living Area .00149 .00027 .101 5.5 .00098 .00025 .067 3.9 .00112 .00026 .076 4.3
Apparent Age -.00387 .00057 -.138 -6.8 -.00853 .00062 -.303 -13.8 -.00662 .00060 -.235 -11.0
# Washrooms .09517 .01252 .144 7.6 .07281 .01151 .110 6.3 .08150 .01197 .124 6.8
#Fireplace .05082 .01209 .079 4.2 .04970 .01101 .077 4.5 .05106 .01149 .079 4.4
Hard Wood Stair .07454 .01623 .096 4.6 .05922 .01489 .076 4.0 .06646 .01544 .085 4.3
High Quality Floor .06689 .01295 .097 5.2 .04912 .01185 .071 4.1 .05814 .01232 .084 4.7
LargeTerrace .12394 .04813 .045 2.6 .10813 .04382 .039 2.5 .10856 .04577 .039 2.4
Brick Ext. Walls (≥51%) .04567 .01420 .064 3.2 .03660 .01294 .051 2.8 .04089 .01349 .057 3.0
Clapbord Ext. Walls (≥51%) -.05414 .01565 -.069 -3.5 -.04675 .01425 -.060 -3.3 -.05210 .01489 -.067 -3.5
Single Attached Garage .13307 .02731 .085 4.9 .11599 .02488 .074 4.7 .12187 .02598 .078 4.7
Double Attached Garage .16945 .03793 .080 4.5 .13446 .03459 .063 3.9 .15802 .03626 .074 4.4
Double Detached Garage .10959 .03132 .062 3.5 .12144 .02857 .069 4.3 .11030 .02974 .062 3.7
Excavated Pool .18383 .02617 .125 7.0 .16487 .02386 .112 6.9 .16491 .02495 .112 6.6
Month93Jan -.00184 .00045 -.070 -4.0 -.00167 .00041 -.063 -4.1 -.00191 .00043 -.072 -4.5
OvTaxRate -.25656 .01589 -.292 -16.1 -.14557 .02068 -.166 -7.0 -.25032 .01575 -.285 -15.9
Acces_Factor1 (Reg. services) .12485 .00959 .322 13.0
Acces_Factor2 (Local services) .04177 .00871 .090 4.8
AWork * NoWorkerHld  .00287 .00042 .181 6.8
AWork * WorkerHld  .00273 .00035 .216 7.7
Centrality Index  .00173 .00051 .068 3.4
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Exhibit 7: Summary of Regression Results for Perceptual Accessibility        
  and Centrality Indices 
 

Model Accessibility / Centrality 
Index 

R 
Square 

SEE Unstdz. 
B 

Standzd.
Beta 

t 
Value 

VIF 

3 AWork * NoWorkerHld .758 .1704 .00287 .181 6.8 2.752
Workplaces * Hsld Profile AWork * WorkerHld   .00273 .216 7.7 3.061

 Centrality Index   .00173 .068 3.4 1.575
4 ASchool * Family .765 .1678 .00333 .279 9.6 3.431

Schools * Family Status ASchool * ChildlessHld   .00255 .220 8.0 3.068
 Centrality Index   .00146 .058 2.9 1.572

5 ALargeShop * Family .758 .1702 .00230 .186 7.9 2.200
Large Shops * Family Status ALargeShop * ChildlessHld   .00235 .138 6.0 2.059

 Centrality Index   .00172 .068 3.4 1.581
6 ASmallShop .759 .1698 .00276 .168 8.2 1.655

Small Shops Centrality Index .00152 .060 3.0 1.616
   

7 AGrocery * Family .756 .1710 .00257 .185 7.3 2.479
Groceries * Family Status AGrocery * ChildlessHld .00222 .130 5.4 2.281

 Centrality Index .00157 .062 3.0 1.685
8 ALeisure * Family .762 .1689 .00290 .242 8.8 3.001

Leisure * Family Status ALeisure * ChildlessHld .00272 .193 7.3 2.804
 Centrality Index .00143 .056 2.8 1.618

9 AHealthCare * Family .766 .1673 .00342 .265 9.9 2.947
Health care * Family Status AHealthCare * ChildlessHld .00262 .199 7.9 2.574

 Centrality Index .00124 .049 2.4 1.618
10 ARestaurant .768 .1668 .00323 .212 10.1 1.801

