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Abstract

Today, wireless networks are connecting more and more devices around us.
The scale of these systems demands for novel techniques to maintain avail-
ability for various services such as routing, localization, context detection,
etc. Distance estimation is one of their most important building blocks.
The majority of current algorithms presume knowledge about node posi-
tion via systems such as GPS. While for some application scenarios this
approach is feasible, for a lot of cases it suffers from frequent unavailability
and high costs in terms of energy consumption. The main contribution of
the thesis is the introduction of a novel distributed algorithm called GDE
for the estimation of distances in large-scale wireless networks. It is based
on a gossiping mechanism to estimate distances between nodes solely based
on local interaction. We analyze the parameters that should be considered
by real applications, and present mathematical models to compensate their
influence for distance estimation. Three kinds of applications are shown
in the thesis using the GDE algorithm, including cluster center detection,
overlay shape construction, and routing. Finally, we introduce some more
improvement methods for the GDE algorithm to increase the distance es-
timation accuracy. The evaluations by means of simulation show that GDE
succeeds in estimating the distance between nodes in both static and mo-
bile scenarios with considerably high accuracy for various parameter setups,
such as varying node density, node speed, spatial node distribution, etc.
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Chapter 1

Introduction

Distance estimation is one of the most important building blocks for wire-
less sensor network applications, especially for the ones that need location
information. This thesis presents a novel distributed algorithm called GDE
for the estimation of distances in large-scale wireless networks.

1.1 Problem Statement

Nowadays sensors are more and more widely used due to advances in low-
power micro-electronics and wireless network technology. They are used
in many application domains, including environmental monitoring, smart
buildings, target tracking, battlefield surveillance, etc. As the number and
the diversity of sensors are both increasing substantially, wireless sensor
networks are connecting more and more devices around us. However, along
with ubiquity comes also the problem of tremendous scale. In recent years,
the scientific research on large-scale sensor networks has increased signific-
antly. The current approaches that enable services such as routing, data
dissemination, context detection etc. require new, radical changes, in order
to assure scalability. When location information is required, most of the
current algorithms presume that node position information is available via
systems such as GPS. Now, for some application scenarios, this approach is
feasible (e.g., outdoors). Unfortunately, for most of the actual deployments,
GPS is either not available (e.g., indoors) or it is inaccurate and most likely
consumes a lot of power. At the same time, in large-scale networks the sensor
nodes can not always be placed at desired locations to ensure for instance
a given network connectivity. Most likely, nodes also exhibit some sort of
mobility, which makes difficult to continuously update their position inform-
ation. For all these reasons, there is a need for ways to estimate distances
between nodes only based on local interaction with no additional informa-
tion such as the one provided by GPS or classic localization techniques. The
estimated distances can be used to compute location information, and thus
enable many other applications on top.
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1.2 Contributions

In this thesis, we introduce a distributed gradient-based distance estimation
algorithm called GDE. It is designed for large-scale networks and uses simple,
local interactions.

The main research questions we answer in the thesis are the following:

1. Is there an algorithm to accurately estimate distances in large-scale
networks solely based on local interactions?

2. Can such an algorithm provide a good distance estimation even when
nodes are mobile, the node density is not uniform and algorithm parameters
are adaptive?

3. What are the possible application scenarios that can make use of such
an algorithm?

GDE is based on a hop-count gradient that is smoothed to decreases the
distance estimation error [17]. Additionally, we introduce two compensation
methods for the error in order to improve the estimation accuracy. We fur-
ther extend the original algorithm to compensate for the influence on the
accuracy of the distance estimation algorithm by various network proper-
ties that occur in real application conditions. It includes varying the node
density, the node speed, the spatial node distribution, the average multic-
ast ratio, the communication round length, the shape of the transmission
range, etc. We present a mathematical analysis as well as models for the
influence of these parameters. The thesis is a theoretical study on the feas-
ibility of such an approach for large-scale, dynamic systems. We validate
our algorithms via simulations for various deployment setups, such as vary-
ing node density, different average node speed, realistic radio propagation
models, etc.

The experimental results show that our algorithm performs well in terms
of distance estimation accuracy. We use GDE for three application scenarios
such as cluster center detection, overlay creation, and routing. According
to the results, the applications using the GDE algorithm show much bet-
ter results compared to the other distance estimation algorithms. Finally,
we introduce some further improvements, and according to the preliminary
tests, they can further improve the accuracy of the GDE algorithm.

1.3 Thesis Outline

The rest of the thesis is organized as following. Section 3 presents two
existed distance estimation algorithms. Section 4 presents the basic GDE
algorithm for a static, spatially uniform deployment. Section 5 presents the
improved algorithm models for some realistic deployment parameters. An
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in-depth experimental analysis by means of simulations of the algorithms
for various parameter setups is presented in Section 6. Section 7 presents
three kinds of applications where the GDE algorithm shows improved per-
formance. Section 8 presents some further improvement methods for the
accuracy of the GDE algorithm. We conclude the thesis and give insights
about future work in Section 9.
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Chapter 2

Related Work

Wireless sensor networks are used for a large number of applications, such as
environmental monitoring [16, 32], structural monitoring [31], target track-
ing [3, 21], surveillance missions [8], etc. Distance estimation for wireless
systems is one of the most important building blocks for various services
such as routing [26], clustering [33], localization [8, 27] etc.

For the case of geographic routing [11], nodes use locations as their ad-
dresses, and forward packets (when possible) in a greedy manner towards
the destination. However, this approach demands for the nodes to be aware
of their location. While this is a feasible assumption in some settings (e.g.,
nodes have GPS [9] modules attached), there are many cases where node
location information is either not available or it requires additional expens-
ive equipments, such as indoors, underground, underwater, as so on [19].
For many clustering algorithms [6] that require node position information,
again all nodes are assumed to be aware of their location. To optimize for
power, the GPS module has to be turned on for a very short time during
bootstrapping. This approach does make sense when the nodes are either
static or there are small changes of the network topology. When nodes are
always moving for example, the localization system has to be turned on
continuously, thus leading to a high power consumption. Three main kinds
of localization methods are discussed in [22], which are based on time of
arrival (TOA), angle of arrival (AOA) or received signal strength (RSS) re-
spectively. Some localization algorithms that need to compute the pair-wise
distance between nodes are not suitable for large scale networks. There is
a lot of work on the indoor localization [14, 24]. Besides GPS, other meth-
ods suitable in particular for indoor deployments, make use of the wireless
signal strength [1]. The main problem that the class of algorithms is facing
is the lack of accurate models for indoor radio propagation. Problems are
caused by various sources such as multi-path effects, reflection, and fading
effects. Most of the time, there is limited correlation between the received
signal strength indication and the real distance between devices. StarDust
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system [29] uses light to localize nodes in a centralized approach. The nodes
use reflectors to estimate their positions. A localization algorithm called
moving baseline localization (MBL) makes localization computation by es-
timating the node trajectories [20]. MBL algorithm needs some complicated
information about the neighbor nodes, such as velocity.

Our GDE algorithm uses the gossiping-based protocol [2,4] as the commu-
nication approach. Gossiping-based communication strategy has many ad-
vantages [5], including inherent scalability, load-balancing, resilience to node
and network failures, easiness of management, etc. Compared to flooding,
gossiping-based protocols require each node to communicate and exchange
data with one or a few neighboring nodes. Gossiping-based protocols can
efficiently decrease the message complexity in both static and dynamic net-
works [12]. Thus they are successfully used in many applications, such as
routing [7].

The algorithm [17] serves as a starting point for our work and builds a
self-organized, global coordinate system on top of an ad-hoc wireless sensor
network. It relies only on distributed, simple computations and local com-
munication. The algorithm adapts to failures or additions of nodes. A
remarkable aspect uncovered by the work is that greedy routing performs
better when using virtual coordinates than when using the actual geographic
coordinates in the presence of obstacles.

6



Chapter 3

Gradient Algorithms

There are two existing distance estimation algorithms based on the gradi-
ents. In this chapter we briefly introduce the related work. The two existing
algorithms are the basis of our GDE algorithm.

3.1 Hop-Count Gradient

Suppose all nodes are static and uniformly distributed in a deployment area,
and the transmission radius of each node is r. The node density is defined
as the average number of nodes within the transmission range of each node.
Some nodes, called seeds, are placed at fixed positions, and start with a
constant counter value. Each node, except the seeds, listens to its neighbors
and selects the largest counter value, and then rewrites the local counter
value decreased by one. The counter values of all nodes in the deployment
area vary uniformly: the nodes closer to the seed nodes have larger counter
values, and the nodes that are further away from the seed nodes have smaller
counter values. We refer to this variation trend as a gradient. Figure 3.1(a)
shows the resulting gradient when a straight line of seed nodes are vertically
placed at the left side of the deployment area, and Figure 3.1(b) shows the
resulting gradient when a seed node is placed at the center of the deployment
area. In the figures, each node is colored according to its own counter value.

One can notice in Figure 3.1(a) and Figure 3.1(b) that the obtained gradi-
ent is not smoothed but looks rather like stairs. This is because each node
computes the local counter value using only the largest counter value in its
own transmission range, so based on this strategy, some adjacent nodes will
have the same local counter values. We call the nodes with the same counter
values a wave in the gradient. Because the waves depend on the minimum
number of hops from the seeds, we call this gradient the hop-count gradient
(HCG).

To create the hop-count gradient, the counter values should be dissemin-
ated in the network. Push and Pull algorithms can be used for data dis-

7
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Figure 3.1: (a) Hop-count gradient with a straight line of seed nodes at the
left side of the square. (b) Hop-count gradient with a seed node at the center
of the square.

Algorithm 1: Create Hop-Count Gradient with Push

1: counter ⊲ received counter
2: localCounter ⊲ local counter
3: {neighbors} ⊲ neighbor set

4: receive counter
5: if counter > localCounter
6: set localCounter counter
7: end if

8: send (localCounter - 1) to {neighbors}

semination via gossiping [10]. Push proactively sends data into the network,
while Pull reactively sends queries first into the network and then receives
data from the network. There are two methods to disseminate the counter
values and create the hop-count gradient.

The first approach is to use the Push method. The seed nodes start as
the first gradient wave and send to the neighbors messages with a constant
gradient counter value. Each recipient stores the counter value and sends
messages to the neighbors with the counter decremented by one. In order to
prevent the backward gradient waves, each node only stores the maximum
counter value received and ignores the lower counter values. Algorithm 1
describes the main process of creating the hop-count gradient using Push
method.

The second approach is to use the Pull method. The seed nodes initiate
as the first gradient wave with a constant gradient counter value. All nodes
except the seeds listen to the neighbor area and selects the largest gradi-
ent counter value, then rewrites the local counter value with the maximum

8



Algorithm 2: Create Hop-Count Gradient with Pull

1: counter ⊲ received counter
2: localCounter ⊲ local counter
3: {neighbors} ⊲ neighbor set

4: ask counter from {neighbors}
5: set localCounter (max{all counter} - 1)

received counter decreased by one. Compared with the Push method, Pull
method does not need to select the received counter values in order to pre-
vent the backward broadcasting. Algorithm 2 describes the main process of
creating the hop-count gradient using the Pull method.

3.2 Smoothed Gradient

The distance estimation produced by the hop-count gradient is a multiple of
the width of the gradient wave ω. It produces an average error of approxim-
ately 0.5ω [17]. To improve the accuracy, the local neighborhood gradient
values can be used to compute the smoothed gradient (SMG). This section
introduces the SMG algorithm. Based on the original SMG algorithm, we
also present the computation of the smoothed gradient value of the node
placed at the border of the gradient area.

3.2.1 Regular Nodes

Suppose the transmission radius of each node is r. To simplify the compu-
tation of the smoothed gradient, the communication area of every node is
approximated to a square with side length 2r. Figure 3.2 shows the trans-
mission area of node i. By a we denote the integer hop-count gradient value
of node i. α, β and γ are the ratios of three areas of various hop-count gradi-
ent waves as seen by node i. Because the nodes are uniformly distributed
in the area, α, β and γ are supposed to be equal to the rates between the
number of nodes in the adjacent three areas to the total number of nodes in
the transmission range. Suppose the width of each wave ω equals the trans-
mission range r of a node. In order to obtain the gradient value of the node,
we normalize the length of the gradient wave to 1. The gradient distance
of node i to the seed nodes is computed using Formulas 3.1, 3.2 and 3.3.
Pα and Pβ are the computed distance from node i to the line of seed nodes
using parameter α and β respectively. Gα and Gβ are the gradient values.
Pαβ is the average value of Pα and Pβ , and Gαβ is the gradient value.

