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Preface

This report marks the final chapter of my time as a student at TU Delft. From starting the Civil
Engineering bachelor’s in 2018 to concluding my studies in 2025, the past seven years have been
a period of growth, exploration, and challenge, both academically and personally. I was drawn to Civil
Engineering by an interest in the infrastructure that shapes our environment, and this interest evolved
into a focus on Traffic and Transport Engineering, a field that directly connects this infrastructure with
everyday human behavior.

I chose this research project for its holistic perspective on urban mobility. I hope its practical insights
can support cross-city learning and contribute to improving urban life. While research can sometimes
feel abstract, I believe its relevance becomes clear when tied to real-world challenges. I have always
been drawn to understanding the bigger picture, how different elements interact and shape one another.
Though there is always room to improve, I am proud of the insights this work offers to the analysis and
comparison of urban transport systems.

Of course, I could not have done this alone. First and foremost, I want to thank my supervisors. A
special thanks to dr. ir. I. Martínez for her patience, especially during the early phase when I had
to take some time off. You encouraged me to determine my own direction in this research, which,
combined with your advice, helped me grow and learn independently. Our meetings always helped me
refocus and move forward. I also want to thank dr. M. Snelder for chairing my graduation committee,
your guidance and feedback were very helpful, and you ensured the process ran smoothly. Finally,
I thank prof. L. Leclercq for joining the committee and contributing valuable feedback. It was much
appreciated that you were in Delft for the key meetings, great timing!

I am also very thankful to my family, my boyfriend, the friends who supported me throughout my studies,
both those I met in Delft and those from outside, and everyone who was pushing through their thesis
alongside me in the thesis room. This year began with some difficult moments, but thanks to your
support, I am able to end it on a high note.

To all readers, I hope this report offers both insight and inspiration. Let’s remain open-minded, not only
in research, but also in how we learn from and connect with one another. That mindset is essential to
building a better environment for us all.

Tian Zwart
Delft, May 2025
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Summary

Cities face growing challenges driven by rapid urbanization and climate change, while striving to
maintain or improve the quality of life in the urban environment. Transportation plays a central role
in these challenges, occupying valuable space and contributing to harmful emissions, especially in car-
oriented cities. Although a wide range of solutions exists, their effectiveness strongly depends on the
urban context. Poorly adapted strategies can lead to unintended consequences. To address shared
challenges more efficiently, cities can benefit from learning from similar urban contexts rather than
reinventing the wheel themselves. However, identifying comparable cities remains a difficult task.

Previous research has classified cities based on individual domains such as road geometry, network
topology, land use composition, or mobility patterns. While these studies provide valuable insights,
they typically capture only a single aspect of urban transport systems. As a result, the influence of
other factors and the interdependencies between domains are not considered, limiting the practical
applicability of the findings. Recognizing these interconnections can reveal important patterns and
offer valuable lessons for urban development.
This research addresses that gap by developing a clustering framework that integrates multiple
domains, combining structural characteristics, activity distribution, and mobility behavior into a holistic
analysis. The societal aim is to support more targeted cross-city learning and strategy development
by identifying groups of cities that share underlying transport and urban structure features. The main
research question for this research is formulated as:

How can the application of multiple clustering methods reveal distinct groups of European cities
based on road network, activity distribution and mobility characteristics?

To answer this question, 32 European cities were selected based on consistent data availability. A
wide range of indicators was collected and calculated to characterize each city, covering five domains:
road topology, population distribution, economic activity distribution, mobility behavior, and congestion.
After ensuring comparability through standardized boundaries and indicator definitions, the dataset was
reduced through a correlation analysis and Principal Component Analysis (PCA), retaining essential
variation while minimizing redundancy in the dataset. Clustering was then performed using three
different methods: K-Means, K-Medoids, and Ward’s Method. The results were evaluated using
complementary metrics, including the silhouette score, the Adjusted Rand Index (ARI), and the Jaccard
Similarity.

The results showed that clustering cities based on combined structural, functional, and behavioral
indicators produced stable and meaningful groupings. Across all methods, the two- and seven-cluster
solutions were the most consistent and informative. At the two-cluster level, a strong regional pattern
emerged, separating Southern European cities from the rest. The seven-cluster solution showed
complete agreement betweenmethods, revealing distinct urban typologies characterized by differences
in road structure, activity distribution, and mobility patterns. An overview of these clusters is provided in
the table. In addition, the correlation analysis revealed several meaningful relationships between urban
form, travel behavior, and congestion, highlighting the interdependencies that shape urban transport
systems across European cities.

By integrating multiple domains and applying a systematic, stepwise methodology, this research
contributes to the field of urban transport analysis in several ways. It fills an important gap by
offering a more holistic classification of cities, demonstrating that meaningful urban typologies can be
identified using publicly available data and multiple clustering methods. The combination of indicators
covering multiple domains, transparent dimensionality reduction, the application of multiple clustering
algorithms, and comprehensive result evaluation provides a replicable framework that can support
future comparative studies and strengthen cross-city learning.
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Summary of the seven clusters based on road network, activity distribution, and mobility characteristics.

Cluster Short Description

Centralized Car-Oriented Strong density contrasts, centralized, car-dominated with low congestion
Homogeneous Car-Oriented Compact and uniformly dense, car-dominated with low congestion
Dense Multimodal Extremely dense, multimodal, low car ownership and moderate congestion
PT-Oriented Congested High public transport use, but also high congestion and car ownership
Well-Connected Bottlenecked Well-connected but bottleneck-prone, moderate density and mixed mobility
Low-Density Concentrated Dispersed residential pattern, centralized economic hubs, low PT use
Balanced Multimodal Mixed densities, strong multimodal mobility, but notable traffic pressure

Building on the findings and limitations of this study, several recommendations for future research
are proposed. Expanding the dataset to include historical city profiles would enable the analysis of
urban development over time, enhancing the ability of cities to learn from transformations of other
cities. Improving the quality and coverage of the input data, particularly for facility locations and
mobility characteristics, would further strengthen the reliability and granularity of the clustering results.
Incorporating explicit measures of polycentricity could provide deeper insights into how urban form
influences travel behavior, while a more detailed exploration of the relationships between specific
indicators could reveal underlying dynamics that shape urban transport systems. Applying this
methodology to cities in other regions of the world could further test its relevance and uncover broader
patterns of urban contexts.

In conclusion, this research demonstrates that clustering cities based on characteristics spanning
multiple domains offers a powerful tool for understanding urban form and transportation systems. By
improving cooperation, cross-city learning, and evidence-based planning, this approach can contribute
to the development of more sustainable and resilient urban transport systems across Europe.
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1
Introduction

Cities around the world are facing increasingly complex challenges. Urbanization is expected to rise
from 56% in 2023 to 70% by 2050, which not only represents a relative increase: the total world
population is also growing (World Bank, 2023). As urban populations grow, governments confront a
wide array of issues, including housing shortages, energy demands, social inequality, and limited urban
space for future development (United Nations, 2020; World Economic Forum, 2018). One system that
relates to these challenges is urban transportation, essential not only for the movement of goods but
mainly for supporting daily mobility. Whether commuting, visiting family or friends, doing groceries,
engaging in leisure activities, transport systems shape how people experience and navigate urban life.
Because transportation is deeply embedded in the physical and functional structure of cities, it provides
a valuable perspective to analyze urban areas.
As more people move into cities, existing infrastructure, originally designed for smaller populations,
is increasingly put under pressure by rising traffic volumes. This places additional stress on urban
transportation systems, which are already facing spatial constraints. In many cities, between 30%
and 60% of urban land is allocated to transportation infrastructure (Rodrigue, J., 2013), leaving limited
room for expansion, especially as other urban functions, such as housing, public spaces and facilities,
also compete for space. The majority of this infrastructure is dedicated to the road network, which
primarily accommodates cars. However, roads serve multiple purposes: they are also used by buses
and other public transport modes, and often include sidewalks for pedestrians and, in some cases,
bicycle lanes. As cities face growing demands for mobility, while simultaneously seeking to reduce
emissions and adapt to climate change, there is a pressing need to rethink how existing infrastructure
can be transformed and contribute to a more sustainable and efficient transportation system within the
constraints of limited urban space.
Adapting a city and its transportation network is an inherent part of urban development. Throughout
history, streets have been modified in response to new mobility demands. When the tram was
introduced, cities restructured parts of their networks to integrate it (Taplin, 1998), and the rise of the
car led to widespread redesigns, followed later by further changes to improve pedestrian safety (Reid,
2022). However, changing infrastructure is a slow process, as cities are complex systems shaped
by many interdependent factors (Ortman et al., 2020). This complexity results in cities developing in
unique ways, creating significant variation in their spatial form and mobility systems.
Geographical context plays an important role in shaping urban transportation systems, as shown by
Badhruudeen et al. (2022), who classified cities based on their geometric features. Road networks, the
fundamental component of the transport system, can be described using topological indicators derived
from graph theory. This approach represents the network as nodes (intersections) and edges (streets)
(Wilson, 1996). Costa and Tokuda (2022) analyzed node-based indicators, including node degree
metrics, the spatial distribution of nodes, and the variability in accessibility, to cluster 20 European cities.
Similarly, Crucitti et al. (2006) introduced a range of centrality measures, including degree, closeness,
betweenness, straightness, and information centrality, to identify important intersections and streets
within the road network.
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Yet the structure and functioning of urban transportation systems depend on more than just the road
network. The distribution of population, along with the location of shops and workplaces, representing
origins and destinations, significantly shapes travel patterns. These factors reflect the spatial structure
of the city, such as whether it is organized around a single center or multiple sub-centers. In addition,
the availability, diversity, and use of transport modes further influence how people move through the
city, ultimately determining the performance and accessibility of the transportation system.
Despite the many differences in form, function, and mobility systems, cities also share key
characteristics. With over 10,000 cities worldwide (Scruggs, 2020), it is inevitable that common patterns
exist. As noted earlier, many urban areas face similar challenges, including rapid urbanization and
the need to adapt to climate change. Given these shared challenges, in combination with diverse
local contexts, identifying common characteristics can support the development of shared yet context-
sensitive solutions. Through collaboration, cities do not need to reinvent the wheel; transportation
strategies that prove effective in one city may be successfully adapted to others with similar profiles.
Equally important, recognizing similarities can help cities avoid repeating costly mistakes made
elsewhere, leading to more efficient use of public resources and faster implementation of effective
measures.
While a wide range of studies have classified cities based on road geometry (Badhruudeen et al.,
2022), transport network topology (Tundulyasaree, 2019; Yamaoka et al., 2021), land use composition
(Puissant & Eick, 2024), and mobility patterns (Coenegrachts et al., 2024), most of these approaches
focus on a single domain. As a result, they provide valuable but partial insights into the structure and
performance of urban transport systems.
There remains a lack of integrated methods that account for the interdependencies between network
structure, activity distribution, and mobility. The interaction between these domains, such as how
activity locations influence travel demand or how population dispersion and mobility affect network
performance, is often not considered. This study addresses that gap by combining indicators from
road topology, population and facility density, and mobility. In doing so, it enables a more holistic
classification of urban transport systems across European cities and supports a deeper understanding
of how urban transport networks are shaped.
This research contributes to the field by:

• Integrating multiple domains (road network, activity distribution, mobility) into a single clustering
framework, offering a more comprehensive and holistic perspective on urban transport systems.

• Demonstrating the value of applying multiple clustering methods (K-Means, K-Medoids, Ward’s
Method) to assess the robustness and interpretability of resulting city classifications.

• Providing a systematic methodology that combines public data sources, dimensionality reduction,
and clustering evaluation to support cross-city comparisons and the identification of transferable
strategies.

The objective of this research is to identify relationships between a broad set of urban characteristics
that influence the functioning of transportation systems. The analysis focuses on European cities,
where consistent and accessible data sources are available. By examining how these characteristics
relate to one another, the cities are grouped using three clustering methods. Both differences between
clusters and similarities within clusters are analyzed to understand the underlying structure of potential
groupings. The selected characteristics cover five domains: road topology, population distribution,
economic activity, mobility, and congestion.
The societal relevance of this research lies in its potential to support knowledge transfer between cities.
If cities within the same cluster face similar challenges and share comparable characteristics, they may
benefit from adopting successful transportation strategies from one another. In addition, cities can
also look beyond their own cluster to identify better-performing cities in other groups, to explore which
characteristics account for these differences and identify possibilities for improvement. Therefore, this
methodology provides a practical foundation for identifying context-sensitive solutions across diverse
urban environments, and may also be relevant for cities beyond Europe.
To guide this research, the following research question and sub-questions are formulated.
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Research Question
How can the application of multiple clustering methods reveal distinct groups of European cities based
on road network, activity distribution and mobility characteristics?

Sub-Questions
• Which indicators most effectively distinguish cities in terms of road topology, activity distribution,
and mobility characteristics?
How can these indicators be quantified and compared across European cities?

• What relationships exist between the included indicators, and what do these relationships reveal
about underlying urban dynamics?

• Which clustering methods are most suitable for grouping European cities based on these
indicators, and what are their respective advantages and limitations?

• How consistent are the clustering outcomes across different methods, and how can their
similarities and differences be interpreted?

In Chapter 2, the literature foundation of this research is presented, including descriptive characteristics
of urban areas and an overview of applied clustering methods. Chapter 3 details the methodology
used to define urban boundaries, quantify the selected indicators, and apply correlation and clustering
techniques. Chapter 4 presents the characterization results of the included cities and serves as
the foundation for the clustering analysis. The clustering results, their interpretation, and underlying
correlations are discussed in Chapter 5. Finally, Chapter 6 offers a reflection on the findings
and limitations of the research, while Chapter 7 presents the main conclusions and provides
recommendations for future work.



2
Literature Research

This chapter reviews the relevant literature that forms the foundation for the research presented in this
report. Section 2.1 begins by defining the boundaries of an urban area, with a focus on the European
context. Section 2.2 focuses on the urban transportation network and its relevant characteristics for
the analysis. Section 2.3 explores the clustering methods commonly used in urban studies and how
they are applied.

2.1. Urban Boundaries
Defining urban boundaries is a common challenge in urban research, particularly in the context of
transportation analysis. Traditional administrative boundaries, while available and widely used, often
fail to capture the full extent of urban functions. This is especially true in cases where commuting
patterns and the continuous built environment extend beyond municipal borders. To address this,
different methods have been developed to better align urban area borders with actual patterns of human
activity and infrastructure use.
The challenge of defining urban boundaries objectively is further illustrated by the work of Chen et
al. (2022), who argue that appropriate boundary definitions can vary by context. Their clustering-
based approach identifies a characteristic spatial scale by analyzing how the number of urban
clusters changes with different search radii. This adaptive method emphasizes spatial connectivity in
comparison with fixed administrative or demographic thresholds, highlighting the diverse and context-
dependent structure of urban form.
A common approach to defining urban areas is based on population density. These methods typically
identify urban areas by applying thresholds for inhabitants per square kilometer and additional rules
for the built environment continuity. For example, the European Commission’s Degree of Urbanisation
(DEGURBA) classification system identifies three types of areas: high-density urban centers, urban
clusters, and rural grid cells (Eurostat, 2023). A high-density cluster consists of adjacent 1 km2 grid
cells with at least 1,500 inhabitants/km2 and a minimum population of 50,000. Urban clusters include
cells with at least 300 inhabitants/km2 and 5,000 total population, while rural grid cells fall outside these
categories.
Population-based methods such as DEGURBA are complemented by conceptual definitions of
“urbanness.” Weeks (2010) argues that urban areas should not be understood solely in demographic
terms, but rather as place-based constructs shaped by population size and density, economic
organization, and the transformation of natural or agricultural land into the built environment. Similarly,
Mela (2014) describes urban areas as continuous settlements with higher population densities than
their surroundings, while acknowledging that national interpretations vary.
These conceptual perspectives complement data-driven classification systems and offer valuable
insight into the diversity of urban definitions across different contexts. For international comparison and

4
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effective monitoring of Sustainable Development Goal 111, UN-Habitat (2020) proposes a standardized
global framework that combines built-up density with population-based criteria. Their dual classification,
Urban Extent and DEGURBA, is summarized in Table 2.1.

Table 2.1: Constraints for Urban Extent and DEGURBA classifications (UN-Habitat, 2020).

Urban Extent DEGURBA

• Urban built-up area: pixels where the walking
distance circle has a built-up density greater than
50%.

• Suburban built-up area: pixels where the walking
distance circle has a built-up density between
25%–50%. Includes subdivided land, whether
built-up or not.

• Rural built-up area: pixels where the walking
distance circle has a built-up density less than
25% and that are not on subdivided land.

• High-density cluster: adjacent 1 km2 grid cells
with ≥1,500 inhabitants/km2 and a minimum
population of 50,000.

• Urban cluster: adjacent 1 km2 grid cells with
≥300 inhabitants/km2 and a minimum population
of 5,000.

• Rural grid cell: all other grid cells.

In the Dutch context, a more detailed approach is adopted by Statistics Netherlands (CBS), which
classifies urban areas based on address density, the number of addresses within a one-kilometer radius
around each address point (Centraal Bureau voor de Statistiek, 2023). Areas are divided into five
categories: very strongly urban (≥2,500 addresses/km²), strongly urban (1,500–2,500), moderately
urban (1,000–1,500), weakly urban (500–1,000), and non-urban (<500). While developed to reflect
residential patterns, this method can also capture zones of economic activity, such as office hotspots,
although these are generally less densely concentrated. Address density therefore functions not only
as an indicator of population distribution but more broadly as a measure of the spatial distribution of
human activity.
Building on the notion that the physical layout of a city underlies its functional dynamics, other studies
have proposed using intersection density to define urban areas. A good example is the method
developed by Borruso (2003), who applied Kernel Density Estimation (KDE) to compare address
density and intersection density within an Italian municipality. The results showed that intersection
density closely aligns with patterns in the built environment while adding a structural dimension by
focusing on the road network. Since intersections are present in both residential and mixed-use
areas, this method may better capture urban form in cities where living and working functions are
spatially interrelated. While the exact applicability depends on the research focus, an intersection-
based approach offers strong relevance for transport-oriented studies.

Table 2.2: Comparison of population, address, and intersection-based urban boundary methods.

Criteria Population-based Address-based Intersection-based

Captures Population density Human activity (residential + work) Urban structure and connectivity
Strengths Standardized, widely used High resolution, context-specific Relevance for mobility analysis
Limitations Less sensitive to land use mix May underrepresent work zones Depends on network data quality

As summarized in Table 2.2, population-based, address-based and intersection-based methods each
emphasize different aspects of urban structure. Population density offers consistency for comparison,
address density reflects residential and economic activity at a finer scale, and intersection density
captures the physical layout of the street network, making it especially suitable for transport and mobility
studies. Overall, each method captures different aspects of urban structure, and the choice of boundary
should therefore be guided by the specific research objective and context.

1Sustainable Development Goal 11: Make cities and human settlements inclusive, safe, resilient and sustainable (United
Nations Department of Economic and Social Affairs, 2012).
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2.2. Urban Transportation System & Network Structure
An urban transport network encompasses the interconnected system of roadways, railways, and public
transport infrastructure that facilitates the movement of people and goods within and between urban
areas (Loo, 2009). These networks include both physical infrastructure, such as streets, highways, and
rail lines, and service networks, such as public transportation schedules and routes. The effectiveness
of these networks is essential in determining the level of urban accessibility, economic productivity, and
overall mobility (Lin & Ban, 2013). In addition, urban road network topology is closely linked to a city’s
socioeconomic structure, with spatial constraints shaping both network design and mobility patterns.
Considering these interdependencies in urban planning can improve accessibility and contribute to
more efficient urban systems (Tsiotas & Polyzos, 2017).
Urban transport networks operate at multiple spatial and functional levels, requiring careful planning
andmanagement. Their development is shaped by historical urbanization patterns, economic activities,
and governance structures (Rodrigue & Ducruet, 2016). Transport networks must balance efficiency,
cost, and accessibility, all of which are constrained by land availability, financial resources, and mobility
demand. These networks also develop in response to population growth, technological advancements,
and environmental challenges, leading to continuous changes in urban mobility infrastructure.
The study of urban transport networks builds on principles from network science, a field rooted in graph
theory and complex systems analysis (Ding et al., 2019; Ortman et al., 2020). This perspective helps to
conceptualize cities as interconnected systems, where relationships between nodes (intersections or
transit stops) and edges (roads or rail lines) shape the structure and functioning of the network. Network
science enables researchers to evaluate urban transport systems in terms of connectivity, efficiency,
and resilience (Porta et al., 2006).
These analytical tools offer insight into how network structures affect congestion, accessibility, and
flow distribution. Ding et al. (2019) describe transport networks as self-organizing systems shaped by
spatial constraints, infrastructure investments, and evolving mobility demands. Their work highlights
three key challenges: maintaining a balance between efficiency and redundancy, ensuring equitable
accessibility, and improving resilience to disruptions. A well-designed network must therefore balance
competing priorities, as overly direct networks may result in bottlenecks, while excessive redundancy
can increase costs without necessarily improving performance.
In this context, the topology of an urban transport network plays a fundamental role in determining
how efficiently people and goods move through the city. Topological characteristics influence not only
route availability and travel distances but also the robustness of the network under stress, making them
critical for effective transport planning.
For measuring efficiency, the meshedness coefficient assesses how grid-like a network is. Networks
with high meshedness values tend to offer multiple route options, reducing travel times and improving
efficiency in case of disruptions (Strano et al., 2013). It is also considered a measure of redundancy.
The average shortest path length offers an alternative efficiency metric, representing the mean number
of steps required to travel between all pairs of nodes in the network. Shorter average path lengths imply
more direct and efficient connections, reducing overall travel time and improving accessibility (Feng et
al., 2022). However, in sprawling urban networks, longer shortest paths can result in increased reliance
on a few key corridors, leading to higher congestion levels due to these bottlenecks. To compare cities
of different sizes, the network efficiency ratio is introduced, defined as the ratio between the average
shortest path length and the network diameter (the longest shortest path in the network) (Tsiotas &
Polyzos, 2015). A low efficiency ratio suggests sprawling or tree-like structures, often found in suburban
or fragmented networks, which limit accessibility. A high ratio, by contrast, points to a well-connected,
grid-like layout with multiple redundant paths and improved flow.
Strano et al. (2013) also describe the average node degree, which refers to the average number of
edges connected to a single node, offering insights into how interconnected a network is. Higher node
degree values indicate a denser and more connected network, typically seen in grid-based networks
that provide multiple route options (Louf & Barthelemy, 2014). A low degree, however, suggests
that traffic is funneled into higher-level roads more quickly, which can increase congestion at major
intersections. Strano et al. (2013) further observe that such low-degree networks are often tree-like in
structure, reflecting self-organized or organically grown urban forms.
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Another important metric is betweenness centrality, which measures howmany shortest paths between
node pairs pass through a given node (Feng et al., 2022). It quantifies the structural importance of
nodes by identifying those that frequently act as ‘bridges’ in the network. A node with high betweenness
centrality plays an important role in overall connectivity, its removal would significantly disrupt travel
between different parts of the city (Cardillo et al., 2006). This makes betweenness centrality a valuable
measure of both network efficiency and robustness.
Research comparing urban road networks shows that cities with a highly centralized betweenness
distribution are more prone to congestion, as a small number of critical intersections handle a
disproportionately large share of the traffic load (Strano et al., 2013). In contrast, cities with a more
decentralized distribution of betweenness spread traffic more evenly across the network, reducing
bottlenecks and improving resilience to disruptions (Louf & Barthelemy, 2014). Betweenness centrality
is therefore also useful for identifying key transport corridors where interventions, such as rerouting
strategies or infrastructure upgrades, can most effectively improve traffic flow and robustness (Tsiotas
& Polyzos, 2015).
Thus, network topology serves as a fundamental component of network efficiency and robustness.
It can also reveal congestion risks and illustrate trade-offs between connectivity, accessibility, and
resilience in an urban transport network.

Public transport and activemodes, primarily cycling and walking, play a key role in mitigating congestion
risks and promoting sustainability within urban areas. Well-integrated public transport systems, such as
those in Amsterdam and Copenhagen, feature multimodal hubs where metro, tram, and bus services
are connected with cycling infrastructure to enable smooth mode transfers. Research by Technical
University of Munich (2024) on bicycle integration in public transport highlights the benefits of bike-
sharing stations at these hubs, which improve the first- and last-mile segments of trips and encourage
public transport usage.
Moreover, cities that invest in cycling infrastructure and pedestrian-friendly design tend to achieve
higher shares of active mobility, helping reduce dependency on private vehicles. The structural
properties of public transport networks, such as transfer points and network centrality, can be studied
using graph theory (Pu et al., 2022), while observed modal shares provide valuable insight into how
active and public transport modes contribute to overall network performance.

2.3. Characterization & Clustering Cities
Cities differ not only in their physical layout but also in how these characteristics influence mobility
patterns and transportation network performance. Characterizing cities based on their structural,
functional, and behavioral attributes is important to understand broader urban dynamics. By grouping
cities with similar features, clustering methods help identify shared patterns and distinguish urban
typologies. Existing studies have applied these methods to systematically analyze spatial features,
such as facility distribution and urban form, and explore how these influence the network performance.
The spatial distribution of population and facilities plays a central role in shaping a city’s identity
and transportation system performance. This dispersion directly influences residents’ travel behavior,
including their mode choices for commuting, shopping, and leisure, and thus affecting network efficiency.
The distribution of facilities is therefore essential for both economic activity and transport choices (Um et
al., 2009). Commercial facilities tend to concentrate in densely populated areas, where high foot traffic
boosts accessibility. While these hubs support regional productivity, it can also increase congestion
levels in central urban zones (Temeljotov Salaj & Lindkvist, 2020). Public facilities, such as hospitals
and schools, follow different spatial patterns. Their location is typically regulated by government equity
guidelines to make sure that all inhabitants have access. However, due to higher demand, they too are
often concentrated in central urban areas. According to Um et al. (2009), the density of public facilities
increases more slowly than that of commercial ones.
In suburban, low-density environments, limited facility availability leads to longer travel distances,
reinforcing car dependency and increasing transport costs. By contrast, compact cities with dense
service networks support shorter trips and greater use of the public transport system and multimodal
mobility (Rodrigue & Ducruet, 2016).
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Urban form, particularly the distinction between monocentric and polycentric structures, further
influences transport efficiency and network resilience. Monocentric cities are organized around a
dominant economic hub, often the central business district (CBD), where jobs and commercial activity
are highly concentrated. These cities often have radial transport networks leading to the center.
While this improves access to this center, it also risks overloading main corridors and increases travel
distances for suburban areas (Lemoy, 2024).
In contrast, polycentric cities feature multiple economic sub-centers, which distribute activity and
mobility demand across a greater area. This structure helps reduce congestion at the urban core
and improves regional accessibility (Veneri, 2014). Sun et al. (2013) show that polycentricity can
emerge from planned decentralization or organic urban expansion, as observed in Shanghai, where
additional employment centers eased traffic bottlenecks. Similarly, Fu et al. (2017) find that in Wuhan,
sub-centers helped balance commuting flows and reduced congestion in the center. However, the
success of polycentric structures depends on sufficient investment in transport infrastructure and well-
integrated multimodal systems (Veneri, 2014).

Clustering methods are widely used to group cities with similar structural or functional features, offering
insights into shared challenges and potential solutions. Such classifications support comparative
analysis and inform urban planning strategies.
Tundulyasaree (2019) applies graph-theory indicators to cluster rail-bound public transport networks in
cities across four continents, primarily in Europe. The analysis uses metrics such as betweenness and
closeness centrality, alpha index, clustering coefficient, and network efficiency. K-means clustering is
then applied to group cities based on the topology of their PT infrastructure, without considering service
frequency or capacity. Additionally, hierarchical clustering is used to validate the results and explore
the underlying structure of the clusters.
A road geometry-based approach is presented by Badhruudeen et al. (2022), who analyze the street
networks of the world’s 80 most populous cities. They identify a linear relationship between the number
of nodes and links, and define five distinct road network typologies:

• Gridiron Cities: High proportion of 90-degree street angles, typically found in planned,
orthogonal grid layouts.

• Long Link Cities: Dominated by long, straight road segments, often observed in Chinese cities
designed to optimize long-distance accessibility.

• Organic Cities: Characterized by short links and irregular angles, typically emerging from
unplanned or historical development.

• Hybrid Cities: Combining short and long links with a balanced distribution of 90-degree angles.
• Mixed Cities: Incorporating features from multiple typologies without a dominant geometric
structure.

Their findings suggest that road network morphology is shaped by a combination of geographic context,
historical development, and planning policy. Most European cities fall within the Organic category, while
Chinese cities tend to exhibit Long Link characteristics.
Comparably, Yamaoka et al. (2021) use betweenness centrality to classify urban street networks in
30 European cities. This research is based on road data obtained from OpenStreetMap using a tool
called OSMnx. By analyzing local betweenness, the study distinguishes street segments that facilitate
long-distance travel and those that support local pedestrian movement. Critical connections tend to be
concentrated along major streets, while pedestrian-oriented areas cluster in central business districts
(CBDs) and historic centers. This type of classification helps identify congestion-prone corridors and
supports strategies aimed at improving walkability.
A broader spatial perspective is offered by Puissant and Eick (2024), who applies prototype-based
clustering methods to examine city composition based on land use and building typologies. Their study
identifies homogeneous areas, such as residential, commercial, or industrial zones, and maps how
these spatial clusters vary between cities. This method provides insight into the internal organization
of urban areas and how land-use patterns influence broader urban form.
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Mobility behavior is the focus of Coenegrachts et al. (2024) research, who classify 311 European cities
using both K-means and latent class clustering. Their analysis, centered on shared mobility services,
reveals that cities with a rich supply of shared mobility options tend to have stronger economic potential,
while smaller cities often present fragmented or underdeveloped shared mobility markets. The study
provides insights into how urban transport policies and infrastructure shape mobility behavior. It not
only highlights inequalities in mobility options but also underscores the importance of aligning urban
transport policies with socioeconomic patterns. By doing so, cities can create more inclusive, efficient,
and adaptive mobility systems that support more livable and accessible urban environments.
To conclude, clustering methods provide valuable tools for grouping cities based on a wide range of
urban characteristics, including transport network structure, facility distribution, and mobility behavior.
Approaches based on graph theory, road geometry, shared mobility, and spatial composition each
contribute a distinct perspective. The choice of method depends on the specific research objective and
the availability of relevant data. Collectively, these methods support comparative urban research by
revealing underlying patterns and structural similarities across different contexts.



3
Methodology

This chapter presents the methodological framework for characterizing and clustering European cities.
It presents the reasoning behind the approach and outlines each step of the process. Section 3.1
discusses the city selection criteria, the list of included cities, determining their boundaries, and the
data sources. Section 3.2 introduces and defines all included indicators. Section 3.3 explains how
certain indicators are calculated to characterize the urban transport networks. Finally, Section 3.4
describes the indicator preparation and the clustering methods applied. Figure 3.1 shows a flow chart
of the methodological process.

Figure 3.1: Methodological flowchart.

3.1. City selection & Urban boundaries
To evaluate the effectiveness of the clustering methods, it is necessary to obtain data from different
urban transport networks. While one option was to simulate various networks with customized attributes
and demand characteristics, the decision was made to focus on real cities in Europe to ensure the
applicability of the results to practical, real-world contexts.

Based on the definition of a city outlined in Chapter 2, there are an estimated 10,000 cities globally
(Scruggs, 2020). As shown in Figure 3.2, the European continent is densely populated. According to
the definition used by the European Union, there are 828 cities in Europe1 (Dijkstra & Poelman, 2012).
These agglomerations vary in size, region and network structure. Since this research considers urban
characteristics for different domains, data availability is essential.

1This number is based on population data for the EU, United Kingdom, Iceland, Norway, Croatia, and Switzerland.
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Figure 3.2: Population distribution over Europe (Eurostat, 2022).

Compared to other continents, Europe offers substantial data availability. However, due to the diversity
of countries, there are multiple data collection methods and differing definitions of characteristics. This
research relies on data sources where the data is collected or approved using consistent methodologies.
While various sources will be discussed at the end of this section, it is important to note that mobility
data, including modal share and car ownership, is the most difficult to obtain. Modal share data is often
unavailable or not publicly accessible. Even when mobility data is available, it is often collected using
inconsistent methodologies, which complicates cross-city comparisons.