Restaurants Centrality Index .00120 .047 2.4 1.608
   

11 AWork * Age34less .757 .1704 .00220 .155 5.9 2.698
Workplaces * Age Groups AWork * Age35-44 .00301 .306 9.0 4.507

 AWork * Age45-54 .00324 .318 9.7 4.236
 AWork * Age55more .00317 .194 8.1 2.229

12 AWork .771 .1655 .00311 .179 8.3 1.914
Workplaces * Hsld Income AWork * Income<60K$ -.00111 -.098 -4.7 1.811

 AWork * Income60-80K$ -.00060 -.050 -2.5 1.682
 AWork * Income80-100K$ -.00029 -.021 -1.1 1.544

 AWork * income>100K$ .00074 .060 2.9 1.737
 Centrality Index .00192 .076 3.9 1.582
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4. SPATIAL DEPENDENCE – HOW TO DEAL WITH IT 

4.1 Market Heterogeneity and Spatial Dependence 

As emphasized in the introduction to this paper, applying the hedonic approach raises major 

methodological issues in relation to the presence of structural heteroskedasticity and spatial 

autocorrelation in the model residuals. Both are detrimental to the stability of regression 

coefficients, even more so to the accuracy of their standard errors (Dubin, 1988 & 1992; Anselin 

and Rey, 1991; Goodman and Thibodeau, 1995 & 1997; Can and Megbolugbe, 1997; Basu and 

Thibodeau, 1998; Pace et al., 1998; Des Rosiers and Thériault, 1999).  

In traditional hedonic price modelling, the contextual variations over space are usually specified 

using “fixed” coefficients – derived from location dummy variables - to assess their direct effect 

on house values. This is based on the assumption that the marginal prices of structural housing 

attributes are invariant through space. This stable price assumption does not hold if markets are 

heterogeneous – as they are -, with various types of households having different needs and 

preferences while not being, at the same time, distributed evenly within urban areas. Such 

heterogeneity may result in locally distorting the demand for specific structural attributes and 

amenities of homes, thereby creating significant geographical trends that should be reflected in 

the coefficients of hedonic models (Páez et al., 2001; Thériault et al., 2003). It is also a major 

source of spatial autocorrelation among residuals if not adequately handled in the model 

specification (Can, 1990 & 1993). 

According to Griffith (1992, p. 278), “spatial autocorrelation may be defined as an average 

correlation between observations based upon replicated realisations of the geographic distribution 

of some attribute.” It is often linked to diffusion processes occurring in geographical space. 

Exogenous effects, whose spatial distribution ultimately results in urban density gradients 

(Anselin and Can, 1986), can actually be manifold, ranging from city-wide structural factors to 

local externalities. As stated above, autocorrelation is highly detrimental to the efficiency of 

statistical tests used to assess the statistical significance of OLS regression coefficients (Anselin, 

1990a &1990b; Beron et al., 2001). Consequently, there is a clear need to test, and eventually 

incorporate, interactions between the structural characteristics of urban space and those housing 

specifics which are putatively linked to them. 
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In applied regression analysis, two methodological concerns should be addressed: [1] testing for 

the presence of spatial heterogeneity and [2] implementing alternative estimation techniques. 

Since the early 1980s, quite a substantial body of literature has emerged out of these concerns 

(Cliff and Ord, 1981; Getis, 1990; Getis and Ord, 1992; Can, 1992; Ord and Getis, 1995; Griffith, 

1996; Orford, 2000) and various approaches have been developed. As spatial dependence may not 

always be modelled adequately using additional descriptive geographical variables, one way of 

dealing with the problem is to introduce spatial autoregressive (SAR) terms into the hedonic 

function, which may then be written as: 

 ε+y = Xβ + ρWy , (21) 

where X is the matrix of explanatory variables, ε the error term, Wy a weighted, spatially lagged 

dependent variable and ρ the spatial autoregressive parameter, that is, the degree to which the 

values at individual locations depend on their neighbouring values (Fotheringham et al., 2002; 

Besner, 2002).  