Pα = (a− 1)r + x
x = r − 2rα

}

r=1⇒ Gα = Pα = a− 2α (3.1)

9



Pβ = ar − y
y = r − 2rβ

}

r=1⇒ Gβ = Pβ = a+ 2β − 1 (3.2)

Pαβ =
Pα + Pβ

2

r=1⇒ Gαβ = Pαβ = a− α+ β − 1

2
(3.3)

Figure 3.2: Adjacent hop-count gradient waves around node i.

Another approach to compute the smoothed gradient is to average the
gradient values of the neighboring nodes [17]. The average gradient value is
Gavg (in which nl is the number of nodes in the transmission range of node
i) and the smoothed gradient value is GSMG. They are computed using
Formula 3.4 and Formula 3.5 respectively.

Gavg =
nlα(a− 1) + nl(1− α− β)a+ nlβ(a+ 1)

nl

= a− α+ β

(3.4)

GSMG = Gavg −
1

2
= a− α+ β − 1

2
(3.5)

3.2.2 Border Nodes

Formula 3.5 supposes that nodes in different hop-count gradient waves have
different hop-count values. The nodes at the border of the hop-count gradi-
ent might discover nodes with non-initialized hop-count gradient values.

10



Nodes in the neighborhood of the seed nodes can discover others belonging
to different gradient waves while still having the same hop-count values. In
Figure 3.3(a), the line of seed nodes takes the first hop-count gradient value
of 0. Then, according to the hop-count gradient algorithm, nodes in area
α and γ have the same hop-count gradient value of 1. In Figure 3.3(b),
gradient a is the last hop-count gradient wave, then the nodes in area β do
not have a hop-count gradient value. Based on the formulas given in [17],
we present methods to correctly compute the smoothed gradient values of
the nodes placed at the border of the hop-count gradient.

(a) (b)

Figure 3.3: (a). Transmission range of node i when located in the neighbor
area of the seed nodes. (b). Transmission range of node i when located near
the border of the hop-count gradient.

If the node is in the first hop-count gradient wave, as shown in Fig-
ure 3.3(a), the smoothed gradient value can be computed using Formula 3.6.
If the node is located in the last hop-count gradient wave, as shown in Fig-
ure 3.3(b), the smoothed gradient value can be computed using Formula 3.7.
Pfirst and Plast are the computed distance from node i to the line of seed

nodes in the first and last hop-count gradient wave respectively. Gfirst
SMG and

Glast
SMG are the gradient values.

Pfirst = x
x = 2rβ

}

r=1⇒ Gfirst
SMG = Pfirst = 2β (3.6)

Plast = ar − x
x = 2rα

}

r=1⇒ Glast
SMG = Plast = a− 2α (3.7)

11
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Chapter 4

GDE Algorithm

GDE algorithm is based on the HCG and SMG algorithms that were intro-
duced in Chapter 3. The basic GDE algorithm is designed for a static and
spatially uniformly distributed deployment. It includes three basic compu-
tations: gradient width reduction, averaging of the reduced gradient width,
and the overestimated width reduction. In this chapter we introduce the
series of improvements that make GDE a suitable algorithm for a distrib-
uted static environment.

4.1 Gradient Width Reduction

Suppose node i has transmission range r and node k has the largest distance
to node i among all the nodes in the transmission range of node i. The
number of nodes in the area is not infinite, thus there is a high chance that
node k is not exactly located on the border of the transmission range of
node i, thus the distance between node k and node i is smaller than the
transmission range r. This implies that the width of the hop-count gradient
wave is smaller than r, and is referred as width reduction of gradient waves.

Figure 4.1 shows the phenomenon of width reduction of gradient waves.
Suppose node n is located at the border pbu of hop-count gradient wave a−1,
and node m that is located at the border pb of hop-count gradient a can just
discover node n. Because node density is not infinite, there is a high chance
that there is no node on the border pbu, and the nodes that are closer to the
border pbu are on the line pwu. So the real border of the hop-count gradient
wave a − 1 moves from pbu to pwu. Suppose node n is moved to position
n′. The last node that can discover node n′ has to move from position m
to m′. The border of the hop-count gradient wave a changes from pb to
pw, because of the movement of the previous border from pbu to pwu. The
nodes positioned between pb and pw, such as node v, can no longer discover
the nodes with hop-count gradient value a− 1, so it updates the hop-count
gradient value to a+ 1.

13



Figure 4.1: Width reduction of gradient waves.

At the same time, because of the nodes missing around border pw, the
nodes that are closer to the border pw are on the line p. The real border of
the hop-count gradient wave a moves from pb to p. As a result, the width
of the hop-count gradient wave becomes smaller. At the same time, the
movement of the border always influences the border placements of all the
next hop-count gradient waves, so the border relocation, such as from pb to
p in hop-count gradient wave a, becomes larger and larger.

Suppose the estimated distance corresponding to a communication hop
is dhop. Equation 4.1 (taken from [13]) shows the relation between the real
estimated distance and the node density nl.

dhop
r=1
= (1 + e−nl −

∫ 1

−1
e−

nl
π
(arccos t−t

√
1−t2)dt) (4.1)

Let ∆ = 1−dhop be the width reduction of each hop-count gradient wave.
As explained, the border relocation has a cumulative characteristic and is
related to the hop-count gradient value. The cumulative reduced width of
the wave with hop-count gradient value a is Si = (a− 1)∆ and the gradient
width reduction value can be computed using Formula 4.2.

Gsi = GSMG − Si (4.2)

4.2 Averaging of Reduced Gradient Width

The width reduction of the gradient wave introduced in Section 4.1 influ-
ences the result of the smoothed gradient. Each node in the one hop-count
gradient wave could be placed at two positions. The first place is shown in
Figure 4.2(a), where node n is not in the reduced width area of the gradient
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wave. The second place is shown in Figure 4.2(b), where node n is in the
reduced width area of the gradient wave.

i
(a-1)

i
a

i
(a-1)

i
a

Figure 4.2: (a). Average gradient of node n outside the reduced width area
of the gradient wave. (b). Average gradient of node n inside the reduced
width area of the gradient wave.

In the first case, as shown by Figure 4.2(a), the percentages of discovered
nodes in α, β, γ become α′, β′, γ′, as shown in Equation 4.3.

α
′

=
2rα− S

(a−1)
i

2r

r=1
=

2α− (a− 1)∆

2

= α− 1

2
(a− 1)∆

β
′

=
2rβ + Sa

i

2r

r=1
=

2β + a∆

2
(4.3)

= β +
1

2
a∆

γ
′

=
2rγ + S

(a−1)
i − Sa

i

2r

r=1
=

2γ + (a− 1)∆ − a∆

2

= γ − 1

2
∆

In the second case, as shown by Figure 4.2(b), the percentages of dis-
covered nodes in α, β, γ become α′′, β′′, γ′′, as shown in Equation 4.4.
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α
′′

=
2rα+ (r − Sa

i )

2r

r=1
=

2α+ (1− a∆)

2

= α+
1

2
− 1

2
a∆

β
′′

=
2rβ − (r − S

(a+1)
i )

2r

r=1
=

2β − [1− (a+ 1)∆]

2
(4.4)

= β − 1

2
+

1

2
(a+ 1)∆

γ
′′

=
2rγ − (r − Sa

i ) + (r − S
(a+1)
i )

2r
r=1
=

2γ − (1− a∆) + [1− (a+ 1)∆]

2

= γ − 1

2
∆

If a node is outside the reduced width area, the average gradient value
Gout

avg and the smoothed gradient value Gout
si are shown using Formula 4.5

and 4.6. If the node is inside the reduced width area, the average gradient
value is Gin

avg and the smoothed gradient value becomes Gin
si as shown using

Formula 4.7 and 4.8.

Gout
avg =

nlα
′

(a− 1) + nlγ
′

a+ nlβ
′

(a+ 1)

nl

= a− 2α+
1

2
+ (a∆− 1

2
∆) (4.5)

Gout
si = Gout

avg −
1

2
− (a− 1)∆ − 1

2
∆

= GSMG − Si −
1

2
∆ (4.6)

Gin
avg =

nlα
′′

(a− 1) + nlγ
′′

a+ nlβ
′′

(a+ 1)

nl

= a− 2α− 1

2
+ a∆− 1

2
∆ (4.7)

Gin
si = Gin

avg −
1

2
− (a− 1)∆− 1

2
∆ + 1

= GSMG − Si −
1

2
∆ + 1 (4.8)
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Due to the fact that nodes do not have position information and cannot
tell whether they are inside or outside the reduced width area, we compute
the expected average value of the gradients Gout

si and Gin
si . Let Rin be the

percentage of the reduced width of one hop-count gradient wave compared
to the transmission range r, as shown in Formula 4.9. Let Rout be the per-
centage of the not-reduced width of one hop-count gradient wave compared
to the transmission range r, as shown in Formula 4.10. Then the gradient
value Gesi is shown using Formula 4.11.

Rin =
(r − rdhop)

r

r=1
= 1− dhop (4.9)

Rout = 1−Rin
r=1
= dhop (4.10)

Gesi = Gout
si Rout +Gin

siRin (4.11)

4.3 Overestimated Width Reduction

The gradient computation presented in Section 4.1 uses the expected av-
erage value dhop. This expected average value will overestimate the width
reduction of gradient waves. Suppose the gradient wave border moves as
shown by Figure 4.3(a). If the border moves from pb to p, and node n is
located in the area (p + dhop)

+, which means node n cannot discover the
nodes on the border p, then the computed hop distance dhop is the expected
width of hop-count gradient wave. The real border that moves to p can
not be a straight line, but a curved line like pr. Node m′ may move to the
position of node m, to be inside the transmission range of the node n. As a
result, node n can discover some of the nodes on the border p. This implies
that the reduced width ∆ is overestimated.

Assuming the shape of the gradient waves is a set of parallel lines, the
node density is ρ and the transmission range of each node is r. The prob-
ability that k nodes are located in area h is shown using Formula 4.12 [17].
For example, in Figure 4.3(b), node n has dhop as the real estimated dis-
tance, which is introduced in Formula 4.1. Let p be the gradient border
using dhop, pd be the real border of the hop-count gradient, X be the over-
estimated reduced width, and A be the overlap area of the overestimated
reduced width area and the transmission range. It can be observed that
the probability that there are no nodes in the area A equals the probab-
ility that the gradient border p will have a shift larger than x, as shown
using Formula 4.13. Therefore, the probability distribution function of the
overestimated reduced width X is shown using Formula 4.14.
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Figure 4.3: (a). Overestimation of the gradient wave width reduction. (b).
Expected overestimated reduced wave width.

Pr(k ∈ h) =
(ρh)k

k!
e−ρh (4.12)

Pr(0 ∈ A) = Pr(X > x) = e−ρA (4.13)

F (x) = Pr(X ≤ x) = 1− e−ρA (4.14)

The size of area A can be computed using Formula 4.15 and the probability
density function of X is shown by Formula 4.16. The expected overestim-
ated reduced width ∆r of one hop-count gradient wave can be written as
Formula 4.17. Let a be the hop-count gradient value of a node. The gradient
value for each node is computed as shown by Formula 4.18.

A = 2[πr2
arccos r−x

r

2π
− (r − x)

√

r2 − (r − x)2

2
]

r=1
= arccos(1− x)− (1− x)

√

2x− x2 (4.15)

f(x) = F
′

(x) = (1− e−ρA)dx

=
ρ− 2x2 + 4x− 1

e(x−1)
√
2x−x2+ρ arccos(1−x)

√
2x− x2

(4.16)

18



∆r = E(x) =

∫ 1

0
xf(x)dx

=

∫ 1

0
x

ρ− 2x2 + 4x− 1

e(x−1)
√
2x−x2+ρ arccos(1−x)

√
2x− x2

dx (4.17)

GGDE = Gout
si Rout +Gin

siRin + (a− 1)dhop∆r (4.18)

4.4 Error Reference Value

This section introduces an error reference value, which can be used as a
benchmark for the testing results of the distance estimation errors.