Therefore, city selection is based on the report by EMTA (2024), which provides public transportation
data for 35 European cities. For cities without modal share data for 2023 in this report, the earlier
edition by EMTA (2022), containing data from 2020, is used instead. Since congestion levels reported
by TomTom International BV (TomTom, 2024b) are also included in the clustering analysis, cities must
have both congestion and mobility data available.
Athens and Porto are excluded due to the absence of recent modal share data in both EMTA reports,
while Belgrade is excluded due to missing congestion data. The remaining 32 cities, located across 20
countries, are listed in Table 3.1.

Table 3.1: List of the 32 included cities with their respective countries.

City Country City Country

Amsterdam Netherlands Barcelona Spain
Berlin Germany Bilbao Spain
Birmingham United Kingdom Brussels Belgium
Bucharest Romania Budapest Hungary
Copenhagen Denmark Frankfurt am Main Germany
Helsinki Finland Krakow Poland
Lisbon Portugal London United Kingdom
Lyon France Madrid Spain
Manchester United Kingdom Oslo Norway
Palma de Mallorca Spain Paris France
Prague Czech Republic Rotterdam Netherlands
Sofia Bulgaria Stockholm Sweden
Stuttgart Germany Thessaloniki Greece
Toulouse France Turin Italy
Valencia Spain Vienna Austria
Vilnius Lithuania Warsaw Poland



3.1. City selection & Urban boundaries 12

As explained in Section 2.1, city boundaries can be defined in different ways. Because this research
focuses on urban transport networks, identifying representative urban boundaries is essential. While
administrative boundaries are suitable in some contexts, Figure 3.3 shows that they can either exclude
important network components, such as nearby cities that are functionally part of the urban transport
system, or include irrelevant areas such as nature reserves or large bodies of water.

Figure 3.3: Administrative boundaries visualized for (a) Birmingham, (b) Oslo, (c) Helsinki, and (d) Lyon (OpenStreetMap
contributors, 2025).

To address these limitations, customized polygons were created for each city based on its road network.
The boundary construction process, for which the the Python code is shown in Section E.1, consisted
of the following four steps:

1. An initial polygon was manually drawn around the ring road of each city using Mapbox (2025).
2. A bounding box of 80 by 80 kilometers was generated around the initial polygon to capture all

potentially relevant nodes.
3. Nodes located within the initial polygon were labeled as ”included.” A proximity check was then

performed: any ”non-included” node located within a threshold distance of an ”included” node was
relabeled as ”included.” This process repeated iteratively until no further nodes met the threshold
condition.

4. Using all included nodes, a final boundary polygon was generated with the AlphaShape Python
package (Bellock, 2021).

In general, the threshold distance was set at 200 meters, meaning that adjacent nodes within this
distance were treated as part of the same urban area. For five cities (Barcelona, Madrid, Valencia,
Stuttgart, and Manchester) a smaller threshold of 150 meters was applied. Specifically, Barcelona,
Madrid, and Valencia included excessive peripheral areas under the default threshold, likely due to
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denser intersections in Spanish urban planning or differences in intersection data reporting for Spanish
cities by OpenStreetMap contributors (2025). Similarly, Stuttgart and Manchester also contained areas
not relevant to the functional transport network when the default threshold was used.

The AlphaShape method constructs a boundary around a set of points, allowing for concave shapes
that capture the point locations. In this research, the points represent the nodes in the road network.
This method is controlled by a single parameter, α, which determines how closely the boundary follows
the nodes. Although α is dimensionless, it acts as a distance control because the nodes are projected
to a metric system. Smaller α values produce detailed boundaries that wrap tightly around the outer
nodes, preserving gaps, indentations, and separate structures where the network is sparse. Larger α
values create smoother shapes by bridging gaps between nodes, merging nearby clusters into a single
area. An α value of 50.0 was selected to balance alignment with the dense urban network structure
and the inclusion of suburban areas located in small gaps.

The resulting polygons were saved in both the World Geodetic System 1984 (WGS 84) coordinate
system, compatible with OpenStreetMap, and the Mollweide projection, required for extracting
population data.

With the urban boundaries established, the next step involves identifying widely available data sources
to describe the characteristics of the 32 cities. As previously mentioned, ensuring dataset uniformity
across cities in different countries is a challenge. Moreover, the analysis relies on publicly available
data, which may vary in quality because they are maintained by many users. To ensure the reliability
of results, the selection of consistent and representative datasets is essential.

Datasets for all relevant characteristics, as listed in Table 3.2, have been identified. Road network
data is sourced from OpenStreetMap, which is maintained by a global community of contributors.
It offers extensive coverage and also includes facility data such as shops, amenities and offices
(OpenStreetMap contributors, 2025). However, the open nature of this platform can also affect data
reliability. Residential locations are also relevant, as they provide insight into population distribution
and possible travel patterns, together with the facility data. Population density data is obtained from
Copernicus, which provides high-resolution (100 by 100 meters) population estimates in the Mollweide
projection (Schiavina et al., 2023). Mobility characteristics are sourced from the previously mentioned
EMTA reports (EMTA, 2022, 2024). These reports cover all 32 cities and, for most of them, also provide
car ownership per 1,000 inhabitants in the Public Transport Authority (PTA) area. Finally, congestion
levels for the metro area of a city are obtained from the TomTom Traffic Index, which offers a large
dataset covering over 500 cities globally, containing all those included in this research (TomTom, 2024b).
Data collection methods are consistent across all cities, unless otherwise noted in Section 3.2.

Table 3.2: Urban characteristics, and their data sources including reference year.

Characteristic Data Source Year

Road Topology OpenStreetMap 2025
Population Copernicus 2020
Economic Activity OpenStreetMap 2025
Mobility EMTA 2023 / 2020
Congestion TomTom (Traffic Index) 2024

3.2. Indicator Overview
This section provides a conceptual overview of all indicators used to characterize the selected cities.
Indicators are grouped into five domains: road topology, population, economic activity, mobility, and
congestion. Detailed explanations of their relevance and interpretation are presented here, while the
corresponding calculations for certain indicators are shown in Section 3.3.

Since the cities vary in size, directly comparing the variation across cities could be misleading. To
address this, the standard deviation is normalized by the mean for each city, resulting in the coefficient
of variation (CV). This allows for meaningful comparison of variation across the 32 cities.
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3.2.1. Road Topology
The topology of the road network captures its structural characteristics, including connectivity, efficiency,
and robustness. These properties are important to understand how urban transport networks function
in different contexts. In this research, five indicators are used to describe road topology: the mean node
degree (kµ), the coefficient of variation of node degree (kcv), the efficiency ratio (R), the coefficient of
variation of betweenness centrality (CB,cv), and the 95th percentile of betweenness centrality (CB,95).
To ensure comparability between cities of different sizes and structures, all analyses are conducted on
directed graphs accounting for one-way roads in the network.

The node degree captures how many connections a given intersection has. In a directed graph, this
includes both incoming and outgoing links. The mean node degree (kµ) reflects the average number
of route options available at intersections, providing insight into how well-connected a network is. A
higher value suggests more routing flexibility for road users.
The coefficient of variation of the node degree (kcv) complements this by indicating how evenly this
connectivity is distributed across the network. A low kcv suggests uniform intersection types across
the city, whereas a higher value implies a mix of sparse and highly connected intersections. These
indicators are calculated directly from the raw road network, defined by the polygons constructed in
Section 3.1.

Before analyzing network efficiency and robustness, a key preprocessing step is required: node
consolidation. When road network data is extracted from OpenStreetMap, intersections, especially
those on highways, are often represented by multiple adjacent nodes, as shown in Figure 3.4a. This
artificially inflates the number of nodes and misrepresents the role of intersections.
To correct this, closely located nodes are merged using the node consolidation method from the OSMnx
Python package (Boeing, 2024). After this process, each intersection is ideally represented by a single
node, as shown in Figure 3.4b. The consolidation threshold is set to 25 meters, which is a trade-off
between the need to merge highway intersections and avoiding the unintended merging of distinct
intersections in dense neighborhoods. Details of this process are provided in Section 3.3.

Figure 3.4: Node consolidation using the OSMnx Python package, showing (a) intersection nodes after network retrieval and
(b) after node consolidation (Boeing, 2024).

For both the efficiency and betweenness indicators, weights must be assigned to the links in the road
network. A straightforward approach might be to use the physical length of each segment, as it reflects
the distance road users must travel. An alternative would be to use speed limits in combination with
distance as weights, which would better approximate actual travel time and user preference.

However, both of these approaches present limitations in the context of OpenStreetMap data. Speed
limit information is often missing from many road segments, making it unsuitable for consistent use.
While segment length is consistently available, basing route choice solely on this metric can introduce
bias. It does not reflect the preference of road users to favor higher-level roads with greater capacity,
higher speed limits, and more comfort, regardless of their physical length.

In OpenStreetMap, higher-capacity roads such as motorways and trunks are typically represented
by fewer, longer segments, whereas lower-capacity roads like residential streets consist of shorter
segments. This effect is illustrated in Figure 3.5, where the longer but fewer segments on the primary
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road result in a lower link count than the many short segments on the secondary road. In a routing
context where the number of links is used as the weight, the primary road is naturally favored, better
reflecting real-world travel behavior.

Figure 3.5: Use of the number of links as weight, illustrating that primary roads are favored over secondary roads.

Data on segment lengths by road type supports the logic behind this weighting choice. As shown in
Table 3.3, roads with higher hierarchical tags (motorways, trunks) exhibit substantially longer average
segment lengths compared to lower-level roads like residential streets and living streets. This structural
pattern in OpenStreetMap reflects the functional road hierarchy and suggests that using the number
of links as a routing weight can effectively approximate real-life routing preferences: longer, higher-
capacity roads naturally consist of fewer segments and are more likely to be favored in shortest path
calculations.

Because of limitations caused by missing or inconsistent speed limit data, this link-based weighting
is used in both the efficiency ratio and betweenness centrality calculations. While not a perfect
substitute for distance in combination with speed and capacity, it ensures consistency across cities
and emphasizes the structural role of major roads in shaping network performance. The full analysis
on segment characteristics is provided in Appendix C.

Table 3.3: Average segment length per road type in the consolidated network.

Road Type Average Segment Length (m)

motorway 976.5
trunk 538.0

primary 240.8
secondary 205.8

tertiary 185.2
residential 157.9
living street 157.7

Network efficiency describes how easily areas within a city can be reached from one another. It is
assessed by comparing the average shortest path (ASP) between all node pairs to the network’s
diameter (ND), defined as the longest shortest path in the network. The resulting efficiency ratio (R) is
bounded between 0 and 1. Higher values indicate that most node pairs can be reached via relatively
short routes compared to the longest shortest path between all node pairs, suggesting a well-connected
network without the need for large detours. In contrast, lower values imply that many node pairs require
disproportionately long paths, indicating inefficiency in the network.

Betweenness centrality quantifies how often a node lies on the shortest paths between other node pairs
in the network. It reflects the importance of intersections in facilitating movement across the city. Nodes
with high betweenness centrality are more likely to be involved in routing between origin–destination
pairs, making them critical for the robustness and connectivity of the network. In this research, two
indicators are included to capture aspects of the betweenness centrality.
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The first is the coefficient of variation of betweenness centrality (CB,cv), which describes how evenly
centrality is distributed across all nodes. A high CB,cv suggests that a small number of nodes carry
a disproportionately large share of network flow, indicating dependence on a few intersections. In
contrast, a low CB,cv reflects a more balanced distribution, where traffic load is spread more evenly
throughout the network.
The second indicator is the 95th percentile of betweenness centrality (CB,95), which highlights the
centrality level of the most important nodes while minimizing the influence of extreme outliers. To
enable comparison across cities, the CB,95 values are normalized. This metric captures how dominant
the top-ranking intersections are within a city’s network.

Together, the two indicators provide insight into the robustness and, to a lesser extent, the connectivity
of the road networks. As discussed in Section 2.2, high values of CB,cv and CB,95 indicate that a large
share of shortest paths, and thus potential traffic flow, is concentrated on a small subset of nodes.
This structural dependence increases the vulnerability of the network, as disruptions at these critical
intersections can lead to detours and congestion. In contrast, lower values suggest a more evenly
distributed network, where multiple alternative routes are available. This improves traffic dispersion
and enhances the ability to maintain network functionality under stress.

These five road topology indicators (kµ, kcv, R, CB,cv, and CB,95) were chosen because they capture
complementary aspects of road network structure at the city-wide scale. The node degree indicators
describe the connectivity and uniformity of intersections across the network, while the efficiency
ratio reflects global accessibility by assessing whether large detours are necessary throughout the
network. The two betweenness-based indicators measure network vulnerability and flow concentration,
highlighting how traffic is distributed across intersections.

Other potential metrics mentioned in Section 2.3, such as meshedness and closeness centrality,
were considered but ultimately excluded due to practical and interpretive limitations. Meshedness,
which measures how grid-like a network is, is difficult to apply consistently across cities with different
spatial extents and boundary definitions. It is also highly sensitive to local variations, as it can differ
substantially between neighborhoods within the same city and is influenced by whether peripheral or
fragmented areas are included. Closeness centrality, which indicates how close a node is to all others,
becomes less meaningful in large networks because it is strongly affected by the city’s size, shape,
and node density. Even when normalized, it remains difficult to interpret across cities of varying scale.
In contrast, the selected indicators are less sensitive to boundary effects, better reflect travel behavior,
and offer greater interpretability for whole-network comparison. Together, they form a balanced set of
metrics that capture key dimensions of network connectivity, efficiency, and resilience, supporting a
more robust analysis across the 32 European cities.

3.2.2. Population Distribution
The mean population density (Pµ) represents the average number of inhabitants per square kilometer
across the entire urban area. It is calculated using a 100 by 100 meter resolution grid from the
Copernicus dataset and provides an overview of how densely populated the urban area is. Since the
polygons used in this research are custom-defined based on road networks rather than administrative
boundaries, this indicator captures residential land use both within and beyond official borders. It
provides a baseline for interpreting spatial patterns in population distribution.
The coefficient of variation of population density (Pcv) reflects how unevenly the population is distributed
across the urban area. A high Pcv indicates strong differences between densely and sparsely populated
neighborhoods, suggesting a more centralized urban form. In contrast, a low value points to a relatively
uniform population spread, with fewer pronounced differences between neighborhoods. This indicator
is particularly useful for identifying spatial inequality in residential distribution and offers potential
insights into travel patterns and transport demand within a city.
The 95th percentile of population density (P95) captures the density value below which 95% of all grid
cells fall, highlighting the upper range of population density while reducing sensitivity to extreme outliers.
This indicator emphasizes the typical high-density neighborhoods within a city, such as central districts
or urban cores. Compared to the mean, P95 offers a more focused view of the upper tail of the density
distribution, providing insight into potential pressure points in the urban transport system.
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Together, these three indicators provide a comprehensive image of population characteristics within
each city. While the mean density captures the overall level of residential presence, the coefficient
of variation and 95th percentile highlight differences in spatial distribution and local concentration.
Understanding these patterns is important for interpreting possible transport demand, planning future
infrastructure and comparing residential distribution across cities.

3.2.3. Economic Activity
To analyze economic activity within each urban area, this research uses location data from
OpenStreetMap, which includes a wide range of facility types such as shops, amenities, offices and
industrial sites. Among these, two categories are selected to represent activity that directly influences
movement within the transport system: shops and offices. These locations correspond to where people
work and where they purchase goods or services, both of which are common trip destinations.
Although OpenStreetMap includes many other facility categories, they often overlap with these two
primary types. For instance, a location labeled as an amenity may also be categorized as a shop
(e.g. pharmacies), while some industrial areas can be tagged as offices (e.g. factories). Because this
overlap varies between cities and is subject to different documentation standards, selecting two clearly
defined and consistent categories ensures a more reliable basis for comparison.

Several grid resolutions were tested to effectively capture the spatial dispersion of facilities across
urban areas. Grids of 100 by 100 or 200 by 200 meters proved too fine-grained given the limited
number of facility locations, while a 1 by 1 kilometer grid was too coarse to provide meaningful spatial
differentiation, particularly for smaller cities.

The mean shop density (Sµ) reflects the average number of shop locations per square kilometer
within the study area, based on a 500 by 500 meter resolution grid. This indicator provides a general
sense of commercial activity and access to goods and services. While documentation practices in
OpenStreetMap may vary across cities and countries, averaging across the full urban area allows for
relatively consistent comparisons.
The coefficient of variation of shop density (Scv) captures how unevenly shopping activity is distributed
across the urban area. A high value suggests that shops are concentrated in specific zones, such
as commercial centers or shopping streets, while other neighborhoods remain less active. A lower
value indicates a more even spread of shopping locations throughout the city. This indicator highlights
spatial differences in access to shops and supports the identification of possible movement patterns.
Additionally, it is less sensitive to documentation inconsistencies, as it reflects the relative distribution
of facilities rather than their total count.

The mean office density (Oµ) measures the average number of office locations per square kilometer
across the study area. Like shop density, it is calculated on a 500 by 500 meter grid and reflects the
overall presence of workplace-related activity within the urban area. Offices play a key role in shaping
daily travel patterns, as they represent an important destination for commuting. By capturing the general
intensity of employment locations, Oµ provides important context for interpreting commuting flows and
employment intensity, and helps to compare how strongly office-based economic activity is represented
in each urban area.
The coefficient of variation of office density (Ocv) describes how concentrated or dispersed office
locations are across the city. A high value implies that office activity is clustered in a limited number of
business districts, suggesting a central employment structure. In contrast, a low value indicates a more
evenly spread of employment locations. This indicator is relevant for analyzing spatial accessibility to
jobs, the decentralization of employment in offices and the potential for peak-hour travel flows to be
distributed or concentrated. As with shop density variation, this indicator also helps reduce sensitivity
to documentation inconsistencies, focusing instead on the relative distribution of offices.

Together, these four indicators provide a comprehensive perspective on economic activity within each
urban area. By including both the intensity and spatial distribution of shops and offices, two key
dimensions of travel demand are captured: consumer- and employment-related destinations. These
indicators not only help to characterize the structure of economic activity but also offer valuable insights
into their accessibility. The formulation ensures comparability across cities despite differences in
documentation quality, making them a robust foundation for cross-city analysis.
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3.2.4. Mobility Profile
Mobility behavior is a key characteristic of urban transport systems, reflecting how inhabitants move
within their cities and what travel modes they rely on. To capture this, four indicators are included in
this research: the modal share of motorized vehicles, public transport and active modes, along with
the car ownership. These metrics provide insight into mode preference, and broader mobility culture
across different urban areas.
The modal share data is obtained from the European Metropolitan Transport Authority (EMTA), which
reports mobility statistics across Europe. The EMTA (2024) report distinguishes four categories:
Motorized Vehicles (MV), Public Transport (PT), Cycling and Walking. The earlier EMTA (2022) report
presents three categories: Motorized Modes, Public Transport and Active Modes (AM)2. To ensure
comparability, all data is aligned into three standard categories: MV, PT and AM. When cycling and
walking are reported separately, their sum is used for the Active Modes category. Motorized Modes
and Motorized Vehicles are considered the same. This standardized approach allows consistent
comparison across the 32 cities.

The modal share of motorized vehicles (MMV) refers to the proportion of trips made using privately
owned motorized transport, such as cars and motorcycles. This mode typically dominates in car-
oriented cities and is often associated with higher levels of congestion and reduced space for other
transport modes. A high value for MMV tends to reflect urban structures with limited public transport
availability, low walkability or high car accessibility.
The modal share of public transport (MPT) captures the proportion of trips taken by bus, tram, metro or
train. It reflects the accessibility, coverage and quality of a city’s public transport system. High values
for MPT suggest well-developed networks offering frequent service and competitive travel times. This
indicator is particularly useful for evaluating policy effectiveness in reducing car use and encouraging
more sustainable mobility behavior.
The modal share of active modes (MAM) combines walking and cycling trips, travel forms that are both
sustainable and health-promoting. A high share of active modes often imply compact, mixed-use cities
with safe, well-connected pedestrian and cycling infrastructure. This indicator not only reflects local
travel preferences and mixed urban form but also points to possible health priorities. It highlights the
extent to which cities support short-distance, non-motorized travel.

Car ownership (Vown) is measured as the number of cars per 1,000 inhabitants, based on the Public
Transport Authority area where available. This indicator reflects mobility preferences and accessibility
to alternative modes such as public transport. Higher ownership rates imply greater car dependency
and more dispersed urban form. They can also reflect higher levels of household income or wealth.
In contrast, lower rates suggest stronger support for sustainable transport, greater urban density or
policies discouraging private vehicle ownership and use. This indicator complements the modal share
data by offering additional insight into the structural reliance on private vehicles within each city, helping
to distinguish between car ownership and actual car use.
For most cities, car ownership data is obtained directly from the EMTA (2022, 2024) reports. However,
for Frankfurt am Main, Lisbon and Sofia, this information is not reported. In these cases, alternative
sources are used to ensure a complete dataset: data for Frankfurt am Main is retrieved from Buehler
et al. (2021), a national-level metric is used for Lisbon from da Costa (2024), and values for Sofia are
based on estimates provided by Bergelings and Marchetti (2024).

The selected indicators offer a complete picture of mobility behavior across the 32 cities. By combining
modal share data with car ownership levels, the analysis captures both daily travel preferences and
longer-term mobility choices. This dual perspective highlights how transport systems are shaped
by infrastructure and policies. To visualize the different mobility profiles of cities, a ternary plot is
used to represent the relative shares of motorized vehicles, public transport and active modes. The
standardized categories and data sources ensure consistency, enabling reliable cross-city comparisons
of the overall mobility profile.

3.2.5. Congestion Level
The congestion level (CL) represents the average percentage increase in travel time due to traffic
congestion. It is calculated by comparing actual travel times with those observed under free-flow

2The modal share data for Bilbao, Budapest, Thessaloniki and Vienna is obtained from the EMTA (2022) report.
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conditions, as reported by the TomTom Traffic Index (TomTom, 2024a). This indicator shows how
much longer trips take, on average, as a result of traffic delays, and is expressed as a percentage. The
data is collected across all hours and days of the year, providing a consistent measure of overall traffic
performance. Since it is collected at the metropolitan level, defined as the trip-dense region accounting
for 80% of all recorded trips, it captures congestion across the full functional urban area rather than
being limited to administrative boundaries or the city center.

This indicator is valuable for evaluating how well a transport network accommodates travel demand.
A high CL suggests structural bottlenecks and reduced travel-time reliability. It may also point to
broader systemic challenges, such as car dependence, limited modal alternatives or mismatches in
infrastructure planning. In contrast, a low congestion level indicates more efficient traffic flow, improved
accessibility and greater reliance on non-car modes. When analyzed alongside modal share and car
ownership, CL adds a performance-based dimension to understanding the structure and functioning
of the urban mobility systems.

The indicators presented in this section offer a structured basis for understanding differences in urban
transport systems across the 32 cities. As summarized in Table 3.4, they span a range of infrastructural,
spatial, behavioral and performance-related aspects. This includes the structural properties of road
networks, population and economic activity distribution, mode choice preferences and congestion
levels. By combining these dimensions, the indicators provide a balanced view of how urban areas
are organized and how people move within them. This approach including multiple domains enables
holistic comparisons between cities and forms the foundation for the clustering analysis.

Table 3.4: Overview of included indicators with their descriptions.

Indicator Description

kµ Mean node degree, based on incoming and outgoing links per node (directed graph).
kcv Coefficient of variation (CV) of node degree, capturing variability in connectivity.
R Efficiency ratio: average shortest path length divided by network diameter.
CB,cv Coefficient of variation (CV) of betweenness centrality across all nodes.
CB,95 95th percentile of betweenness centrality (normalized).

Pµ Mean population density (inhabitants/km²; 100×100m grid).
Pcv Coefficient of variation (CV) of population density across the urban area.
P95 95th percentile of population density.
Sµ Mean shop density (locations/km²; 500×500m grid).
Scv Coefficient of variation (CV) of shop density.
Oµ Mean office density (locations/km²; 500×500m grid).
Ocv Coefficient of variation (CV) of office density.

MMV Modal share of motorized vehicles (cars and motorcycles; % of trips).
MPT Modal share of public transport (bus, tram, metro, train; % of trips).
MAM Modal share of active modes (walking and cycling; % of trips).
Vown Car ownership, measured as vehicles per 1,000 inhabitants.
CL Congestion level: average annual increase in travel time due to traffic delays (%).

3.3. Indicator Calculation
To perform the analysis for all 32 cities, several indicators require calculations. These calculations are
based on the custom boundaries defined in Section 3.1. As a result, raw data must first be spatially
matched to each polygon before computing individual indicator values. For road network indicators,
this involves retrieving and processing OpenStreetMap data. Population indicators are derived from
the Copernicus dataset, and economic activity indicators from OpenStreetMap location data. Mobility
and congestion indicators are taken directly from existing sources and do not require further processing.
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3.3.1. Road Topology
The topology of each road network is represented as a directed graph, where nodes represent
intersections and edges correspond to road segments. The graph is retrieved using the OSMnx Python
package (Boeing, 2024), which enables efficient extraction of road infrastructure based on geographic
boundaries defined in the WGS 84 coordinate system. The road graph is retrieved using the following
function:

osmnx.graph_from_polygon({City Polygon}, network_type="drive", simplify=True,
retain_all=False, truncate_by_edge=True)

Where:
• network_type="drive": includes only public roads accessible to motorized vehicles.
• simplify=True: removes redundant nodes.
• retain_all=False: retains only the largest connected component within the polygon.
• truncate_by_edge=True: includes nodes outside the polygon if they directly connect to internal nodes.

To avoid distortions in shortest path and centrality calculations caused by closely spaced intersection
nodes, common in OpenStreetMap highway intersection data, the network is first projected to a local
metric coordinate system using osmnx.project_graph({City Graph)}, after which the built-in OSMnx
function is applied to merge overlapping nodes through spatial buffering.
A buffer radius of 25meters is applied around each node. If two buffer zones overlap, the corresponding
nodes are merged. In theory, nodes within a maximum distance of 50 meters can be consolidated.
While a larger buffer may improve consolidation of complex highway interchanges, it also risks merging
distinct intersections in dense urban areas. A threshold of 25 meters is therefore selected to balance
these considerations. After consolidation, the graph is projected back to WGS 84 to ensure consistent
geographic referencing across the different analyses. The consolidation function is defined as:

osmnx.simplification.consolidate_intersections(G, tolerance=25, rebuild_graph=True,
dead_ends=True, reconnect_edges=True)

Where:
• tolerance=25: a per-node buffering radius of 25 meters.
• rebuild_graph=True: uses a topological, instead of geometrical, algorithm to identify close nodes.
• dead_ends=True: retains dead-end nodes in the network.
• reconnect_edges=True: reconnects the consolidated nodes and updates the edge lengths accordingly.

The consolidation process enhances the structural realism of the network, ensuring that intersections
are properly represented and that shortest path and betweenness computations reflect actual network
functionality.

Node consolidation is not applied for the node degree indicators, as it alters the spatial arrangement
of nodes and their connecting edges. To preserve the original intersection structure and capture true
connectivity, these indicators are computed based on the unconsolidated graph.

Node Degree Indicators
The node degree captures the number of connections each intersection has in the road network. Since
the road graphs are treated as directed, both incoming and outgoing edges are counted separately.
For a standard intersection with four two-way streets, this would result in a node degree of eight.

To assess the general connectivity of each network, the mean node degree (kµ) is computed across
all internal nodes. Nodes that are located outside the polygon are excluded from this calculation, even
though they are included in the graph using truncate_by_edge=True. These external nodes are added
to ensure that internal nodes retain all their connections, avoiding underestimation of internal node
degrees at the polygon boundary. However, since the full set of connections for these external nodes is
not available, including them in the analysis would introduce bias by consistently lowering the mean. To
prevent this bias, only the internal nodes are used in the statistical calculations, while their connections
to the external nodes are preserved. Equation 3.1 shows the formula.
In addition to the mean, the coefficient of variation of the node degree (kcv) is calculated to quantify the
relative variability in connectivity across the network. This is done by computing the standard deviation
of node degree, using Equation 3.2, and then dividing it by the mean node degree as illustrated in
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Equation 3.3. As with the mean, only internal nodes are considered in the calculation to avoid bias
introduced by incomplete connectivity of external nodes.

kµ =
1

N

N∑
i=1

ki (3.1)

kstd =

√√√√ 1

N

N∑
i=1

(ki − kµ)2 (3.2)

kcv =
kstd
kµ

(3.3)

Where:
• kµ – Mean node degree of the internal nodes.
• kstd – Standard deviation of node degree.
• kcv – Coefficient of variation of node degree.
• ki – Degree of node i, measured as the number of incoming and outgoing edges.
• N – Total number of internal nodes considered.

A histogram of the node degree is also generated to visualize how connectivity is distributed across
the network. This enables a more intuitive interpretation of the results by revealing whether most
intersections share a similar number of connections, or if there is a wider spread including highly or
sparsely connected nodes. These visualizations complement the statistical indicators by explaining
aspects that are not directly captured by the statistics.

Efficiency Ratio
To evaluate the efficiency of the road network, the average shortest path length (ASP) is calculated.
This represents the mean number of links traversed between all node pairs, based on the shortest
paths in the network. However, since the cities included in this research vary considerably in size and
structure, ASP values are not directly comparable.
To account for this, the ASP is normalized by the network diameter (ND), which is defined as the longest
shortest path between any two nodes in the network. These metrics are computed using Equation 3.4
and Equation 3.5 respectively, with each link weighted equally, as introduced in Section 3.2. The values
are calculated using the NetworKit library (Staudt et al., 2016), which enables efficient computation of
both average shortest path and network diameter in large-scale directed graphs. The resulting ratio R
is calculated using Equation 3.6.

d̄ =
1

N(N − 1)

∑
i ̸=j

d(i, j) (3.4)

D = max
i,j

d(i, j) (3.5)

R =
d̄

D
(3.6)

Where:
• N – Total number of nodes in the consolidated network.
• d(i, j) – Shortest path between node i and node j, measured in number of links.
• d̄ – Average shortest path length, referred to as ASP.
• D – Network diameter, referred to as ND.
• R – Efficiency ratio, defined as the ratio of ASP to ND.
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Betweenness Centrality Indicators
To evaluate how traffic flow is concentrated within the network, betweenness centrality is calculated for
each node. This metric captures how often an individual node lies on the shortest paths between all
other node pairs, as defined in Equation 3.7. Here, CB(v) represents the raw betweenness centrality of
node v. Shortest paths are based on the number of links between nodes, as discussed in Section 3.2.
The centrality values are computed using the NetworKit library (Staudt et al., 2016), which applies
Freeman normalization to ensure comparability across networks of different sizes.

CB(v) =
∑

s ̸=v ̸=t

σst(v)

σst
(3.7)

Two indicators are derived from the resulting distribution of node-level centrality values. The coefficient
of variation (CB,cv) quantifies the relative variability of betweenness centrality, calculated as the
standard deviation divided by the mean, as shown in Equation 3.8.
Additionally, the 95th percentile (CB,95) characterizes the highest centrality values in the network while
reducing the influence of extreme outliers. The Freeman normalization applied to this metric is shown
in Equation 3.9.

CB,cv =
CB,std

CB,µ
(3.8)

CB,95 =
95th percentile of CB(v)

(N − 1)(N − 2)
(3.9)

Where:
• CB(v) – Betweenness centrality of node v.
• σst – Total number of shortest paths between nodes s and t.
• σst(v) – Number of those paths passing through node v.
• CB,µ – Mean betweenness centrality of all nodes.
• CB,std – Standard deviation of node betweenness.
• CB,cv – Coefficient of variation of node betweenness.
• CB,95 – Normalized 95th percentile of node betweenness.
• N – Total number of nodes in the consolidated network.

To support interpretation, a visualization of betweenness centrality per node is generated for each city.
Node size and color both scale with individual centrality values, while the color scale is capped at the
95th percentile (CB,95) to ensure visual clarity. These maps highlight critical intersections and provide
spatial insight into the concentration of traffic flow.