SAR terms may take several forms; most often though, they are weighted lagged values of the 

dependent variable (as in Equation 21) or of the error term. Spatially dependent variables can also 

be transformed prior to modelling into their spatial and non spatial components, using spatial 

filtering techniques (Cliff and Ord, 1981; Getis, 1995; Getis and Griffith, 2002; Griffith, 1996 & 

2000). While the two methods may be used in combination, it is more suitable for SAR terms to 

be included in a second step, only where spatial filtering has not managed to account for all 

heterogeneity (Can, 1990). Finally, semi-parametric approaches have also been developed to deal 

with spatial heterogeneity of real estate markets (Pavlov, 2000). 

4.2 Correcting for Spatial Heterogeneity – A Comparison of Two Approaches 

In this section, two regression-based methods designed at accounting for the spatial heterogeneity 

of regression parameters are empirically tested and compared as to their respective ability to 

explain spatial drifts and diminish, or remove, spatial dependence (Kestens et al., 2006): these are 

the OLS with spatial expansion method (SEM) developed by Casetti (1972 & 1997) and the 

Geographically Weighted Regression (GWR) (Brunsdon et al., 1996; Fotheringham et al., 2002).  



 29

4.2.1 Casetti’s  spatial expansion method:  

The spatial expansion method developed by Casetti was initially designed at analyzing the spatial 

drift inherent in several socio-economic phenomena such as migration (Casetti, 1986) or labour 

markets (Pandit and Casetti, 1989). It was later on applied to property markets and price analysis 

(Can, 1990 & 1992; Casetti, 1997; Thériault et al., 2003). Essentially, the SEM “extends” fixed 

parameters by introducing interactive variables combining a previously defined fixed 

characteristic with a context-sensitive, space-dependent variable. The hedonic equation may then 

be expressed as: 

 εt ++= )1X(CEXβy )( , (22) 

where the second, expanded term accounts for interactions between basic housing attributes and 

context-sensitive variables (neighbourhood or household-related features).  

Thus, statistically significant interactive parameters provide a measure of the implicit, local value 

people assign to attributes. Consequently, parameters that emerge as non significant overall may, 

when used in interaction, become highly significant, thereby revealing the existence of some 

spatial drift (Thériault et al., 2003) that would otherwise go unnoticed. 

4.2.2 The GWR approach: 

With the GWR approach, moving regression functions are estimated for every sampling point in a 

regular grid, using all data within a certain region around this point for calibration. The resulting 

parameters are site-specific and can therefore vary through space. Furthermore, a weighting 

scheme may be designed, whereby a spatial kernel is applied in order to give greater influence to 

close data points. The spatial kernel may be fixed (identical for all locations) or adaptive, in 

which case its bandwidth will vary with the density of the data. Several methods exist for 

identifying the bandwidth that yields the optimal trade-off between goodness-of-fit and degrees of 

freedom. We thus obtain: 

 ( ) ( )0 , ,i i i k i i ik ik
y u v u v xβ β ε= + +∑ , (23) 

where ( , )i iu v  denotes the coordinates of the ith point in space and ( , )k i iu vβ  is a realisation of 

the continuous function ( , )k u vβ  at point i (Fotheringham et al., 2002). 
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A GWR application by Brunsdon et al. (1999) on residential values in Deal, South-Eastern 

England, shows that the relationship between house price and size varies significantly through 

space.  

4.3 Correcting for Spatial Heterogeneity – A Comparison of Two Approaches 

In this sub-section, SEM and GWR are applied to a sample of 761 single-family houses sold 

between 1993 and 2001 (between 1993 and 1996 mainly) in Quebec City, Canada (Kestens et al., 

2006). In addition to basic land, building and local tax features, models control for several other 

dimensions, namely: [1] accessibility to urban services, expressed as mean time-distance by car to 

main activity centres (MAC); [2] surrounding vegetation (Kestens et al., 2004), which was found 

to exert strong influences on Quebec City’s housing markets (Des Rosiers et al., 2002); [3] 

information on buyer’s household profile obtained through a phone survey carried out from 2000 

to 2003 (Kestens, 2004); and [4] socio-economic and housing stock information derived from 

Census data. 

In this paper, only models that include all variables are discussed and compared. An overall 

comparison of performances obtained with SEM and GWR is presented in Exhibit 8. In both 

cases, the percentage of explanation of the variance is similar (0.894 for the SEM vs. 0.892 for 

the GWR), as is the global autocorrelation among their residuals (Moran’s I values standing at 

0.102 and 0.082, respectively). Concerning the local autocorrelation, the number of significant 

LISA zG*i statistics (26) is identical, although these hot spots do not strictly match spatially (not 

shown here). In the end, these models are similar in terms of both explanatory power and ability 

to handle local and global spatial autocorrelation. 