If node density ρ tends to +∞, then ∆ and ∆r, which are presented in
Section 4.1 and Section 4.3 respectively, converge to 0, as shown by Equa-
tions 4.19 and 4.20, which means the gradient width reduction and the
gradient width overestimation problems disappear for large node densities.

lim
ρ→+∞

∆
r=1
= 1− lim

ρ→+∞
dhop = 0 (4.19)

lim
ρ→+∞

F (x)
r=1
= lim

ρ→+∞
(1− e−ρa) = 1

⇒ lim
ρ→+∞

f(x) = 0 ⇒ lim
ρ→+∞

∆r = 0 (4.20)

The number of nodes n in the area of size h follows a Poisson distribution
with parameter λ (λ=ρh). If node density ρ and λ goes to +∞, then the
probability of n nodes in the area of size h tends to follow a Normal distri-
bution with a mean λ and a deviation of λ, as shown using Formula 4.21.
Therefore, if node density ρ goes to +∞, the number of nodes in various
hop-count gradient waves of one transmission range also obeys a Normal
distribution, as shown in Formula 4.22, in which nα and nβ are the number
of nodes in sections α and β, and Sα and Sβ are the area size of α and β.

n ∼ P (λ) =
λn

n!
e−λ λ→+∞⇒ n ∼ N(λ, λ) (4.21)

nα ∼ N(ρSα, ρSα)

nβ ∼ N(ρSβ , ρSβ) (4.22)

19



The linear combination of Normal distributions is also a Normal distri-
bution. The computed gradient value using Formula 4.18 follows a Normal
distribution as shown using Formula 4.23, in which nl is the average number
of nodes in the transmission range of a node.

lim
ρ→+∞

GGDE = lim
ρ→+∞

(Gout
si Rout +Gin

siRin)

= lim
ρ→+∞

(a− α+ β − 1

2
)

= lim
ρ→+∞

(a− nα

nl
+

nβ

nl
− 1

2
)

∼ N(a− ρSα

nl
+

ρSβ

nl
− 1

2
,
ρ(Sα + Sβ)

n2
l

) (4.23)

If nodes are distributed on a grid and node density goes to infinity, then
by using Formula 4.24 the gradient is computed as Gg

GDE . If nodes in the
area are uniformly distributed and node density goes to infinity, then using
Formula 4.25 the gradient is computed as Gu

GDE .

Gg
GDE

ρ→+∞
= a− ρSα

nl
+

ρSβ

nl
− 1

2
(4.24)

Gu
GDE

ρ→+∞
= a− nα

nl
+

nβ

nl
− 1

2
(4.25)

If all nodes are uniformly distributed, the error becomes ∆G, which is
the absolute difference value between the gradient that is computed when
nodes are distributed on a grid and the gradient computed when nodes are
uniformly distributed, as shown using Formula 4.26, in which Sl is the area
size of the transmission range.

∆G = Gu
GDE −Gg

GDE

= (a− nα

nl
+

nβ

nl
− 1

2
)− (a− Sα

Sl
+

Sβ

Sl
− 1

2
)

= (
Sα

Sl
− nα

nl
) + (−Sβ

Sl
+

nβ

nl
) (4.26)

Formula 4.22 shows the probability distribution of the number of nodes
nα and nβ, while ∆G is the linear combination of the Normal distributions
of nα and nβ. The error ∆G also follows a Normal distribution, as shown
using Formula 4.27.
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∆G ∼ N(
Sα

Sl
− ρSα

nl
,
ρSα

n2
l

) +N(−Sβ

Sl
+

ρSβ

nl
,
ρSβ

n2
l

)

nl=Slρ∼ N(0,
ρSα

n2
l

) +N(0,
ρSβ

n2
l

) ∼ N(0,
ρ(Sα + Sβ)

n2
l

)

Sα+Sβ=
1

2
Sl∼ N(0,

1

2nl
) (4.27)

The average absolute error for all nodes is the expected value for |∆G|.
The mean value of ∆G is 0 and the probability distribution of ∆G is symmet-
rical to x = 0. To compute the expectation value of |∆G|, we first compute
the expected value in [0, +), then double the result as the expected value
of |∆G|. Let ∆G+ be the function of ∆G within function domain [0, +).
Z is the standard Normal distribution of ∆G within function domain [0,
+). u and δ are the mean value and the standard deviation of the Normal
distribution ∆G. The expected value of Z is presented by Formula 4.28.

Z =
∆G+ − u

δ

u=0
=

∆G+

δ

f(z) =
1√
2π

e−
z2

2

E(Z) =
1√
2π

∫ +∞

0
ze−

z2

2 dz =
1√
2π

(4.28)

∆G is the linear function of E(Z), therefore the expected absolute error
of distance estimation can be computed using Formula 4.29.

E(|∆G|) = 2E(δZ) = 2δE(Z)

=
2√
2nl

1√
2π

=
1√
πnl

(4.29)

It can be seen that as the node density goes to infinity, the error goes
to zero. In reality, the node density can not go to infinity. This result is
the error of distance estimation in the ideal case, which can be used as a
benchmark for the experimental results.
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Chapter 5

GDE Algorithm Parameters

So far we have discussed about algorithms in more or less idealized condi-
tions. However, for real deployments, wireless systems have to cope with
many problems such as node mobility, communication failures, non-uniform
node distributions, influence of different communication paradigms (unicast
vs. multicast), etc. In this chapter we analyze these aspects and present
methods to make the GDE algorithm adapt to various parameters.

5.1 Approximation Error

The formulas of GDE algorithm that compute the gradient values suppose
that all nodes are uniformly distributed in the area and the transmission
area of each node is a square. The formulas that compute the overestimated
width reduction of the gradient in Section 4.3 consider the distribution of
nodes, but the computations still presume that the shape of the hop-count
gradient is a set of parallel lines. In reality, the transmission range of the
node is more like a circle. And most of the time only one or a small number
of nodes can be set as the seed nodes, then the shape of the hop-count
gradient waves could be a circle with the seed node at the center. In the
previous computations, transmission range is approximated to square and
parallel gradient waves are linearized to parallel lines. The approximation
from nonlinear conditions to the linear conditions would introduces errors.
This section explains the error introduced by the use of parallel gradient
shape instead of circle gradient shape. At the same time, we analyze some
of the characteristics of the nonlinear conditions, and present an approach
to repair the error introduced by the condition that the circle transmission
range is in the circle gradient waves.
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5.1.1 Circle Gradient

If the hop-count gradient shape is circle instead of parallel lines, the overes-
timated gradient shrink compensation value ∆r that is computed as shown
in Section 4.3 still holds but the size of the overlapping area is different. In
Figure 5.1, o is the place of the seed node, n is a node with real transmission
radius dhop, K is one circle border of the hop-count gradient wave without
considering the overestimated wave width reduction, K

′

is the border consid-
ering the overestimated wave width reduction. If the circle gradient border
K and the compensated border K

′

has overlapping areas with the transmis-
sion range of node n, which are represented by areas a1 and a2. If there is
a line of seed nodes vertically placed at position o, then the gradient border
K will become p and the compensated border K

′

will become pd. It can
be found that the overlapping area of the gradient borders p, pd and the
transmission range of node n is almost equal to the overlapping areas a1
and a2 which are created by the circle borders K, K

′

and the transmission
range. With the increasing of the radius of the gradient wave circle, the
circle gradient wave lines K and K

′

will be more and more close to the
parallel wave lines p and pd. The difference of the areas between the circle
waves and the parallel waves will become smaller and smaller. If the radius
of the circle gradient wave is infinity, then the gradient border can be seen
as parallel lines. If the radius of the circle gradient wave is small, then the
overestimated shrink compensation value ∆r will be overestimated.

x1

a2a1

d

hop

x2

Figure 5.1: Node n with circle transmission range in circle gradient waves.

We present the detailed computation method for the over estimated width
reduction of the circle gradient waves. As shown by Figure 5.1, a1 and a2
are the two parts of the overlapped areas, x1 and x2 are the width of the
two overlapped areas, p

′

is a line used to split the overlapping area into a1
and a2. Area A, which is computed by Formula 4.15, is composed of the
area a1 and a2. Suppose the length x is the sum of length x1 and x2, R is
the radius of the circle gradient wave K, r is the transmission range which
equals dhop. Then the relation between x1 and x, a1 and x1, a2 and x1 can
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be computed using Formulas 5.1, 5.2 and 5.3. When the transmission range
r is normalized to 1, the radius R can be replaced by the gradient value Gi

of node i. Since the gradient difference between node n and node i is 1, we
use Gi = Gn − 1 to compute the gradient value of node i, in which Gn is
the gradient value of node n.

(R+ x)2 − (R+ x1)
2 = r2 − (r − x1)

2 ⇒ R
r = x1

x2

x1 + x2 = x

}

⇒ x1 =
R

R+ r
x

r=1,R=Gi⇒ x1 =
Gi

Gi + 1
x (5.1)

a1
r=1
= arccos(1− x1)− (1− x1)

√

2x1 − x21 (5.2)

a2 = 2[π(R + x)2
arccos R+x1

R+x

2π
− (R + x1)

√

(R + x)2 − (R + x1)2

2
]

= (R+ x)2 arccos
R+ x1
R+ x

− (R + x1)
√

x2 − x21 + 2Rx− 2Rx1

r=1,R=Gi
= (Gi + x)2 arccos

Gi + x1
Gi + x

− (Gi + x1)
√

x2 − x21 + 2Gix− 2Gix1

(5.3)

A = a1 + a2

= arccos(1− Gi

Gi + 1
x)

− (1− Gi

Gi + 1
x)

√

2Gi

Gi + 1
x− (

Gi

Gi + 1
x)2

+ (Gi + x)2 arccos
Gi +

Gi

Gi+1x

Gi + x

− (Gi +
Gi

Gi + 1
x)

√

x2 − (
Gi

Gi + 1
x)2 + 2Gix− 2Gi

Gi

Gi + 1
x

= φ(x) (5.4)

The area A is the function with parameter x, which is shown in the For-
mula 5.4 as φ(x). Then the expectation of the overestimated width reduction
length can be computed in Formula 5.5. So if there is only one node as the
seed node and the hop-count number is very small, then Formula 5.5 is more
accurate than Formula 4.17 to compute the overestimated width reduction
length of the gradient waves. As the radius of the circle gradient wave in-
creases, the circle gradient waves will become more and more like parallel
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gradient waves, then the improvement on the accuracy using the formula
introduced in this section will decrease.

∆r = E(x) =

∫ 1

0
xf(x)dx =

∫ 1

0
x(1− e−ρφ(x))

′

dx (5.5)

5.1.2 Circle Transmission Range

The formulas provided in the previous section suppose the transmission
range to be square to simplify the computation. Formula 5.5 recomputes the
overestimation of the width reduction. The error of the linear approximation
of the square transmission range in the other formulas can also introduce
error in the results of distance estimation. Here, we present a method to
take advantage of the nonlinear characteristic of circle gradient wave and
circle transmission range to repair the error of the distance estimation.

Suppose the gradient waves are circle shapes and the transmission range
of each node is also a circle as shown in the Figure 5.2(a), in which g1 and
g2 are two gradient lines that have the same distance to node n. It can be
found that the length of the crossed arcs of two gradient lines g1 and g2 and
the transmission range of node n are different.

g1
g2

seed

n

1

2

Figure 5.2: (a). The circle transmission range of node n with two circle
gradients g1 and g2. (b). The circle transmission range with a circle gradient.
(c). The relation between the radius of the gradient circle and the length of
the crossed arc of the gradient circle and the transmission range.

Now we present the computation of the length of the crossed arc of the
gradient line and the transmission range of node n. As shown in Fig-
ure 5.2(b), o is the seed node and n is a node placed in the gradient, the
circle with radius R is one of the gradient circles, the circle with radius r is
the transmission range of node n, d1 is the distance from o to line c, d2 is
the distance from n to line c. Suppose d is the distance between the seed
node o and the node n, l is the length of the crossed arc of the gradient
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circle and the transmission range. Then the length of the crossed arc l of
the gradient line and the transmission range of node n can be computed as
shown by Formula 5.6.

r2 − d22 = R2 − d21
d1 + d2 = d

}

⇒ l = 2R arccos R2−r2+d2

2Rd (d− r ≤ R ≤ d+ r)

(5.6)

It can be seen from Formula 5.6, that if the transmission range r and the
distance d are fixed values, then the length of arc l is the function of radius
R. Figure 5.2(c) shows the relation between the radius of the gradient circle
and the length of the crossed arc. In Figure 5.2(c), we fix the value of r to
1 and d to 2, and the x coordinate is the radius of the gradient circle and
y coordinate is the length of the crossed arc of the gradient circle and the
transmission range. It can be found that if two gradient circles have the
same distance to node n, then the gradient circle with larger radius R has
larger arc value l. It means that, in the same node distribution area, the
probability that the nodes on the gradient circle with smaller radius is more
likely to be not discovered than on the gradient circle with larger radius.

Suppose there are two nodes nclose and nfar, and both nodes nclose and
nfar are in the transmission range of node n. Node nclose is the node that
is closest to the seed node among the nodes in the transmission range of
node n, and node nfar is the node that is the furthest to the seed node
among the nodes in the transmission range of node n. Then nclose is on
the gradient circle with smaller radius, while nfar is on the gradient circle
with larger radius. So according to the Formula 5.6, the probability that
the node nclose is not discovered by node n is larger than the probability
that node nfar is not discovered by node n. This conclusion also means
that, from the probabilistic point of view, the distance from node n to node
nfar is larger than the distance from the node n to the node nclose, since
the theoretical closest node nclose is more likely not be discovered than the
theoretical furthest node nfar.