3.3.2. Population Indicators
Population density values are retrieved from the Copernicus dataset, which provides population
estimates at a 100 by 100 meter resolution in the Mollweide coordinate system. As discussed
in Section 3.2, this high-resolution raster allows for precise, grid-based population analysis that is
independent of administrative boundaries. To ensure compatibility, the retrieved Mollweide polygons
are used to extract values for each urban area.
For each overlapping raster file, population values are extracted from the grid cells that fall within the
city polygon. Cells with no data are excluded, and valid values are multiplied by 100 to convert them
from inhabitants per hectare to inhabitants per km2.

From the resulting set of grid-cell values, three population indicators are computed to characterize
both the magnitude and distribution of population across each city. These include the mean population
density (Pµ), the coefficient of variation (Pcv) and the 95th percentile of population density (P95).
The mean population density, defined in Equation 3.10, is computed as the average density across
all 100 by 100 meter cells within the polygon. To assess the relative variability of population density,
the coefficient of variation is calculated by dividing the standard deviation (Equation 3.11) by the mean
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as shown in Equation 3.12. Finally, the 95th percentile (Equation 3.13) identifies the upper tail of the
distribution, capturing the threshold beyond which only the most densely populated areas are located.

Pµ =
1

N

N∑
i=1

Pi (3.10)

Pstd =

√√√√ 1

N

N∑
i=1

(Pi − Pµ)2 (3.11)

Pcv =
Pstd

Pµ
(3.12)

P95 = 95thpercentile of {P1, P2, . . . , PN} (3.13)

Where:
• Pµ – Mean population density (inhabitants/km2).
• Pstd – Standard deviation of population density.
• Pcv – Coefficient of variation of population density.
• P95 – 95th percentile of population density.
• Pi – Population density of grid cell i in inhabitants/km2.
• N – Total number of 100 × 100 meter grid cells within the polygon.

To complement the numerical indicators, a population density map is created for each city. For
visualization purposes, the population data is projected to WGS 84 to ensure consistent geographic
referencing with other visualizations. The color scale is capped at the 95th percentile to minimize the
visual impact of outliers and improve interpretability. These visualizations support the interpretation of
the statistical results by making density patterns visible, such as urban centers and polycentricity.

3.3.3. Economic Activity Indicators
The economic activity indicators are calculated using location data from OpenStreetMap, focusing on
the density of shops and offices for each city. These locations serve as measures for commercial and
work activity within urban areas. As outlined in Section 3.2, both land-use indicators are extracted
within a 500 by 500 meter grid, enabling spatial comparison across cities.

The urban boundaries are projected to an appropriate local coordinate reference system using the
UTM zone derived from the polygon centroid. This ensures accurate square grid creation, which is
fitted over each polygon. Within each grid cell, the number of shops and offices is counted separately
using the OpenStreetMap tags "shop": True and "office": True. The total number of facilities is
then converted to densities (locations/km2) using the area of each cell.

From the resulting gridded data, two indicators are calculated for both shops and offices: the mean
density (Sµ, Oµ) which are shown in Equation 3.14, and the coefficient of variation (Scv, Ocv) is
calculated using the standard deviation (Equation 3.15) in Equation 3.16.

Sµ =
1

N

N∑
i=1

Si and Oµ =
1

N

N∑
i=1

Oi (3.14)

Sstd =

√√√√ 1

N

N∑
i=1

(Si − Sµ)2 and Ostd =

√√√√ 1

N

N∑
i=1

(Oi −Oµ)2 (3.15)

Scv =
Sstd

Sµ
and Ocv =

Ostd

Oµ
(3.16)
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Where:
• Si – Shop density in grid cell i (locations/km2).
• Oi – Office density in grid cell i (locations/km2).
• Sµ, Oµ – Mean shop and office densities.
• Sstd, Ostd – Standard deviation of shop and office densities.
• Scv, Ocv – Coefficient of variation (CV) of shop and office densities.
• N – Total number of 500 × 500 meter grid cells within the city boundary.

To support interpretation, a spatial density map is produced for each city, visualizing the density of shops
and offices. The color scale is proportional to the maximum number of facilities per km2, revealing
commercial clusters and the intensity of economic activities in the urban areas.

3.4. City Characterization
Before performing the clustering analysis, the dataset for the 32 cities is first prepared to ensure
that the selected indicators are both comparable and meaningful for grouping cities. This involves
three steps: standardizing the 17 indicators to eliminate differences in scale in subsection 3.4.1,
assessing correlations to uncover redundancy and relationships among variables in subsection 3.4.2,
and applying Principal Component Analysis (PCA) to reduce dimensionality while retaining as much
variation from the original data as possible in subsection 3.4.3.

3.4.1. Data Standardization
The indicators used in this research differ in both units and magnitude, which makes direct comparison
difficult and potentially misleading. To ensure comparability and equal influence in the analysis, all
indicators are standardized using Z-score normalization, as shown in Equation 3.17. This method
transforms each indicator to have a mean of 0 and a standard deviation of 1, removing unit-based
differences and allowing the analysis to focus purely on the variation in values across cities. As a result,
each indicator contributes proportionally to the clustering and dimensionality reduction processes,
regardless of its original scale.

Z =
X − µ

σ
(3.17)

Where:
• Z – Standardized indicator value,
• X – Original indicator value,
• µ – Mean of the indicator,
• σ – Standard deviation of the indicator.

Alternative normalization methods, such as Min-Max scaling and Robust scaling, were also tested.
However, these approaches did not show substantially different results in terms of interpretability or
clustering outcomes. Z-score normalization was selected as the preferred method because it preserves
the relative structure of the data while avoiding the constraint of normalizing values within a fixed range.
Although it is not specifically robust to outliers, it provides a consistent and interpretable transformation
that performs well across indicators with varying distributions.

3.4.2. Correlation Analysis
After standardization, the relationships between indicators are examined to identify potentially
redundant indicators and detect strong relationships. The Pearson Correlation Coefficient (r) is used as
the correlation measure, as it quantifies the strength and direction of linear relationships between pairs
of variables. This is particularly relevant because Principal Component Analysis (PCA), introduced in
subsection 3.4.3, relies on such linear correlations to reduce dimensionality.

The Pearson coefficient is calculated using Equation 3.18. A value of r = 1 indicates a perfect positive
linear relationship, r = −1 a perfect negative relationship, and r = 0 implies no linear association. It is
important to note that this method is sensitive to outliers and does not capture non-linear relationships,
which may affect interpretation when such patterns are present in the data.
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r =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
√∑

(Yi − Ȳ )2
(3.18)

Where:
• Xi – Individual data point of variable X,
• Yi – Individual data point of variable Y ,
• X̄, Ȳ – Means of variables X and Y .

The Spearman Rank Correlation Coefficient was also tested as a robustness check due to its resistance
to outliers and ability to detect monotonic relationships, it was ultimately not used because it is not
directly compatible with PCA and did not show significantly different correlations results.

To evaluate whether the observed correlations are statistically meaningful, a two-tailed significance test
is performed using the critical t-value (tcrit). This test checks whether the strength of the correlation could
possibly occur by chance given the null hypothesis, which assumes there is no correlation between two
indicators. In this research, a significance level of α = 0.05 is chosen. This means that there is a 5%
chance of incorrectly rejecting the null hypothesis, so a correlation is considered statistically significant
only if the probability of it occurring by chance is less than 5%.

The test statistic depends on the number of observations (n, the number of cities), which determines
the degrees of freedom (df = n − 2). Two degrees of freedom are subtracted because the test first
estimates the means of the two variables involved before evaluating their relationship. Based on these
values, a critical threshold is derived for the absolute correlation coefficient. The calculations are shown
in Equation 3.19 and Equation 3.20.

tcrit = tppf(1− α/2, df) (3.19)

rthreshold =

√
t2crit

t2crit + df
(3.20)

Where:
• α – Significance level,
• df = n− 2 – Degrees of freedom,
• tppf – Inverse cumulative t-distribution function,
• rthreshold – Minimum absolute correlation required for significance.

For the dataset with 32 cities (n = 32), the resulting threshold is rthreshold = 0.349. All absolute
correlation values above this threshold are considered statistically significant.

Before performing the PCA, a subset of indicators can be excluded to minimize redundancy and
improve interpretability. This selection is based on the correlation analysis, where indicators with
strong linear and explainable relationships are assumed to contain overlapping information. Although
PCA accounts for such correlations by constructing orthogonal components, retaining multiple highly
correlated variables may still result in disproportionate emphasis on specific information. This can
reduce the diversity of urban characteristics captured in this research. By filtering out redundant
indicators beforehand, the resulting components become more balanced and interpretable, improving
their usefulness for the clustering process.

To determine which indicator to retain within each group of strongly correlated variables, several
criteria are considered. Indicators are deemed strongly correlated when the absolute Pearson
correlation coefficient exceeds |r| ≥ 0.65. Among these, preference is given to indicators with greater
variability across cities, as measured by their indicator-specific coefficients of variation, since they
are more effective at distinguishing between cities. Indicators with known data limitations or possible
methodological inconsistencies are given lower priority in favor of more robust alternatives that capture
similar concepts. In the case of the modal share indicators, summing to 100%, only one is retained, as
it mostly represents the inverse variation of the other modal shares.
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3.4.3. Principal Component Analysis
To reduce the number of dimensions in the dataset while retaining the majority of its variation, a
Principal Component Analysis (PCA) is applied. This preprocessing step streamlines the input for
PCA, ensuring that the remaining indicators contribute unique and meaningful information to the
dimensionality reduction and subsequent clustering. PCA transforms the original, potentially correlated
indicators into a smaller set of uncorrelated components, known as principal components (PCs). Each
PC is a weighted linear combination of the standardized indicators and captures a unique direction of
variance in the dataset (Greenacre et al., 2022). The PCs are ordered such that the first component
explains the greatest amount of variance, followed by the second, and so on. Equation 3.21 shows
how the principal components are calculated based on the indicators.

PCi = wi1Z1 + wi2Z2 + · · ·+ wipZp (3.21)

Where:
• PCi – Score of the ith principal component for a city,
• Z1, Z2, . . . , Zp – Standardized values of the p included indicators,
• wi1, wi2, . . . , wip – Component weights (loadings) of the ith PC.

The PCA is performed using the Singular Value Decomposition (SVD) algorithm, which decomposes the
standardized data matrix and facilitates the calculation of principal components and their corresponding
explained variance. The key steps in this process are summarized in Table 3.5.

Table 3.5: Steps for performing PCA using Singular Value Decomposition (SVD) (Greenacre et al., 2022).

Step Description

Compute SVD Decompose the standardized data matrix using SVD: X = UΣV T .

Compute Principal Components Obtain principal component scores by projecting the standardized data
onto the new axes: XPCA = UΣ.

Compute Explained Variance Determine the proportion of variance captured by each principal
component using eigenvalues: λi = σ2

i .

A scree plot is used to visualize the proportion of variance explained by each principal component and
to help the selection of howmany components to keep for meaningful clustering. The selection is based
on the cumulative explained variance, with the included components required to capture at least 75%
of the total variance in the indicators.
In addition, the contribution of each indicator to the included principal components is examined to
ensure that its variance is sufficiently represented in the reduced space. This step also helps the
interpretation of the principal components by identifying which indicators contribute the most to each
PC. If an indicator contributes minimally across all retained components, this may indicate that the
number of components should be reassessed.

3.5. Clustering
Clustering is used to group cities with similar characteristics based on the principal components derived
from the earlier analysis. This study applies three methods: K-Means, K-Medoids, and agglomerative
hierarchical clustering using Ward’s method. These approaches are selected for their interpretability
and suitability for relatively small datasets. The analysis begins with K-Means to identify initial
patterns, followed by K-Medoids to assess robustness against outliers. Both methods are discussed
in subsection 3.5.1. Ward’s method is then used to examine the hierarchical relationships between
clusters and individual cities, as introduced in subsection 3.5.2. Finally, the clustering outcomes are
compared using the Adjusted Rand Index (ARI) and the Jaccard Similarity, which is elaborated on in
subsection 3.5.3.

3.5.1. K-Means & K-Medoids Clustering
Partitioning-based clustering methods divide a dataset into a predefined number of clusters (k),
assigning each data point to a group based on its distance to a central reference point, as defined
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by the specific method: K-Means or K-Medoids. K-Means is applied first due to its computational
efficiency and widespread use. K-Medoids is then used to compare the clustering results, as it is more
robust to outliers.

To determine an appropriate number of clusters (k), the Elbow Method is applied, evaluating the Within-
Cluster Sum of Squares (WCSS) across increasing values of k. WCSS quantifies the compactness
of clusters by summing the squared distances between each point and its assigned cluster center, as
defined in Equation 3.22.

WCSS =

k∑
i=1

∑
xj∈Ci

∥xj − µi∥2 (3.22)

Where:
• k – Number of clusters,
• Ci – Set of data points in cluster i,
• xj – Data point assigned to cluster Ci,
• µi – Centroid (or medoid) of cluster Ci,
• ∥xj − µi∥2 – Squared Euclidean distance between a data point and its cluster center.

As k increases, WCSS naturally decreases because data points are grouped into smaller clusters,
reducing their average distance to the center. However, beyond a certain point, the additional
improvement in compactness decreases. The infliction in the WCSS curve marks this transition,
indicating a balance between simplicity and the ability to capture distinct patterns in the data. This
point is used to determine an appropriate number of clusters for both K-Means and K-Medoids.

K-Means
K-Means clustering divides the dataset into k clusters by minimizing the variance within each cluster.
This method iteratively assigns each data point to the nearest cluster centroid and updates the centroid
positions based on the mean of the assigned points. The optimization problem is formulated in
Equation 3.23.

In this study, K-Means clustering is applied using the k-means++ initialization strategy, which improves
the selection of initial cluster centers by favoring points that are farther apart from each other. Compared
to purely random initialization, this approach enhances convergence speed and reduces the likelihood
of local minima being the end result. For each value of k (ranging from 2 to 10), the algorithm is
executed 1,000 times using different random seeds.
Within each run, the n_init parameter is set to 50, meaning that 50 internal centroid initializations
are performed and the one with the lowest WCSS is retained. From the 1,000 runs per k, the final
clustering result is selected from the seed that produces the lowest WCSS overall, ensuring a stable
and high-quality clustering outcome for further interpretation.

argmin
C

k∑
i=1

∑
xj∈Ci

∥xj − µi∥2 (3.23)

Where:
• k – Number of clusters,
• Ci – Set of data points in cluster i,
• xj – Data point assigned to cluster Ci,
• µi – Centroid of cluster Ci,
• ∥xj − µi∥2 – Squared Euclidean distance between a data point and its cluster centroid.
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K-Medoids
K-Medoids clustering is a more robust alternative to K-Means. Instead of computing centroids, it selects
actual data points, called medoids, as the centers of clusters. This approach makes the method less
sensitive to outliers and more suitable for datasets with irregular cluster shapes or when different
distance metrics are required3.
Unlike K-Means, which minimizes the variance around centroids, K-Medoids minimizes the total
pairwise dissimilarity between data points and their assigned medoid. This tends to produce slightly
less compact but more robust clusters, particularly when the dataset contains outliers. Cluster
separation can be less sharp compared to K-Means, but the stability of the assignments increases.
The optimization objective is shown in Equation 3.24.

argmin
C

k∑
i=1

∑
xj∈Ci

d(xj ,mi) (3.24)

Where:
• k – Number of clusters,
• Ci – Set of data points in cluster i,
• xj – Data point assigned to cluster Ci,
• mi – Medoid of cluster Ci,
• d(xj ,mi) – Distance between a data point and its cluster medoid.

In this study, an exhaustive search is conducted to identify the optimal medoid configuration for
each number of cluster counts (ranging from 2 to 8), ensuring the global optimum is found. Due
to the algorithm’s high computational complexity, especially as the number of possible combinations
increases with k, a maximum of eight clusters is selected to ensure computational feasibility, even
with parallel computing. For larger datasets or higher k values, heuristic methods such as Partitioning
Around Medoids (PAM) are often used instead to reduce computational burden, but is not considered
in this report. The elbow plot is used to evaluate the resulting optimal WCSS values across different k
values.

3.5.2. Hierarchical Clustering
Hierarchical clustering constructs a nested hierarchy of clusters without the requirement of predefining
the number of groups. In this research, agglomerative hierarchical clustering is applied. This method
begins with each data point as an individual cluster, iteratively merging the two clusters that show the
most similarity based on a chosen linkage criterion. Ward’s method is specifically applied due to its
effectiveness in minimizing within-cluster variance throughout the merging steps (Murtagh & Legendre,
2011).
Ward’s linkage criterion selects clusters for merging by evaluating the increase in the total WCSS. The
associated objective function, defined in Equation 3.25, calculates the variance increase (∆E) that
occurs when two clusters are combined.

∆E =
∑
x∈C

∥x− µC∥2 −

(∑
x∈C1

∥x− µC1
∥2 +

∑
x∈C2

∥x− µC2
∥2
)

(3.25)

Where:
• ∆E – Increase in total within-cluster variance,
• C1, C2 – Clusters being merged,
• C – New cluster resulting from the merge,
• µC , µC1 , µC2 – Centroids of the clusters,
• ∥x− µ∥2 – Squared Euclidean distance between a data point x and its respective cluster centroid.

To identify the optimal number of clusters, the dendrogram, a graphical representation illustrating how
clusters are hierarchically merged, is ”cut” at various levels corresponding to different cluster counts

3For K-Medoids, Euclidean distance is used for consistency and comparability with the K-Means results.
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(ranging from 2 to 10). The dendrogram clearly visualizes in which order and at what linkage distances
which clusters merge, facilitating interpretation of the hierarchical structure. An example dendrogram
is provided in Figure 3.6.

Figure 3.6: Example dendrogram demonstrating hierarchical city clustering (Murtagh & Legendre, 2011).

Overall, Ward’s hierarchical clustering method provides a robust framework for exploring and
interpreting hierarchical relationships within the data, particularly valuable when the optimal number
of clusters is unknown or multiple number of clusters can be explored.

3.5.3. Cluster Evaluation
This subsection outlines the approach for evaluating the clustering results obtained from the three
methods. First, the optimal number of clusters, potentially more than one, is determined using the
silhouette scores for each number of clusters for each method. Next, the global agreement between
clustering outcomes is assessed using the Adjusted Rand Index, followed by checking the stability of
individual cities using the Jaccard Similarity.

Silhouette Score
To determine the optimal number of clusters for each clustering method, the silhouette score is used as
an evaluation metric. This measure is applied to each method to assess the clustering quality across
different values of k. For K-Means and K-Medoids, it complements the Elbow Method by providing a
measure that accounts not only for compactness but also for the separation between clusters. In the
case of Ward’s Method, it offers a quantitative basis in addition to the interpretation of the dendrogram.
The silhouette score evaluates how well each data point fits within its assigned cluster compared to its
similarity to the nearest alternative cluster. It captures two aspects: the internal similarity of points within
the same cluster and their separation from other clusters. For each observation i, the silhouette value
s(i) is computed as shown in Equation 3.26. The global silhouette score Sk for a clustering configuration
with k clusters is calculated as the average of all individual scores, as shown in Equation 3.27.

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3.26)

Sk =
1

n

n∑
i=1

s(i) (3.27)

Where:
• a(i) – Average distance from point i to all other points in the same cluster (intra-cluster distance),
• b(i) – Lowest average distance from point i to all points in the nearest neighboring cluster (inter-cluster
distance),

• s(i) – Silhouette value for point i, ranging from −1 to 1,
• n – Total number of data points,
• k – Number of clusters in the current configuration,
• Sk – Average silhouette score for the configuration with k clusters.
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A silhouette value close to 1 indicates that the data point is well clustered, while a value near 0 suggests
ambiguity between two clusters. Negative values imply that the point may have been assigned to the
wrong cluster. The global silhouette score Sk is used in this study to identify the most optimal number
of clusters per method.

To assess not only the optimal number of clusters within each method but also the relative quality of the
methods themselves, the silhouette scores corresponding to the selected k values are compared across
K-Means, K-Medoids, and Ward’s Method. Since all methods are applied to the same standardized
PCA-transformed data using Euclidean distance, these global silhouette scores provide a consistent
basis for evaluating both clustering results and the quality of each method.

Adjusted Rand Index
The Adjusted Rand Index (ARI) offers a complementary perspective to the silhouette-based evaluation
of clustering quality by measuring the overall agreement between clustering results from different
methods. While the silhouette score assesses the internal cohesion and separation of clusters, the
ARI evaluates all possible pairs of cities to determine whether each pair is assigned to the same cluster
in both solutions. ARI values range from -1 (no agreement) to 1 (perfect agreement), with a value of 0
indicating a level of similarity no better than random chance.

Given two clustering results U and V of a set of n elements, let nij be the number of elements shared
between cluster i in U and cluster j in V . Let ai =

∑
j nij be the total number of elements in cluster

i of U , and bj =
∑

i nij be the total number of elements in cluster j of V . The ARI is then computed
using Equation 3.28.

ARI =

∑
ij

(
nij

2

)
−
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Where:
• n – Total number of data points (cities),
• nij – Number of cities assigned to both cluster i in U and cluster j in V ,
•
(
n
2

)
– Number of possible city pairs,

• ARI – Adjusted Rand Index score between two clustering methods.

The ARI is used here to compute pairwise similarity scores between the clustering outputs of K-Means,
K-Medoids and Ward’s Method. The resulting ARI values are presented in matrix form to provide a
visual overview of the global agreement between methods.

Jaccard Similarity
While the ARI captures global agreement between clustering results, it does not reveal inconsistencies
at the level of individual cities. To address this, a local robustness check is performed using the
Jaccard Similarity between the neighborhoods of each city. A city’s neighborhood is defined as the
set of other cities that are assigned to the same cluster. The Jaccard Similarity compares these sets
across methods, quantifying the consistency of a city’s cluster membership across methods. For two
neighborhood sets, the Jaccard similarity is calculated with Equation 3.29.

J(A,B) =
|A ∩B|
|A ∪B|

(3.29)

Where:
• A,B – Neighborhood sets (cities in the same cluster) for a specific city under two different clustering
methods,

• |A ∩B| – Number of cities shared in both neighborhoods,
• |A ∪B| – Total number of unique cities across both neighborhoods,
• J(A,B) – Jaccard similarity ranging from 0 (no overlap) to 1 (identical sets).
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For each city, all pairwise Jaccard similarities between its neighborhood sets across methods are
calculated and averaged. Cities with low average scores are labeled as inconsistently assigned,
indicating that their cluster assignments vary notably using different methods. This neighborhood-
based evaluation complements the ARI by identifying cities whose assignment within the cluster
structure are unstable.

The combination of evaluation metrics introduced in this section is used to determine the most
appropriate number of clusters. In particular, the silhouette score and Adjusted Rand Index (ARI) guide
the overall selection by evaluating clustering quality and consistency across the three methods. These
metrics are complemented by visual interpretation of the cluster configurations to assess whether the
results correspond to meaningful geographical patterns. The Jaccard Similarity analysis serves as a
more detailed metric, focusing on individual cities whose cluster assignments vary between methods.
While it does not determine the number of clusters, it assists in interpreting inconsistencies within the
cluster results.



4
Network Characterization

This chapter presents the results for the indicators introduced in Chapter 3, focusing on four selected
cities: Amsterdam, Bilbao, Budapest, and Stockholm. These cities were chosen to reflect the variability
in the dataset, covering different city sizes and geographical regions in Europe. Their results are
discussed in Section 4.1, while the full dataset for all cities is provided in Appendix A. In Section 4.2,
correlations between the seventeen indicators are analyzed to identify redundancies and support the
exclusion of certain indicators from the clustering process. Finally, a Principal Component Analysis
(PCA) is performed in Section 4.3 to remove remaining redundancy and determine the principal
components on which the cities will be clustered.

4.1. Data Overview
To illustrate how the data is structured, Table 4.1, Table 4.2, and Table 4.3 provide an overview of all
seventeen indicators introduced in Chapter 3. The four selected cities serve as illustrative examples,
highlighting the diversity in urban characteristics observed across the full set of 32 cities.

The five road topology indicators capture key aspects of connectivity, efficiency, and robustness within
the road networks. Their values for Amsterdam, Bilbao, Budapest, and Stockholm are summarized in
Table 4.1.

Table 4.1: Road topology indicators for Amsterdam, Bilbao, Budapest, and Stockholm.

Indicator Name Amsterdam Bilbao Budapest Stockholm

kµ Mean node degree 4.622 3.895 5.264 4.628

kcv
Coefficient of variation
of node degree 0.358 0.350 0.338 0.408

R Network efficiency ratio 0.430 0.446 0.474 0.422

CB,cv
Coefficient of variation
of betweenness centrality 2.821 2.691 3.745 4.492

CB,95
95th percentile
of betweenness centrality 0.018 0.026 0.010 0.012

Among these cities, Budapest exhibits the highest average node degree (kµ), suggesting a more
interconnected network structure, while Bilbao shows the lowest. Regarding the variability in node
degree (kcv), all four cities display relatively similar levels, although Stockholm shows slightly higher
variability. The degree distributions, shown in Figure 4.1, illustrate how Amsterdam and Budapest
exhibit more uniform connectivity patterns compared to Bilbao and Stockholm.

Network efficiency (R) is highest in Budapest, suggesting that average travel distances are relatively
short, while Stockholm requires the largest detours. In terms of variability in betweenness centrality

32
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(a) Node degree histogram for Amsterdam. (b) Node degree histogram for Bilbao.

(c) Node degree histogram for Budapest. (d) Node degree histogram for Stockholm.

Figure 4.1: Node degree distributions for (a) Amsterdam, (b) Bilbao, (c) Budapest, and (d) Stockholm.

(a) Nodes scaled to Betweenness Centrality for Amsterdam.
(b) Nodes scaled to Betweenness Centrality for Bilbao.

(c) Nodes scaled to Betweenness Centrality for Budapest.
(d) Nodes scaled to Betweenness Centrality for Stockholm.

Figure 4.2: Betweenness Centrality maps for (a) Amsterdam, (b) Bilbao, (c) Budapest, and (d) Stockholm. The colorbar is
capped at the 95th percentile.
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(CB,cv), Stockholm exhibits the highest variation among the four cities. This pattern can be attributed to
its geographic constraints, where islands and water crossings channel trips through a limited number
of key intersections. Amsterdam also shows relatively high variability, although to a lesser extent.
In contrast, Budapest and Bilbao display lower variability in betweenness, indicating a more evenly
distributed network of important nodes.

The 95th percentile of betweenness centrality (CB,95) further highlights differences between the cities.
Bilbao stands out with the highest value, indicating a stronger reliance on a few critical intersections for
overall connectivity. Stockholm and Amsterdam follow with moderate values, while Budapest records
the lowest value, reflecting amore balanced distribution of traffic flows across its network. These spatial
patterns are illustrated in Figure 4.2.

The number and spatial distribution of inhabitants and economic activities provide valuable insights into
potential movement patterns. Table 4.2 summarizes the indicators related to population, shops, and
offices for the four selected cities, highlighting both the volume and spatial variability of activities within
the urban areas.

Table 4.2: Population and facility indicators for Amsterdam, Bilbao, Budapest, and Stockholm.

Indicator Name Amsterdam Bilbao Budapest Stockholm

Pµ
Mean population density
(100×100m grid) 4,365.0 5,601.6 2,859.1 3,167.1

Pcv
Coefficient of variation
of population density 1.261 1.931 1.481 1.652

P95
95th percentile
of population density 16,056.6 31,407.1 10,465.6 14,566.1

Sµ
Mean shop density
(500×500m grid) 28.4 32.6 21.0 22.2

Scv
Coefficient of variation
of shop density 2.970 3.323 2.730 2.760

Oµ
Mean office density
(500×500m grid) 6.5 6.7 6.2 5.9

Ocv
Coefficient of variation
of office density 1.354 1.747 1.557 1.458

(a) Population density for Amsterdam.
(b) Population density for Bilbao.

(c) Population density for Budapest. (d) Population density for Stockholm.

Figure 4.3: Population density maps (inhabitants/km²; 100×100m grid) for (a) Amsterdam, (b) Bilbao, (c) Budapest, and
(d) Stockholm. The colorbar is capped at the 95th percentile.
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(a) Shop density for Amsterdam.

(b) Shop density for Bilbao.

(c) Shop density for Budapest.

(d) Shop density for Stockholm.

(e) Office density for Amsterdam.

(f) Office density for Bilbao.

(g) Office density for Budapest.

(h) Office density for Stockholm.

Figure 4.4: (a-d) Shop and (e-h) office density maps (locations/km²; 500×500m grid) for (a,e) Amsterdam, (b,f) Bilbao,
(c,g) Budapest, and (d,h) Stockholm.
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Bilbao shows the highest mean population density (Pµ) while it is the smallest of the four cities,
suggesting a more concentrated residential structure. Budapest records the lowest, indicating a more
dispersed pattern. Amsterdam and Stockholm lie between these two cities. The spatial distribution of
population density is illustrated in Figure 4.3, highlighting how residents are spread across the urban
areas. The coefficient of variation of population density (Pcv) further supports these observations:
Bilbao and Stockholm display higher variability, indicating that population is more concentrated in
specific zones, whereas Amsterdam and Budapest have lower variability, reflecting a more balanced
distribution across their urban area.
The 95th percentile of population density (P95) captures the density levels in the most populated areas.
Bilbao again shows the highest value, followed by Stockholm and Amsterdam with moderate levels.
Budapest exhibits the lowest value, consistent with its more evenly spread population and lower overall
intensity.

A similar pattern emerges for the average shop density (Sµ), with Bilbao and Amsterdam recording
the highest levels of commercial activity, followed by Stockholm and Budapest. Despite differences in
average values, the coefficient of variation of shop density (Scv) is relatively high for all four cities,
indicating that commercial activity tends to be concentrated in specific zones rather than evenly
distributed across the urban area.

Office density (Oµ) shows less variation between the cities, with similar average values per km2. Among
the four, Amsterdam records the highest office density, while Stockholm has the lowest. However,
the coefficient of variation of office density (Ocv) reveals more pronounced differences: Budapest and
Bilbao exhibit greater variability, suggesting that offices are clustered into specific business districts,
while Amsterdam and Stockholm show lower variability, pointing to a more even spatial distribution.

The spatial patterns of both shops and offices are illustrated in Figure 4.4. Although some overlap
between commercial and office concentrations is visible, the clusters are not always aligned. In
Amsterdam, for instance, the main office hub is distinct from the primary shopping areas, highlighting
functional specialization within the urban areas.

The indicators in Table 4.3 show variability in mobility and congestion across the four example cities.
The share of trips made by motorized vehicles (MMV) varies notably, with Stockholm showing the
highest reliance on private motorized transport, while Bilbao exhibits the lowest share, suggesting a
less car-oriented mobility pattern.

In contrast, the share of trips by public transport (MPT) is highest in Budapest and Stockholm, indicating
that public transport plays an important role in daily trips. Amsterdam and Bilbao record lower public
transport shares, which may reflect either limited service levels or greater attractiveness of alternative
modes.

The share of active modes (MAM), including walking and cycling, shows even sharper contrasts.
Amsterdam leads in the use of active modes, likely due to its compact urban form and dedicated
infrastructure, while Budapest and Stockholm have relatively low shares. These variations highlight
the influence of both infrastructure and cultural factors on urban mobility patterns.

Table 4.3: Mobility and congestion indicators for Amsterdam, Bilbao, Budapest, and Stockholm.

Indicator Name Amsterdam Bilbao Budapest Stockholm

MMV
Share of trips with
motorized vehicles (%) 33 12 35 39

MPT
Share of trips with
public transport (%) 10 22 47 47

MAM
Share of trips with
active modes (walking, cycling) (%) 57 66 18 13

Vown
Car ownership
(cars per 1,000 inhabitants) 632 440 410 267

CL Congestion level (%) 24 13 32 20
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Car ownership (Vown), measured as the number of cars per 1,000 inhabitants, also shows variability
across the four cities. Amsterdam has the highest ownership rate, despite its high share of active
mobility, while Stockholm records the lowest, consistent with its strong reliance on public transport.
These differences suggest that car ownership levels do not always align with actual usage patterns and
may instead reflect lifestyle preferences or wealth factors. The relationship between mobility profiles
and car ownership is shown in Figure 4.5, where the cities are scaled to ownership in a ternary plot.
While one might expect a higher number of cars to directly correspond to a higher share of car use, this
pattern does not consistently appear across the 32 cities.
Finally, congestion levels (CL) also differ between the four cities. Budapest faces relatively high
congestion, indicating possible infrastructure bottlenecks or higher traffic volumes. In contrast, Bilbao
and Stockholm report lower congestion levels, suggesting a more efficient distribution of trips across
available modes or better traffic management.