Let us now take a look at the way these two models handle heterogeneity. As findings suggest 

(for details, see Kestens et al., 2006), context-sensitive SEM coefficients, identified by the 

significant expansion terms, are as follows: Oven, Fireplace, Detached Garage (as found by Can 

1990), Car Time to MAC, Woodlands_500m radius, Wooded, Agricultural Land_100m radius, 

NDVI_40m radius (density-of-vegetation Index) and % Univ. Degree Holders. For these variables 

then, a single coefficient is not a valid alternative. Quite interestingly though, applying the GWR 

procedure results in none of the model variables emerging as non-stationary, thereby suggesting 

that their implicit price is homogeneous over space. 
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Table 8: An Overall Comparison of SEM and GWR Performances 

 
Dependent Variable: Ln Sale Price 

Number of cases = 761 
Property specifics  
Accessibility  
Land use and Vegetation in buffers around each property  
Buyer’s Household-level attributes  
1996 Census data (Enumeration area-level)  

Variables in 
Model 

For OLS Model: Interactions (Household attributes * others variables)  
OLS / SEM Model 

R-square 0.894 
Adj. R-Square 0.889 
SEE 0.104 
SEE in % 10.9% 
F ratio 161 
Sig. 0.000 
Df1/Df2 38/722 
Interactive Variables / Total Variables 11/38 

Model 
Adjustment 

Maximum Variance Inflation Factor value 3.9 
Moran's I (within 1500 m lag) 0.102 
Sig. 0.218 
Most sig. Moran's I SA range (300 m lags) 600-900 
Nb of significant LISA zG*i statistics (600 m lag, sig. 0.05) 26 

Spatial Auto-
correlation of 

Residuals 
Nb of significant LISA zGi statistics (600 m lag, sig. 0.05) 17 

GWR Hedonic Model 
R-square 0.892 
SEE 0.1059 
Kernel bandwidth (meters) 706.5 

Model 
Adjustment 

F statistic of GWR Improvement (sig.) 2.51 (0.013) 
Moran's I (within 1500 m lag) 0.082 
Sig. 0.265 
Nb of significant LISA zG*i statistics (600 m lag, sig. 0.05) 26 

Spatial Auto-
correlation of 

Residuals 
Nb of significant LISA zGi statistics (600 m lag, sig. 0.05) 20 
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A possible explanation for this contradiction may lie with the a-spatial character of the 

heterogeneity identified in the expansion model, which brings out household heterogeneity not 

captured by the GWR procedure. Further research is needed to elucidate this issue. 

To summarize, both methods yield highly interesting results and leads to the conclusion that 

social and spatial heterogeneity, while linked to one another, are not strictly equivalent, at least in 

Quebec City. Whereas the OLS spatial expansion method makes it possible to consider both the 

spatial and the non-spatial heterogeneity of regression parameters, the GWR approach provides 

interesting information through local regression statistics; it does not, however, allow identifying 

the process behind the parameter drift. Casetti’s SEM, on the contrary, while less precise locally, 

makes it possible to explicitly consider actual processes lying at the root of non-stationarity, 

thereby helping disentangling the complex interactions shaping property values. 
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Exhibit 9: Local Spatial Autocorrelation for SEM and GWR Models  

a) Significant zG*i statistics for SEM Hedonic Model   b) Significant zG*i statistics for GWR Hedonic Model  
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5. CONCLUDING COMMENTS 

This paper has addressed several issues in relation to the applicability of the hedonic framework 

as a reliable device for estimating property values in an appraisal context. Each issue addressed 

here is in itself a field of research which has already triggered numerous productions and 

innovations and still deserves being further investigated.  

Based on recent empirical research performed in a Canadian context, it has been shown that 

hedonics is a most powerful analytical method which conveys more advantages than drawbacks. 

Indeed, the method developed by Rosen more than three decades ago has constantly progressed, 

gaining in efficiency and reliability, and has adapted to new methodological challenges, often by 

borrowing to other disciplines.  

The success of hedonics in urban and real estate economics and related fields stems from the 

sound conceptual framework it relies on as well as on the transparency of the approach. The latter 

promotes market intelligence and requires from the analyst that he put understanding of 

underlying processes above the mere search for a solution. 
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