Algorithm 3 presents the detail steps to repair the error of the circle trans-
mission range in the circle gradients. Suppose the gradient values become
larger and larger from the seed nodes. GGDE is the GDE gradient value of
node n. Gmin is the minimum gradient value of the neighbors, which means
the node is closest to the seed node among all neighbors of node n. Gmax

is the maximum gradient value of the neighbors, which means the node is
furthest to the seed node among all neighbors of node n. Suppose that
the gradient difference between GGDE and Gmax is statistically larger than
the difference between GGDE and Gmin. If the gradient difference between
GGDE and Gmin is statistically larger than the difference between GGDE

and Gmax, then we recompute the gradient value of node n to Grepair
GDE
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Algorithm 3: Repair Error Statistically

1: GGDE ⊲ Local gradient value
2: Gmin ⊲ Minimum gradient value in neighbors
3: Gmax ⊲ Maximum gradient value in neighbors

4: if |GGDE −Gmin| > |Gmax −GGDE |
5: set Grepair

GDE [(Gmin +Gmax)/2]
6: end if

The algorithm provides a method to repair the distance estimation value
from the statistical point of view. It is true that, because of the random
distribution of nodes in the area, there exists the possibility that the node
distance estimation is correct but [|GGDE −Gmin| > |Gmax−GGDE |]. Then
the Algorithm 3 will introduce error to the gradient value. Statistically, the
error introduced is always smaller than the error decreased by Algorithm 3.
At the same time, it can be found that if the distance d is much larger than
the radius r, the gradient shape is almost like parallel lines, the difference
between the arc lengths that is closer and further to the seed node does
not exist. So Algorithm 3 only works for gradients built for small network
diameters.

5.2 Node Mobility

In Section 4, we introduce GDE algorithm in the static environment. How-
ever, in most cases of the application, nodes are dynamic. In this section,
we present a probability distribution function of nodes in an area, and then
provides a method to compensate the influence of mobile nodes to the dis-
tance estimation of GDE algorithm.

5.2.1 Node Distribution

As shown in Formula 4.12, suppose the nodes are static and uniformly dis-
tributed in the area, then the probability that k nodes are in the area of
size h follows the Poisson distribution. If the nodes are dynamic, intuitively,
for every discrete moment in time, the probability that k nodes are in the
area of size h also follows the same Poisson distribution. We present the
probability density distribution of the number of nodes in the transmission
range of each node in dynamic.

Suppose all nodes are dynamic. Node m enters the transmission range of
node i according to a Poisson process with intensity λ. Node m stays in the
transmission range of node i for Tm time. The times Tm of all nodes are
independent. The following formulas present the proof that the number of
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nodes R(t) in the transmission range of node i at any time t has a Poisson
distribution.

Suppose Sm is the time point that the node m enters the transmission
range of node i. Tm is the time that the node m stays in the transmission
range of node i. m is the node that goes into the transmission range of node
i, and the value of m is from 1 to N(t), in which N(t) represents the largest
node number that has going into the transmission range of node i before
time t. Then the number of nodes R(t) in the transmission range of node i
at any time t can be described using Formula 5.7.

R(t) =
∑N(t)

m=1
1{Sm+Tm≥t} (5.7)

According to the law of total probability, the number of nodes R(t) in
the transmission range of node i at any time t can be described using For-
mula 5.8.

P [R(t) = q] =
∑∞

n=0
P [R(t) = q|N(t) = n]P [N(t) = n] (5.8)

Suppose Wt is the time point that the node enters the transmission range
of node i from time 0 to time t. According to the characteristic of Poisson
distribution, the time Wt is uniformly distributed in the range [0, t] [30].
The conditional probability in Formula 5.8 can be written as Formula 5.9.

P [R(t) = q|N(t) = n] = P [
∑n

m=1
1{Sm+Tm≥t} = q|N(t) = n]

= P [
∑n

m=1
1{Wm+Tm≥t} = q] (5.9)

Now we compute the probability that Wm + Tm ≥ t. The probability
distribution function is FT (x) = P [T ≤ x]. Then the result can be shown in
Formula 5.10. p is the probability that that Wm + Tm ≥ t.

p = P [Wm + Tm ≥ t]

=

∫ t

0
P [Wm + Tm ≥ t|Wm = w]

dP [Wm ≤ w]

dw
dw

=
1

t

∫ t

0
P [Tm ≥ t− w]dw =

1

t

∫ t

0
(1− P [T ≤ t− w])dw

=
1

t

∫ t

0
(1− FT (t− w))dw =

1

t

∫ t

0
(1− FT (x))dx (5.10)

Then the conditional probability of Formula 5.9 can be written as For-
mula 5.11.
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P [R(t) = q|N(t) = n] =

(

n
q

)

pq(1− p)n−q (5.11)

Finally, we put Formula 5.11 back into Formula 5.8, then we get the result
Formula 5.12.

P [R(t) = q] =
∑∞

n=0
P [R(t) = q|N(t) = n]P [N(t) = n]

=

∞
∑

n=q

n!

q!(n − q)!
pq(1− p)n−q (λt)

n

n!
e−λt

=
(pλt)q

q!
e−pλt (5.12)

It can be seen from Formula 5.12, that the number of nodes R(t) in the
transmission range of node i at any time t follows a Poisson distribution.
At the same time, it can be seen that the Poisson process of the result not
only depends on the intensity of the incoming nodes, but also depends on
the distribution function of Wm+Tm, which is shown by Formula 5.10. The
distribution function of the time that the nodes stay in the transmission
range of another node is decided by the moving model, therefore further
research on the moving model and the staying time in the transmission
range can more clearly show the distribution of the number of nodes in the
transmission range. Further insight on the moving model is not the research
point of the thesis. In this thesis, we use the Formula 4.12 to model the
distribution of mobile nodes.

5.2.2 Node Mobility Compensation

In the previous sections we described an algorithm for the case when the
nodes are static. In this section, we introduce a compensation strategy for
the case in which the nodes are dynamic (i.e., we consider the Random Walk
mobility model assuming a discrete time model).

In Figure 5.3(a), pb is the border of a hop-count gradient wave. Node m
can travel from position p to p′ and p′′ in one time step. The last node that
can discover the border pb changes from node n to node n′, which enlarges
the width of the hop-count gradient wave in the gradient. A strategy to
compensate the enlarged width in the distance estimation value is needed.

We use the expected moving distance of one node in a given time step
Edc to compensate the enlarged width value, which equals the movement
distance from pb to p′′. The translation of the hop-count gradient into x and
y coordinates is shown by Figure 5.3(b), in which y coordinate is parallel to
the line of the seed nodes.
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Figure 5.3: (a). Influence of dynamic node to the border of the hop-count
gradient waves. (b). Expected moving distance of the gradient wave border.

When nodes move with various speeds, the average expected moving dis-
tance for a node in one time step is D which makes an angle θ with the y
axis (V being the projection on it). Due to the fact that all the possible
movement directions are symmetrical with respect to the x coordinate, only
the movement for y > 0 is considered (θ ranging from −π/2 to π/2). The
probability density function of V is given by Equation 5.13. Since we need
the absolute expected moving distance of one node, the expected value is
integrated from 0 to D as shown by Equation 5.14.

θ ∼ U(−π
2 ,

π
2 )

V = D sin θ

}

⇒ f(v)
−D<v<D

=
1

π
√
D2 − v2

(5.13)

Edc = E(v) =

∫ D

0
vf(v)dv =

∫ D

0

v

π
√
D2 − v2

dv (5.14)

The enlarged width of each gradient wave is accumulating from one hop-
count gradient to the next. For a node with hop-count gradient value a and
transmission range r, the dynamic compensation value Cd and the gradient
value Gcompmob

GDE are given by Equations 5.15 and 5.16.

Cd = [(a− 1)dhopEdc]/r (5.15)

Gcompmob
GDE = GGDE + Cd (5.16)

The computations above suppose that all nodes have the same constant
speed D for different moving directions. In practical applications, all nodes
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move with different speeds. Here we present two methods to compensate
the speed.

The first method supposes that we know the average expected speed of
the nodes E(D). Then replace the average expected moving distance for a
node in one time step D with E(D) in the Formula 5.13, and all the other
computations are the same as in Formulas 5.14, 5.15 and 5.16.

The second method supposes that we know more detailed conditions about
the node speeds, such as the probability density function of all nodes. Then
the computation of the expected movement distance can be used to com-
pensate the movement of nodes. Suppose θ is the moving direction of the
node, X is the function of θ, and θ is uniformly distributed from −π/2 to
π/2, then the probability density function of X is shown in Formula 5.17.
Suppose Y is the speed of the node with uniform distribution from 0 to D.
The probability density function of Y can be computed in Formula 5.18.
Suppose V is the moving distance to the positive direction of x. Then the
relation between V , X and Y is shown in Formula 5.19, in which X and
Y are mutual independent with each other [28]. And the probability dens-
ity function of V can be computed using Formula 5.20. Then compute the
average expectation value of v as Formula 5.21.

θ ∼ U(−π
2 ,

π
2 )

X = sin θ

}

⇒ f(x) =

{

1
π
√
1−x2

,−1 < x < 1

0, others
(5.17)

Y ∼ U(0,D) ⇒ f(y) =

{

1
D , 0 < y < D
0, others

(5.18)

V = Y sin θ = XY (5.19)

f(v) =

∫ +∞

−∞

1

|x|f(x,
v

x
)dx =

∫ +∞

−∞

1

|x|fX(x)fY (
v

x
)dx

=

∫ 1

v/D

1

|x|
1

π
√
1− x2

1

D
dx

= − 1

πD
In

D −
√
D2 − v2

v
, 0 < v < D (5.20)

Edc = E(v) =

∫ D

0
vf(v)dv

= − 1

πD

∫ D

0
vIn

D −
√
D2 − v2

v
dv (5.21)
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The formulas above present the process of using the speed distribution
function to compute the compensation value. In the computation we sup-
pose the moving direction parameter θ follows the uniform distribution, and
the moving speed parameter Y also follows the uniform distribution. In
applications, the distribution functions of some parameters could be differ-
ent. Even if the distribution functions are different, the computation process
provided here is still the same.

5.3 Multicast Communication

GDE algorithm does not require for each node to communicate with all
its neighbors. Multicast can be used to decrease the number of messages
in the network. Suppose the nodes are uniformly distributed in the area.
Each node only selects a fraction of its neighbors to communicate with. The
difference compared to the original network is that the new network has an
average lower node density. According to the formulas in Section 4, GDE
can estimate distance for networks with different node densities. Therefore,
each node can use multicast to communicate with their neighbors. The
equations of GDE algorithm introduced in Section 4 can still be used, while
the only difference is that node density nl needs to be adjusted with the
percentage of neighborhood size considered.

At the same time, according to the design, GDE uses the gossiping com-
munication mechanism, which determines the GDE algorithm to have a
lower message complexity compared with flooding. Suppose a fixed network
with n nodes. If a single message needs to be spread in a network using
randomized gossip, the round times of communication converges to O(logn)
and the message complexity converges to O(n · logn) [23]. If each node in
the network broadcasts the message to the other nodes in the network, the
worst-case of the message complexity becomes O(n2), which is much larger
than the gossip-based information dissemination.

5.4 Round Length

GDE assumes a discrete time model, with un-synchronized communication
rounds of size P . Each node acts once in each round, in a different time
slot. The rounds are not synchronized and are being used to mimic the
asynchronous nature of communication. Suppose all nodes follow a Random
Walk mobility model, the transmission range is r and the expected moving
distance at one time step is Edc. We model the motion segments with
a Markov Chain in order to compute the expected moving distance (see
Figure 5.4). In the model we only consider nodes moving in one dimension
(i.e., towards the next hop-count gradient). Suppose that state j, j =
0, ..., N , is the state that describes a node moving forward for a distance
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j · Edc. pj represents the probability that the node moves further from
the original position, while qj the probability of the node to move closer
to the original position. Let N be the maximum number of moving steps
in one round of length P . Let r0 be the probability that a node does not
move out of the initial state and is equal to 1

2 , and let p0 be the probability
that a node moves out of the initial state and is equal to 1

2 . In the inner
processes, the backward and forward motion probabilities of a node in one
time step are the same, so the node moves to the next state or to the previous
state with pj = qj = 1

2 . For the final state N , due to the fact that there
are nodes that can move to the previous state or start a new computation
round, let rN be the probability that a node starts a new round (equal to
1
2), and qN be the probability that a node moves backward (equal to 1

2).
Due to the fact that there is a large number of nodes, the probability of
each steady state can be used as the probability that a node stays in that
state for P steps. Considering the mathematical properties of the Random
Walk [30] , the model that describes the steady states πj (0 ≤ j ≤ N) is
given by Equation 5.22. One can notice that all states converge to the same
probabilities.