Figure 4.5: Modal share profiles scaled to car ownership across the 32 cities.

When considering all 32 cities, the coefficients of variation in Table 4.4 confirm that the indicators span
a wide range of characteristics. The road topology indicators show relatively low variability across
cities, including the average node degree (kµ), its variability (kcv), and the efficiency ratio (R). While
this limits their ability to distinguish between cities, these indicators still describe important structural
aspects of road networks. In contrast, mobility, population, and economic activity indicators tend to
show moderate to high variation. For example, mean population density (Pµ), shop density (Sµ), and
office distribution (Ocv) vary notably, reflecting the diversity in land-use patterns.

Some indicators stand out with very high variability, including the 95th percentile of betweenness
centrality (CB,95) and the share of public transport trips (MPT). These indicators have values of the
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Table 4.4: Coefficient of variation (CV) for all 17 indicators for the 32 European cities.

Indicator CV Indicator CV Indicator CV

kµ 0.067 Pµ 0.434 MMV 0.273
kcv 0.077 Pcv 0.207 MPT 0.568
R 0.070 P95 0.391 MAM 0.342
CB,cv 0.255 Sµ 0.358 Vown 0.260
CB,95 0.653 Scv 0.222 CL 0.256

Oµ 0.242
Ocv 0.359

coefficient of variation above 0.5, indicating that cities differ substantially in terms of network centrality
and public transit reliance. In contrast, car ownership (Vown) and congestion level (CL) show more
moderate variation. Taken together, the range of CV values demonstrates that the selected indicators
are well-suited to capture both subtle and pronounced differences across urban areas. This provides a
strong foundation for clustering cities based on their network, population and activity distribution, and
mobility characteristics.

4.2. Correlation Analysis
To support effective clustering, it is important to reduce redundancy by identifying and removing certain
correlated indicators, which may contain overlapping information and skew the results. As a first step
toward the reduction of dimensionality, correlations between all 17 indicators are analyzed using the
Pearson correlation coefficient. A coefficient of 1.0 represents a perfect positive correlation (as seen
when an indicator is compared with itself), while a value of -1.0 indicates a perfect negative correlation.
Many indicator pairs show weak or negligible correlations, suggesting that they capture different
aspects of network structure, population and facilities, and mobility. However, several indicators do
exhibit stronger correlation relationships. The full correlation matrix can be seen in Appendix B.

To focus on more meaningful relationships, statistically insignificant correlations were filtered out. As
explained in Section 3.4, the significance threshold was based on a p-value of 0.05 and a sample size of
32 cities, resulting in a minimum absolute correlation value of 0.349. Correlations below this threshold
are not considered meaningful and are excluded from interpretation. The filtered matrix in Figure 4.6
only highlights the significant correlations, which makes identifying strong relations between indicators
easier.

Cross-Domain Relationships
Several notable relationships emerge between indicators from different domains, highlighting how road
topology, population density, economic activity, and mobility patterns are interconnected.

One example is the positive correlation between congestion levels (CL) and mean node degree (kµ).
While this may seem counterintuitive, it likely reflects that more connected street networks, especially
in dense urban cores, attract higher traffic volumes. These complex networks are typically found in
areas with high travel demand. This relationship is consistent with Braess’s Paradox, which shows that
increasing network connectivity does not always improve traffic flow. In some cases, it can even lead to
longer travel times due to individually optimal but collectively inefficient route choices (Braess, 1968).
The negative correlation between kµ and the modal share of active modes (MAM) further supports this
idea. A greater number of routing options can discourage walking and cycling, possibly due to the
dominance of car traffic. Limiting route options for cars in highly connected networks could help ease
congestion and encourage more sustainable travel behavior.

Interestingly, the 95th percentile of population density (P95) also correlates negatively with mean node
degree (kµ) and its coefficient of variation (kcv). This indicates that cities with highly concentrated
populations tend to have more tree-like or radial street networks, with fewer connections per node,
as discussed in Section 2.3. This pattern may reflect historic European urban layouts, where dense
central areas are characterized by narrow, organic street patterns rather than uniform grids.
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Figure 4.6: Pearson correlation matrix showing only significant correlations between all 17 indicators.

Another clear relationship is observed between mean population density (Pµ) and both shop density
(Sµ) and office density (Oµ). This is intuitive, as cities with higher residential densities often concentrate
economic activities in close proximity to living areas (Kopczewska et al., 2024; Samburu et al., 2023).
Higher densities create greater demand for goods and services, which supports the presence of shop
and office facilities in the same urban zones. According to Gehl (2010), this co-location pattern is typical
of compact European city centers and reflects the spatial integration of land use.

Overall, these cross-domain correlations confirm that road topology, population distribution, economic
activity, and mobility behavior are interconnected within the European urban context.

Indicator Exclusion
Based on the significant correlations, a selection process was applied to reduce redundancy among
indicators. Strongly correlated indicators often capture underlying patterns, and thus retaining only one
from each correlated group helps to minimize overlap in information while preserving important insights.
As a general principle, when strong correlations are observed, preference is given to the indicator
showing the highest variability, as shown in Table 4.4, in order to maximize differentiation. Due to
potential data limitations related to population, shop and office indicators, discussed in Section 4.1,
average values for these indicators are considered less reliable and are thus given lower priority,
particularly when they are strongly correlated with more robust indicators. For modal share indicators,
only one mode is preserved for the clustering, as the remaining shares can typically be deduced either
from that mode or from related indicators such as the congestion level. The following paragraphs outline
the specific indicators that were excluded, along with the explanation for their removal, based on their
strongest correlations and their role in urban transportation.
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kcv – The coefficient of variation of node degree is strongly negatively correlated with the 95th percentile
of population density (P95). Cities with highly variable node degrees often have tree-like or radial
street networks, which tend to align with uneven population distributions as discussed in the previous
paragraph. Higher population densities are typically associated with more uniform node degrees, as
shown by Lin and Ban (2017). A lower kcv often indicates grid-like network structure that supports
consistent connectivity and better accessibility. In contrast, networks with more low-degree nodes
may not have sufficient route options, possibly requiring detours and reducing overall efficiency of the
network. The correlation with the efficiency ratio (R) reinforces this, indicating that more balanced
connectivity can facilitate shorter paths. As kcv is well explained by both P95 and R, it is excluded.

CB,cv – The coefficient of variation of betweenness centrality exhibits a strong negative correlation
with the 95th percentile of betweenness centrality (CB,95). This is expected, as both indicators describe
an aspect of the distribution of betweenness centrality within the network. Cities with a few dominant
intersections naturally display lower variability in the rest of the network. In other words, if a small
number of nodes carry a large share of movements, most other nodes will have low betweenness
values, reducing the variability. Furthermore, the negative correlation with car ownership (Vown) may
reflect the fact that cities with more centralized movement patterns tend to discourage car use due to
bottlenecks, or possibly intentional network design. As CB,95 captures the skew in network centrality
more directly and has high variability, CB,cv is excluded.

Pµ – The mean population density is very strongly correlated with its 95th percentile (P95), indicating
that cities with high average density also tend to have highly concentrated population centers. This
redundancy justifies excluding the mean in favor of the percentile, which better captures the presence
of dense urban centers. In addition, Pµ is negatively correlated with the coefficient of variation of
population (Pcv), indicating that within the 32 cities with higher average density have more evenly
distributed populations.

Sµ – The average density of shops is strongly positively correlated with P95, reflecting that retail activity
tends to cluster in densely populated urban areas (Samburu et al., 2023). It also correlates with the
coefficients of variation for offices and population, highlighting the spatial overlap between residential
and commercial functions. Its negative correlation with Scv indicates that higher average shop density
typically corresponds with a more even distribution of retail facilities. Since Scv captures this dispersion,
and P95 reflects the spatial demand, Sµ is excluded.

Oµ – Mean office density correlates positively with both the variation in office distribution (Ocv) and with
population concentration (P95), consistent with patterns of employment clustering in dense urban cores.
Companies often locate offices in the same areas to benefit from shared infrastructure and access to the
local workforce (Kopczewska et al., 2024). The moderate negative correlation with Pcv further implies
that cities with clustered employment tend to have more balanced population distributions. Given these
overlaps, Oµ is excluded.

MMV – The modal share of motorized vehicles is logically correlated with the other two modal shares,
as the three percentages sum to 100%. A decrease in one mode necessarily results in an increase in
one or both of the others. As a result, it is sufficient to retain only one modal share to capture most
of the variation. In this case, MPT is retained due to its stronger correlations with the other two modal
share indicators, and its higher coefficient of variation. Thus, MMV is excluded from further analysis.

MAM – The modal share for active modes is also excluded, not only due to its strong correlation with
MPT, but also because it exhibits a notable negative correlation with the congestion level (CL). This
relationship is consistent with theoretical expectations, as higher shares of walking and cycling tend to
reduce reliance on motorized transport, thereby reducing pressure on road networks. Such dynamics
have been observed in the literature, as highlighted by Rabl and De Nazelle (2012), where increased
active mobility is associated with lower congestion impacts.

With the seven indicators excluded, the other ten remain for further analysis. The correlation matrix
in Figure 4.7 shows that some significant correlations still persist, indicating potential redundancy. To
remove this remaining overlap and extract independent patterns, a Principal Component Analysis (PCA)
is performed in Section 4.3.
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Figure 4.7: Pearson correlation matrix for the 10 included indicators.

4.3. Principal Component Analysis
To remove redundancy between indicators and reveal distinct patterns for clustering, a Principal
Component Analysis (PCA) was performed. As described in Section 3.4, PCA transforms the
original set of potentially correlated indicators into a set of principal components (PCs). Each
principal component is uncorrelated with the other components and captures a distinct portion of the
dataset’s variance, effectively eliminating redundancy while preserving the underlying information. This
dimensionality reduction avoids overlap between indicators and ensures that clustering is based on
independent patterns in the data.

PCA was applied to the included set of ten indicators. The resulting scree plot in Figure 4.8 illustrates
the proportion of variance explained by each principal component, along with the cumulative variance
across all components. A threshold of 75% cumulative explained variance was set as the minimum
required to justify dimensionality reduction for the clustering analysis. Based on this criterion, the
first five principal components were selected. Together, they account for 79.3% of the total variance,
indicating that the reduced-dimensional representation preserves most of the original variation in the
dataset.

Figure 4.8: Scree plot showing the explained variance per principal component, and the cumulative explained variance. The
dashed red line indicates the minimal necessary explained variance for representative results.
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To understand how the five retained principal components relate to the original ten indicators, the
loadings of the indicators are presented in Figure 4.9, which reflect the strength and direction of
the relationships between each indicator and principal component. Positive loading values indicate
a positive relationship, while negative values indicate a negative relationship. Although they are not
direct correlation coefficients, the loadings show how much each original indicator contributes to the
definition and interpretation of a principal component. For example, PC1 is shaped by strong positive
loadings from kµ and CL, while P95 contributes negatively. PC3 is primarily influenced by Ocv, and
PC4 shows strong positive associations with both Pcv and MPT. This overview helps identify which
indicators dominate the construction of each principal component.

Figure 4.9: Weight factors per indicator for each included principal component.

An alternative way to assess how the five principal components relate to the original indicators is to
examine the share of each indicator’s variance explained by each component. Figure 4.10 presents
this information as a percentage per principal component, along with the total variance explained for all
included indicators. This perspective complements the interpretation of loadings by showing not just
how indicators shape the components, but also how well the variation of each indicator is represented
in the reduced-dimensional space.

Figure 4.10: Variance captured per indicator by each included principal component.
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While some indicators are strongly associated with a single principal component, such as kµ with
PC1 and Scv with PC2, others show a more distributed pattern of explained variance. For instance,
indicators like R, B95,MPT, and Vown are each partially captured by several components, making their
interpretation more complex. Despite this, all indicators havemore than 70% of their variance explained
by the selected principal components, confirming that the dimensionality reduction retains a high level
of information for all ten indicators. It is worth noting that CL, although strongly represented in PC1, has
one of the lowest total explained variances across all components, just slightly higher than B95, which
is the least well-represented overall (72.22%). In the next paragraphs, each principal component is
elaborated on.

PC1 – This principal component accounts for a substantial share of the variance in kµ, P95, and CL,
indicating that it reflects aspects of connectivity, population hubs, and congestion. It also explains a
moderate share of the variance for Ocv and MPT, emphasizing the wide reach of the first component.

PC2 – Dominated by a strong contribution of Scv, this component focuses on shop distribution. It also
captures relevant shares of variance for B95, Vown, Pcv, P95, and R, highlighting its wider relevance
across indicators.

PC3 – This component primarily reflects variation in Ocv, highlighting the spatial distribution of offices.
It also captures smaller but notable shares of variance in Vown and B95.

PC4 – A large share of the variance in Pcv is explained by this component, along with roughly a quarter
of the variance in both R and MPT. PC4 is thus important for capturing differences in population
distribution and public transport use.

PC5 – While this component explains a smaller portion of the overall variance, it still adds value by
capturing remaining variation in R, MPT, and Vown. It accounts for residual patterns not fully covered
by the earlier components.

The selected principal components provide a robust and compact representation of the dataset,
capturing the most relevant variation across cities while reducing dimensionality and removing
redundancy. This reduced structure forms a strong foundation for the clustering analysis in Chapter 5,
enabling a clearer analysis of similarities and differences among the included urban areas.



5
Clustering Results

Following the principal component analysis in Chapter 4, this chapter presents the clustering results
for the 32 cities based on their road topology, activity distribution, and mobility characteristics. Three
clustering approaches were applied: K-Means, K-Medoids, and hierarchical clustering using Ward’s
method. Based on the evaluation of elbow plots, silhouette scores, and dendrogram structure,
configurations with two, five, and seven clusters emerged as the most meaningful. The selection of the
optimal number of clusters is shown in Section 5.1.
After determining the optimal number of clusters, particular attention is given to the seven-cluster result
in Section 5.2, which is analyzed in detail based on the full agreement across methods. The two- and
five-cluster results are subsequently discussed, offering complementary perspectives.

5.1. Number of Clusters
To determine the most suitable number of clusters, the clustering outcomes were evaluated using a
combination of elbow plots, silhouette scores, and dendrogram structure. These methods provide
insights into the internal coherence and separation between the clusters. Based on these evaluations,
the configurations with two, five, and seven clusters were identified as the most promising. First, the
results for the K-clusteringmethods, K-Means and K-Medoids, are presented in subsection 5.1.1, where
a comparison between the methods is also discussed. The hierarchical clustering results based on
Ward’s method are elaborated in subsection 5.1.2.

5.1.1. K-Means & K-Medoids
The K-Means and K-Medoids clustering methods are first evaluated. While both approaches divide the
dataset into k groups based on similarity, they differ in that K-Means allows cluster centers to lie outside
the set of observations, whereas K-Medoids restricts centers to actual data points (medoids). As
discussed in Section 3.4, this distinction can lead to differences in cluster compactness and robustness.
K-Means clustering was evaluated across a range of k = 2 to k = 10 clusters, while for K-Medoids,
values beyond k = 8 were not considered due to computational limitations. This restriction is justified
by the K-Means results, which suggests that meaningful cluster configurations are captured within this
range.

The elbow plots for K-Means and K-Medoids are presented in Figure 5.1. In both cases, the inertia
decreases rapidly for low values of k and then begins to level off, forming an elbow-shaped curve that
indicates declining improvements in clustering performance as the number of clusters increases. For
the K-Means method, a notable inflection point appears around five or six clusters, suggesting that the
internal structure of the dataset is well captured with a relatively small number of groups. In contrast,
K-Medoids shows consistently higher inertia values, as medoids must be actual data points rather
than optimal mathematical centers. This constraint can lead to higher distances to the cluster center,
explaining the higher inertia levels observed. The elbow shape is more pronounced for K-Medoids,
with a clear inflection at five clusters. Despite the minor differences, both methods indicate that five
clusters represent a strong candidate for the structure underlying the dataset.

44
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(a) Elbow plot for K-Means. (b) Elbow plot for K-Medoids.

Figure 5.1: Elbow plots for (a) K-Means and (b) K-Medoids clustering for increasing values of k.

The silhouette scores for K-Means and K-Medoids are shown in Figure 5.2. For K-Means, the highest
average silhouette score occurs at five clusters, closely followed by two clusters. The silhouette scores
for seven and eight clusters follow in third and fourth position, but their corresponding silhouette scores
are notably lower than for two and five clusters. The silhouette scores for K-Medoids show a different
pattern: the highest value is found at two clusters, followed by a secondary peak at seven clusters.
Interestingly, the silhouette score at five clusters is the lowest across all included k values for K-Medoids,
despite the elbow plot suggesting five clusters as a promising configuration. These findings highlight
that while both methods point towards two, five, and seven clusters as meaningful options, the relative
strength of the five-cluster result differs between K-Means and K-Medoids.

(a) Silhouette scores for K-Means. (b) Silhouette scores for K-Medoids.

Figure 5.2: Silhouette scores for (a) K-Means and (b) K-Medoids clustering for increasing values of k.

5.1.2. Ward's Method
Hierarchical clustering using Ward’s method was also applied, with evaluation based on silhouette
scores for k = 2 to k = 10 and the resulting dendrogram structure. As shown in Figure 5.3, the silhouette
score peaks at seven clusters, closely followed by five and eight, with a notable local maximum at two
clusters which aligns with the patterns from K-Means and K-Medoids. These results indicate that five,
seven, and eight clusters are most promising.

Figure 5.3: Silhouette scores for Ward’s Method for increasing values of k.
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To further explore the clustering structure, the complete dendrogram obtained from Ward’s method
is shown in Figure 5.4. Several distinct divisions are visible at higher linkage distances, indicated by
wider horizontal lines. These divisions represent stages where the dissimilarity betweenmerged groups
increases substantially, suggesting logical separations between clusters. A clear separation into five
and seven clusters can be observed, corresponding to the peaks identified in the silhouette analysis.
At eight clusters, however, Budapest separates into its own cluster, providing limited additional insights.
Based on these patterns, the five- and seven-cluster configurations are considered themost informative,
while the eight-cluster result is excluded from further analysis.

Figure 5.4: Hierarchical clustering dendrogram of the 32 cities using Ward’s Method.

To illustrate the clustering structures at specific values of k, Figure 5.5 presents the dendrograms cut at
five and seven clusters. These visualizations highlight how the main groups identified through Ward’s
method evolve when moving from a wider to a more detailed classification.

(a) Dendrogram cut at five clusters. (b) Dendrogram cut at seven clusters.

Figure 5.5: Ward’s Method dendrogram showing the structure at (a) five and (b) seven clusters.
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In summary, the clustering evaluation across K-Means, K-Medoids, and Ward’s method consistently
highlights two, five, and seven clusters as meaningful configurations. Among these, the seven-cluster
result proves to be the most robust and informative configuration across methods. Section 5.2 therefore
focuses first on analyzing the seven-cluster result in detail, before examining the complementary
insights offered by the two- and five-cluster outcomes.

5.2. Cluster Comparison
After identifying two, five, and seven clusters as promising results, this section analyzes the clustering
outcomes in greater detail. Given its full cross-method agreement and internal consistency, the
seven-cluster result is first analyzed in subsection 5.2.1. Each group is characterized based on road
topology, activity distribution, andmobility indicators. Subsequently, the two- and five-cluster results are
discussed in subsection 5.2.2 and subsection 5.2.3, providing broader perspectives and highlighting
the stability of the clustering outcomes.

5.2.1. Seven-Cluster Result
The clustering results across K-Means, K-Medoids, and Ward’s method show perfect agreement for
the seven-cluster result, with an Adjusted Rand Index (ARI) of 1.00 between all pairwise comparisons,
as shown in the ARI heatmap in Figure 5.6. This result confirms the robustness of the seven-cluster
configuration, aligning with the findings from the silhouette score analysis discussed in Section 5.1.
Overall, the seven clusters capture the diversity in road topology, activity distribution, and mobility
patterns across the 32 cities. The average values and standard deviations for all seventeen indicators
across the clusters are presented in Table 5.1. In addition, the seven groups will be described and
elaborated on in the following paragraphs.

Figure 5.6: Adjusted Rand Index comparing the seven-cluster results obtained from K-Means, K-Medoids, and Ward’s method.

Centralized Car-Oriented
4 cities: Bilbao, Lisbon, Lyon, Turin

The cities in this cluster are defined by a highly centralized urban form with distinct spatial contrasts.
Population distribution is strongly uneven (Pcv = 1.806), combining dense cores (P95 = 24, 567
inhabitants/km²) with low-density surrounding areas. Despite their centralization, they remain car-
oriented, with a low public transport modal share (MPT = 16.0%) and relatively high car ownership
levels (Vown = 566.0 vehicles/1,000 inhabitants). The road networks show moderate connectivity
(kµ = 4.197) and average efficiency (R = 0.433), while the concentration of traffic flows remains low
(CB,95 = 0.016), suggesting a more distributed use of the network. Interestingly, congestion levels
(CL = 20.2%) are lower than might be expected given the car dependency, which may reflect effective
traffic management or the availability of multiple routing options within the network.
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Table 5.1: Mean values and standard deviations (in parentheses) for all 17 indicators across the seven clusters. Bold indicators were included in the principal component analysis.

Indicator Description Centralized
Car-Oriented

Homogeneous
Car-Oriented

Dense
Multimodal

PT-Oriented
Congested

Well-Connected
Bottlenecked

Low-Density
Concentrated

Balanced
Multimodal

Number of cities 4 3 1 7 3 4 10

kµ Mean node degree 4.197 (0.204) 3.928 (0.148) 3.760 4.704 (0.289) 4.741 (0.344) 4.373 (0.101) 4.540 (0.166)

kcv
Coefficient of variation
of node degree 0.365 (0.015) 0.327 (0.014) 0.301 0.375 (0.024) 0.367 (0.032) 0.399 (0.030) 0.372 (0.029)

R Network efficiency ratio 0.433 (0.010) 0.443 (0.030) 0.471 0.434 (0.036) 0.427 (0.020) 0.377 (0.016) 0.433 (0.020)

CB,cv
Coefficient of variation
of betweenness centrality 3.226 (0.591) 2.814 (0.346) 2.723 3.384 (0.798) 2.104 (0.493) 3.802 (0.916) 3.590 (0.878)

CB,95
95th percentile
of betweenness centrality 0.016 (0.007) 0.023 (0.011) 0.016 0.017 (0.008) 0.046 (0.019) 0.016 (0.007) 0.015 (0.007)

Pµ
Mean population density
(100x100m grid) 4,806.8 (788.0) 9,911.7 (3,802.1) 20,744.7 4,732.4 (1,757.9) 6,546.5 (1,191.5) 3,249.0 (733.5) 5,010.1 (1,246.7)

Pcv
Coefficient of variation
of population density 1.806 (0.216) 1.161 (0.233) 0.791 1.266 (0.148) 0.931 (0.101) 1.196 (0.243) 1.268 (0.146)

P95
95th percentile
of population density 24,567.0 (6,448.7) 32,231.5 (6,758.9) 49,940.9 16,459.5 (5,241.0) 18,405.7 (2,694.0) 10,400.2 (1,120.8) 17,921.6 (4,861.6)

Sµ
Mean shop density
(500x500m grid) 25.1 (5.938) 32.1 (14.778) 76.6 30.9 (9.377) 40.8 (14.054) 17.1 (2.757) 26.8 (9.474)

Scv
Coefficient of variation
of shop density 3.041 (0.678) 2.363 (0.246) 1.849 2.471 (0.332) 1.826 (0.490) 3.505 (0.852) 2.845 (0.281)

Oµ
Mean office density
(500x500m grid) 7.1 (1.646) 7.0 (1.837) 19.9 7.2 (1.413) 12.2 (3.689) 7.0 (1.543) 7.1 (1.716)

Ocv
Coefficient of variation
of office density 1.660 (0.486) 1.269 (0.256) 6.251 1.525 (0.306) 1.460 (0.099) 2.386 (1.144) 1.666 (0.544)

MMV
Share of trips with
motorized vehicles (%) 44.8 (23.372) 45.3 (8.386) 26.0 35.3 (6.184) 52.0 (7.550) 47.2 (8.921) 41.2 (10.141)

MPT
Share of trips with
public transport (%) 16.0 (7.118) 16.0 (7.211) 23.0 41.9 (3.891) 18.7 (7.506) 17.0 (8.287) 18.7 (13.158)

MAM
Share of trips with
active modes (%) 39.2 (18.500) 37.7 (4.619) 51.0 22.6 (5.968) 29.0 (8.544) 34.8 (4.924) 39.1 (12.161)

Vown
Car ownership
(cars per 1,000 inhabitants) 566.0 (101.390) 711.7 (96.345) 453.0 632.4 (116.151) 526.3 (86.558) 493.2 (89.749) 421.4 (111.417)

CL Congestion level (%) 20.2 (4.856) 18.7 (0.577) 22.0 35.0 (5.164) 32.0 (5.196) 25.8 (5.123) 27.1 (4.433)
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Homogeneous Car-Oriented
3 cities: Madrid, Palma de Mallorca, Valencia
This cluster groups cities with a relatively homogeneous and compact urban structure. Population
densities reach the highest peaks among the multi-city clusters (P95 = 32, 231.5 inhabitants/km²), yet
spatial variation is limited (Pcv = 1.161), reflecting a dense distribution without strong internal contrasts.
Their road networks show the lowest connectivity across all multi-city clusters (kµ = 3.928) but maintain
moderate overall efficiency (R = 0.443), suggesting that traffic flow can remain effective even though
there are fewer route options. Economic activities are evenly distributed, with relatively low variation
in both shop (Scv = 2.363) and office (Ocv = 1.269) distributions. Mobility patterns reveal a strong
dependence on cars: public transport modal share is low (MPT = 16.0%), and car ownership is
the highest recorded among all clusters (Vown = 711.7 vehicles/1,000 inhabitants). Despite this car
dependence, congestion remains remarkably low (CL = 18.7%), indicating that compactness and
potentially efficient traffic management mitigate traffic pressures. The relatively low concentration of
traffic (CB,95 = 0.023) further supports the idea of a functional road network.

Dense Multimodal
1 city: Barcelona
This cluster, consisting solely of Barcelona, is defined by extremely high and evenly distributed
population densities (P95 = 49, 940.9 inhabitants/km², Pcv = 0.791), paired with a compact and
efficient road network. While connectivity is low (kµ = 3.760), overall efficiency reaches the highest
value among all clusters (R = 0.471), supporting direct travel despite the dense environment.
Shops are evenly spread (Scv = 1.849), whereas offices are highly concentrated, indicating extreme
centralization. Mobility patterns reveal a strong multimodal character: car ownership is low (Vown =
453.0 vehicles/1,000 inhabitants), active modes account for more than half of all trips (MAM = 51.0%),
and public transport usage is moderate (MPT = 23.0%). Despite the extreme densities, congestion
(CL = 22.0%) and traffic concentration (CB,95 = 0.016) remain moderate, suggesting that Barcelona’s
urban form successfully supports efficient and diverse mobility options.

PT-Oriented Congested
7 cities: Bucharest, Budapest, Krakow, London, Prague, Sofia, Warsaw
This cluster brings together Eastern European cities and London, which show strong network
connectivity (kµ = 4.704) and moderate efficiency (R = 0.434), indicating that while many route options
exist, travel paths are not particularly direct. Population densities are moderate (P95 = 16, 459.5
inhabitants/km²) but spatial variation remains relatively high (Pcv = 1.266), reflecting clear contrasts
between denser centers and sparse suburban neighborhoods. Shops and offices are moderately
concentrated (Scv = 2.471, Ocv = 1.525). A defining feature of these cities is their strong reliance
on public transport: the modal share for public transport (MPT = 41.9%) is the highest among all
clusters. Nevertheless, car ownership is also relatively high (Vown = 632.4 vehicles/1,000 inhabitants),
and congestion reaches the highest level observed (CL = 35.0%) among all clusters. The concentration
of traffic (CB,95 = 0.017) remains low, indicating that traffic demand is widespread across the network
rather than focused on a few intersections, but the overall intensity of travel demand leads to substantial
congestion despite the strong role of public transport.

Well-Connected Bottlenecked
3 cities: Berlin, Stuttgart, Vilnius
The cities in this cluster have well-connected road networks (kµ = 4.741) but moderate efficiency
(R = 0.427), indicating that trips often require small detours despite the large number of connections.
Traffic flows are notably concentrated, with the most extreme value across all clusters (CB,95 =
0.046), suggesting that a limited number of intersections carry a disproportionate share of movements.
Population density peaks are moderate (P95 = 18, 405.7 inhabitants/km²) and spatial variation is
relatively low (Pcv = 0.931), pointing to a continuous and evenly developed urban structure. Economic
activities are evenly distributed, with little spatial variation for both shops (Scv = 1.826) and offices
(Ocv = 1.460). Mobility patterns are mixed: public transport usage (MPT = 18.7%) and car ownership
remains moderate (Vown = 526.3 vehicles/1,000 inhabitants). Despite the balanced urban and
economic structure, congestion is substantial (CL = 32.0%), indicating that localized bottlenecks
decrease the performance of the road network.
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Low-Density Concentrated
4 cities: Birmingham, Helsinki, Oslo, Toulouse
The cities in this cluster combine low overall population densities with strongly concentrated economic
activities. Population density peaks are the lowest observed across all clusters (P95 = 10, 400.2
inhabitants/km²), while spatial variation remains moderate (Pcv = 1.196), reflecting a fragmented and
dispersed residential pattern. Road networks are moderately connected (kµ = 4.373) but suffer from
the lowest efficiency across all clusters (R = 0.377), suggesting that trips often require longer detours.
In contrast to the dispersed population, economic activities are highly centralized: shops (Scv = 3.505)
and offices (Ocv = 2.386) show the highest spatial variation among multi-city clusters, pointing to strong,
economic centers. Despite this centralization, the concentration of traffic flows remains relatively low
(CB,95 = 0.016), indicating that movement remains spread across the network. Mobility patterns
are mixed: public transport usage is low (MPT = 17.0%), car ownership is modest (Vown = 493.2
vehicles/1,000 inhabitants), and congestion remains moderate (CL = 25.8%).

Balanced Multimodal
10 cities: Amsterdam, Brussels, Copenhagen, Frankfurt am Main, Manchester, Paris, Rotterdam,
Stockholm, Thessaloniki, Vienna
The cities in this cluster are characterized by a well-connected road network (kµ = 4.540) with moderate
efficiency (R = 0.433), suggesting good accessibility combined with reasonably direct travel paths.
Population patterns are balanced, with moderate density peaks (P95 = 17, 921.6 inhabitants/km²)
and relatively high spatial variation (Pcv = 1.268), indicating more pronounced differences between
dense and less dense areas. Economic activities are moderately dispersed, as reflected by the
shop (Scv = 2.845) and office (Ocv = 1.666) variations. Mobility profiles are strongly multimodal:
car ownership is the lowest among all clusters (Vown = 421.4 vehicles/1,000 inhabitants), public
transport use is moderate (MPT = 18.7%), and active modes account for a relatively high share of
trips (MAM = 39.1%). Traffic flows are relatively distributed across the network (CB,95 = 0.015), but
congestion levels remain substantial (CL = 27.1%), indicating that even in cities with multiple transport
options, there is significant pressure on the road demand.

The seven-cluster configuration captures distinct patterns in network topology, activity distribution, and
mobility characteristics across the 32 European cities. Table 5.2 provides a concise overview of the
defining characteristics of each cluster.

Table 5.2: Summary of the seven clusters based on road network, activity distribution, and mobility characteristics.