Figure 5.4: Moving states of each time step of a round in the Markov Chain.

π0 = r0π0 + q1π1
r0=q1=

1

2⇒ π0 = π1

πN = pN−1πN−1 + rNπN
pN−1=rN= 1

2⇒ πN = πN−1

πj =

∏j−1

m=0

pm
qm+1

1+
∑N

j=1

∏j−1

m=0

pm
qm+1

p=q= 1

2= 1
1+N (1 ≤ j < N)

(5.22)

The node in state 0 does not affect the gradient of nodes in the next hop-
count gradient. For this reason, we ignore state 0. For each state in the
Markov Chain, it represents the expected moving distance from the original
place. For state j, the moving distance is j ·Edc. Because every steady state
has the same probability as shown by Equation 5.22, the expected value
for the moving distance of all states can be computed by Equation 5.23. It
can be found that if the length of the round becomes 1, Equation 5.23 is
the same as Equation 5.14. The compensation value for the round length is
given in Equation 5.24, and the computation for the gradient value is given
in Equation 5.25.
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Ep
dc =

∑P
j=1 jEdc

P
=

(1 + P )Edc

2
(5.23)

Cp
d = [(a− 1)dhopE

p
dc]/r (5.24)

Gcomp round
GDE = GGDE + Cp

d (5.25)

This section only uses Random Walk as mobility model. For the other
movement model, such as SLAW [15], the probabilities of the states on
the Marcov Chain take different values. But the analysis and computation
process are the same, so we do not present the detail results.

5.5 Realistic Model of Transmission Range

In the previous sections, the transmission range uses the unit disk model. In
real applications, the transmission range is not a circle disk, and has rather
different shapes according to the application conditions. In this section,
we present a compensation strategy to allow GDE algorithm work with
irregular transmission ranges.

Figure 5.5: New width of the hop-count gradient wave under the influence
of irregular transmission range.

We suppose the transmission distance of the node does not take a constant
value r, but has a Normal distribution. To create the hop-count gradient,
each node discovers the largest gradient value in its transmission range. So
the hop-count gradient value of each node depends on the furthest transmis-
sion range the node can has. If the transmission distance follows a Normal
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distribution N(λ, δ2), the mean value of the transmission distance λ is not
the furthest distance a node can transmit. We use the average furthest
transmission distance λ+ δ as the new transmission radius. In the formulas
of the previous sections, we use the mean value λ as the width of the wave
of the hop-count gradient to compute the gradient value. For every wave of
the hop-count gradient, the distance is under-estimated with a value of δ.

As shown in Figure 5.5, the transmission range of node n follows Normal
distribution N(λ, δ2). Suppose node n is on the border of the hop-count
gradient wave a. The next hop-count wave border changes from b to b

′

,
because of the Normal distribution of transmission distance. If the node
is in between gradient border a and b, then the under-estimated distance
caused by the previous hop-count gradient waves Dp can be computed as
Formula 5.26, in which λ is the average transmission radius of each node and
δ is the standard deviation of the transmission radius. If the node is between
the gradient border b and b

′

, then the under-estimation distance caused by
its own hop-count gradient wave can be computed as Formula 5.27. The
computation of the gradient value is given in Equation 5.28.

Dp = (GHCG − 1)λ (5.26)

Dl =
δ2

2

(λ+ δ)
=

δ2

2(λ+ δ)
(5.27)

Gcomp trans
GDE = GGDE + [Dp +Dl]/r (5.28)

This thesis is mainly about the theoretical research on the algorithm for
distance estimation for the large-scale sensor networks. So here we do not
make much discussion and analysis on the shape of the transmission range
of sensor nodes in various indoor and outdoor deployments. The method
provided here can be extended to compensate for other kinds of the irregular
shapes of the transmission range.

5.6 Integrated Parameters

For real deployments, the node distribution is not uniform. Furthermore,
node speed, the neighborhood interaction and the communication periods
may vary. Therefore, we introduce an algorithm that can compute the gradi-
ent value for nodes within various deployment conditions as shown by Al-
gorithm 4.

Each node communicates with parts of the neighbors to computes its own
gradient values as shown in Section 4, and propagates gradient information
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Algorithm 4: Compute Gradient by Propagation

1: select {SN}
2: compute Dhop, Esc, E

p
dc

3: Ec = (1−Dhop) + Esc + Ep
dc

4: for each element {SN}
5: if GHCG i = (GHCG − 1 )
6: sum (PEc i + Ec i)
7: end if

8: end for

9: PEc =average(PEc i + Ec i)

10: Gadp
GDE = GSMG − PEc

to the nodes belonging to the next hop-count gradient wave. The propag-
ated gradient information includes average values of the gradient reduced
width value ∆, the static compensation value Esc and the dynamic com-
pensation value Edc. Each node uses the received width reduction values
and compensation values to compute its own gradient value.

For Algorithm 4, GHCG is the hop-count gradient value, {SN} is the
subset of the neighbors to communicate with, Dhop is the real one hop
distance, Esc is the compensation for the static case which equals ∆r as
shown in Equation 4.17, Ep

dc is the compensation for the mobile case given
by Equation 5.23. Ec is the sum of reduced width (1−Dhop), Esc, and Edc.
PEc is the sum of Ec for the nodes in all the previous hop-count gradients.
PEc i, Ec i and GHCG i are the PEc, Ec and GHCG values of node i in the
neighbor subset {SN}. GSMG is the gradient value computed using the

simple smooth algorithm introduced in Section 3.2 and Gadp
GDE is the final

computed gradient value.
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Chapter 6

GDE Algorithm Analysis

To validate our algorithms, we run simulations in Matlab. The nodes are
placed randomly in a square area of 1000 × 1000 meters. The transmission
range r of each node is 80 meters. The node density nl is the average
number of nodes within the transmission range of each node. The seed
nodes are placed on the left border of the square. The resulting hop-count
gradient looks like parallel waves. For the dynamic case, each node moves
for a certain distance at every second. We run experiment 20 times for each
testing point. Each node makes a distance estimation from itself to the line
of seed nodes. The error for each node is computed as ϕ = |ξ−θ|

r , in which ξ
is the estimated distance to the line of seed nodes using different algorithms,
θ is the real distance towards the line of seed nodes, r is the transmission
range of each node and ϕ is the error normalized to the transmission range r.
The hop-count gradient (HCG) and smoothed gradient (SMG) algorithms
compute the gradient values GHCG and GSMG, and the estimated distance
is computed by ξHCG = GHCG · dhop and ξSMG = GSMG · dhop respectively.
The gradient-based distance estimation (GDE ) algorithm uses algorithms
presented in the previous sections to compute the gradient value GGDE ,
and the estimated distance is computed by ξGDE = GGDE · r.

6.1 Node Density

With the first set of tests we want to find what are the effect of node density
and network diameter to the accuracy of the algorithms. All nodes are static
and uniformly distributed, and broadcast locally to the neighbors.

The qualitative analysis about the average absolute error of the distance
estimation of HCG, SMG and GDE algorithms is presented in Figure 6.1
for various node densities and network diameters. On the x axis we see the
node density and, on the y axis the network diameter. The z coordinate is
the average absolute error. The results show that the HCG has almost no
decrease of the error after node density larger than 15. The distance estim-
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ation error using SMG and GDE algorithms decreases when node density
increases. The error of GDE is always smaller than the one of SMG. When
node density is constant, and the network diameter increases, the errors of
both SMG and GDE have small increase but by a small factor. This is
mainly caused by the cumulative effect of the distance estimation error of
the nodes in the previous hop-count waves. Still, the error of GDE is much
smaller than the error of HCG. Finally, the increasing error rate of GDE is
smaller than the one of SMG.
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Figure 6.1: Absolute error for various node densities and hop-count gradient
values.
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Figure 6.2: Absolute error for various node densities.

The quantitative analysis about the average absolute error of the three
algorithms is presented in Figure 6.2 for various node densities. The network
diameter is 12. The GDE method reduces the average error of HCG and
SMG significantly for node density higher than 15. The standard deviation
of the error for both SMG and GDE decrease when the average node density
increases. The standard deviation of the estimation error for GDE is always
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smaller than the one of SMG for node density higher than 15. For an average
node density 30 the average estimation error for HCG, SMG and GDE are
0.31, 0.24 and 0.15. While the standard deviation is 0.025, 0.036 and 0.020
respectively. Figure 6.2 also shows out the error reference value according
to Formula 4.29. As the node density increases, the error of GDE algorithm
tends closer to the error reference value.

6.2 Node Speed

The second set of experiments is intended to find the effects of various node
speed levels and node densities to the accuracy of the algorithms. Nodes are
uniformly distributed, and broadcast to the neighbors. Their movements
follow the Random Walk model, and the network diameter is 12.

The qualitative analysis about the average absolute error of the distance
estimation of HCG, SMG and GDE algorithms is presented in Figure 6.3 for
various node speeds and node densities. The x axis shows the node density,
the y axis the node speed, and the z axis the average absolute error. On
the y axis, the speed is increased in step of 2 m/s. The estimation error of
GDE decreases as node density increases. On the other hand, it increases
slightly when the average node speed increases. Also, when the node speed
increases, the error of HCG and SMG increases also. For node speeds higher
than 8 m/s, the error of SMG increases greatly and is even larger than the
one of HCG. This is mainly caused by the fact that SMG is designed for the
static environment and it does not consider the influence of mobile nodes.
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Figure 6.3: Absolute error for various node densities and node speeds.

The quantitative analysis about the average absolute error of the three
algorithms is presented in Figure 6.4 for various node speeds. Node density
is set to 50. The network diameter is 12. As the speed increases, the error
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of GDE increases slightly, but SMG increases significantly. When the node
speed is 20 m/s, the average error of distance estimation by GDE is 0.148,
while the error levels for HCG and SMG are 0.391, 0.610 respectively. The
standard deviation for HCG, SMG and GDE are 0.011, 0.019 and 0.010
respectively. The test results show that the GDE algorithm has a good
performance in a dynamic environment. HCG and SMG are not suitable in
a dynamic environment especially at high node speed.
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Figure 6.4: Absolute error for various node speed levels.

We also test using another kind of movement model, SLAW [15]. Fig-
ure 6.5 shows the error of the three algorithms for various node densities. In
the experiment, all nodes are uniformly distributed in the area, the move-
ment distance per second is 1/40 of the transmission radius. GDE takes the
best performance with node density 15. The error of GDE decreases from
0.286 of node density 20 to 0.092 of node density 50. The standard deviation
of GDE generally is also smaller than HCG and SMG. The test results show
that the GDE algorithm can also work well in a dynamic environment with
SLAW movement model.
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Figure 6.5: Absolute error for various node densities with SLAW movement
model.
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6.3 Circle Gradient Waves

In the real application, usually only a small number of seed nodes can be
deployed in the area. In such condition, for each seed node, the gradient
created becomes a circle. As shown in Figure 6.6, a seed node is fixed at the
position (0, 0). It can be seen that the gradient shape becomes circular arcs
instead of parallel lines. In this section, we test whether the GDE algorithm
exhibits good performance given that there is only one seed node. At the
same time, as shown in the Section 5.1, Algorithm 3 provides a method to
take advantage of the characteristic of circle gradient waves. We also want to
know whether Algorithm 3 can improve the accuracy of the GDE algorithm.
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Figure 6.6: Hop-count gradient waves with one seed node at position (0, 0).
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Figure 6.7: Absolute error for various node densities.

In the experiment, only one seed node is fixed at position (0, 0). All the
nodes are uniformly distributed with Random Walk model, and the move-
ment distance per second is 1/40 of the transmission radius r. Figure 6.7
shows the testing result. It can be seen that as the node density increases
from 15 to 50, the error of GDE decreases from 0.315 to 0.132. HCG almost
has no improvement as the node density increases, and SMG only improves
from 0.514 to 0.159. At the same time, it can be found that R-GDE, which
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represents the GDE algorithm using Algorithm 3 in the Section 5.1, has
the best result accuracy from node density 10 to 50. This means that Al-
gorithm 3 in the Section 5.1 can increase the accuracy of distance estimation
for the circle gradient shape, although the improvement is not that large.
Therefore, GDE can work well even if there are only a small number of seed
nodes. GDE algorithm not only can make distance estimation to a line of
seed nodes, but also can make distance estimation to only one seed node.

6.4 Spatial Node Distribution

In this section, we check the influence of different spatial node distribution
to the accuracy of the algorithms. Nodes follow again a Random Walk
mobility pattern with speed of 2 m/s. The seed nodes are placed on the left
border of the square. This time the placement of the nodes is not uniformly
distributed. Instead, the y coordinates of nodes are uniformly distributed
from 0 to 1000 meters, while the x coordinates of nodes are distributed
following a normal distribution |N(0, 0.5) · 1000|, with maximum value 1000
and minimum value 0. So the field that is closer to the seed nodes has
higher node density, and the field that is further to the seed nodes has lower
node density. The GDE gradient is computed using the algorithm shown
in Section 5.6. Figure 6.8 shows the distribution of nodes in the area where
the hop-count gradient is depicted by various colors.
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Figure 6.8: Hop-count gradient for Normal node distribution.

In Figure 6.9, on the x axis is depicted the node density, on the y axis is
the average distance estimation error. As shown by the graph, the distance
estimation errors of HCG and SMG increase significantly. For GDE, the
average error of distance estimation is quite low at around 0.089 when the
node density is around 80. For a density of 20, the error is 0.150. So GDE
is also suitable for deployments with non-uniform node distributions.

To further test the GDE algorithm, we consider a second experiment, in
which the distribution of the nodes in the area is different. All the other
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Figure 6.9: Absolute error for Normal node distribution.

parameters are the same as the first spatial node distribution test. In Fig-
ure 6.10, generally there are four fields with higher node density. The centers
of the four fields are (0.25, 0.25), (0.75, 0.25), (0.75, 0.25), (0.75, 0.75), in
which all the coordinates are normalized from 1000 meters to 1 unit. The
node distribution follows a Normal distribution with standard deviation 0.1.
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Figure 6.10: Hop-count gradient for Normal node distribution with four high
node density fields.

Figure 6.11 shows the testing results. In the figure, the x axis is the
distance to the line of seed nodes, y axis is the average distance estimation
error. It can be seen that the errors of HCG and SMG increase significantly
from the place that is closer to the seed line to the place that is further to
the seed line. For GDE, the average error of distance estimation is quite low
compared with the other two algorithms. At the distance of 800 meters, the
error is only 0.196 of the transmission range. It can also be noticed that
generally there are two peak values in the results of GDE algorithm. This
is mainly because that, along the dimension from the place that is closer to
the seed line to the place that is further to the seed line, there are two fields
with Normal distribution nodes. So GDE shows good performance given
non-uniform spatial node distributions.
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Figure 6.11: Absolute error for Normal node distribution with four high
node density fields.

6.5 Multicast Percentage

For wireless systems where nodes follow duty-cycled sleep schedules, nodes
that transmit can only be heard by a subset of their neighbors. The percent-
age of nodes that take part determines the speed of information diffusion.
For this experiment, nodes are uniformly distributed with an average dens-
ity of 50. The network diameter is 12. The nodes take Random Walk with
speed of 2 m/s.
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Figure 6.12: Absolute distance estimation error for various multicast per-
centages.

In Figure 6.12, the x coordinate shows the multicast percentage, while
the y coordinate shows the error level. Each node randomly selects a subset
of its neighbors at each time step. The multicast percentage varies from 0.1
to 1.0. The error of both SMG and GDE algorithms decreases significantly.
GDE always computes a better estimate than SMG. This is shown by both
the average value and the standard deviation. The estimation error of HCG
decreases for the multicast percentage between 0.1 and 0.5 and shows almost
no improvement afterwards. For an average multicast percentage of 0.6, the
error and the standard deviation of GDE are 0.122 and 0.009 respectively,
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and the values are almost the same as the results of Section 6.1 with node
density 30. This experiments shows that even when nodes are not able to
talk to all their neighbors, the GDE still shows good performance.

6.6 Communication Round Length

The GDE algorithm uses a discrete time model, with un-synchronized com-
munication rounds of size P . In this section, we test the influence of the
length of the communication round to the accuracy of distance estimation.
For this experiment, nodes are uniformly distributed, with an average node
density of 50. They use broadcasting to communicate with their neighbors,
and the network diameter is 12. The nodes take Random Walk with speed
of 2 m/s.
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Figure 6.13: Absolute distance estimation error for various round lengths.

In Figure 6.13, the x axis is the round length in seconds, while the y axis is
the estimation error. As the round length increases, the error and standard
deviation of SMG increases significantly. On the other hand, the error and
standard deviation of GDE shows a much smaller increases from 0.097 and
0.006 to 0.113 and 0.014. The test results show that GDE algorithm offers
good distance estimation without requiring very frequent communication
with neighbor nodes.

6.7 Realistic Model of Transmission Range

In the theoretical analysis, we assume the transmission range of the node
is a circle disk. But in the real application, the shape of the transmission
area depends on many factors, and the shape can hardly be a circle. In
Section 5.5, we present a method to compensate the influence of the trans-
mission range of the node that is not a circle disk. To test our algorithm, we
make a simple transmission range model, which assumes that the transmis-
sion distance of the node changes according to a Normal distribution. The
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transmission circle of the node is sliced to 36 pieces evenly. For each slice, the
transmission distance follows a Normal distribution. The mean value equals
the theoretical transmission range r. The maximum transmission range is
limited to the twice the length of the transmission range. Figure 6.14 shows
an example of the transmission range of the node, in which the blue circle
is the expected circle transmission range, and the red shape is the realistic
model of transmission range.
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Figure 6.14: A demonstration of the realistic model of transmission range.
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Figure 6.15: Absolute distance estimation error with realistic transmission
range model for various node densities and transmission distance standard
deviations.

In the experiment, the transmission distance of each range slice for every
node changes at every second. The standard deviation stddev is normalized
to 1/30 of the transmission range. All the nodes are uniformly distributed
with Random Walk model, and the movement distance per second is 1/40 of
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the transmission radius. Figure 6.15 shows the relation between the error of
the distance estimation, the node density and the value of the standard devi-
ation. It can been seen that as the standard deviation increases from 1/30 of
the transmission range to 1/3 of the transmission range, the errors of HCG
and SMG increase significantly. And the error of SMG is even larger than
HCG. GDE algorithm generally keeps a low error of distance estimation,
but still as the standard deviation increases the error also increases.
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Figure 6.16: Absolute distance estimation error for various node densities
with realistic transmission range model of 1/10 transmission distance stand-
ard deviation.

Figure 6.16 shows the performance of GDE algorithm with standard devi-
ation of 1/10 the transmission range. It can be seen that from node density
20 to 50, the error of GDE decreases from 0.250 to 0.107. At the same time,
it keeps a small standard deviation from 0.032 to 0.012. The results show
that the GDE algorithm can work in the condition that the shape of the
transmission range is not a circle.

6.8 Adaptive Behavior

In the experiments of the previous sections, we test the GDE algorithm
under the influence of different environment parameters. In real deployments
though, nodes are not uniformly distributed, node speed varies, the local
interaction is described by a multicast communication, etc, which means the
affects of all these parameters will show on the GDE algorithm at the same
time. In this section, we test the GDE algorithm with all the parameters
together.

In the first test, nodes are distributed following a Normal distribution,
which is the same as the first experiment in the Section 6.4. The mobility
model is Random Walk but node speed follows also a Normal distribution
with mean value of 2 m/s. The multicast percentage depends on the local
density. Nodes interact with a minimum 15 nodes to a maximum 30 nodes.
The random variable of the number of successful transmissions for each
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node in each round follows a Binomial distribution. For each neighbor, the
probability of making successful communication has a probability of ps =
(0.2 ·nl+15)/nl, in which nl is the node density. The communication round
length P changes according to the node density as P = |(ps ·nl)/15−1|·9+1.
In this experiment, we suppose that each node gossips with their neighbors
according to the computed fixed round. The node that is selected as the
gossiping target should always acknowledge, even if the node is still in the
sleeping period of the communication round.

Figure 6.17 shows the experiment results. The x axis shows the distance
to the seed nodes while y axis shows the error normalized to the transmission
range r. It can be seen that, as the distance to the seed nodes increases, the
distance estimation error also increases. When the distance is larger than
300 meters, the estimation error of SMG is even larger than that of HCG.
The estimation error of the two algorithms increases significantly from 300
to 800 meters. As expected, GDE generally shows small distance estimation
errors, which only increases from 0.120 to 0.456.

 0

 1

 2

 3

 100  200  300  400  500  600  700  800

HCG
SMG
GDE

Distance [m] to Seed Nodes

E
st
im

.
E
rr
.
[n
o
rm

.
to

r
]

Figure 6.17: Absolute distance estimation error for various parameters.

In the second experiment, the parameters become extreme. The node dis-
tribution is the same as the second experiment in the Section 6.4, which gen-
erally has four high node density fields in the area. The mobility model is still
RandomWalk and node speed follows a Normal distribution with mean value
of 2 m/s. The multicast percentage depends on the local density. The num-
ber of successfully communicated neighbors is within a minimum 15 nodes to
a maximum 30 nodes. For each neighbor, the probability of make successful
communication has a probability of ps = (0.2·nl+15)/nl+q, (15 ≤ ns ≤ 30),
in which nl is the number of nodes in the local transmission range and q
is a Normal distribution factor with N(0, 0.1). The factor q simulates the
random changes in the communication, which randomly affects the suc-
cessful rate of the communication. Therefore the variable of the number of
successful transmissions generally follows a Binomial distribution. The com-
munication round length changes according to the local node density and
also follows a Normal distribution, with N(m, 0.5), in which m is the mean
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value of the communication round length, m = |(30− (0.2 · nl +15))/15| · 3.
At the same time, this experiment requires that, if a node is in the sleeping
period of the communication round, it does not make gossiping communic-
ation to the neighbors and does not make acknowledgement message, even
if some other nodes selects it as the communication target. The shape of
the transmission range of each node changes for every second, which is the
same as in the Section 6.7.
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Figure 6.18: Absolute distance estimation error for various parameters.

Figure 6.18 shows the experiment results. It can be seen that, as the
distance to the seed nodes increases, the distance estimation error also in-
creases. GDE algorithm takes the best performance, whose error grows from
0.200 of 100 meters to 0.868 of 800 meters. It should be noticed that from
a real distance of 500 meters to 600 meters, the error takes the maximum
increasing rate. At 490 meters, the error is only 0.179, while the error in-
creases to 0.856 at 600 meters. After 600 meters, the increasing rate even
takes a minus value. Some further investigation could be made on the large
increasing rate to further decrease the distance estimation error. Generally,
according to the two experiments, GDE has basic adaptive capability, and
can make acceptable distance estimation results in the environment with
integrated parameters.
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Chapter 7

Applications of GDE

Many applications need accurate distance estimation or coordination po-
sition information. In this chapter, we provide three kinds of applications
where the distance estimation algorithm GDE can be used, including cluster
center detection, overlay shape construction and routing. Generally, in the
applications, the created gradient of GDE algorithm can be used to obtain
the direction information, and the distance estimation of GDE algorithm
can be used to create a coordination system.

7.1 Cluster Center Detection

Some algorithms such as ASH [25] can create clusters of nodes in the large-
scale networks. One question is how to find the node that is closest to the
center of the cluster. The gradient created by GDE algorithm can be used
to find the center of a cluster.

In this experiment, we suppose all nodes in the area are set to two different
fields. The first field is the square in the center of the whole area. All the
nodes in the square field form a cluster. The second field is the place that
is not in the square. Figure 7.1(a) shows the two fields in the area. In
this application, we need to find the node that is closest to the center of
the cluster. The center of the cluster is defined as the average value of the
coordinate vectors of all nodes in the specified cluster.

In the initialization step, suppose each node knows which cluster it belongs
to. If a node can discover some nodes in a different cluster, then itself is
set as the seed node. Each node uses the gradient algorithms presented in
the previous sections. The nodes with the lowest gradient value are selected
as the center of the cluster. Figure 7.1(b), Figure 7.1(c) and Figure 7.1(d)
show the selected center nodes, using HCG, SMG and GDE algorithms
respectively. In the picture, the bigger nodes are the selected center nodes,
and the green cross mark is the expected real center.