Cluster Short Description

Centralized Car-Oriented Strong density contrasts, centralized, car-dominated with low congestion
Homogeneous Car-Oriented Compact and uniformly dense, car-dominated with low congestion
Dense Multimodal Extremely dense, multimodal, low car ownership and moderate congestion
PT-Oriented Congested High public transport use, but also high congestion and car ownership
Well-Connected Bottlenecked Well-connected but bottleneck-prone, moderate density and mixed mobility
Low-Density Concentrated Dispersed residential pattern, centralized economic hubs, low PT use
Balanced Multimodal Mixed densities, strong multimodal mobility, but notable traffic pressure

The spatial distribution of the clusters across Europe, shown in Figure 5.7, reveals clear geographical
patterns. Central and Eastern European cities, together with London, form a distinct group
characterized by high congestion and strong public transport reliance. Cities with highly centralized yet
car-dependent structures, such as Lisbon and Turin, are located predominantly in Southern Europe.
The Low-Density Concentrated cities, such as Oslo and Birmingham, are located mainly in Northern
and Western Europe, where urban dispersion is more common. Meanwhile, Northwestern European
cities such as Amsterdam, Copenhagen, and Paris cluster together into a balanced multimodal group,
reflecting a more integrated approach to transport and urban development. Finally, Barcelona remains
a unique case within the dataset, combining extreme population density with strong multimodal mobility
characteristics, and extreme office centralization. These spatial patterns suggest that geographic,
historical, and policy contexts correlate with the cluster results in this research.
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Figure 5.7: Spatial distribution of the seven-cluster result across Europe.

There are some interesting results to be seen in the cluster assignments, especially in terms of
geographical and size variation. The three British cities (London, Manchester, and Birmingham) are
each assigned to a different cluster, which reflects different urban profiles despite being located in the
same country. Thessaloniki is grouped with Northwestern European cities in the Balanced Multimodal
cluster, suggesting it shares similar characteristics such as moderate density variation and strong
multimodal transport usage, even though it is geographically located in Southern Europe. The Well-
Connected Bottlenecked cluster includes a very large city and two smaller cities, bringing together
Berlin, Stuttgart, and Vilnius. This indicates that differences in scale do not necessarily prevent cities
from sharing comparable network structures and traffic flow characteristics. It also highlights the
importance of considering local context before transferring solutions between cities in the same cluster.

5.2.2. Two-Cluster Result
The two-cluster result, for which relatively high silhouette scores were computed across all three
methods, demonstrates a high degree of consistency between K-Means, K-Medoids, and Ward’s
method. The ARI values, presented in Figure 5.8, confirm strong agreement across all method
combinations: K-Means and K-Medoids achieve an ARI of 0.86, K-Means andWard’s method 0.87, and
K-Medoids and Ward’s method 0.74. These results indicate that, despite methodological differences,
the dataset supports a robust and stable two-cluster classification. This outcome is somewhat
unexpected, given the variation in indicator values previously observed for the four example cities
discussed in Section 4.1.
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Figure 5.8: Adjusted Rand Index comparing the two-cluster results obtained from K-Means, K-Medoids, and Ward’s method.

The geographical distribution of the two clusters, illustrated in Figure 5.9, reveals a clear regional
separation. Cities from Spain and Italy consistently group into one cluster, while the remaining cities,
predominantly located in Northern, Central, and Eastern Europe, form the second cluster. Lisbon and
Lyon, which are not consistently assigned across methods, are indicated separately in gray. This
division suggests that structural and mobility characteristics in Southern Europe differ significantly from
those observed in the rest of Europe, a pattern that is also visible in Figure 5.4, where the southern
cities merged with the other cities at the highest linkage distance.

Figure 5.9: The 32 European cities grouped into two clusters. Lisbon and Lyon are not clustered, but illustrated in gray.

When compared to the seven-cluster result, the two-cluster configuration provides an interesting
perspective. The southern cities, joined by Lisbon and Lyon, correspond to the clusters labeled
as Centralized Car-Oriented, Homogeneous Car-Oriented, and Dense Multimodal. In contrast, the
remaining cities, grouped into PT-Oriented Congested, Well-Connected Bottlenecked, Low-Density
Concentrated, and Balanced Multimodal, form the second cluster. This division highlights strong
structural differences: the southern cities exhibit higher peak population densities, lower congestion
levels, and a stronger reliance on car travel, whereas the second group tends to have higher road
network connectivity, lower car ownership, and greater public transport usage. A full overview of the
characteristics of the two clusters can be found in Section D.1.
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5.2.3. Five-Cluster Result
The five-cluster configuration provides a more detailed classification of the 32 cities, but shows greater
instability across the clustering methods compared to the two-cluster result. As visualized in the ARI
heatmap in Figure 5.10, K-Means and Ward’s Method show relatively high agreement (ARI = 0.80),
indicating that these two methods identify a similar structure when grouping the cities into five clusters.
In contrast, K-Medoids shows considerably lower agreement with both K-Means and Ward’s Method
(ARI = 0.43 in both cases), indicating a substantially different clustering result. These results confirm
that the five-cluster result is less robust across methods, primarily due to variation introduced by K-
Medoids. This difference is also anticipated by the silhouette scores discussed in Section 5.1, where
K-Medoids showed weaker cluster quality at k = 5.

Figure 5.10: Adjusted Rand Index comparing five-cluster results for K-Means, K-Medoids, and Ward’s Method.

The spatial distribution of the five-cluster result is shown in Figure 5.11. As the ARI values suggest,
the clustering results do not align across the three methods, resulting in a larger number of cities that
could not be consistently assigned to a single cluster. Lisbon and Lyon remain inconsistently assigned,
while Palma de Mallorca and Vienna also switch cluster assignments depending on the method. These
cities appear to occupy positions between certain clusters, displaying characteristics that overlap with
these groupings.

Figure 5.11: The 32 cities grouped into five clusters. Inconsistent assigned cities are shown in gray (Lisbon, Lyon, Palma de
Mallorca, Vienna) or also outlined as group (Amsterdam, Copenhagen, Frankfurt am Main, Oslo, Rotterdam, Thessaloniki).
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Notably, a group of cities (Amsterdam, Copenhagen, Frankfurt am Main, Oslo, Rotterdam, and
Thessaloniki) consistently appear together across all three methods but is assigned to two different
clusters: either the cluster containing Berlin, Stuttgart, and Vilnius or the cluster containing the other
Northwestern cities, depending on the algorithm. This suggests that while these cities are internally
similar, the methods differ in how they position this group within the broader cluster structure. Their
inconsistent assignment is the cause of the observed variation in ARI scores. More importantly, this
inconsistency indicates that a five-cluster configuration does not provide a fully distinct or stable division
of European cities.

A possible explanation for the instability is the sensitivity of K-Medoids to the selection of medoids,
particularly in small datasets. In K-Medoids, cluster centers (medoids) are located at actual data points.
Although K-Medoids is theoretically more robust to outliers than K-Means, the small sample size in
this study amplifies its sensitivity to the exact location of individual data points. This sensitivity likely
contributes to the observed instability at k = 5. By contrast, K-Means and Ward’s Method, which are
not restricted to existing data points for their cluster centers, produce more similar groupings.
Nevertheless, the differences between the methods help uncover additional patterns within the dataset.
Even when cluster assignments shift, these variations reveal underlying structural similarities and
differences among cities, contributing valuable insights to the overall analysis.

The five-cluster result already defines three of the clusters that appear in the more detailed seven-
cluster result. The Dense Multimodal cluster, consisting solely of Barcelona, emerges consistently
as a distinct group, reflecting its combination of extremely high population density and significant
variation in office density distribution. Similarly, the PT-Oriented Congested cluster, composed of
Central and Eastern European cities together with London, is already clearly formed, capturing the
pattern of high congestion levels and car ownership, and strong reliance on public transport. The
Well-Connected Bottlenecked cluster, including Berlin, Stuttgart, and Vilnius, is also defined in the five-
cluster configuration. These stable groupings show the robustness of the underlying urban contexts of
these clusters.

In contrast, the remaining clusters are not clearly defined at k = 5. The cluster containing the southern
cities, which includes Bilbao, Madrid, Turin, and Valencia, later divides (together with inconsistently
assigned cities) into the Centralized Car-Oriented and Homogeneous Car-Oriented clusters at k = 7,
indicating internal heterogeneity that only becomes apparent with more detailed classification. Similarly,
the cluster with northwestern cities, composed of cities such as Brussels, Paris, and Stockholm,
remains broader in the five-cluster result and subsequently splits, together with the Inconsistently
Assigned group, into two distinct clusters at k = 7. This difficulty in cleanly separating the Northwestern
cities at k = 5 is consistent with the instability observed across clustering methods. Overall, the
five-cluster result provides a meaningful initial structuring of the European cities, while simultaneously
highlighting the degree of variability in certain urban patterns at this clustering level. The full overview of
the characteristics of the five clusters and the Inconsistently Assigned group can be seen in Section D.2.

5.2.4. Performance of Clustering Methods
In addition to the Adjusted Rand Index comparison between the three clustering methods, the silhouette
scores for the two-, five-, and seven-cluster configurations are compared to assess the performance
of the methods. These results are summarized in Table 5.3. For the seven-cluster configuration, all
three methods show identical silhouette scores, as expected given that they produce identical cluster
assignments. In the two-cluster configuration, both K-Means and K-Medoids achieve higher silhouette
scores than Ward’s Method. This difference, consistent with the earlier analysis in subsection 5.2.2,
reflects the assignment of Lisbon and Lyon, which are grouped with Northwestern and Eastern cities
in K-Means and K-Medoids, rather than with Southern cities as in Ward’s Method. For the five-cluster
configuration, K-Medoids performs significantly worse, with a noticeably lower silhouette score, as
already highlighted in subsection 5.1.1. In contrast, K-Means achieves the highest score at this level,
while Ward’s Method shows a silhouette value similar to that of the seven-cluster result.

Taken together, these results suggest that K-Means offers the most consistently high silhouette scores
across the tested configurations, indicating a relatively stable ability to form internally cohesive and
well-separated clusters. Ward’s Method also performs robustly, especially in the five- and seven-cluster
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Table 5.3: Silhouette scores for each clustering method at 2, 5, and 7 clusters.

K-Means K-Medoids Ward’s Method

2 clusters 0.281 0.293 0.252
5 clusters 0.283 0.201 0.267
7 clusters 0.267 0.267 0.267

solutions, and shows strong alignment with K-Means based on ARI values. K-Medoids, on the other
hand, appears more sensitive to the number of clusters: although it performs well for two clusters, its
silhouette score drops substantially at five clusters, suggesting less coherent groupings and greater
sensitivity to medoid selection.

This chapter has examined the clustering results based on the included topology, economic activity,
and mobility characteristics of the 32 cities. Across K-Means, K-Medoids, and Ward’s method, the
configurations with two, five, and seven clusters were evaluated in detail. Among these, the seven-
cluster configuration proved to be the most robust and informative, offering a distinct characterization
of urban contexts. Meanwhile, the two- and five-cluster configurations offer valuable complementary
perspectives, revealing geographical trends and interesting groupings. Together, these findings provide
a solid foundation for the discussion in Chapter 6 and the conclusions drawn in Chapter 7.



6
Discussion

This chapter discusses the findings of the city characterization and clustering analysis. First, Section 6.1
summarizes the main results from Chapter 4 and Chapter 5, offering an initial reflection on the observed
urban patterns and clustering results. These outcomes are then placed within the broader context of
urban and transport research in Section 6.2, comparing them to insights from previous studies. Finally,
Section 6.4 critically goes into the methodological limitations of this research and their implications for
the robustness and interpretation of the results. Throughout the discussion, the focus is on interpreting
how the findings contribute to the understanding of urban transport dynamics and the opportunities
they offer for cross-city learning.

6.1. Main Findings
The characterization of the 32 cities revealed different forms of road network structure, population and
economic activity distribution, and mobility patterns. Indicators related to network topology, such as the
average node degree and network efficiency, showed relatively limited variation across the European
cities, possibly reflecting general structural features of urban road networks. An exception was the 95th
percentile of betweenness centrality, which exhibited substantial variation and highlighted differences in
the concentration of traffic flows across networks. In contrast, indicators describing population density,
the distribution of shops and offices, and mobility patterns showed more variation. Measures capturing
the intensity and spatial dispersion of population and facilities emphasized the contrast between highly
centralized and more evenly distributed urban forms. Mobility indicators similarly revealed a wide range
of profiles, from car-dependent to multimodal cities, and from low to high levels of congestion. Among
these, the share of trips made by public transport showed particularly high variability. Overall, the
selected indicators offer a comprehensive description of urban structure and network performance,
forming a strong foundation for distinguishing cities through clustering analysis.
To explore relationships between the seventeen initial indicators, a correlation analysis was performed.
Most indicators showed only weak correlations, suggesting that they captured different aspects of urban
structure and mobility. However, some unexpected patterns emerged. Indicators related to node
degree were negatively correlated with both the mean and the 95th percentile of population density.
This was not directly anticipated based on the literature and may indicate that highly connected road
networks are not necessarily associated with dense urban forms. Another notable finding was the
absence of significant correlations between congestion levels, car ownership, and the share of trips
made by motorized vehicles. This suggests that higher car ownership does not automatically lead to
greater car use or traffic congestion, pointing instead to other factors such as wealth levels or traffic
management effectiveness. These findings challenge conventional transport planning assumptions,
where car ownership is often seen as a measure for car dependence or congestion. The weak
relationships observed here highlight the need to analyze structural and behavioral indicators in
combination rather than alone. Urban form, local policies, and income levels may all seem to influence
whether people actually use their cars, showing that car ownership alone does not explain mobility
patterns in European cities.
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Where strong overlaps were observed, such as between the mean and 95th percentile of population
density, or between the mean and variability of shop and office densities, indicators that better captured
spatial distribution were prioritized. This selection narrowed the set to ten indicators, and after applying
Principal Component Analysis, 79.3% of the total variance was captured by five principal components.
Building on this reduced data structure, the three clustering methods (K-Means, K-Medoids, and
Ward’s Method) offered clear insights into the clustering structure of the cities. Across all methods,
configurations with two, five, and seven clusters emerged as the most meaningful, based on silhouette
analysis, elbow plots, and dendrogram interpretation.
The two-cluster result revealed a strong geographical pattern. Southern European cities, particularly
those from Spain and Italy, contrasted sharply with cities in other parts of Europe in terms of network
structure, activity distribution, and mobility behavior. Although the assignment of Lisbon and Lyon was
less clear, the division remained highly consistent across methods, indicating that regional context
influences urban form and transport systems at this level of analysis.
The five-cluster result provided a different classification, attempting to subdivide the two larger groups
identified at the two-cluster level. However, it struggled to do so consistently across methods.
City assignments, particularly between K-Medoids and the other approaches, were often unstable.
While certain groups, such as the Central and Eastern European cities characterized by strong
public transport reliance, were consistently identified as a cluster, other groupings showed shifting
assignments across methods. This instability suggests that five clusters could not fully subdivide the
variability present in the dataset for the 32 cities.
In contrast, the seven-cluster result proved to be both the most stable across methods and the most
informative outcome. Full agreement indicated a robust and well-structured configuration. The seven
clusters captured several patterns in urban contexts, highlighting meaningful differences in network
structure, activity distribution, and mobility characteristics. Some clusters grouped cities characterized
by high congestion levels combined with strong public transport reliance, while others reflected highly
centralized, car-oriented cities with dense cores but lower congestion. Additional clusters distinguished
cities with low-density residential patterns and concentrated economic hubs from those where both
population and activities were more evenly distributed. Differences in car ownership levels and the
degree of reliance on non-car modes further emphasized the distinctiveness of the groups. As the
most notable result, Barcelona stood out as a singular case, reflecting its extreme population density
and high concentration of office activity, setting it apart from all other cities in the dataset.

Reflecting on these findings, several broader patterns emerge. First, the absence of strong correlations
between car ownership, motorized travel, and congestion levels suggests that these dimensions are
shaped by different underlying factors. High car ownership does not necessarily translate into greater
car use or congestion, as it may reflect factors such as wealth or lifestyle. Congestion, meanwhile,
often depends more on network structure and traffic management. This is evident in the two-cluster
result, where Southern European cities combine high car ownership with relatively low congestion.
Second, the clustering results reveal a consistent regional pattern: cities in Southern Europe differ
clearly from their Northern and Eastern European counterparts in terms of network structure, activity
distribution, andmobility characteristics. This separation likely reflects deeper historical and institutional
differences. Whereas Northern and Central European cities often developed through structured urban
planning or post-war reconstruction, Southern European cities often retained compact historical centers
and more organically developed urban forms. These layouts result in higher central densities and
more localized activity patterns. In addition, differences in transport policy, such as investment levels
and traffic management strategies, are likely contributing to contrasting mobility outcomes. Climate
conditions may also influence walkability and cycling, either encouraging active modes or discouraging
them during heat periods. Together, these long-standing development trajectories help explain why
Southern cities consistently form a separate cluster across methods.
Third, despite the complexity of urban transportation systems, meaningful groupings can still be
identified when cities are compared across multiple domains. The stability of the seven-cluster
result demonstrates that cities with shared structural and behavioral characteristics can be grouped
meaningfully, even when drawing on a broad set of indicators. This reinforces the value of
multidimensional classification frameworks and offers promising opportunities for comparative research
and cross-city learning.
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6.2. Comparison to Previous Research
Earlier studies have shown that clustering cities based on transport network characteristics can reveal
structural differences in connectivity and centrality. For example, Tundulyasaree (2019) and Yamaoka
et al. (2021) used graph-theoretical indicators to group cities according to network topology, while
Badhruudeen et al. (2022) focused on geometric features such as grid-like versus organic layouts.
These studies demonstrated clear geographic patterns in urban form and emphasized the value of
network-based classification.
The findings of this study support those conclusions but also offer several refinements. While indicators
such as average node degree and the network efficiency ratio were relatively uniform across the 32
European cities, the 95th percentile of betweenness centrality (CB,95) showed substantial variation. This
confirms earlier observations that CB,95 captures flow concentration and structural hierarchy in urban
networks (Louf & Barthelemy, 2014; Strano et al., 2013). At the same time, the limited variation in other
topological indicators suggests the presence of underlying regularities in network form, as found by
Badhruudeen et al. (2022), yet highlights the risk of overlooking functional differences when relying on
a smaller indicator set. By incorporating multiple dimensions of network structure, this research offers
a broader foundation for clustering.
Beyond physical structure, previous research has emphasized land-use composition and mobility
behavior as key dimensions of urban classification. Studies such as Puissant and Eick (2024) and
Coenegrachts et al. (2024) have clustered cities based on facility distribution and shared mobility
markets, respectively. These contributions underscore that spatial organization and travel behavior
shape urban dynamics in distinct but complementary ways.
This research confirms that perspective but distinguishes itself by integrating network topology, facility
dispersion, and modal preferences into a single clustering framework. Whereas earlier studies typically
focused on one domain, the combined approach adopted in this research reveals underlying patterns.
For instance, cities with similar population densities but different levels of car ownership and public
transport usage. Although the domains of activity distribution and mobility patterns do not show
strong correlations, their interaction becomes meaningful when considered in combination with network
topology. The emergence of stable clusters illustrates that the integration of structural, functional, and
behavioral indicators offers a more holistic explanation than domain-specific classifications alone.
While some earlier studies, such as Tundulyasaree (2019), applied more than one clustering method for
validation, most rely on a single technique. In this study, K-Means, K-Medoids, and Ward’s hierarchical
clustering were applied in parallel to evaluate the robustness of the cluster results. The full agreement
across all three methods for the seven-cluster result strengthens confidence in the identified typologies.
This level of cross-method stability suggests that the observed groupings reflect meaningful structural
and behavioral differences rather than methodological characteristics.
In contrast to studies that isolate either urban form or transport behavior, this research emphasizes
their interplay. For example, while high car ownership is often associated with higher congestion in
mobility-focused classifications, the results here show that this relationship is not consistent across
the 32 included cities. Similarly, the recurring grouping of Southern European cities across clustering
methods reflects shared structural and behavioral characteristics and supports earlier findings, but now
placed within a broader, integrated framework.
In summary, this research confirms and extends earlier findings on transport networks, land use, and
travel behavior. By integrating road topology, population density, economic activity dispersion, and
modal preferences into a single clustering framework, it enables a more holistic characterization of
European cities. This multidimensional approach strengthens comparative urban analysis and supports
more nuanced insights into how structure and behavior shape urban systems.

6.3. Transferability & Application
The clustering results offer a practical foundation for cross-city learning by identifying groups of
cities with comparable structural and mobility conditions. Interventions such as investments in public
transport, active mode infrastructure, or road network optimization often involve complex trade-offs and
require contextual justification. When cities face similar challenges, learning from their counterparts
can reduce uncertainty, accelerate implementation, and improve policy effectiveness. In this sense,
clustering enhances the evidence base for urban policy by identifying structurally relevant reference
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cases, supported by data and strengthening informed and adaptive strategy development.
One example is the PT-Oriented Congested cluster, which includes Central and Eastern European cities
such as Budapest, Warsaw, and Prague, as well as London. Despite differing national and economic
contexts, these cities all face the shared challenge of managing high congestion levels alongside strong
public transport usage and relatively high car ownership. What unites them further is their role as
national capitals and regional hubs. As major employment, education, and administrative centers,
they attract large numbers of commuters from surrounding areas, often far beyond their municipal
boundaries. This intensifies peak-hour pressure on both road networks and public transport systems.
In such contexts, strategy exchange may focus not only on internal network optimization but also
on managing metropolitan-scale demand, such as park-and-ride systems, regional rail integration, or
congestion pricing. The effectiveness of such strategies can then be used for potential integration in
other cities within the cluster.
Cross-cluster comparison can also highlight contrasting profiles and complementary lessons.
Amsterdam, part of the Balanced Multimodal cluster, features low car ownership, moderate congestion,
and strong use of active modes. In contrast, cities like Turin or Lisbon in the Centralized Car-Oriented
cluster exhibit higher car dependency and less balanced activity patterns. If a city like Turin seeks to
promote cycling or reduce car dominance in dense cores, Amsterdam offers an example of how similar
urban densities can be paired with strong active mode strategies, such as dedicated cycle networks,
traffic calming zones, and pedestrianized areas. Although not in the same cluster, such examples can
support context-aware adaptation strategies aligned with specific policy objectives.
The classification also provides guidance for cities beyond the original dataset. For instance, a city
like Belgrade, which features a dense historical center, rising car ownership, and a relatively well-
developed public transport network, may share key characteristics with the PT-Oriented Congested
cluster. Although not part of the 32 included cities, Belgrade faces many of the same urban challenges
as cities like Budapest or Warsaw. By comparing indicator profiles, policymakers can identify relevant
cities, strategies, and collaborate on solutions to manage congestion, improve public transport, or
coordinate regional travel demand.
Beyond guiding immediate strategy development, the clustering framework also offers a foundation for
long-term, adaptive urban policymaking. As cities continue to evolve, the classifications can support
benchmarking, allowing policymakers to track progress, evaluate the effects of interventions, and
anticipate emerging challenges. Repeating the clustering analysis with updated data enables cities to
reflect on whether they are shifting toward more balanced, efficient, or sustainable profiles, or diverging
from their intended trajectories. The results serve not only as a snapshot of current urban transportation
characteristics, but as a tool to inform ongoing decision-making, align policy with structural change, and
support more resilient, future-oriented planning across diverse urban contexts.

6.4. Limitations & Implications
While the analysis offers valuable insights into the urban form of European cities, several limitations
affect how the findings should be interpreted. These limitations arise frommethodological choices, data
availability, and practical constraints. This section provides an overview the most relevant limitations
and discusses their implications for the robustness and comparability of the results.

Number of Cities
An important limitation of this research lies in the relatively small number of cities included. While the
32 cities selected represent some of the most significant urban areas in Europe, they account for only
a fraction of the 828 cities across the continent, let alone globally. As discussed in Section 3.1, the
limited sample was primarily constrained by data availability, particularly the need for consistent and
comparable indicators across the considered domains.
This restricted sample size has several implications. With more cities, additional patterns might emerge,
and certain statistical relationships could become more robust. Correlations between indicators could
be confirmed with greater confidence, while the risk of coincidental findings would decrease. A larger
set could also lead to the identification of new clusters or offer clearer groupings for cities that currently
appear as outliers, such as Barcelona, which may share characteristics with cities not included in the
present dataset. However, expanding the dataset would also introduce challenges. Including more
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cities would make the analysis more resource-intensive, potentially affecting feasibility in terms of the
collection, processing, and interpretation of data. It may also reduce the level of detail with which
individual cities can be considered. Balancing depth and wide application is therefore an important
consideration when applying this approach to wider sets of cities.

City Boundaries
Another limitation relates to the way in which urban boundaries were defined. As discussed in
Section 2.1, the delineation of urban areas is fundamentally subjective, depending on the research
objective and context. The approach adopted in this research, which uses the area within the main
ring road as a basis, introduces uncertainty, particularly for cities with multiple ring roads (e.g. Paris,
Madrid, London) or those without a clear ring structure (e.g. Vilnius, Stuttgart). This raises questions
about which suburban areas were or should have been included or excluded from the analysis.
These boundary decisions have implications for the comparability of results across cities. Small
differences in how the boundary is drawn can influence the number of nodes, the extent of the network,
and the spatial distribution of facilities and population. Additionally, the boundaries used for certain
indicators (mobility and congestion level) were not clearly defined in the original data sources. As a
result, there is likely a small mismatch between the geographical area for the road topology, population,
and economic activity indicators on one hand, and the mobility indicators on the other. This reduces
the consistency within the dataset.
To enhance reproducibility, the initial boundary polygons are included in the supplementary materials
attached alongside this report. The additional constraint, iteratively including nodes within 200 meters
of the polygon boundary, helped improve the delineation of the study area and reduce the subjectivity
of the initial polygons. Nevertheless, more precise and harmonized boundary definitions would likely
improve the quality and reliability of the results. This was considered too time-consuming for the scope
of this project.

Data from Different Years
A further limitation of this research is that the data across domains was collected in different years.
As noted in Table 3.2, the dataset spans a period from 2020 to 2025, reflecting the most recent
available data for each domain. While this ensures up-to-date input, it also introduces a degree of
misalignment between domains. Collecting all indicators from the same reference year would provide
a more consistent basis for analysis and likely improve the accuracy of cross-city comparisons.
This variation is not expected to significantly affect the findings, as the research focuses on structural
characteristics such as road networks, population distribution, and general mobility behavior, which
typically change slowly over time. However, it may offer a slightly less precise view of the situation in
certain cities. This is particularly relevant for mobility indicators: modal shares for four cities (Bilbao,
Budapest, Thessaloniki, and Vienna) were drawn from an older report, and car ownership figures for
three other cities (Frankfurt am Main, Lisbon, and Sofia) were obtained from alternative publications
due to missing data in the main sources.

OpenStreetMap Data Quality
The limitations of OpenStreetMap data, previously noted in subsection 3.2.3, are further elaborated
here due to their impact on facility indicators. Since OpenStreetMap is a publicly sourced platform
maintained by a large community of contributors, consistency in data quality across cities cannot be
guaranteed. While this is unlikely to significantly affect the road network data, as streets are relatively
well-defined and uniformly mapped, it does create challenges for uniformly classifying facilities. The
tagging of shops, offices, and other urban activities can vary between countries, cities, and contributors
and often overlaps. For instance, the distinction between shops and amenities, or between offices and
industrial uses, is not always clearly defined. Moreover, many amenities and shops also function as
workplaces, further complicating the categorization.
To address this uncertainty, average values based on absolute facility counts were given lower
priority in this analysis. Instead, the analysis focused on distribution patterns using the coefficient of
variation, which is more robust to inconsistencies in documentation, as it captures relative differences
within each city rather than relying on absolute counts between cities. This approach assumes that
classification practices are relatively consistent within each individual urban area, allowing meaningful
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spatial patterns to be observed despite cross-city differences in documentation practices. Nevertheless,
more detailed and standardized facility data would further improve the accuracy and comparability of
these indicators.

Interrelations in Activity Distribution
While distribution indicators for population, shops, and offices were included separately, their combined
spatial configuration, often linked to urban polycentricity, was not explicitly analyzed in this research.
Although initial patterns can be observed by comparing their separate distributions across the urban
area, no systematic method was applied to assess the spatial overlap or alignment between these
activity types. As a result, potentially important relationships between mixed-use areas, the clustering
of activity centers, and mobility behavior may not have been fully captured.



7
Conclusion

This chapter presents the main conclusions of the research. Section 7.1 first answers the main
research question, followed by the sub-questions in Section 7.2, based on the results of the city
characterization and clustering analysis. Section 7.3 highlights the scientific contributions of this
research. Recommendations based on the findings are provided in Section 7.4, and opportunities
for future research are provided in Section 7.5.

7.1. Main Research Question
The objective of this research was to explore how urban characteristics related to road networks, activity
distribution, and mobility patterns can be used to cluster European cities into meaningful groups. To
achieve this, the research applied multiple clustering methods to a selected set of indicators across
these domains, answering the main research question:

How can the application of multiple clustering methods reveal distinct groups of European cities based
on road network, activity distribution, and mobility characteristics?

The findings show that for the 32 included European cities, a clear and meaningful classification into
seven distinct clusters could be achieved. These clusters captured road topology, activity distribution,
and mobility characteristics, which determined distinct city profiles.
The use of three different clustering methods, K-Means, K-Medoids, andWard’s Method, demonstrated
that clustering outcomes were relatively consistent across the approaches for two and seven clusters.
In particular, the seven-cluster result showed full agreement across all methods, highlighting the
robustness of the clustering result. Interpretable patterns also emerged for the two- and five-cluster
results, although with less stability for the five-cluster result. Applying multiple methods strengthened
the confidence that the identified groups represent meaningful differences between cities rather than
being influenced by the choice of clustering method.

Thus, this research concludes that a clustering approach considering multiple domains provides
a strong foundation for distinguishing cities based on their combined structural and mobility
characteristics. It offers valuable opportunities for comparative research and cross-city learning,
helping cities to better understand shared challenges and potential pathways for development.

7.2. Sub-Questions
To further structure the conclusions, this section answers the four sub-questions formulated for this
research. Each sub-question addresses a specific aspect of the methodology or findings, contributing
to a comprehensive understanding of how cities can be distinguished based on their structural and
mobility characteristics.
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Indicators to Distinguish Cities
Which indicators most effectively distinguish cities in terms of road topology, activity distribution, and
mobility characteristics?
How can these indicators be quantified and compared across European cities?

To effectively distinguish cities, indicators were selected that capture structural, spatial, and behavioral
characteristics. For road network topology, the average node degree, the efficiency ratio, and the
95th percentile of betweenness centrality quantified differences in connectivity, efficiency, and the
robustness of the network. For activity distribution, the coefficients of variation for population density,
shops, and offices captured how unevenly these functions were distributed across urban areas, while
the 95th percentile of population density described the density in the densest neighborhoods. Mobility
characteristics were measured through modal shares (motorized vehicles, public transport, active
modes), car ownership rates, and congestion levels.
Indicators were either calculated based on publicly available data sources or collected directly from
public reports and databases. To enable consistent comparisons between cities, individual indicators
were standardized as needed: betweenness centrality indicators were normalized to account for
variation in city size, and coefficients of variation were used to capture relative distributions of facilities
and population within each city. Following this, all indicators were Z-score normalized to allow
meaningful comparisons across different indicators with varying scales. Among all indicators, the
variation in betweenness centrality, the dispersion of economic facilities, and the share of trips made
by public transport proved most effective in distinguishing urban contexts.

Relationships Between Indicators
What relationships exist between the included indicators, and what do these relationships reveal about
underlying urban dynamics?

The analysis revealed that most indicators captured distinct aspects of urban structure and mobility, as
only a few strong cross-domain correlations were observed. Where strong relationships existed, they
mainly reflected expected overlaps, such as between themean and 95th percentile of population density,
and between mean and variation-based indicators for shops and offices. These findings justified
the prioritization of distribution indicators, such as percentiles and coefficients of variation, to better
differentiate between cities.
Beyond overlapping patterns, the observed correlations also highlighted urban dynamics. For
example, cities with higher shares of active mobility generally experienced lower congestion levels.
These relationships indicate that structural, functional, and behavioral characteristics are interrelated,
reinforcing the importance of considering multiple domains together when analyzing and comparing
cities.