To evaluate the performance of cluster center detection by different al-
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Figure 7.1: (a). Two partitioned fields in the area. (b). Selected center
nodes of the cluster with the highest gradient value by algorithm HCG.
(c). Selected center nodes of the cluster with the highest gradient value by
algorithm SMG. (d). Selected center nodes of the cluster with the highest
gradient value by algorithm GDE.

gorithms, we set two kinds of statistical indicators. The first one is the
average distance from the selected center nodes to the real center of the
cluster. The second one is the number of selected center nodes. In the ex-
periments, the nodes are uniformly distributed in a square area. The side
length of the square is normalized to 1. The cluster field is the square with
length of 0.8 in the center of the whole area as shown in Figure 7.1(a). The
transmission radius of the node is 0.08. The evaluations are made in both
static and dynamic environments. In the dynamic testing, the nodes follow
a Random Walk model and the movement distance per second is 0.002.

Figure 7.2 shows the average distance to the real center of the cluster
using three algorithms. It can be seen that for node density 15 to 25, SMG
has the best accuracy. And from node density 30 to 50, GDE has the best
accuracy. At node density 45 and 50 testing point, the error of HCG is even
smaller than SMG. Figure 7.3 shows the number of center nodes selected by
the algorithms. It can be found that SMG and GDE always select less or
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equal than 2 nodes as the center nodes, while HCG selects more than 10
nodes as the center nodes. In the dynamic environment, the testing results
are shown in Figure 7.4 and Figure 7.5. Still GDE takes the best accuracy
and selects only one or two nodes as the center nodes.
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Figure 7.2: Average distance from the selected center nodes to the real
center with static nodes.
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Figure 7.3: Number of selected center nodes.

The reason that HCG takes the worst accuracy and selects many nodes as
the center nodes is because of its low resolution. The nodes in the same hop-
count gradient wave take the same gradient value, then there are many nodes
taking the same highest gradient value. SMG and GDE both have higher
resolutions. So both algorithms have better results. Although GDE is based
on the smoothed gradient created by SMG, GDE make many compensation
computations, which in advance smoothed the gradient of SMG. Therefore,
from node density 30, GDE has much better accuracy than SMG in both
static and dynamic situations. Because the node density can not be infinity,
there is a high probability that there is no node at the position that is
computed as the center. So even using GDE algorithm, there may be more
than one nodes that are selected as the center nodes.
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Figure 7.4: Average distance from the selected center nodes to the real
center with dynamic nodes.
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Figure 7.5: Number of selected center nodes.

7.2 Overlay Shape Construction

Since using the distance estimation algorithm GDE, nodes can compute the
distance to some fixed nodes with known positions, then the estimated dis-
tances to more than one fixed positions can be used to create a coordination
system. According the coordinate values, each node in the network can
be marked with required colors, and all the colored nodes can construct
a specified overlay shape. The application of programmable self-assembly
strategy is shown in [18]. It can assemble autonomous nodes into global
shapes, in which the GDE algorithm can be used. This section presents the
process of creating an overlay shape using distance estimation algorithms.

7.2.1 Constructed by Two Seed Lines

In the experiment, we suppose all nodes are uniformly distributed in a square
area. To create a coordination system, two lines of seed nodes are set ver-
tically and horizontally at the border of the square. Each node computes
the distances to the two lines, then the two distances can be used as the
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coordination values. Using the created coordination system, any shape can
be created. Figure 7.6(a) shows the nodes distribution on the material and
the shape to be created. Figure 7.6(b), Figure 7.6(c), Figure 7.6(d) show
the created shape using HCG, SMG and GDE algorithm respectively.
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Figure 7.6: (a). The border of the overlay shape to be created. (b). Created
shape using HCG. (c). Created shape using SMG. (d). Created shape using
GDE.

In order to evaluate the performance of different algorithms to create a
specific shape, we set two kinds of statistical indicators. The first one is the
number of nodes outside the desired shape. If the node is not in the shape,
but it is computed as in the shape using the algorithm, then it is counted
as an error node. At the same time, if the node is in the shape, but it is not
computed as in the shape using the algorithm, then it is also counted as an
error node. And then count the total number of error nodes. The second
method is to compute the average distance of all error nodes to the desired
shape. The distance is defined as the shortest distance from the node to the
border of the shape. In the experiments, the nodes are uniformly distributed
in a square area. The length of the side of the square area is normalized 1.
The standard shape is constructed by two concentric circles. The center of
the circles is (0.5, 0.5). The smaller circle has the radius 0.15. The bigger
circle has the radius 0.3. The standard shape is shown in Figure 7.6(a). The

57



transmission radius of the node is 0.08. We take the experiments in both
static and dynamic environments. In the dynamic testing, the nodes follow
a Random Walk model and the movement distance per second is 0.003.
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Figure 7.7: Number of error nodes in the shape for static nodes.
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Figure 7.8: Average error distance of error nodes in the shape for static
nodes.

In the static environment, as shown in Figure 7.7 and Figure 7.8, GDE can
not only has the minimum number of error nodes, but also has the minimum
distance to the correct shape. From node density 45 to 80, the number of
error nodes of SMG and GDE almost do not increase, But HCG increases
from 175 to 345. The reason is that HCG has very low resolution, which can
hardly compute the correct position of each node. At the same time, it can
also be found that as the node density increase from 45 to 80, the average
error distance of SMG and GDE decreases a little. This is because if the
node density increases the accuracy of distance estimation of the nodes also
increases.

GDE also works very well in the dynamic environment as shown by Fig-
ure 7.9 and Figure 7.10. The variation trend of the results is almost the
same as in the static environment. From node density 45 to 80, the number
of error nodes of GDE changes from 60 to 75 in the static situation, while
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Figure 7.9: Number of error nodes in the shape for mobile nodes.
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Figure 7.10: Average error distance of error nodes in the shape for mobile
nodes.

from 56 to 72 in the dynamic situation. And the average error distance of
GDE changes from 0.007 to 0.006 in the static situation, while from 0.006
to 0.005 in the dynamic situation. Therefore it can be seen that GDE al-
gorithm can be used for overlay shape construction, and works both well in
static and dynamic environments.

7.2.2 Constructed by Two Seeds

In the previous discussion and testing, in order to create a coordination
system, two lines of seed nodes are placed at the borders of the area. But
in real applications, it is not feasible to create a line of seed nodes. Instead,
we can only use a small number of nodes as seeds. Even if using a small
number of seed nodes, the coordination system can also be created using
the GDE algorithm. Using the estimated position information, the overlay
shape can also be constructed.

To create the coordination system, the minimum number of seed nodes
that are needed in a square area is two. And the two seed nodes should be
placed at some known positions. Then any node and the two seed nodes can
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create a triangle, in which the lengths of the three edges can be computed
and the positions of the two seed nodes are known. Using this triangle, the
position values of the nodes can be computed.

Suppose side length of the square area is 1. In the experiment, we put two
nodes at the corner of the square (0, 0) and (0, 1) as the seed nodes. Then
each node computes the distances to the two seed nodes and the coordinate
values. As shown in Figure 7.11, node n is in the area with two seed nodes at
the corner. Suppose the position of the two seed nodes are known, and the
distance of the two seed nodes are l. Use the GDE algorithm, the distance
from the seed nodes to node n can be computed as d1 and d2. Then it is
easy to compute the coordinate values of node n using Formula 7.1.

1

2

Figure 7.11: Use the distance to the seed nodes to compute the coordinate
values of node n.

x2 + (l − y)2 = d21
x2 + y2 = d22

}

⇒
{

x =
√

d22 − y2

y =
d2
2
−d2

1
+l2

2l

(7.1)

With the computed coordinate values, we create the shape shown in Fig-
ure 7.6(a). And we still compute the number of error nodes and the average
error distance. We only test for all nodes in dynamic. All nodes are uni-
formly distributed in a square area. The length of the side of the square
area is 1. The standard shape is constructed by two concentric circles. The
center of the circles is (0.5, 0.5). The smaller circle has the radius 0.15.
The bigger circle has the radius 0.3. The transmission radius of the node is
0.08. The nodes follow a Random Walk model and the movement distance
per second is 0.002. The two seed nodes are at the corners of the square
(0, 0) and (0, 1). Figure 7.12 shows the number of error nodes with only
two seed nodes at the corners. Figure 7.13 shows the average error distance
to the right shape. It can be seen that as the node density increases from
5 to 80, the number of error nodes of HCG increases from 71 to 381. The
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number of error nodes of GDE only increases from 42 to 75, which is the
lowest of all three algorithms. GDE also shows the best performance in the
average distance error. The error of distance of GDE changes from 0.025
of node density 15 to 0.006 of node density 80. The testing results of GDE,
from node density 45 to 80, are almost the same as the results obtained in
the Section 7.2. This means that we can also construct the overlay shape
accurately by using only two seed nodes.
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Figure 7.12: Number of error nodes in the shape with two seed nodes.
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Figure 7.13: Average error distance of error nodes in the shape with two
seed nodes.

In real applications, the positions of the seed nodes may be different than
the ones in the experiment. The process of calculating the coordinate values
of the nodes is the same. It should also be mentioned here that, according
to the paper [17], the position the seed nodes can also influence the accuracy
of the distance estimation, which could be further researched for the overlay
shape construction.
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7.3 Routing

The gradient value can be used to make distance estimation. At the same
time, the gradient itself also includes some direction information, which can
be used as routing information to find the target nodes. This section presents
a demonstration of the ability of using the gradient values to make routing
from one node to another node in a network.
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Figure 7.14: (a). The source and the destination nodes in the network. (b).
Route from the source node to the destination node using HCG. (c). Route
from the source node to the destination node using SMG. (d). Route from
the source node to the destination node using GDE.

Suppose there are many nodes in the area, and for some reason there is
no node in the middle of the area (e.g., in a stadium). Figure 7.14(a) shows
the distribution of nodes, in which the blue node is the target node, and
the red node is the source node. We use the gradient to create a route from
the source node to the target node in the network. First, we set the target
node as the seed node, and then a gradient can be created in the network.
Any node that wants to send information to the seed node just selects the
node with the largest gradient value as the next hop in its own transmission
range, and send messages to that node. Because the seed node holds the
largest gradient value in the network, the messages will finally reach the seed

62



node. Figure 7.14(b), Figure 7.14(c), and Figure 7.14(d) show the route from
the source node to the target node using HCG, SMG and GDE algorithm
respectively. In this experiment, the node density is 20, and all nodes are
static. It can be seen that even if there is a hole in the middle of the area,
the gradient can be created, and the route from the source node to the
target node can be found. It can also be found that GDE and SMG selects
the same route. HCG selects a different route but the number of hops is
almost the same as the hop number of GDE and SMG. This is because SMG
and GDE both are based on the hop-count gradient created by HCG. GDE
algorithm is more accurate than SMG and HCG in the distance estimation.
But the routing strategy here is to find the shortest path in the simulation,
so the next hop node is always selected among the nodes in the previous
hop-count gradient wave. Therefore, there is not that much difference for
all three algorithms to select the route. But if the routing strategy demands
some position information, the results of the three algorithms may become
different. This experiment presents an idea about the application using
the gradient-based algorithms for routing. Detailed routing strategy in the
application using GDE algorithm is a subject of future work.
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Chapter 8

Accuracy Improvement of

GDE

The GDE algorithm presents a method of using simple gossiping to create a
gradient and estimate distance between nodes. This chapter provides some
improvement methods that can further increase the accuracy of the GDE
algorithm. According to the testing results, the improvement methods have
some progress in the accuracy of the GDE algorithm.

8.1 Multilayers

Suppose nodes are uniformly distributed in the area. Each node is randomly
given a number si (i = 1, ..., N). All the nodes with the same number si
can construct a new network, in which the nodes are uniformly distributed.
The nodes with the same number si use the GDE algorithm to estimate
distances in the new network, and the average distance estimation error is
ei. According to the computation introduced in Section 4.4, the error of
the distance estimation using GDE algorithm follows a Normal distribution
with mean value 0 as the node density tends to infinity. It can be reasoned
that the average value of the distance estimation error ei, i = 1, ..., N , tends
to 0. Therefore, rearranging the nodes in the area into many layers, and
calculating the average value of the distance estimation in each layer may
improve the accuracy of the distance estimation results.

As shown in Figure 8.1, each node is randomly assigned to a layer accord-
ing to a initial constant probability. Then each layer creates a new network
but with lower node density. According to the results of the experiments in
the previous sections, lower node density produces higher error. Although
for each layer, the accuracy becomes lower, the average value of all the
distance estimation values of all layers is closer to the correct value.

In the experiment, nodes are dynamic and uniformly distributed in an
square with side length 1. The transmission radius of each node is 0.08.
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Figure 8.1: Multilayers of nodes in the network.