Clustering Methods and Their Application
Which clustering methods are most suitable for grouping European cities based on these indicators,
and what are their respective advantages and limitations?

The research showed that applying multiple clustering methods strengthens the robustness of city
groupings. K-Means, K-Medoids, and Ward’s Method all proved effective in identifying meaningful
patterns across a small set of cities, despite their methodological differences. K-Means was
computationally efficient and produced stable results across hundreds of runs. K-Medoids offered
greater robustness to outliers but showed some sensitivity to the location of individual data points
within the dataset. Ward’s Method provided valuable insights into how clusters merge hierarchically,
without requiring a predefined number of clusters. However, relying solely on Ward’s Method would
make interpretation more challenging, as dendrograms become increasingly difficult to analyze in detail
when the number of cities grows.

Consistency of Clustering Outcomes
How consistent are the clustering outcomes across different methods, and how can their similarities
and differences be interpreted?

The clustering outcomes showed a high degree of consistency across K-Means, K-Medoids, and
Ward’s Method, for the two- and seven-cluster results. The strong agreement at the two-cluster
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level reflected a clear regional division between Southern cities and the rest of Europe, while the full
agreement in the seven-cluster result confirmed that the 32 European cities could be grouped in distinct
and stable urban typologies, independent of the clustering technique used.
For the five-cluster result, the cluster configurations differed significantly between K-Medoids and
the other two methods. These inconsistencies, however, offered valuable insights into cities that
lie between groups or show more mixed characteristics. Using multiple clustering methods thus
not only strengthened the robustness of the identified groupings but also helped uncover alternative
perspectives on the diversity among cities, enhancing the overall reliability of the results for comparative
urban analysis.
Among the included methods, K-Means and Ward’s Method emerged as the most consistent given
their silhouette scores and high agreement across cluster configurations. While K-Medoids showed
greater variability, particularly at five clusters, it contributed complementary insights that enriched the
interpretation of cluster structures.

7.3. Scientific Contributions
This research contributes to the field of urban transport and spatial analysis in several important ways,
both by addressing a research gap and by demonstrating a systematic methodological approach.

First, it addresses a gap in the existing literature by integrating road network structure, activity
distribution, and mobility characteristics into a single clustering framework. Whereas previous studies
have classified cities based on individual domains such as road topology, land use, or shared mobility,
this research combines the structural, functional, and mobility characteristics of urban areas. This
approach provides amore holistic classification of European cities and highlights the interdependencies
between urban form, activity patterns, and mobility systems.

Second, this research demonstrates that applying multiple clustering methods strengthens the
robustness and interpretability of city classifications. By systematically comparing K-Means, K-
Medoids, and Ward’s Method, it shows that meaningful and stable urban typologies can be identified
independently of the chosen algorithm. The strong agreement across methods, particularly for the
seven-cluster result, indicates that the groupings reflect real differences between cities, even when
considering a wide range of structural, functional, and behavioral characteristics.

Third, this research offers a comprehensive and systematic methodology for classifying cities by
combining public data sources, multiple clustering algorithms, and complementary evaluation metrics.
This integrated approach strengthens the robustness, comparability, and replicability of the findings,
providing a solid foundation for future cross-city analyses and accelerating collective solutions to urban
challenges, even when working with smaller datasets.

Ultimately, clustering cities based on topology, activity distribution, and mobility can provide a solid
foundation for addressing shared challenges, not by reinventing the wheel, but through cooperation,
cross-city learning, and a more collaborative, data-based approach to shaping the future of urban
transport systems.

7.4. Recommendations
This section proposes ways to strengthen the methodology and expand the future application of the
clustering framework. The recommendations focus on extending the dataset to capture different stages
of urban development and on improving the quality and coverage of input data, while maintaining the
systematic and replicable approach introduced in this study.

Development Timestamps
This research focused on comparing European cities within the same time frame. A valuable extension
would be to include multiple profiles for each city that reflect different stages of their development. For
example, rather than a single entry for Amsterdam, the dataset could include “Amsterdam (2005)”,
“Amsterdam (2015)”, and “Amsterdam (2025)”, capturing how the city has evolved in terms of road
network structure, activity distribution, and mobility behavior.



7.5. Future Research 65

Such an approach would enable cities not only to find comparable cities in the present, but also to
explore development trajectories over time. A city in 2025 that is similar to “Amsterdam (2005)” could
study the strategies introduced during that period and evaluate whether they effectively addressed the
challenges by 2015, or whether they produced long-term effects, positive or negative, by 2025. In this
way, the clustering method becomes a more dynamic tool for learning from past transformations and
identifying strategies suitable for specific stages of urban transportation development. It can also help
individual cities focus more on their own development history.

From a research perspective, the inclusion of historical city profiles would make it possible to study
how urban form and transportation systems evolve together. It could also uncover shifting relationships
between certain indicators as cities develop, offering more nuanced insights into the drivers of urban
change and supporting long-term policymaking.
Given the need for large volumes of data, building such longitudinal profiles would be resource-
intensive. It requires access to consistent historical data, standardized indicator definitions across
countries, and careful processing. However, the potential benefits for both researchers and decision-
makers are considerable. In the context of the European Union, streamlining such data collection may
be a feasible long-term objective. The methodology presented in this study could be directly applied
to longitudinal data, offering a practical framework for understanding urban and transport development
over time.

Improving Dataset Quality and Coverage
There are several ways to improve the quality of the dataset, which strengthens the reliability of future
clustering results. Increasing the precision of urban boundary definitions, improving the consistency
of input data across indicators, and ensuring closer alignment between the indicators and the actual
characteristics of each city would allow the unique context of each individual city to be captured
more accurately. Collaboration with local authorities and municipalities would assist this process.
More precisely delineated boundaries, consistently applied across all measured indicators, would
reduce inconsistencies in spatial analysis and enhance comparability between cities. Similarly, using
more complete and systematically validated data sources, particularly for facility locations (POI-data)
and mobility characteristics, would minimize data inaccuracies and better represent the functional
reality of each city. Together, these improvements would enable the clustering results to reflect the
specific local context that influences urban development and mobility patterns. Importantly, all of these
enhancements can be integrated within the same methodological framework presented in this study,
preserving comparability while improving the robustness and interpretability of the clustering results.

If such improvements in data quality could be achieved across a larger sample of cities, the explanatory
strength of the analysis would significantly increase. Especially if this methodological approach is
applied to different continents. A more extensive dataset would increase the robustness of observed
relationships between indicators, reduce the influence of outliers, and allow the identification of more
nuanced urban patterns. Moreover, it would strengthen the potential for cross-city learning by offering
a richer set of comparable cases, enabling cities to learn more precise lessons from others with similar
development stages. In doing so, the clustering framework would become an even more powerful
foundation for understanding urban dynamics and supporting tailored policy interventions.

7.5. Future Research
Building on the findings, contributions, and limitations of this research, several directions for future
research are proposed. These suggestions aim to extend the clustering framework, deepen the
understanding of urban form and mobility patterns, and enhance the practical applicability of cross-
city comparisons.

Polycentricity
This research considered the spatial distribution of population, shops, and offices within each urban
area, providing an indication of how inhabitants and activities are dispersed across the city. However,
a more structural perspective could be gained by explicitly analyzing the degree of polycentricity. As
introduced in Chapter 2, several methods exist to measure polycentricity, although their applicability
may vary depending on the specific research objective and context.
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For future research, systematically defining and measuring polycentricity could provide deeper insights
into the relationship between urban form and travel patterns. Polycentric cities may support shorter trip
lengths, more decentralized mobility patterns, and different modal choices compared to monocentric
cities. Incorporating one or more polycentricity indicators, adapted to the scale and characteristics
of each city, could therefore strengthen the understanding of how spatial organization influences
transportation dynamics.

Tailored Solutions
This research identified distinct clusters of cities, providing a foundation for cross-city learning. A logical
next step would be to focus on identifying specific strategies and interventions that have proven effective
within these groups of cities. Developing an overview of strategies, implementation experiences, and
the factors that influence success or failure within each cluster would significantly support decision-
making processes. While the clustering results highlight similarities, it remains essential to recognize
that solutions may still need to be adapted to the specific contexts of individual cities. A more
tailored understanding would help cities not only to learn from comparable cases, but also to anticipate
necessary adjustments when applying strategies to their own urban context.

Interrelation between Indicators
A final recommendation for future research is to examine the relationships between specific indicators
in more detail, building on the significant correlations presented in Figure 4.6. For example, the
negative correlation between congestion levels and the 95th percentile of population density, or the
positive correlation with the public transport modal share, could be explored further. While it remains
important to emphasize that correlation does not imply causation, a more detailed analysis could
uncover underlying urban dynamics that are currently not clear. Alternatively, it could confirm that
certain observed correlations are coincidental rather than causal, contributing to a more complete
understanding of the results.
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A
Complete data set

Table A.1: Road topology and population indicators for 32 European cities.

City kµ kcv R Bcv B95 Pµ Pcv P95

Amsterdam 4.622 0.358 0.430 2.821 0.018 4,365.0 1.261 16,056.6
Barcelona 3.760 0.301 0.471 2.723 0.016 20,744.7 0.791 49,940.9
Berlin 5.121 0.330 0.407 2.547 0.024 7,052.7 0.832 18,872.0
Bilbao 3.895 0.350 0.446 2.691 0.026 5,601.6 1.931 31,407.1
Birmingham 4.441 0.426 0.375 5.107 0.006 3,857.7 1.058 10,921.3
Brussels 4.422 0.342 0.450 3.041 0.014 5,170.4 1.367 21,154.3
Bucharest 4.578 0.352 0.443 3.256 0.021 7,628.7 1.142 25,807.3
Budapest 5.264 0.338 0.474 3.745 0.010 2,859.1 1.481 10,465.6
Copenhagen 4.767 0.394 0.416 3.593 0.013 4,136.9 1.460 15,996.3
Frankfurt am Main 4.269 0.364 0.431 2.252 0.030 4,502.0 1.246 16,132.7
Helsinki 4.229 0.409 0.379 3.281 0.017 2,511.3 1.553 9,328.9
Krakow 4.391 0.405 0.411 2.455 0.029 2,881.0 1.427 11,586.5
Lisbon 4.319 0.377 0.432 4.049 0.009 4,939.8 1.899 25,043.7
London 4.643 0.397 0.417 4.897 0.005 6,371.7 1.179 20,385.5
Lyon 4.322 0.379 0.430 3.225 0.013 3,717.2 1.483 15,860.2
Madrid 3.961 0.330 0.422 3.136 0.013 14,281.8 0.925 38,959.2
Manchester 4.594 0.426 0.428 4.461 0.007 3,764.2 1.200 11,611.0
Oslo 4.447 0.403 0.358 3.751 0.021 3,901.4 1.027 11,723.5
Palma de Mallorca 4.057 0.338 0.430 2.449 0.034 7,362.9 1.166 25,441.8
Paris 4.335 0.367 0.403 5.122 0.003 6,412.5 1.312 23,431.1
Prague 4.507 0.379 0.373 3.146 0.021 4,879.2 1.100 16,009.2
Rotterdam 4.566 0.370 0.472 3.507 0.014 3,415.2 1.052 10,386.7
Sofia 4.878 0.367 0.453 2.708 0.021 4,407.6 1.202 15,144.8
Stockholm 4.628 0.408 0.422 4.492 0.012 4,812.9 1.430 17,317.9
Stuttgart 4.649 0.387 0.427 2.194 0.056 7,401.3 0.929 20,836.1
Thessaloniki 4.741 0.337 0.428 3.596 0.019 6,379.7 1.328 24,227.2
Toulouse 4.377 0.356 0.398 3.069 0.019 2,725.8 1.147 9,626.9
Turin 4.253 0.355 0.423 2.939 0.017 4,968.6 1.913 25,957.1
Valencia 3.766 0.312 0.477 2.858 0.021 8,090.4 1.391 32,293.5
Vienna 4.456 0.354 0.452 3.017 0.018 7,142.7 1.022 22,902.1
Vilnius 4.452 0.384 0.447 1.572 0.058 5,185.5 1.033 15,509.0
Warsaw 4.666 0.388 0.470 3.483 0.013 4,099.3 1.328 15,817.3

70



71

Table A.2: Economic activity, mobility and congestion indicators for 32 European cities.

City Sµ Scv Oµ Ocv MMV MPT MAM Ccar CL

Amsterdam 28.4 2.970 6.5 1.354 33 10 57 632 24
Barcelona 76.6 1.849 19.9 6.251 26 23 51 453 22
Berlin 53.3 1.772 15.6 1.386 44 19 37 431 29
Bilbao 32.6 3.323 6.7 1.747 12 22 66 440 13
Birmingham 17.5 2.978 5.9 2.200 58 7 35 391 33
Brussels 27.8 3.156 9.5 2.503 35 26 37 264 33
Bucharest 27.3 2.042 6.2 1.183 42 38 19 725 46
Budapest 21.0 2.730 6.2 1.557 35 47 18 410 32
Copenhagen 21.1 2.658 6.0 1.299 51 8 41 417 21
Frankfurt am Main 25.4 2.731 7.1 1.290 55 12 33 470 28
Helsinki 15.6 3.717 8.4 3.936 37 21 41 497 25
Krakow 26.6 2.604 6.4 1.228 41 44 14 714 36
Lisbon 24.1 2.688 6.8 1.706 60 16 24 544 23
London 28.1 2.402 7.6 1.724 35 37 28 544 33
Lyon 25.6 3.842 9.3 2.180 44 20 36 598 23
Madrid 48.9 2.313 9.1 1.382 40 24 35 817 18
Manchester 15.0 3.187 6.1 2.672 58 8 32 388 32
Oslo 14.5 2.712 5.4 1.174 44 26 29 476 21
Palma de Mallorca 26.6 2.146 5.9 0.976 55 10 35 628 19
Paris 36.9 3.031 9.9 1.880 35 22 43 368 29
Prague 29.6 2.473 6.0 1.293 23 46 31 655 31
Rotterdam 15.6 2.949 5.6 1.573 40 3 52 416 30
Sofia 50.5 2.960 9.7 2.017 36 41 23 663 35
Stockholm 22.2 2.765 5.9 1.254 39 47 13 267 20
Stuttgart 43.6 2.341 12.7 1.573 59 11 30 600 29
Thessaloniki 29.9 2.772 5.5 1.077 39 24 37 471 29
Toulouse 20.8 4.613 8.2 2.233 50 14 34 609 24
Turin 18.1 2.311 5.4 1.005 63 6 31 682 22
Valencia 20.9 2.631 5.9 1.450 41 14 43 690 19
Vienna 46.1 2.232 9.1 1.761 27 27 46 521 25
Vilnius 25.6 1.366 8.3 1.421 53 26 20 548 38
Warsaw 33.0 2.085 8.3 1.670 35 40 25 716 32



B
Correlation Matrix

Figure B.1: Pearson correlation matrix showing correlations between all 17 indicators.
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C
Road Length Analysis

For each city, the road network was retrieved using the defined boundary polygons and OpenStreetMap
data with the OSMnx package, focusing on all public roads. The objective was to analyze, for each
road type, the average length of road segments. This was computed by dividing the total length of
each road category by the number of individual links in the network. In cases where a road segment
carried multiple tags, it contributed to the statistics of each relevant road type. These values were first
calculated on the original, unconsolidated road network.
The same procedure was then applied to a version of the network in which nodes were consolidated
using a 25-meter tolerance. The comparison between unconsolidated and consolidated results is
shown in Table C.1.

Table C.1: Average segment length per road type before and after node consolidation.

Road Type Unconsolidated
Average Segmented Length (m)

Consolidated
Average Segmented Length (m)

motorway 947.5 976.5
trunk 446.8 538.0
primary 133.6 240.8
secondary 109.6 205.8
tertiary 104.0 185.2
residential 104.5 157.9
living street 88.2 157.7

To maintain clarity, very rare road types were excluded from this analysis. These include: link, busway,
unclassified, rest_area, escape, ladder, road, crossing, disused, emergency_bay, bus_bay, and
destroyed. These categories are either very small, only available for few cities or outside the main
road hierarchy considered in this analysis.
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Two & Five Cluster Characteristics

In support of the main findings in Chapter 5, this appendix provides the full indicator profiles for the two-
and five-cluster results.

D.1. Two-Cluster Characteristics
Table D.1: Mean values for all 17 indicators for the two-cluster result. Standard deviations are shown in parentheses. Bold

indicators show the included indicators for the Principal Component Analysis. Lisbon and Lyon were not assigned to a cluster.

Cluster Southern Cluster Northwestern/Eastern Cluster

Nr. Cities 6 24

kµ 3.949 (0.188) 4.585 (0.246)
kcv 0.331 (0.021) 0.377 (0.028)
R 0.445 (0.024) 0.423 (0.032)
Bcv 2.799 (0.235) 3.380 (0.928)
B95 0.021 (0.008) 0.020 (0.013)

Pµ 10,175 (6145.913) 4,827.7 (1563.296)
Pcv 1.353 (0.486) 1.213 (0.187)
P95 33,999.9 (9233.348) 16,302.1 (4999.219)
Sµ 37.3 (22.141) 28.1 (11.022)
Scv 2.429 (0.507) 2.719 (0.642)
Oµ 8.8 (5.566) 7.8 (2.474)
Ocv 2.135 (2.037) 1.719 (0.641)

MMV 39.5 (18.620) 41.8 (9.867)
MPT 16.5 (7.583) 25.2 (14.340)
MAM 43.5 (13.142) 32.3 (11.316)
Vown 618.3 (146.894) 508.0 (134.661)
CL 18.8 (3.312) 29.8 (5.942)

• Southern Cluster: Barcelona, Bilbao, Madrid, Palma de Mallorca, Turin, Valencia
• Northwestern/Eastern Cluster: Amsterdam, Berlin, Birmingham, Brussels, Bucharest,
Budapest, Copenhagen, Frankfurt am Main, Helsinki, Krakow, London, Manchester, Oslo, Paris,
Prague, Rotterdam, Sofia, Stockholm, Stuttgart, Thessaloniki, Toulouse, Vienna, Vilnius, Warsaw
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D.2. Five-Cluster Characteristics
Table D.2: Mean values for all 17 indicators for the five main clusters and the sixth intermediate group. Standard deviations are shown in parentheses. Bold indicators were included in the
principal component analysis. The final column shows the characteristics of the group of cities that were together, but could not be consistently assigned to a single cluster across methods.

Cluster Southern Cluster Dense Multimodal PT-Oriented Congested Balanced Mid-Density Northwestern Cluster Inc. Assig. Group

Nr. Cities 4 1 7 3 7 6

kµ 3.969 (0.206) 3.760 4.704 (0.289) 4.432 (0.141) 4.741 (0.344) 4.569 (0.188)
kcv 0.337 (0.020) 0.301 0.375 (0.024) 0.391 (0.035) 0.367 (0.032) 0.371 (0.024)
R 0.442 (0.026) 0.471 0.434 (0.036) 0.408 (0.027) 0.427 (0.020) 0.422 (0.037)
Bcv 2.906 (0.185) 2.723 3.384 (0.798) 4.082 (0.931) 2.104 (0.493) 3.253 (0.589)
B95 0.019 (0.006) 0.016 0.017 (0.008) 0.011 (0.006) 0.046 (0.019) 0.019 (0.006)

Pµ 8,235.6 (4,250.1) 20,744.7 4,732.4 (1,758.0) 4,179.3 (1,386.9) 6,546.5 (1,191.5) 4,450.1 (1,020.127)
Pcv 1.540 (0.480) 0.791 1.266 (0.148) 1.295 (0.172) 0.931 (0.101) 1.229 (0.165)
P95 32,154.2 (5,332.0) 49,940.9 16,459.5 (5,241.0) 14,770.2 (5,818.3) 18,405.7 (2,694.0) 15,753.8 (4,840.277)
Sµ 30.1 (13.978) 76.6 30.9 (9.377) 22.3 (7.828) 40.8 (14.054) 22.5 (6.497)
Scv 2.644 (0.477) 1.849 2.471 (0.332) 3.350 (0.629) 1.826 (0.490) 2.799 (0.130)
Oµ 6.8 (1.636) 19.9 7.2 (1.413) 7.7 (1.723) 12.2 (3.689) 6.0 (0.661)
Ocv 1.396 (0.305) 6.251 1.525 (0.306) 2.382 (0.826) 1.460 (0.099) 1.295 (0.169)

MMV 39.0 (20.897) 26.0 35.3 (6.184) 44.6 (10.502) 52.0 (7.550) 43.7 (14.140)
MPT 16.5 (8.226) 23.0 41.9 (3.891) 20.7 (13.635) 18.7 (7.506) 18.3 (9.174)
MAM 43.8 (15.650) 51.0 22.6 (5.968) 33.6 (9.863) 29.0 (8.544) 41.5 (10.950)
Vown 657.2 (157.483) 453.0 632.4 (116.151) 397.7 (122.806) 526.3 (86.558) 480.3 (79.203)
CL 18.0 (3.742) 22.0 35.0 (5.164) 28.0 (5.099) 32.0 (5.196) 25.5 (4.037)

• Southern Cluster: Bilbao, Madrid, Turin, Valencia
• Dense Multimodal: Barcelona
• PT-Oriented Congested: Bucharest, Budapest, Krakow, London, Prague, Sofia, Warsaw
• Balanced Mid-Density: Berlin, Stuttgart, Vilnius
• Northwestern Cluster: Birmingham, Brussels, Helsinki, Manchester, Paris, Stockholm, Toulouse
• Inconsistently Assigned Group: Amsterdam, Copenhagen, Frankfurt am Main, Oslo, Rotterdam, Thessaloniki



E
Python Code

This chapter includes the python code that is used for the computations necessary in this study.

E.1. Polygon creation
1 import os
2 import pandas as pd
3 import geopandas as gpd
4 import osmnx as ox
5 import matplotlib.pyplot as plt
6 import alphashape
7 from shapely.geometry import Point, MultiPolygon
8

9 # Set Fiona as the GeoPandas I/O engine
10 gpd.options.io_engine = "fiona"
11

12 # --- Configuration ---
13 threshold_distance = 200 # Expansion distance for node inclusion (meters)
14 alpha_value = 50.0 # Alpha parameter for shape generation
15 input_folder = "Initial Polygons"
16 epsg4326_output_folder = "EPSG4326 Polygons"
17 mollweide_output_folder = "Mollweide Polygons"
18 plot_folder = f"Polygon Plots ({threshold_distance}m)"
19 esri_54009_crs = "ESRI:54009"
20

21 # --- Create output folders ---
22 os.makedirs(epsg4326_output_folder , exist_ok=True)
23 os.makedirs(mollweide_output_folder , exist_ok=True)
24 os.makedirs(plot_folder, exist_ok=True)
25

26 # --- Process each city polygon ---
27 for filename in os.listdir(input_folder):
28 if filename.endswith(".geojson"):
29 city_name = filename.replace(".geojson", "")
30 print(f"Processing city: {city_name}")
31

32 # Load and reproject initial polygon
33 polygon_path = os.path.join(input_folder, filename)
34 initial_polygon = gpd.read_file(polygon_path).to_crs("EPSG:4326")
35

36 # Retrieve road network around polygon centroid
37 centroid = initial_polygon.geometry.centroid.iloc[0]
38 middle_point = (centroid.y, centroid.x)
39 road_network = ox.graph_from_point(
40 middle_point,
41 dist=40000,
42 dist_type="bbox",
43 network_type="drive",
44 simplify=True
45 )
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46

47 # Create GeoDataFrame of nodes
48 nodes_gdf = gpd.GeoDataFrame(
49 {
50 "node": list(road_network.nodes()),
51 "geometry": [Point(data["x"], data["y"])
52 for _, data in road_network.nodes(data=True)]
53 },
54 crs="EPSG:4326"
55 )
56

57 # Select nodes inside initial polygon
58 nodes_inside = nodes_gdf[
59 nodes_gdf.geometry.within(initial_polygon.geometry.union_all())
60 ]
61 included_nodes = set(nodes_inside["node"])
62

63 # Convert to UTM for distance-based expansion
64 utm_crs = nodes_gdf.estimate_utm_crs()
65 nodes_gdf = nodes_gdf.to_crs(utm_crs)
66 initial_polygon_utm = initial_polygon.to_crs(utm_crs)
67

68 # Expand node selection outward
69 nodes_to_check = nodes_gdf[nodes_gdf["node"].isin(included_nodes)].copy()
70 spatial_index = nodes_gdf.sindex
71

72 while not nodes_to_check.empty:
73 current_node = nodes_to_check.iloc[0]
74 nodes_to_check = nodes_to_check.iloc[1:]
75 current_geom = current_node.geometry
76

77 nearby_nodes = nodes_gdf.iloc[
78 list(spatial_index.intersection(current_geom.buffer(threshold_distance).

bounds))
79 ]
80 nearby_nodes = nearby_nodes[
81 nearby_nodes.geometry.distance(current_geom) <= threshold_distance
82 ]
83

84 new_nodes = nearby_nodes[
85 ~nearby_nodes["node"].isin(included_nodes)
86 ]
87 included_nodes.update(new_nodes["node"])
88 nodes_to_check = pd.concat([nodes_to_check, new_nodes])
89

90 # Convert selected nodes back to EPSG:4326
91 included_nodes_gdf = nodes_gdf[
92 nodes_gdf["node"].isin(included_nodes)
93 ].to_crs("EPSG:4326")
94 close_node_coords = list(zip(
95 included_nodes_gdf.geometry.x,
96 included_nodes_gdf.geometry.y
97 ))
98

99 # Generate alpha shape around included nodes
100 alpha_shape = alphashape.alphashape(close_node_coords, alpha_value)
101

102 if isinstance(alpha_shape, Point):
103 print(f"Skipping {city_name}: Alpha shape resulted in a single point.")
104 continue
105

106 if alpha_shape:
107 # Save EPSG:4326 boundary
108 epsg4326_filename = os.path.join(
109 epsg4326_output_folder , f"{city_name}_EPSG4326_boundary.geojson"
110 )
111 epsg4326_gdf = gpd.GeoDataFrame(geometry=[alpha_shape], crs="EPSG:4326")
112 epsg4326_gdf.to_file(epsg4326_filename, driver="GeoJSON")
113

114 # Save Mollweide-projected boundary
115 mollweide_gdf = epsg4326_gdf.to_crs(esri_54009_crs)



E.2. Indicator calculations 78

116 mollweide_filename = os.path.join(
117 mollweide_output_folder , f"{city_name}_Mollweide_boundary.geojson"
118 )
119 mollweide_gdf.to_file(mollweide_filename, driver="GeoJSON")
120

121 # Plot nodes and alpha shape
122 plot_filename = os.path.join(
123 plot_folder, f"{city_name}_polygon.png"
124 )
125 fig, ax = plt.subplots(figsize=(10, 10))
126 ax.scatter(*zip(*close_node_coords), s=10, label="Nodes")
127

128 if isinstance(alpha_shape, MultiPolygon):
129 for poly in alpha_shape.geoms:
130 x, y = poly.exterior.xy
131 ax.plot(x, y, linewidth=2)
132 else:
133 x, y = alpha_shape.exterior.xy
134 ax.plot(x, y, linewidth=2)
135

136 ax.set_xlabel("Longitude")
137 ax.set_ylabel("Latitude")
138 ax.set_title(f"Polygon for {city_name}")
139 ax.legend()
140 ax.grid()
141 plt.savefig(plot_filename, dpi=300)
142 plt.close()
143

144 print(f"Finished processing city: {city_name}")
145

146 print("All cities processed successfully!")

E.2. Indicator calculations
Node Degree Indicators

1 import os
2 import numpy as np
3 import pandas as pd
4 import geopandas as gpd
5 import osmnx as ox
6 import matplotlib.pyplot as plt
7 from matplotlib.ticker import FuncFormatter
8

9 # --- Configuration ---
10 input_dir = "EPSG4326 Polygons"
11 output_dir = "Node Degree Results"
12 plot_dir = os.path.join(output_dir, "Node Degree Histograms")
13 stats_csv = os.path.join(output_dir, "node_degree_stats.csv")
14

15 # Create output directories
16 os.makedirs(output_dir, exist_ok=True)
17 os.makedirs(plot_dir, exist_ok=True)
18

19 # Initialize statistics CSV if needed
20 columns = [
21 "City",
22 "Average Node Degree",
23 "Standard Deviation",
24 "Coefficient of Variation"
25 ]
26 if not os.path.exists(stats_csv):
27 pd.DataFrame(columns=columns).to_csv(stats_csv, index=False)
28

29 # --- Process each city polygon ---
30 results = []
31

32 for filename in os.listdir(input_dir):
33 if filename.endswith(".geojson"):
34 city = filename.replace("_EPSG4326_boundary.geojson", "")
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35 print(f"Processing {city}...")
36

37 # Load polygon
38 polygon_path = os.path.join(input_dir, filename)
39 polygon = gpd.read_file(polygon_path, engine="fiona").geometry.iloc[0]
40

41 # Retrieve road networks
42 G_truncated = ox.graph_from_polygon(
43 polygon,
44 network_type="drive",
45 simplify=True,
46 retain_all=False,
47 truncate_by_edge=True
48 )
49 G_untruncated = ox.graph_from_polygon(
50 polygon,
51 network_type="drive",
52 simplify=True,
53 retain_all=False,
54 truncate_by_edge=False
55 )
56

57 # Identify truncated nodes
58 truncated_nodes = set(G_truncated.nodes) - set(G_untruncated.nodes)
59

60 # Compute node degrees
61 degree_dict = dict(G_truncated.degree())
62 internal_degrees = np.array([
63 deg for node, deg in degree_dict.items()
64 if node not in truncated_nodes
65 ])
66

67 # Compute statistics
68 avg_degree = np.mean(internal_degrees) if internal_degrees.size > 0 else 0
69 std_degree = np.std(internal_degrees) if internal_degrees.size > 0 else 0
70 cv_degree = (std_degree / avg_degree) if avg_degree > 0 else 0
71

72 # Plot histogram
73 fig, ax = plt.subplots()
74 bins = np.arange(internal_degrees.min(), internal_degrees.max() + 2) - 0.5
75 ax.hist(
76 internal_degrees,
77 bins=bins,
78 color="greenyellow",
79 edgecolor="black",
80 align="mid"
81 )
82 ax.axvline(
83 avg_degree,
84 color="red",
85 linestyle="--",
86 linewidth=3,
87 label="Average Degree"
88 )
89

90 # Format tick labels
91 formatter = FuncFormatter(lambda x, _: f"{int(x):,}")
92 ax.yaxis.set_major_formatter(formatter)
93 ax.xaxis.set_major_formatter(formatter)
94

95 # Set labels and styling
96 ax.set_title(f"Node Degree Distribution - {city}", fontsize=18)
97 ax.set_xlabel("Node Degree", fontsize=16)
98 ax.set_ylabel("Frequency", fontsize=16, labelpad=10)
99 ax.tick_params(axis='both', labelsize=14)
100 ax.set_xticks(np.arange(1, 11))
101 ax.legend(fontsize=14)
102

103 # Save plot
104 plot_path = os.path.join(plot_dir, f"{city}_node_degree.png")
105 plt.savefig(plot_path, dpi=300, bbox_inches="tight")
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106 plt.close()
107

108 # Store results
109 results.append([
110 city,
111 avg_degree,
112 std_degree,
113 cv_degree
114 ])
115

116 print(f"{city} processed successfully!")
117

118 # Append results to CSV
119 pd.DataFrame(results, columns=columns).to_csv(stats_csv, mode="a", header=False, index=False)
120

121 print("Processing complete! Results saved in", stats_csv)

Efficiency & Betweenness Indicators
1 import os
2 import numpy as np
3 import pandas as pd
4 import geopandas as gpd
5 import osmnx as ox
6 import networkx as nx
7 import networkit as nk
8 import matplotlib.pyplot as plt
9 from matplotlib.ticker import FixedLocator, FixedFormatter
10

11 # --- Configuration ---
12 polygon_dir = "EPSG4326 Polygons"
13 efficiency_output_dir = "Efficiency Ratio Results"
14 betweenness_output_dir = "Betweenness Results"
15 betweenness_plot_dir = os.path.join(betweenness_output_dir , "Betweenness Plots")
16

17 # Create output directories
18 os.makedirs(efficiency_output_dir , exist_ok=True)
19 os.makedirs(betweenness_output_dir , exist_ok=True)
20 os.makedirs(betweenness_plot_dir , exist_ok=True)
21

22 # Output file paths
23 efficiency_stats_csv = os.path.join(efficiency_output_dir , "efficiency_stats.csv")
24 betweenness_stats_csv = os.path.join(betweenness_output_dir , "betweenness_stats.csv")
25

26 # Initialize CSV files if needed
27 efficiency_columns = ["City", "Average Shortest Path", "Network Diameter", "Efficiency Ratio

"]
28 betweenness_columns = ["City", "Mean Betweenness", "Standard Deviation", "Coefficient of

Variation", "95th Percentile"]
29

30 if not os.path.exists(efficiency_stats_csv):
31 pd.DataFrame(columns=efficiency_columns).to_csv(efficiency_stats_csv , index=False)
32

33 if not os.path.exists(betweenness_stats_csv):
34 pd.DataFrame(columns=betweenness_columns).to_csv(betweenness_stats_csv , index=False)
35

36 # Set NetworKit to use 10 threads
37 nk.setNumberOfThreads(10)
38

39 # --- Process each city ---
40 for filename in os.listdir(polygon_dir):
41 if filename.endswith(".geojson"):
42 city = filename.replace("_EPSG4326_boundary.geojson", "")
43 print(f"Processing {city}...")
44

45 # Load polygon and retrieve road network
46 polygon_path = os.path.join(polygon_dir, filename)
47 polygon = gpd.read_file(polygon_path, engine="fiona").geometry.iloc[0]
48

49 G_nx = ox.graph_from_polygon(
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50 polygon,
51 network_type="drive",
52 simplify=True,
53 retain_all=False,
54 truncate_by_edge=True
55 )
56 G_nx = ox.project_graph(G_nx)
57 G_nx = ox.simplification.consolidate_intersections(
58 G_nx, tolerance=25, rebuild_graph=True, dead_ends=True, reconnect_edges=True
59 )
60 G_nx = ox.project_graph(G_nx, to_crs="EPSG:4326")
61

62 # --- Efficiency Analysis ---
63

64 # Keep only the largest strongly connected component
65 largest_scc = max(nx.strongly_connected_components(G_nx), key=len)
66 G_nx_sub = G_nx.subgraph(largest_scc).copy()
67

68 # Convert to NetworKit directed graph
69 nkG = nk.nxadapter.nx2nk(G_nx_sub, weightAttr=None)
70

71 # Compute diameter (undirected)
72 nkG_undirected = nk.graph.Graph(nkG, weighted=False, directed=False)
73 diameter_algo = nk.distance.Diameter(nkG_undirected, algo=nk.distance.DiameterAlgo.