The nodes follow a Random Walk model and the movement distance per
second is 0.002. the network is sliced to 10 layers and for each layer the
node density is 25. If the node density of the realistic network is nl, then
the probability that a node is selected in a layer is 25/nl. Figure 8.2 shows
the testing results of the GDE algorithm and the improved GDE using the
multilayer method. In Figure 8.2, the Multilayer-GDE represents the GDE
algorithm with the multilayer method. It can be seen that there is a little
improvement to the basic GDE algorithm. From node density 30 to 50, the
error of the original GDE algorithm is from 0.155 to 0.097, and the error of
GDE algorithm using multilayer is from 0.149 to 0.098.
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Figure 8.2: Absolute distance estimation error using GDE algorithm with
multilayers improvement method.

Some questions are not answered in the multilayer method. In the exper-
iment, the number of layers is set to 10, and the node density of each layer
has a constant value of 25. Obviously, how to arrange the number of layers
and what is the best node density that can be used in each layers could be
further investigated.
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8.2 Recalibrated Transmission Range

In Section 3.2, the transmission range is supposed to be a square to sim-
plify the computation. But obviously this kind of simplification introduces
some distance estimation error. This section presents the computation of
recalibrating the transmission range from square to a circle.

Figure 8.3: The realistic transmission range and the theoretical transmission
range.

As shown in Figure 8.3, in the ideal case, node n has a transmission range
of a circle. Suppose Sα is the size of the area of α, Sα

′ is the size of the

area of α
′

. The size of both area can be computed using Formula 8.1 and
Formula 8.2. Then using Formula 8.3 the relation equation between α

′

and
α can be computed.

Sα = Sr = α(2r)2 = 4r2α (8.1)

Sα′ = Ss − St =
2arccos r−2rα

r

2π
πr2 − 2

√

r2 − (r − 2rα)2(r − 2rα)

2
r=1
= arccos(1− 2α)− 2(1 − 2α)

√

α− α2 (8.2)

α
′

=
Sα′

πr2
=

1

π
arccos(1− 2α) − 2

π
(1− 2α)

√

α− α2 (8.3)

In the simulation the transmission area is α
′

of the circle transmission
range, but in the computation, the area is supposed to be α. Using For-
mula 8.3, the detected area α

′

can be recomputed to α.
In this experiment, the nodes are dynamic and uniformly distributed in an

square with side length 1. The transmission radius of each node is 0.08. The
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nodes follow a RandomWalk model and the movement distance per second is
0.002. Figure 8.4 shows the improved GDE algorithm using the recalibrated
transmission range. In Figure 8.4, the Recalibrated-GDE represents theGDE
algorithm with the recalibrated transmission range improvement method. It
can be observed that the recalibration can improve the basicGDE algorithm.
From node density 30 to 50, the error of the original GDE algorithm is
from 0.155 to 0.097, and the error of the improved GDE algorithm using
recalibrated transmission range is from 0.152 to 0.091.
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Figure 8.4: Absolute distance estimation error using GDE algorithm with
recalibrated transmission range improvement method.

However, there is also a problem for this method. This method is based
on the computation of the size of the area, which suppose the nodes are
uniformly distributed in the area. If the node density is not uniformly
distributed, the recalibration computation may be different.

8.3 Fixed Length Calibration

GDE algorithm presents a basic method to create the distance estimation.
In a practical application, some additional methods can be introduced to
further increase the accuracy of the algorithm. The most used method,
which has also been applied in some other localization techniques, such as
GPS, is to take a fixed length to recalibrate the final distance estimation
results.

In the experiment, we use two lines of seed nodes positioned at known
places to calibrate the final distance estimation results. As shown by Fig-
ure 8.5, we set two line of seed nodes vertically at the two opposite borders
of the square area. The length of the two lines of seed nodes is L. Using
the GDE distance estimation algorithm, the distance between node n and
the two lines of seed nodes can be computed as Lf and Lb, which represent
the estimated distance to the forward and backward seed line respectively.
The average error of the two distance estimation values Lf and Lb can be
computed by Formula 8.4. For each distance estimation value, the result
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f b

Figure 8.5: Use fixed length L to calibrate the distance estimation result.

can be calibrated using Formula 8.5 and Formula 8.6, in which Lcf and Lcb

are the final two distance estimation results to the forward and backward
seed lines.

CL =
L− (Lf + Lb)

2
(8.4)

Lcf = Lf + CL (8.5)

Lcb = Lb + CL (8.6)

For this experiment, the nodes are mobile and uniformly distributed in
an square with side length 1. The transmission radius of each node is 0.08.
The nodes take a Random Walk model and the moving distance per second
is 0.002.
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Figure 8.6: Absolute distance estimation error using GDE algorithm with
fixed length calibration improvement method.

69



It can be seen from the Figure 8.6 that the fixed length calibration method
can improve the accuracy of GDE algorithm. In the figure, the FLength-
GDE represents the GDE algorithm with the fixed length calibration im-
provement method. From node density 30 to 50, the error of the original
GDE algorithm is from 0.155 to 0.097, and the error of the improved GDE
algorithm using fixed length calibration is from 0.120 to 0.092.

In a practical application, it is hard to implement a line of seed nodes.
To solve the problem, the method introduced in Section 7.2 can be used.
Some seed nodes can be placed at some specific positions, then the computed
coordinate values can be used to calibrate the results. However, the positions
of the seed nodes can influence the accuracy of the distance estimation, and
influence the calibration results. So how to place the seed nodes to achieve
the best result could be further investigated.

8.4 One Side Repair

There are some characteristics that can be used to further improve the GDE
algorithm. This section presents a method to further improve the accuracy
of GDE algorithm.

For example in Figure 8.7, the gradient step is supposed to be 1. The
hop-count gradient difference between area γ and α is always 1. To create
a hop-count gradient, each node finds the maximum gradient value in its
transmission range, and then decreases gradient by one as its own gradient
value. If node density of the network is infinity, the hop-count gradient
difference between area γ and β is also 1. In reality, node density can not
be infinity, which means that there is a probability that there is no node in
area β. The hop-count gradient difference between area γ and β becomes 0,
which is smaller than the gradient difference between areas γ and α.

Figure 8.7: Repairing of the gradient by calculating the gradient differences
between the two sides.
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Suppose the maximum gradient difference from node n to the nodes in
area α is Gfd. Max(Gα) is the maximum gradient value in the area α. Gn

is the hop-count gradient value of node n. Then Gfd identically equals to
the gradient step value Gstep as shown in Formula 8.7.

Gfd = |Max(Gα)−Gn| ≡ Gstep (8.7)

Suppose the maximum gradient difference from node n to the nodes in
area β is Gbd. Min(Gβ) is the minimum hop-count gradient value in the
area β. Then Gbd equals to the gradient step value Gstep or 0 as shown in
Formula 8.8.

Gbd = |Gn −Min(Gβ)| =
{

Gstep, nβ 6= 0
0, nβ = 0

(8.8)

Gfd ≥ Gbd (8.9)

Based on Formula 8.7 and Formula 8.8, it can be seen that the hop-
count gradient difference between areas α and γ is always larger or equal
than the hop-count gradient difference between areas β and γ as shown in
Formula 8.9.

However, the computation of smoothed gradient counts the sum of the
hop-count gradient values of all the neighbor nodes. If the sum of the hop-
count gradient values in area α is larger than the sum of the hop-count
gradient values in area γ, then the final computed smoothed gradient value
will bias to the hop-count gradient value in area α. As shown in Formula 8.9,
the hop-count gradient difference between areas α and γ is always larger or
equal to the hop-count gradient difference between areas β and γ. Therefore,
the final computed smoothed gradient value will also bias to the hop-count
gradient value in area α. GDE algorithm is based on the smoothed gradient,
so this phenomenon could introduce an error to the final distance estimation
results of GDE algorithm.

Suppose node n has gradient value GGDE . Gmin
GDE and Gmax

GDE are the
minimum and maximum gradient values in the transmission range of the
node. ∆Gα is the maximum gradient value difference between node n and
area α, and ∆Gβ is the maximum gradient value difference between node
n and area β. If ∆Gα > ∆Gβ , then the repairing of the gradient value of
node n is [Gmin

GDE +Gmax
GDE ]/2.

In the experiment, the nodes are dynamic and uniformly distributed in an
square with side length 1. The transmission radius of each node is 0.08. The
nodes follow a Random Walk model and the movement distance per second
is 0.002. Figure 8.8 shows the testing results. In the figure, the Side-GDE
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represents the GDE algorithm with the one side repairing improvement
method. It can be seen that this improvement algorithm decreases the error
of the GDE algorithm. From node density 40, the error of this algorithm
is better that the original GDE algorithm. At node density 40, the error of
the algorithm using the one-side repair method is 0.100, and at node density
50, the error of the algorithm using the one-side repair method is 0.083.
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Figure 8.8: Absolute distance estimation error using GDE algorithm with
one side repair improvement method.

The one side repair method can improve the GDE algorithm. Finding out
the range that the method can make improvement is a subject of further
work. At the same time, we repair the gradient value of node n to [Gmin

GDE +
Gmax

GDE ]/2, which could be further investigated to find out whether there is
a more accurate method for repairing.

8.5 Integrated Test

In this section, we combine all the four improvement methods to test the
influence to the accuracy of the GDE algorithm.
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Figure 8.9: Absolute distance estimation error using GDE algorithm with
all the improvement methods.
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In the experiment, the nodes are mobile and uniformly distributed in an
square with side length 1. The transmission radius of each node is 0.08.
The nodes follow a Random Walk model and the movement distance per
second is 0.002. Figure 8.9 shows the testing results of the improved GDE
algorithm. It can be seen that from node density 30 to 50, the error of the
basic GDE algorithm changes from 0.155 to 0.097, while the error of the
improved GDE algorithm changes from 0.010 to 0.079. So the improved
GDE algorithm has a higher accuracy than the basic GDE algorithm.

The testing simply combined all the methods together. Although the four
methods all can improve the accuracy of the GDE algorithm respectively,
some questions raised in each method are not answered. At the same time,
how do the improvement methods influence each other is unknown, and
how to combine of the methods to achieve the best result is also another
unanswered question.
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Chapter 9

Conclusions and Future

Work

9.1 Conclusions

Distance estimation in wireless networks is of tremendous importance for
a lot of application domains. The majority of the algorithms that require
position information presume knowledge about node position via systems
such as GPS. While this approach is feasible for some application scenarios,
for a lot of cases it suffers from frequent unavailability and high costs in
terms of energy consumption.

For this reason, in this thesis we introduce a novel distributed algorithm
called GDE for the estimation of distances in large-scale wireless networks.
It is based on a gossiping mechanism to estimate distances between nodes us-
ing solely local interactions. TheGDE algorithm also considers the influence
of real application conditions, including node mobility, non-uniform spatial
node distribution, multicast percentage, communication round length, trans-
mission range, etc. The model and the theoretical evaluation by means of
simulation show that GDE succeeds in estimating the distances between
nodes in both static and dynamic scenarios with considerably high accur-
acy, even under the influence of different kinds of environment parameters.
At the same time, we introduce some practical applications using GDE al-
gorithm, including cluster center detection, overlay shape construction, and
routing. The testing to the applications shows that GDE can be successfully
used with considerably high accuracy. Finally, some further improvement
methods are introduced and tested, which can increase the accuracy of the
GDE algorithm.
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9.2 Future Work

GDE can successfully be utilized for distance estimations in large-scale net-
works. The algorithm is presented from a theoretical point of view, and still
has many details that could be further investigated. Generally, there are
four main future research details.

Firstly, the thesis already presents methods to compensate for the errors
caused by various parameters. The models used in the tests are all based on
theoretical conditions. So further investigation should extend the tests to
more realistic deployment conditions, such as real human mobility models,
real communication models, etc.

Secondly, the accuracy of the GDE algorithm could be further improved.
Section 8 presents some methods to improve the accuracy of the GDE al-
gorithm. There are still some unanswered questions for each method.

Thirdly, the influence of the real transmission range of nodes to the accur-
acy of GDE is an investigation point. There is a very basic foundation for
the GDE algorithm, which requests the transmission range to be a circle or
at least to be generally symmetric. This can only happen in an ideal envir-
onment. Section 5.5 presents a method to compensate the influence of the
irregular transmission range. The mathematical model of the transmission
range still assumes that the average values of the transmission distance on
each direction are the same. In the real application, such as in the build-
ings, the shape of the transmission range is sometimes unpredictable. It is
even impossible to guarantee that the transmission range is generally sym-
metrical. How to make the distance estimation algorithm work better with
irregular transmission ranges is a subject of future work.

Finally, it is shown that the GDE algorithm produces higher accuracy for
higher node density. In some practical applications, the network is sparse.
Using multi-hop communication instead of gossiping can increase the num-
ber of communicated partners of each node, but this may also increase the
message complexity and introduce other problems. How to make GDE work
better in a low node density area could also be further investigated.
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