Exact)
74 diameter_algo.run()
75 network_diameter = diameter_algo.getDiameter()[0]
76

77 # Compute average shortest path length
78 total_distance, count = 0, 0
79

80 for node in nkG.iterNodes():
81 bfs = nk.distance.BFS(nkG, node, storePaths=False)
82 bfs.run()
83 distances = np.array(bfs.getDistances())
84 valid_distances = distances[(distances > 0) & (distances != float("inf"))]
85 total_distance += valid_distances.sum()
86 count += valid_distances.size
87

88 avg_shortest_path = total_distance / count if count > 0 else None
89 efficiency_ratio = avg_shortest_path / network_diameter if network_diameter > 0 else

None
90

91 # Save efficiency statistics
92 efficiency_row = pd.DataFrame([
93 [city, avg_shortest_path, network_diameter, efficiency_ratio]
94 ], columns=efficiency_columns)
95 efficiency_row.to_csv(efficiency_stats_csv , mode="a", header=False, index=False)
96

97 # --- Betweenness Analysis ---
98

99 # Compute node betweenness centrality
100 nkG_betw = nk.nxadapter.nx2nk(G_nx)
101 betweenness = nk.centrality.Betweenness(nkG_betw, normalized=True,

computeEdgeCentrality=False)
102 betweenness.run()
103 betweenness_scores = np.array(betweenness.scores())
104

105 mean_bc = betweenness_scores.mean()
106 std_bc = betweenness_scores.std()
107 cv_bc = (std_bc / mean_bc) if mean_bc > 0 else 0
108 perc_95_bc = np.percentile(betweenness_scores, 95)
109

110 # Save betweenness statistics
111 betweenness_row = pd.DataFrame([
112 [city, mean_bc, std_bc, cv_bc, perc_95_bc]
113 ], columns=betweenness_columns)
114 betweenness_row.to_csv(betweenness_stats_csv , mode="a", header=False, index=False)
115

116 # --- Betweenness Plot ---
117
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118 fig, ax = plt.subplots()
119 nodes_sorted = sorted(G_nx.nodes, key=lambda x: betweenness_scores[list(G_nx.nodes).

index(x)])
120 node_sizes = [betweenness_scores[list(G_nx.nodes).index(node)] * 500 for node in

nodes_sorted]
121 node_colors = [betweenness_scores[list(G_nx.nodes).index(node)] for node in

nodes_sorted]
122

123 edges_gdf = ox.graph_to_gdfs(G_nx, nodes=False)
124 edges_gdf.plot(ax=ax, linewidth=0.5, edgecolor="gray", zorder=1)
125

126 sc = ax.scatter(
127 [G_nx.nodes[node]['x'] for node in nodes_sorted],
128 [G_nx.nodes[node]['y'] for node in nodes_sorted],
129 s=node_sizes,
130 c=node_colors,
131 cmap='viridis',
132 alpha=0.95,
133 edgecolor='black',
134 zorder=2,
135 vmax=perc_95_bc
136 )
137

138 cbar = plt.colorbar(sc, ax=ax)
139 cbar.set_label("Node Centrality", fontsize=16, labelpad=10)
140 cbar.ax.tick_params(labelsize=14)
141

142 ax.set_title(f"Betweenness Centrality - {city}", fontsize=18)
143 ax.set_xlabel("Longitude", fontsize=14, labelpad=5)
144 ax.set_ylabel("Latitude", fontsize=14, labelpad=10)
145

146 xticks = ax.get_xticks()
147 yticks = ax.get_yticks()
148 ax.xaxis.set_major_locator(FixedLocator(xticks))
149 ax.xaxis.set_major_formatter(FixedFormatter([f"{x:.2f}" for x in xticks]))
150 ax.yaxis.set_major_locator(FixedLocator(yticks))
151 ax.yaxis.set_major_formatter(FixedFormatter([f"{y:.2f}" for y in yticks]))
152 ax.tick_params(axis='both', labelsize=12)
153

154 plot_path = os.path.join(betweenness_plot_dir , f"{city}_betweenness.png")
155 plt.savefig(plot_path, dpi=300, bbox_inches="tight")
156 plt.close()
157

158 print(f"{city} processed successfully!")
159

160 print("All cities processed successfully!")

Population Indicators
1 import os
2 import numpy as np
3 import pandas as pd
4 import geopandas as gpd
5 import rasterio
6 from rasterio.mask import mask
7 from rasterio.warp import calculate_default_transform , reproject, Resampling
8 from rasterio.features import geometry_mask
9 import matplotlib.pyplot as plt
10 from matplotlib.ticker import FixedLocator, FixedFormatter, FuncFormatter
11 from matplotlib import colormaps
12

13 # --- Configuration ---
14 raster_folder = "GHS_POP_Raster_Files"
15 geojson_folder = "Mollweide Polygons"
16 output_folder = "Population Results"
17 population_stats_csv = os.path.join(output_folder, "population_stats.csv")
18

19 # Create output directory
20 os.makedirs(output_folder, exist_ok=True)
21
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22 # --- Functions ---
23

24 def match_tiff_files(city_boundary, raster_folder):
25 """Find TIFF files that overlap the city boundary."""
26 matching_files = []
27 for root, _, files in os.walk(raster_folder):
28 for file in files:
29 if file.endswith(".tif"):
30 tiff_path = os.path.join(root, file)
31 with rasterio.open(tiff_path) as src:
32 bounds = src.bounds
33 cb = city_boundary.total_bounds
34 if cb[0] <= bounds[2] and cb[2] >= bounds[0] and cb[1] <= bounds[3] and

cb[3] >= bounds[1]:
35 matching_files.append(tiff_path)
36 return matching_files
37

38 def process_city(city_name, geojson_folder, raster_folder, output_folder):
39 """Process a city polygon: extract population statistics and plot."""
40 try:
41 print(f"Processing {city_name}...")
42

43 boundary_path = os.path.join(geojson_folder, f"{city_name}_Mollweide_boundary.geojson
")

44 if not os.path.exists(boundary_path):
45 raise FileNotFoundError(f"GeoJSON file not found: {boundary_path}")
46

47 city_boundary = gpd.read_file(boundary_path, engine="fiona")
48

49 tiff_files = match_tiff_files(city_boundary, raster_folder)
50 if not tiff_files:
51 raise FileNotFoundError(f"No matching TIFF file found for {city_name}.")
52

53 all_density_data = []
54 for tiff_file in tiff_files:
55 with rasterio.open(tiff_file) as src:
56 masked_data, masked_transform = mask(src, city_boundary.geometry, crop=True)
57 masked_data = masked_data[0]
58 masked_data[masked_data == src.nodata] = np.nan
59 all_density_data.append(masked_data.flatten())
60

61 combined_dataset = np.concatenate(all_density_data)
62 converted_dataset = combined_dataset * 100 # Convert to inhabitants/km²
63

64 total_population = np.nansum(combined_dataset)
65 mean_value = np.nanmean(converted_dataset)
66 std_dev = np.nanstd(converted_dataset)
67 cv = std_dev / mean_value if mean_value != 0 else np.nan
68 percentile_95 = np.nanpercentile(converted_dataset, 95)
69

70 # Save statistics
71 stats = {
72 "City": city_name,
73 "Mean Population Density": mean_value,
74 "Standard Deviation": std_dev,
75 "Coefficient of Variation": cv,
76 "Total Population": total_population,
77 "95th Percentile Density": percentile_95
78 }
79

80 df = pd.DataFrame([stats])
81 df.to_csv(population_stats_csv , mode="a", header=not os.path.exists(

population_stats_csv), index=False)
82

83 # --- Plot if only one TIFF matched ---
84 if len(tiff_files) == 1:
85 with rasterio.open(tiff_files[0]) as src:
86 masked_data, masked_transform = mask(src, city_boundary.geometry, crop=True)
87 masked_data = masked_data[0]
88 masked_data[masked_data == src.nodata] = np.nan
89 converted = masked_data * 100
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90

91 dst_crs = "EPSG:4326"
92 dst_transform, width, height = calculate_default_transform(
93 src.crs, dst_crs, converted.shape[1], converted.shape[0],
94 *rasterio.transform.array_bounds(converted.shape[0], converted.shape[1],

masked_transform)
95 )
96

97 reprojected = np.empty((height, width), dtype=np.float32)
98 reproject(
99 source=converted,
100 destination=reprojected,
101 src_transform=masked_transform,
102 src_crs=src.crs,
103 dst_transform=dst_transform,
104 dst_crs=dst_crs,
105 resampling=Resampling.nearest
106 )
107

108 reprojected = np.ma.masked_invalid(reprojected)
109 boundary_latlon = city_boundary.to_crs(dst_crs)
110

111 mask_shape = (reprojected.shape[0], reprojected.shape[1])
112 mask_geom = geometry_mask(
113 geometries=boundary_latlon.geometry,
114 transform=dst_transform,
115 invert=True,
116 out_shape=mask_shape
117 )
118 reprojected.mask |= ~mask_geom
119

120 cmap = colormaps["magma"].copy()
121 cmap.set_bad(color="white")
122

123 extent = (
124 dst_transform[2],
125 dst_transform[2] + dst_transform[0] * width,
126 dst_transform[5] + dst_transform[4] * height,
127 dst_transform[5]
128 )
129

130 fig, ax = plt.subplots(figsize=(10, 8))
131 cax = ax.imshow(
132 reprojected,
133 cmap=cmap,
134 extent=extent,
135 origin="upper",
136 aspect="auto",
137 vmax=percentile_95
138 )
139

140 boundary_latlon.boundary.plot(ax=ax, edgecolor="black", linewidth=2, zorder
=2)

141

142 cbar = fig.colorbar(cax, ax=ax)
143 cbar.set_label("Inhabitants per km²", fontsize=18, labelpad=10)
144 cbar.ax.tick_params(labelsize=14)
145 cbar.ax.yaxis.set_major_formatter(FuncFormatter(lambda x, _: f"{int(x):,}"))
146

147 ax.set_title(f"Population Density - {city_name}", fontsize=24)
148 ax.set_xlabel("Longitude", fontsize=16, labelpad=5)
149 ax.set_ylabel("Latitude", fontsize=16, labelpad=10)
150 ax.tick_params(axis="both", labelsize=14)
151

152 xticks = ax.get_xticks()
153 yticks = ax.get_yticks()
154 ax.xaxis.set_major_locator(FixedLocator(xticks))
155 ax.xaxis.set_major_formatter(FixedFormatter([f"{x:.2f}" for x in xticks]))
156 ax.yaxis.set_major_locator(FixedLocator(yticks))
157 ax.yaxis.set_major_formatter(FixedFormatter([f"{y:.2f}" for y in yticks]))
158



E.2. Indicator calculations 85

159 plot_path = os.path.join(output_folder, f"{city_name}_population_density.png
")

160 plt.savefig(plot_path, dpi=300, bbox_inches="tight")
161 plt.close()
162

163 except Exception as e:
164 print(f"Error processing {city_name}: {e}")
165

166 # --- Process all cities ---
167

168 for filename in os.listdir(geojson_folder):
169 if filename.endswith(".geojson"):
170 city_name = filename.replace("_Mollweide_boundary.geojson", "")
171 process_city(city_name, geojson_folder, raster_folder, output_folder)
172

173 print("All cities processed successfully!")

Economic Activity Indicators
1 import os
2 import numpy as np
3 import pandas as pd
4 import geopandas as gpd
5 import osmnx as ox
6 import matplotlib.pyplot as plt
7 from shapely.geometry import box
8 from matplotlib.ticker import FixedLocator, FixedFormatter
9

10 gpd.options.io_engine = "fiona"
11

12 # --- Configuration ---
13 grid_size = 500 # Grid size in meters
14 boundary_folder = "EPSG4326 Polygons"
15 results_folder = "Results Economic Activity"
16 output_csv = os.path.join(results_folder, "economic_activity_stats.csv")
17 shops_folder = os.path.join(results_folder, "Shops Plots")
18 offices_folder = os.path.join(results_folder, "Offices Plots")
19

20 # Create output folders
21 os.makedirs(results_folder, exist_ok=True)
22 os.makedirs(shops_folder, exist_ok=True)
23 os.makedirs(offices_folder, exist_ok=True)
24

25 # Initialize statistics CSV
26 if not os.path.exists(output_csv):
27 columns = [
28 "City",
29 "Grid Cells",
30 "Mean Shops per km²", "Std Shops", "CV Shops",
31 "Mean Offices per km²", "Std Offices", "CV Offices"
32 ]
33 pd.DataFrame(columns=columns).to_csv(output_csv, index=False)
34

35 # --- Functions ---
36

37 def get_projected_crs(boundary):
38 """Estimate appropriate UTM CRS based on boundary centroid."""
39 boundary = boundary.to_crs("EPSG:4326")
40 centroid = boundary.geometry.centroid.iloc[0]
41 utm_zone = int((centroid.x + 180) / 6) + 1
42 crs_code = f"EPSG:{32600 + utm_zone if centroid.y >= 0 else 32700 + utm_zone}"
43 return crs_code
44

45 def make_grid(boundary, grid_size):
46 """Create a regular grid covering the boundary."""
47 minx, miny, maxx, maxy = boundary.bounds
48 cols = np.arange(minx, maxx, grid_size)
49 rows = np.arange(miny, maxy, grid_size)
50 grid_cells = [box(x, y, x + grid_size, y + grid_size) for x in cols for y in rows]
51 return gpd.GeoDataFrame(geometry=grid_cells, crs=boundary_gdf.crs)
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52

53 def compute_stats(grid, column):
54 """Compute mean, std deviation, and CV for a given grid column."""
55 mean = grid[column].mean()
56 std_dev = grid[column].std()
57 cv = std_dev / mean if mean != 0 else 0
58 return mean, std_dev, cv
59

60 def format_plot(ax, title):
61 """Format the plot appearance."""
62 ax.set_title(title, fontsize=18)
63 ax.set_xlabel("Longitude", fontsize=16, labelpad=5)
64 ax.set_ylabel("Latitude", fontsize=16, labelpad=10)
65 ax.tick_params(axis="both", labelsize=14)
66 xticks = ax.get_xticks()
67 yticks = ax.get_yticks()
68 ax.xaxis.set_major_locator(FixedLocator(xticks))
69 ax.xaxis.set_major_formatter(FixedFormatter([f"{x:.2f}" for x in xticks]))
70 ax.yaxis.set_major_locator(FixedLocator(yticks))
71 ax.yaxis.set_major_formatter(FixedFormatter([f"{y:.2f}" for y in yticks]))
72

73 # --- Process each city ---
74

75 city_files = [f for f in os.listdir(boundary_folder) if f.endswith(".geojson")]
76

77 for city_file in city_files:
78 city_name = city_file.replace("_EPSG4326_boundary.geojson", "")
79 print(f"Processing {city_name}...")
80

81 boundary_gdf = gpd.read_file(os.path.join(boundary_folder, city_file))
82 boundary_polygon = boundary_gdf.union_all()
83

84 # Query shops and offices
85 shops_gdf = ox.features_from_polygon(boundary_polygon, tags={"shop": True})
86 offices_gdf = ox.features_from_polygon(boundary_polygon, tags={"office": True})
87

88 # Project to appropriate CRS
89 projected_crs = get_projected_crs(boundary_gdf)
90 boundary_gdf = boundary_gdf.to_crs(projected_crs)
91 boundary_polygon = boundary_gdf.union_all()
92 shops_gdf = shops_gdf.to_crs(projected_crs)
93 offices_gdf = offices_gdf.to_crs(projected_crs)
94

95 # Create and clip grid
96 grid_gdf = make_grid(boundary_polygon, grid_size)
97 grid_gdf = gpd.overlay(grid_gdf, boundary_gdf, how="intersection")
98

99 # Count shops and offices per grid cell
100 for gdf, count_col in [(shops_gdf, "shop_count"), (offices_gdf, "office_count")]:
101 counts = gpd.sjoin(grid_gdf, gdf, how="left", predicate="contains")
102 counts = counts.groupby(counts.index).size().reset_index(name=count_col)
103 grid_gdf[count_col] = 0
104 grid_gdf.loc[counts["index"], count_col] = counts[count_col]
105

106 # Convert counts to per km²
107 conv_factor = 1 / ((grid_size / 1000) ** 2)
108 grid_gdf["shop_km2"] = grid_gdf["shop_count"] * conv_factor
109 grid_gdf["office_km2"] = grid_gdf["office_count"] * conv_factor
110

111 # Compute statistics
112 mean_shops, std_shops, cv_shops = compute_stats(grid_gdf, "shop_km2")
113 mean_offices, std_offices, cv_offices = compute_stats(grid_gdf, "office_km2")
114

115 stats = {
116 "City": city_name,
117 "Grid Cells": len(grid_gdf),
118 "Mean Shops per km²": mean_shops, "Std Shops": std_shops, "CV Shops": cv_shops,
119 "Mean Offices per km²": mean_offices, "Std Offices": std_offices, "CV Offices":

cv_offices
120 }
121 pd.DataFrame([stats]).to_csv(output_csv, mode="a", header=False, index=False)
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122

123 # Reproject to EPSG:4326 for plotting
124 grid_gdf_4326 = grid_gdf.to_crs(epsg=4326)
125 boundary_gdf_4326 = boundary_gdf.to_crs(epsg=4326)
126

127 for count_type, cmap, folder, label, cbar_label in [
128 ("shop_km2", "Reds", shops_folder, "Shop Density", "Shops per km²"),
129 ("office_km2", "Blues", offices_folder, "Office Density", "Offices per km²")
130 ]:
131 fig, ax = plt.subplots(figsize=(10, 8))
132 boundary_gdf_4326.plot(ax=ax, facecolor="none", edgecolor="black", linewidth=1)
133 grid = grid_gdf_4326.plot(
134 ax=ax,
135 column=count_type,
136 cmap=cmap,
137 edgecolor="grey",
138 linewidth=0.2,
139 legend=True
140 )
141 cbar = ax.get_figure().get_axes()[-1]
142 cbar.set_ylabel(cbar_label, fontsize=16, labelpad=10)
143 cbar.tick_params(labelsize=14)
144

145 format_plot(ax, f"{label} - {city_name} ({grid_size}x{grid_size}m grid)")
146 fig.savefig(os.path.join(folder, f"{city_name}_{count_type}.png"), dpi=600,

bbox_inches="tight")
147 plt.close(fig)
148

149 print(f"Finished: {city_name}")
150

151 print(f"All cities processed successfully! Results saved in '{results_folder}'")

E.3. Correlation and Clustering
Correlation Matrices

1 import os
2 import numpy as np
3 import pandas as pd
4 import matplotlib.pyplot as plt
5 import seaborn as sns
6 from scipy.stats import pearsonr, t
7 from sklearn.preprocessing import StandardScaler
8 import matplotlib.patches as patches
9

10 # --- Configuration ---
11 data_file = "FullDataset.xlsx"
12 output_folder = "Correlation Plots"
13 os.makedirs(output_folder, exist_ok=True)
14

15 # --- Define indicators ---
16 included_columns = [
17 "Average ND", "ND CV", "Efficiency Ratio",
18 "BC CV", "BC 95th Percentile",
19 "Mean PD", "PD CV", "PD 95th Percentile",
20 "Mean Shops", "CV Shops", "Mean Offices", "CV Offices",
21 "MV (%)", "PT (%)", "AM (%)", "Car Ownership", "CL"
22 ]
23

24 excluded_ind = [
25 "ND CV", "BC CV", "Mean PD",
26 "Mean Shops", "Mean Offices", "MV (%)", "AM (%)"
27 ]
28

29 column_renaming = {
30 "Average ND": r"$k_\mu$",
31 "ND CV": r"$k_{cv}$",
32 "Efficiency Ratio": r"$R$",
33 "BC CV": r"$C_{B,cv}$",
34 "BC 95th Percentile": r"$C_{B,95}$",
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35 "Mean PD": r"$P_\mu$",
36 "PD CV": r"$P_{cv}$",
37 "PD 95th Percentile": r"$P_{95}$",
38 "Mean Shops": r"$S_\mu$",
39 "CV Shops": r"$S_{cv}$",
40 "Mean Offices": r"$O_\mu$",
41 "CV Offices": r"$O_{cv}$",
42 "MV (%)": r"$M_{MV}$",
43 "PT (%)": r"$M_{PT}$",
44 "AM (%)": r"$M_{AM}$",
45 "Car Ownership": r"$C_{car}$",
46 "CL": r"$CL$"
47 }
48

49 # --- Load and preprocess data ---
50 df = pd.read_excel(data_file).set_index("City")
51 df_all = df[included_columns].copy().astype(float)
52 df_selected = df[[col for col in included_columns if col not in excluded_ind]].astype(float)
53

54 scaler = StandardScaler()
55 df_scaled_all = pd.DataFrame(scaler.fit_transform(df_all), columns=df_all.columns, index=

df_all.index)
56 df_scaled_selected = pd.DataFrame(scaler.fit_transform(df_selected), columns=df_selected.

columns, index=df_selected.index)
57

58 # --- Correlation computation ---
59 def compute_pearson(df):
60 corr = df.corr(method="pearson")
61 pvals = pd.DataFrame(np.ones_like(corr), index=corr.index, columns=corr.columns)
62 for i in range(len(df.columns)):
63 for j in range(i + 1, len(df.columns)):
64 _, p = pearsonr(df.iloc[:, i], df.iloc[:, j])
65 pvals.iat[i, j] = pvals.iat[j, i] = p
66 return corr, pvals
67

68 # --- Heatmap plotting function ---
69 def plot_correlation_heatmap(matrix, title, filename, included_subset, mask_non_significant=

False, pvals=None, alpha=0.05, annot_size=10, label_fontsize=16):
70 if mask_non_significant and pvals is not None:
71 matrix = matrix.where(pvals < alpha)
72

73 renamed_matrix = matrix.rename(index=column_renaming, columns=column_renaming)
74

75 group_bounds = [
76 included_columns[0:5],
77 included_columns[5:8],
78 included_columns[8:12],
79 included_columns[12:16],
80 included_columns[16:17]
81 ]
82

83 grouped_cols = []
84 for group in group_bounds:
85 group_kept = [column_renaming[col] for col in group if col in included_subset]
86 if group_kept:
87 grouped_cols.append(group_kept)
88

89 reordered_labels = [col for group in grouped_cols for col in group]
90 reordered = renamed_matrix.loc[reordered_labels, reordered_labels]
91 split_indices = np.cumsum([len(group) for group in grouped_cols[:-1]])
92

93 plt.figure(figsize=(12, 10))
94 ax = sns.heatmap(
95 reordered,
96 vmin=-1, vmax=1, annot=True, fmt=".2f",
97 annot_kws={"color": "black", "size": annot_size},
98 cmap="coolwarm", linewidths=0.5, linecolor='gray',
99 cbar=True, square=True
100 )
101 ax.collections[0].colorbar.ax.tick_params(labelsize=16)
102 ax.set_xticklabels(ax.get_xticklabels(), rotation=0, fontsize=label_fontsize)
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103 ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=label_fontsize)
104

105 for idx in split_indices:
106 ax.axhline(idx, color='black', linewidth=2)
107 ax.axvline(idx, color='black', linewidth=2)
108

109 border = patches.Rectangle(
110 (0, 0), len(reordered.columns), len(reordered.columns),
111 fill=False, edgecolor='black', linewidth=2,
112 transform=ax.transData, clip_on=False
113 )
114 ax.add_patch(border)
115

116 plt.title(title, fontsize=20)
117 plt.savefig(os.path.join(output_folder, filename), bbox_inches="tight", dpi=300)
118 plt.show()
119

120 # --- Run correlations ---
121 all_corr, all_pvals = compute_pearson(df_scaled_all)
122 selected_corr, _ = compute_pearson(df_scaled_selected)
123

124 n = df_scaled_all.shape[0]
125 df_degrees = n - 2
126 alpha = 0.05
127 r_threshold = np.sqrt((t.ppf(1 - alpha / 2, df_degrees) ** 2) / (df_degrees + t.ppf(1 - alpha

/ 2, df_degrees) ** 2))
128 print(f"For n={n}, minimum correlation for significance (p < {alpha}) is: {r_threshold:.3f}")
129

130 # --- Plot heatmaps ---
131 plot_correlation_heatmap(
132 matrix=all_corr,
133 pvals=all_pvals,
134 mask_non_significant=True,
135 title="Significant Pearson Correlations - 17 indicators (p < 0.05)",
136 filename="pearson_significant_17ind.png",
137 included_subset=included_columns,
138 annot_size=12,
139 label_fontsize=12
140 )
141

142 plot_correlation_heatmap(
143 matrix=selected_corr,
144 title="Pearson Correlation Matrix - 10 indicators",
145 filename="pearson_full_10ind.png",
146 included_subset=[col for col in included_columns if col not in excluded_ind],
147 annot_size=16,
148 label_fontsize=20
149 )
150

151 print("Correlation plots saved to:", output_folder)

Principal Component Analysis
1 # === IMPORTS ===
2 import os
3 import numpy as np
4 import pandas as pd
5 import matplotlib.pyplot as plt
6 import seaborn as sns
7 from sklearn.preprocessing import StandardScaler
8 from sklearn.decomposition import PCA
9

10 # === SETTINGS ===
11 file_path = "FullDataset.xlsx"
12 output_dir = "PCA Plots"
13 os.makedirs(output_dir, exist_ok=True)
14

15 # --- Define indicators ---
16 included_columns = [
17 "Average ND", "ND CV", "Efficiency Ratio",
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18 "BC CV", "BC 95th Percentile",
19 "Mean PD", "PD CV", "PD 95th Percentile",
20 "Mean Shops", "CV Shops", "Mean Offices", "CV Offices",
21 "MV (%)", "PT (%)", "AM (%)", "Car Ownership", "CL"
22 ]
23

24 excluded_ind = [
25 "ND CV", "BC CV", "Mean PD",
26 "Mean Shops", "Mean Offices", "MV (%)", "AM (%)"
27 ]
28

29 column_renaming = {
30 "Average ND": r"$k_\mu$",
31 "ND CV": r"$k_{cv}$",
32 "Efficiency Ratio": r"$R$",
33 "BC CV": r"$C_{B,cv}$",
34 "BC 95th Percentile": r"$C_{B,95}$",
35 "Mean PD": r"$P_\mu$",
36 "PD CV": r"$P_{cv}$",
37 "PD 95th Percentile": r"$P_{95}$",
38 "Mean Shops": r"$S_\mu$",
39 "CV Shops": r"$S_{cv}$",
40 "Mean Offices": r"$O_\mu$",
41 "CV Offices": r"$O_{cv}$",
42 "MV (%)": r"$M_{MV}$",
43 "PT (%)": r"$M_{PT}$",
44 "AM (%)": r"$M_{AM}$",
45 "Car Ownership": r"$C_{car}$",
46 "CL": r"$CL$"
47 }
48

49 # === LOAD AND STANDARDIZE ===
50 df = pd.read_excel(file_path).set_index("City")
51 df_selected = df[[col for col in included_columns if col not in excluded_ind]]
52

53 scaler = StandardScaler()
54 df_scaled = pd.DataFrame(
55 scaler.fit_transform(df_selected),
56 columns=df_selected.columns, index=df_selected.index
57 )
58

59 # === PCA ===
60 pca = PCA()
61 pca_transformed = pca.fit_transform(df_scaled)
62 cumulative_variance = np.cumsum(pca.explained_variance_ratio_)
63 num_components_75 = np.argmax(cumulative_variance >= 0.75) + 1
64

65 pca_results_df = pd.DataFrame(
66 pca_transformed[:, :num_components_75],
67 columns=[f"PC{i+1}" for i in range(num_components_75)],
68 index=df_scaled.index
69 )
70

71 # === SCREE PLOT ===
72 def plot_scree_plot(pca_model, filename):
73 explained_variance = pca_model.explained_variance_ratio_ * 100
74 cumulative_variance = np.cumsum(pca_model.explained_variance_ratio_) * 100
75

76 plt.figure(figsize=(10, 6))
77 plt.plot(range(1, len(explained_variance) + 1), cumulative_variance,
78 marker="D", markersize=8, linestyle="--", linewidth=3, label="Cumulative

Variance")
79 plt.bar(range(1, len(explained_variance) + 1), explained_variance,
80 alpha=0.6, label="Explained Variance")
81 plt.axhline(y=75, color="r", linestyle="--", linewidth=2, label="75% Threshold")
82 plt.xlabel("Principal Components", size=16)
83 plt.ylabel("Explained Variance (%)", size=16)
84 plt.title("Scree Plot", size=20)
85 plt.xticks(ticks=range(1, 11), size=14)
86 plt.yticks(size=14)
87 plt.legend()
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88 plt.grid(True)
89 plt.savefig(os.path.join(output_dir, filename), bbox_inches="tight", dpi=300)
90 plt.show()
91

92 plot_scree_plot(pca, "scree_plot_excl7ind.png")
93

94 # === LOADINGS HEATMAP ===
95 def get_pca_loadings(pca_model, feature_names, n_components):
96 return pd.DataFrame(
97 pca_model.components_[:n_components],
98 columns=feature_names,
99 index=[f"PC{i+1}" for i in range(n_components)]
100 )
101

102 pca_loadings_df = get_pca_loadings(pca, df_selected.columns, num_components_75)
103

104 def plot_pca_loadings_heatmap(loadings_df, filename):
105 loadings_df = loadings_df.rename(columns=column_renaming)
106 max_abs_val = np.abs(loadings_df.values).max()
107

108 plt.figure(figsize=(12, 6))
109 sns.heatmap(
110 loadings_df,
111 annot=True,
112 fmt=".2f",
113 annot_kws={"size": 16, "color": "black"},
114 cmap="coolwarm",
115 center=0,
116 linewidths=0.5,
117 vmin=-max_abs_val,
118 vmax=max_abs_val
119 )
120 plt.title("PCA Component Weights", size=24)
121 plt.xlabel("Indicators", size=16)
122 plt.ylabel("Principal Components", size=16)
123 plt.xticks(rotation=0, size=14)
124 plt.yticks(rotation=0, size=14)
125 plt.savefig(os.path.join(output_dir, filename), bbox_inches="tight", dpi=300)
126 plt.show()
127

128 plot_pca_loadings_heatmap(pca_loadings_df, "pca_loadings_excl7ind.png")
129

130 # === TRUE LOADINGS AND CONTRIBUTIONS ===
131 def get_true_pca_loadings(pca_model, feature_names, n_components):
132 loadings = (
133 pca_model.components_[:n_components].T
134 * np.sqrt(pca_model.explained_variance_[:n_components])
135 )
136 return pd.DataFrame(
137 loadings.T,
138 columns=feature_names,
139 index=[f"PC{i+1}" for i in range(n_components)],
140 )
141

142 true_loadings_df = get_true_pca_loadings(pca, df_selected.columns, num_components_75)
143 variable_contributions_df = (true_loadings_df ** 2).T * 100
144 variable_contributions_df.rename(index=column_renaming, inplace=True)
145

146 # === CONTRIBUTIONS HEATMAP ===
147 def plot_variable_contributions_with_total(variable_contributions , filename_heatmap):
148 total_explained = variable_contributions.sum(axis=1).rename("Total")
149 full_matrix = pd.concat([variable_contributions , total_explained], axis=1)
150 mask = np.zeros_like(full_matrix, dtype=bool)
151 total_col_idx = full_matrix.columns.get_loc("Total")
152 mask[:, total_col_idx] = True
153

154 plt.figure(figsize=(14, 6))
155 ax = sns.heatmap(
156 full_matrix,
157 annot=True, fmt=".2f",
158 annot_kws={"size": 14, "color": "black"},
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159 cmap="YlGn", linewidths=0.5, mask=mask,
160 vmin=0, vmax=100, cbar=True
161 )
162

163 for y in range(full_matrix.shape[0]):
164 val = full_matrix.iloc[y, total_col_idx]
165 ax.text(
166 total_col_idx + 0.5, y + 0.5, f"{val:.2f}",
167 ha="center", va="center", fontsize=14, color="black", fontweight="bold"
168 )
169

170 ax.axvline(total_col_idx, color="black", linewidth=2)
171 plt.title("Variance of Each Indicator Explained by Principal Components (%)", size=18)
172 plt.xlabel("Principal Components", size=16)
173 plt.ylabel("Indicators", size=16)
174 plt.xticks(rotation=0, size=14)
175 plt.yticks(rotation=0, size=14)
176 plt.savefig(os.path.join(output_dir, filename_heatmap), bbox_inches="tight", dpi=300)
177 plt.show()
178

179 plot_variable_contributions_with_total(variable_contributions_df , "
pca_contributions_with_total_column.png")

180

181 # === FINAL STATS ===
182 print(f"Number of PCs to reach �75% variance: {num_components_75}")
183 print(f"Cumulative explained variance: {cumulative_variance[num_components_75 - 1] * 100:.2f

}%")
184 print(f"Average explained variance per indicator: {variable_contributions_df.sum(axis=1).mean

():.2f}%")

K-Clustering
1 import os
2 os.environ["OMP_NUM_THREADS"] = "1"
3

4 import numpy as np
5 import pandas as pd
6 import matplotlib.pyplot as plt
7 from itertools import combinations
8 from joblib import Parallel, delayed
9 from collections import defaultdict
10 from sklearn.preprocessing import StandardScaler
11 from sklearn.decomposition import PCA
12 from sklearn.cluster import KMeans
13 from sklearn.metrics import silhouette_score, silhouette_samples
14 from scipy.spatial.distance import cdist
15

16 # === SETTINGS ===
17 file_path = "FullDataset.xlsx"
18 output_dir_kmeans = os.path.join("Clustering Plots", "KMeansPlusPlus_Test")
19 output_dir_kmedoids = os.path.join("Clustering Plots", "KMedoids Exhaustive")
20 os.makedirs(output_dir_kmeans, exist_ok=True)
21 os.makedirs(output_dir_kmedoids, exist_ok=True)
22

23 # --- Define indicators ---
24 included_columns = [
25 "Average ND", "ND CV", "Efficiency Ratio",
26 "BC CV", "BC 95th Percentile",
27 "Mean PD", "PD CV", "PD 95th Percentile",
28 "Mean Shops", "CV Shops", "Mean Offices", "CV Offices",
29 "MV (%)", "PT (%)", "AM (%)", "Car Ownership", "CL"
30 ]
31

32 excluded_ind = [
33 "ND CV", "BC CV", "Mean PD",
34 "Mean Shops", "Mean Offices", "MV (%)", "AM (%)"
35 ]
36

37 # === LOAD & PCA ===
38 df = pd.read_excel(file_path).set_index("City")
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39 df_selected = df[[col for col in included_columns if col not in excluded_ind]].astype(float)
40

41 scaler = StandardScaler()
42 df_scaled = pd.DataFrame(scaler.fit_transform(df_selected), index=df_selected.index, columns=

df_selected.columns)
43

44 pca = PCA()
45 pca_transformed = pca.fit_transform(df_scaled)
46 cumulative_variance = np.cumsum(pca.explained_variance_ratio_)
47 n_components_75 = np.argmax(cumulative_variance >= 0.75) + 1
48

49 pca_df = pd.DataFrame(pca_transformed[:, :n_components_75], index=df_scaled.index, columns=[f
"PC{i+1}" for i in range(n_components_75)])

50

51 # === KMeans++ ===
52 k_range_kmeans = range(2, 11)
53 num_seeds_per_k = 1000
54 inertia_dict = {}
55 silhouette_dict = {}
56 best_seeds = {}
57 best_models = {}
58

59 for k in k_range_kmeans:
60 inertias = []
61 silhouettes = []
62 seed_inertia = {}
63 print(f"\nRunning k = {k} (KMeans++)...")
64 for i in range(num_seeds_per_k):
65 kmeans = KMeans(n_clusters=k, init="k-means++", n_init=50, random_state=i)
66 labels = kmeans.fit_predict(pca_df)
67 inertia = kmeans.inertia_
68 silhouette = silhouette_score(pca_df, labels)
69

70 inertias.append(inertia)
71 silhouettes.append(silhouette)
72 seed_inertia[i] = inertia
73

74 if (i + 1) % 200 == 0:
75 print(f" Seed {i+1}/{num_seeds_per_k}")
76

77 sorted_seeds = sorted(seed_inertia.items(), key=lambda x: x[1])
78 best_seed = sorted_seeds[0][0]
79 best_seeds[k] = best_seed
80 inertia_dict[k] = inertias
81 silhouette_dict[k] = silhouettes
82

83 print(f" → Best seed for k = {k}: {best_seed} (inertia = {sorted_seeds[0][1]:.2f})")
84

85 plt.figure(figsize=(6, 4))
86 plt.hist(list(seed_inertia.values()), bins=30, color="skyblue", edgecolor="black")
87 plt.title(f"Inertia Distribution for k = {k}", fontsize=12)
88 plt.xlabel("Inertia")
89 plt.ylabel("Frequency")
90 plt.tight_layout()
91 plt.show()
92

93 best_model = KMeans(n_clusters=k, init="k-means++", n_init=50, random_state=best_seed)
94 best_model.fit(pca_df)
95 best_models[k] = best_model
96

97 # === KMedoids Exhaustive ===
98 k_range_kmedoids = range(2, 9)
99 data_matrix = pca_df.to_numpy()
100 city_names = pca_df.index.tolist()
101 pairwise_distances = cdist(data_matrix, data_matrix, metric="euclidean")
102

103 kmedoids_inertias = []
104 silhouette_scores = []
105 label_sets = []
106

107
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108 def compute_inertia_and_labels(medoids_idx):
109 medoids = np.array(medoids_idx)
110 distances_to_medoids = pairwise_distances[:, medoids]
111 closest = np.argmin(distances_to_medoids , axis=1)
112 inertia = np.sum(np.min(distances_to_medoids ** 2, axis=1))
113 return inertia, medoids_idx, closest
114

115

116 for k in k_range_kmedoids:
117 print(f"Processing k={k} (KMedoids)...")
118 candidates = list(combinations(range(len(city_names)), k))
119 results = Parallel(n_jobs=6)(delayed(compute_inertia_and_labels)(list(m)) for m in

candidates)
120 best_result = min(results, key=lambda x: x[0])
121 inertia, medoids_idx, labels = best_result
122

123 kmedoids_inertias.append(inertia)
124 silhouette_scores.append(silhouette_score(data_matrix, labels))
125 label_sets.append(labels)
126

127 print(f" → Best inertia (WCSS): {inertia:.2f}")
128

129 # === PLOTS ===
130 best_k = k_range_kmedoids[silhouette_scores.index(max(silhouette_scores))]
131

132 plt.figure(figsize=(8, 5))
133 plt.plot(k_range_kmedoids, kmedoids_inertias, marker="o", linestyle="--", linewidth=2)
134 plt.xlabel("Number of Clusters (k)", fontsize=14)
135 plt.ylabel("Inertia (WCSS)", fontsize=14)
136 plt.title("Elbow Plot - K-Medoids", fontsize=18)
137 plt.grid(True)
138 plt.tight_layout()
139 plt.savefig(os.path.join(output_dir_kmedoids , "kmedoids_elbow_plot.png"), dpi=300)
140 plt.close()
141

142 plt.figure(figsize=(8, 5))
143 plt.plot(k_range_kmedoids, silhouette_scores, marker="o", linestyle="--", linewidth=2)
144 plt.axvline(best_k, color="r", linestyle="--", linewidth=2, label=f"Best: {best_k} clusters")
145 plt.xlabel("Number of Clusters (k)", fontsize=14)
146 plt.ylabel("Silhouette Score", fontsize=14)
147 plt.title("Silhouette Score - K-Medoids", fontsize=18)
148 plt.grid(True)
149 plt.tight_layout()
150 plt.savefig(os.path.join(output_dir_kmedoids , "kmedoids_silhouette_plot.png"), dpi=300)
151 plt.show()
152

153 for k, labels in zip(k_range_kmedoids, label_sets):
154 silhouette_vals = silhouette_samples(data_matrix, labels)
155 y_lower = 10
156 fig, ax = plt.subplots(figsize=(8, 6))
157 for i in range(k):
158 ith_vals = silhouette_vals[np.array(labels) == i]
159 ith_vals.sort()
160 size_cluster_i = ith_vals.shape[0]
161 y_upper = y_lower + size_cluster_i
162 color = plt.cm.nipy_spectral(float(i) / k)
163 ax.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_vals, facecolor=color, edgecolor

=color, alpha=0.7)
164 ax.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i + 1))
165 y_lower = y_upper + 10
166

167 avg_score = np.mean(silhouette_vals)
168 ax.axvline(x=avg_score, color="red", linestyle="--", label=f"Avg = {avg_score:.2f}")
169 ax.set_xlabel("Silhouette Coefficient Values", fontsize=14)
170 ax.set_ylabel("Data Points", fontsize=14)
171 ax.set_title(f"Silhouette Plot - K-Medoids (k = {k})", fontsize=18)
172 ax.set_yticks([])
173 ax.legend()
174 plt.tight_layout()
175 plt.savefig(os.path.join(output_dir_kmedoids , f"silhouette_barplot_k{k}.png"), dpi=300)
176 plt.close()
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177

178 print("\nKMeans++ and K-Medoids clustering complete. All plots and outputs saved.")

Ward's Method
1 # === IMPORTS ===
2 import os
3 import numpy as np
4 import pandas as pd
5 import matplotlib.pyplot as plt
6 from sklearn.preprocessing import StandardScaler
7 from sklearn.decomposition import PCA
8 from scipy.cluster.hierarchy import linkage, fcluster, dendrogram
9 from sklearn.metrics import silhouette_score
10

11 # === SETTINGS ===
12 file_path = "FullDataset.xlsx"
13 output_dir = os.path.join("Clustering Plots", "Wards Method")
14 os.makedirs(output_dir, exist_ok=True)
15

16 # --- Define indicators ---
17 included_columns = [
18 "Average ND", "ND CV", "Efficiency Ratio",
19 "BC CV", "BC 95th Percentile",
20 "Mean PD", "PD CV", "PD 95th Percentile",
21 "Mean Shops", "CV Shops", "Mean Offices", "CV Offices",
22 "MV (%)", "PT (%)", "AM (%)", "Car Ownership", "CL"
23 ]
24

25 excluded_ind = [
26 "ND CV", "BC CV", "Mean PD",
27 "Mean Shops", "Mean Offices", "MV (%)", "AM (%)"
28 ]
29

30 # === STEP 1: LOAD AND STANDARDIZE DATA ===
31 df = pd.read_excel(file_path).set_index("City")
32 df_selected = df[[col for col in included_columns if col not in excluded_ind]].astype(float)
33 df_full_indicators = df[included_columns].astype(float)
34

35 scaler = StandardScaler()
36 df_scaled = pd.DataFrame(
37 scaler.fit_transform(df_selected),
38 index=df_selected.index,
39 columns=df_selected.columns
40 )
41

42 # === STEP 2: PCA ===
43 pca = PCA()
44 pca_transformed = pca.fit_transform(df_scaled)
45 cumulative_variance = np.cumsum(pca.explained_variance_ratio_)
46 n_components_75 = np.argmax(cumulative_variance >= 0.75) + 1
47

48 pca_df = pd.DataFrame(
49 pca_transformed[:, :n_components_75],
50 index=df_scaled.index,
51 columns=[f"PC{i+1}" for i in range(n_components_75)]
52 )
53

54 # === STEP 3: WARD CLUSTERING ===
55 linkage_matrix = linkage(pca_df, method="ward")
56 means_rows = []
57 stddev_rows = []
58 city_rows = []
59 threshold_rows = []
60

61 for num_clusters in range(1, 11):
62 cluster_labels = fcluster(linkage_matrix, t=num_clusters, criterion="maxclust")
63 pca_clustered = pca_df.copy()
64 pca_clustered["cluster"] = cluster_labels
65
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66 dendro_title = "Dendrogram (Ward's Method)" if num_clusters == 1 else f"Dendrogram (Ward'
s Method) – {num_clusters} Clusters"

67 dendro_path = os.path.join(output_dir, f"dendrogram_ward_k{num_clusters}_clusters.png")
68

69 if num_clusters > 1:
70 max_d = linkage_matrix[-(num_clusters - 1), 2]
71 min_d = linkage_matrix[-num_clusters, 2]
72 threshold = (max_d + min_d) / 2
73 else:
74 threshold = 0
75

76 # === PLOT DENDROGRAM WITH CITY NAMES ===
77 plt.figure(figsize=(12, 8))
78 plt.title(dendro_title, fontsize=30)
79 dendrogram(
80 linkage_matrix,
81 labels=pca_clustered.index.tolist(),
82 leaf_rotation=90,
83 leaf_font_size=12,
84 color_threshold=threshold
85 )
86 for collection in plt.gca().collections:
87 collection.set_linewidth(3)
88 if num_clusters > 1:
89 plt.axhline(y=threshold, color='black', linestyle='--', linewidth=2)
90 plt.ylabel("Distance", fontsize=24)
91 plt.xticks(fontsize=20)
92 plt.yticks(fontsize=20)
93 plt.tight_layout()
94 plt.savefig(
95 os.path.join(output_dir, f"dendrogram_ward_k{num_clusters}_clusters_with_labels.png")

,
96 dpi=600
97 )
98 plt.close()
99

100 # === PLOT DENDROGRAM WITHOUT CITY NAMES ===
101 plt.figure(figsize=(12, 8))
102 plt.title(dendro_title, fontsize=30)
103 dendrogram(
104 linkage_matrix,
105 no_labels=True,
106 color_threshold=threshold
107 )
108 for collection in plt.gca().collections:
109 collection.set_linewidth(3)
110 if num_clusters > 1:
111 plt.axhline(y=threshold, color='black', linestyle='--', linewidth=2)
112 plt.xlabel("Cities", fontsize=24, labelpad=10)
113 plt.ylabel("Distance", fontsize=24)
114 plt.xticks(fontsize=20)
115 plt.yticks(fontsize=20)
116 plt.tight_layout()
117 plt.savefig(
118 os.path.join(output_dir, f"dendrogram_ward_k{num_clusters}_clusters_no_labels.png"),
119 dpi=600
120 )
121 plt.close()
122

123 for cluster_label in sorted(pca_clustered["cluster"].unique()):
124 cluster_indices = pca_clustered[pca_clustered["cluster"] == cluster_label].index
125 cluster_data = df_full_indicators.loc[cluster_indices]
126

127 means_rows.append({
128 "Ward Clusters": num_clusters,
129 "Cluster Label": cluster_label,
130 "Num Cities": len(cluster_data),
131 **cluster_data.mean().to_dict()
132 })
133

134 stddev_rows.append({
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135 "Ward Clusters": num_clusters,
136 "Cluster Label": cluster_label,
137 "Num Cities": len(cluster_data),
138 **cluster_data.std().to_dict()
139 })
140

141 for city in cluster_indices:
142 city_rows.append({
143 "Ward Clusters": num_clusters,
144 "Cluster Label": cluster_label,
145 "City": city
146 })
147

148 # === STEP 4: EXPORT TO EXCEL ===
149 excel_output_path = os.path.join(output_dir, "ward_cluster_outputs.xlsx")
150 with pd.ExcelWriter(excel_output_path, engine="xlsxwriter") as writer:
151 means_df = pd.DataFrame(means_rows)
152 means_df.to_excel(writer, sheet_name="Indicator_Means", index=False)
153

154 stddev_df = pd.DataFrame(stddev_rows)
155 stddev_df.to_excel(writer, sheet_name="Indicator_StdDevs", index=False)
156

157 workbook = writer.book
158 bold_format = workbook.add_format({'bold': True})
159 for sheet_name, df_to_check in zip(["Indicator_Means", "Indicator_StdDevs"], [means_df,

stddev_df]):
160 worksheet = writer.sheets[sheet_name]
161 for col_num, col_name in enumerate(df_to_check.columns):
162 if col_name in df_selected.columns:
163 worksheet.write(0, col_num, col_name, bold_format)
164

165 pd.DataFrame(city_rows).to_excel(writer, sheet_name="City_Names", index=False)
166 pd.DataFrame(threshold_rows).to_excel(writer, sheet_name="Cluster_Thresholds", index=

False)
167

168 # === STEP 5: SILHOUETTE SCORE PLOT ===
169 silhouette_avg_scores = []
170 cluster_range = range(2, 11)
171

172 for num_clusters in cluster_range:
173 cluster_labels = fcluster(linkage_matrix, t=num_clusters, criterion="maxclust")
174 score = silhouette_score(pca_df, cluster_labels)
175 silhouette_avg_scores.append(score)
176

177 best_score = max(silhouette_avg_scores)
178 best_k = cluster_range[silhouette_avg_scores.index(best_score)]
179 print(f"Optimal number of clusters (based on silhouette score): {best_k}")
180

181 plt.figure(figsize=(10, 6))
182 plt.plot(cluster_range, silhouette_avg_scores , marker='o', markersize=8, linestyle='--',

linewidth=3)
183 plt.axvline(x=best_k, color="r", linestyle="--", linewidth=2, label=f"Best: {best_k} clusters

")
184 plt.xlabel('Number of Clusters (k)', fontsize=14)
185 plt.ylabel('Silhouette Score', fontsize=14)
186 plt.title("Silhouette Score - Ward's Method", fontsize=18)
187 plt.grid(True)
188 # plt.legend()
189 plt.xticks(cluster_range)
190 plt.savefig(
191 os.path.join(output_dir, f"silhouette_ward_{n_components_75}PCs.png"),
192 dpi=300, bbox_inches="tight"
193 )
194 plt.show()

Cluster Evaluation
1 import os
2 from collections import defaultdict
3 import pandas as pd
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4 import matplotlib.pyplot as plt
5 import seaborn as sns
6 from sklearn.metrics import adjusted_rand_score
7 from xlsxwriter.utility import xl_rowcol_to_cell
8

9 # === Load the Excel file ===
10 file_path = "ClusterAssignments_3Methods_k257.xlsx"
11 df = pd.read_excel(file_path)
12

13 # === Create output folder for plots and Excel ===
14 output_folder = "Cluster Evaluation"
15 os.makedirs(output_folder, exist_ok=True)
16

17 # === Define cluster comparison scenarios ===
18 scenarios = {
19 "k2": ["KMeans_k2", "KMedoids_k2", "Ward_k2"],
20 "k5": ["KMeans_k5", "KMedoids_k5", "Ward_k5"],
21 "k7": ["KMeans_k7", "KMedoids_k7", "Ward_k7"]
22 }
23

24 # === Label mapping for pretty axis labels ===
25 label_map = {
26 "KMeans": "K-Means",
27 "KMedoids": "K-Medoids",
28 "Ward": "Ward"
29 }
30

31 # === Function to compute ARI matrix ===
32 def compute_ari_matrix(df, methods):
33 ari_matrix = pd.DataFrame(index=methods, columns=methods, dtype=float)
34 for i in methods:
35 for j in methods:
36 if i == j:
37 ari_matrix.loc[i, j] = 1.0
38 else:
39 ari_matrix.loc[i, j] = adjusted_rand_score(df[i], df[j])
40 return ari_matrix
41

42 # === Plotting settings ===
43 sns.set(style="whitegrid")
44 plt.rcParams.update({
45 "axes.titlesize": 24,
46 "axes.labelsize": 16,
47 "xtick.labelsize": 20,
48 "ytick.labelsize": 20
49 })
50

51 # === Generate and save ARI heatmaps ===
52 for scenario, methods in scenarios.items():
53 k_val = scenario.replace("k", "")
54 ari_matrix = compute_ari_matrix(df, methods)
55

56 pretty_labels = [label_map[m.split('_')[0]] for m in methods]
57 ari_matrix.index = pretty_labels
58 ari_matrix.columns = pretty_labels
59

60 plt.figure(figsize=(8, 6))
61 ax = sns.heatmap(
62 ari_matrix, annot=True, fmt=".2f", cmap="YlGnBu", cbar=True,
63 square=True, linewidths=0.5, linecolor='gray',
64 vmin=0, vmax=1.0,
65 annot_kws={"fontsize": 24, "color": "white", "weight": "bold"}
66 )
67 plt.title(f"Adjusted Rand Index - {k_val} Clusters", fontsize=20)
68 plt.xticks(rotation=45, ha='right', fontsize=18)
69 plt.yticks(rotation=0, fontsize=18)
70

71 cbar = ax.collections[0].colorbar
72 cbar.ax.tick_params(labelsize=14)
73

74 plt.tight_layout()
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75 plot_filename = os.path.join(output_folder, f"ARI_Heatmap_k{k_val}.png")
76 plt.savefig(plot_filename)
77 plt.close()
78

79 print(f"Final ARI heatmaps saved to: {output_folder}")
80

81 # === Robust inconsistency analysis and Excel export ===
82 jaccard_threshold = 0.5
83 output_excel = os.path.join(output_folder, "Inconsistent_City_Assignments_Robust.xlsx")
84

85 with pd.ExcelWriter(output_excel, engine="xlsxwriter") as writer:
86 for scenario, methods in scenarios.items():
87 k_val = scenario.replace("k", "")
88 city_list = df["City"].tolist()
89

90 # Step 1: Prepare cluster mappings
91 clusterings = {m: df.set_index("City")[m].to_dict() for m in methods}
92 city_neighbors = {city: {} for city in city_list}
93 for method in methods:
94 clusters = defaultdict(list)
95 for city, label in clusterings[method].items():
96 clusters[label].append(city)
97 for city in city_list:
98 city_neighbors[city][method] = set(clusters[clusterings[method][city]])
99

100 # Step 2: Compute Jaccard similarity and store results
101 jaccard_scores = []
102 for city in city_list:
103 sets = list(city_neighbors[city].values())
104 pairwise_scores = []
105 for i in range(len(sets)):
106 for j in range(i + 1, len(sets)):
107 inter = len(sets[i] & sets[j])
108 union = len(sets[i] | sets[j])
109 score = inter / union if union > 0 else 0
110 pairwise_scores.append(score)
111 avg_jaccard = round(sum(pairwise_scores) / len(pairwise_scores), 3)
112 jaccard_scores.append(avg_jaccard)
113

114 # Step 3: Build DataFrame
115 result_df = df[["City"] + methods].copy()
116 result_df["Avg_Jaccard"] = jaccard_scores
117

118 # Step 4: Write to Excel and highlight inconsistent rows
119 result_df.to_excel(writer, sheet_name=f"k{k_val}", index=False)
120 workbook = writer.book
121 worksheet = writer.sheets[f"k{k_val}"]
122 bold_format = workbook.add_format({'bold': True})
123

124 for row_idx, score in enumerate(jaccard_scores, start=1): # +1 for header
125 if score < jaccard_threshold:
126 for col_idx in range(len(result_df.columns)):
127 cell = xl_rowcol_to_cell(row_idx, col_idx)
128 worksheet.write(cell, result_df.iloc[row_idx - 1, col_idx], bold_format)
129

130 # Step 5: Group consistent cities into unique consensus groups
131 group_dict = {} # key: frozenset of group members, value: group_id
132 group_id_counter = 1
133 city_to_group = {}
134 consensus_rows = []
135

136 for idx, city in enumerate(city_list):
137 score = jaccard_scores[idx]
138 sets = list(city_neighbors[city].values())
139

140 if score >= jaccard_threshold:
141 # Compute intersection of all cluster neighbor sets
142 common_group = set.intersection(*sets)
143 group_key = frozenset(common_group)
144

145 if group_key not in group_dict:
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146 group_dict[group_key] = group_id_counter
147 group_id_counter += 1
148

149 city_to_group[city] = group_dict[group_key]
150 else:
151 city_to_group[city] = None # Mark as doubtful
152

153 # Step 6: Prepare output DataFrame
154 for city in city_list:
155 group = city_to_group[city]
156 if group is not None:
157 group_members = [c for c, g in city_to_group.items() if g == group]
158 consensus_rows.append({
159 "City": city,
160 "Consensus_Cluster": group,
161 "Group_Members": ", ".join(sorted(group_members)),
162 "Consistent": True
163 })
164 else:
165 # Union of all cluster neighbors (doubtful group)
166 all_sets = list(city_neighbors[city].values())
167 merged_group = set.union(*all_sets)
168 consensus_rows.append({
169 "City": city,
170 "Consensus_Cluster": "",
171 "Group_Members": ", ".join(sorted(merged_group)),
172 "Consistent": False
173 })
174

175 # Step 7: Write to Excel
176 consensus_df = pd.DataFrame(consensus_rows)
177 consensus_df.to_excel(writer, sheet_name=f"k{k_val}_Summary", index=False)
178

179 # Step 8: Track group stability and detect jumping clusters
180 jumping_report = []
181 for method in methods:
182 # Step 8.1: Group cities by their label
183 label_groups = defaultdict(list)
184 for city, label in df.set_index("City")[method].items():
185 label_groups[label].append(city)
186

187 for label, cities_in_group in label_groups.items():
188 method_comparison = [m for m in methods if m != method]
189 split_counts = []
190

191 for other_method in method_comparison:
192 other_labels = df.set_index("City").loc[cities_in_group, other_method]
193 overlap_counts = other_labels.value_counts()
194 split_counts.append(len(overlap_counts))
195

196 max_splits = max(split_counts)
197

198 jumping_report.append({
199 "Reference_Method": method,
200 "Cluster_Label": label,
201 "Cities_in_Cluster": ", ".join(sorted(cities_in_group)),
202 "Max_Splits_Across_Methods": max_splits,
203 "Is_Jumping": max_splits > 1
204 })
205

206 # Step 9: Write jumping cluster analysis to Excel
207 jump_df = pd.DataFrame(jumping_report)
208 jump_df.to_excel(writer, sheet_name=f"k{k_val}_JumpingClusters", index=False)
209

210 print(f"Inconsistent cities with Jaccard scores saved to: {output_excel}")

E.4. Road Length Analysis
1 import os
2 import numpy as np
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3 import pandas as pd
4 import geopandas as gpd
5 import osmnx as ox
6

7 # --- Configuration ---
8 input_dir = "EPSG4326 Polygons"
9 output_dir = "Road Length Results"
10 road_length_stats_csv = os.path.join(output_dir, "road_type_stats.csv")
11

12 # Create output directory
13 os.makedirs(output_dir, exist_ok=True)
14

15 # Initialize statistics CSV if needed
16 columns = [
17 "City",
18 "Road Type",
19 "Total Length (km)",
20 "Average Segment Length (m)",
21 "Number of Links",
22 "Consolidated"
23 ]
24 if not os.path.exists(road_length_stats_csv):
25 pd.DataFrame(columns=columns).to_csv(road_length_stats_csv , index=False)
26

27 # --- Process each city polygon ---
28 for filename in os.listdir(input_dir):
29 if filename.endswith(".geojson"):
30 city = filename.replace("_EPSG4326_boundary.geojson", "")
31 print(f"Processing {city}...")
32

33 # Load polygon and retrieve road network
34 polygon_path = os.path.join(input_dir, filename)
35 polygon = gpd.read_file(polygon_path, engine="fiona").geometry.iloc[0]
36

37 G_nx = ox.graph_from_polygon(
38 polygon,
39 network_type="drive",
40 simplify=True,
41 retain_all=False,
42 truncate_by_edge=True
43 )
44

45 # Extract road types before consolidation
46 edges = ox.graph_to_gdfs(G_nx, nodes=False)
47

48 if "highway" in edges.columns:
49 edges = edges.explode("highway")
50 edges["highway"] = edges["highway"].astype(str)
51

52 road_stats = edges.groupby("highway")["length"].agg(["sum", "mean", "count"]).
reset_index()

53 road_stats["sum"] /= 1000 # Convert length to kilometers
54 road_stats.columns = [
55 "Road Type",
56 "Total Length (km)",
57 "Average Segment Length (m)",
58 "Number of Links"
59 ]
60 road_stats.insert(0, "City", city)
61 road_stats.insert(5, "Consolidated", False)
62

63 # Append statistics
64 road_stats.to_csv(road_length_stats_csv , mode="a", header=False, index=False)
65

66 # Consolidate intersections
67 G_nx = ox.project_graph(G_nx)
68 G_nx = ox.simplification.consolidate_intersections(
69 G_nx,
70 tolerance=25,
71 rebuild_graph=True,
72 dead_ends=True,
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73 reconnect_edges=True
74 )
75 G_nx = ox.project_graph(G_nx, to_crs="EPSG:4326")
76

77 # Extract road types after consolidation
78 consolidated_edges = ox.graph_to_gdfs(G_nx, nodes=False)
79

80 if "highway" in consolidated_edges.columns:
81 consolidated_edges = consolidated_edges.explode("highway")
82 consolidated_edges["highway"] = consolidated_edges["highway"].astype(str)
83

84 consolidated_road_stats = consolidated_edges.groupby("highway")["length"].agg(["
sum", "mean", "count"]).reset_index()

85 consolidated_road_stats["sum"] /= 1000
86 consolidated_road_stats.columns = [
87 "Road Type",
88 "Total Length (km)",
89 "Average Segment Length (m)",
90 "Number of Links"
91 ]
92 consolidated_road_stats.insert(0, "City", city)
93 consolidated_road_stats.insert(5, "Consolidated", True)
94

95 # Append consolidated statistics
96 consolidated_road_stats.to_csv(road_length_stats_csv , mode="a", header=False,

index=False)
97

98 print(f"{city} processed successfully!")
99

100 print("All cities processed successfully!")
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