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Abstract

Neuro-Symbolic (NeSy) models promise better
interpretability and robustness than conventional
neural networks, yet their resilience to data-
poisoning backdoors is largely untested. This
work investigates that gap by attacking a Logic
Tensor Network (LTN) with clean-label triggers.
Two attack strategies are benchmarked on MNIST
addition and modulo tasks: (i) a targeted Projected
Gradient Descent (PGD) variant that minimises the
loss towards a target class, and (ii) a weighted
pixel-blending (naı̈ve) method. Furthermore, three
trigger placements suited to the task (left, right, or
both images), poison rates (0.5%-20%), and blend
ratios (10%-90%) are benchmarked while reporting
benign accuracy and attack-success rate (ASR).
Results show that PGD can reach ≈ 15% ASR
on the harder modulo task when both images are
poisoned, but has negligible impact on the simpler
addition task. Additionally, the naı̈ve attack
never exceeds 5% ASR unless the blend is large
enough to be recognisable during visual inspection.
Increasing the poison rate beyond 10% does not
increase attack success rate. Overall, clean-label
backdoors remain low-yield against LTNs, but even
a modest ASR is a concern for safety-critical
deployments. Extending this work to include dirty-
label poisoning reveals a sharp trade-off: ASR
increases to ≈ 75% on the modulo task at the cost
of reduced stealth, without benign accuracy being
affected. Clean-label poisoning reduced addition
task accuracy by roughly 35% while keeping ASR
near 10%. Clean-label attacks remain low-yield
yet stealthy, whereas dirty-label strategies achieve
higher efficacy but expose the attack to detection
through accuracy degradation. These findings
highlight that even modest attack success rates
pose risks in safety-critical settings. The findings
demonstrate that backdoor potency and collateral
effects are governed by task structure, underscoring
the necessity of task-aware defence strategies.

1 Introduction
Machine and deep learning models such as neural networks
(NNs) have become the go-to solution to tackle several
complex learning tasks in domains such as computer vision,
natural language processing, and other areas [1][2]. However,
NNs are susceptible to backdoor attacks, in which an
adversary inserts maliciously constructed examples into a
training set to manipulate the output of the model [3].
Integrity of pre-trained AI models is now a recognised
cybersecurity priority. A single compromised checkpoint can
infect systems in medicine or autonomous driving, creating
public-safety risks.

Neuro-Symbolic (NeSy) models integrate traditional rule-
based Artificial Intelligence (AI) methods with contemporary
deep learning techniques to improve the model’s reliability

and transparency. By integrating rule-based AI methods,
these models are considered more reliable and trustworthy
than traditional NNs against malicious perturbations [4][5].

Several recent surveys have laid the foundation for this
work by mapping out the backdoor threats in modern machine
learning systems. A clear taxonomy of six attack surfaces
and catalog of the major trigger variants are proposed in
[6]. Furthermore, they also wrote an in-depth review
of countermeasures such as blind removal, offline/online
inspection, and post-removal techniques. The survey [3]
complements this with a risk-based framework that unifies
all poisoning-based attacks under a bilevel formulation, and
offers the first systematic grouping of triggers, together with
clean accuracy and attack-success metrics.

One of these types is the clean-label invisible attack that
benefits from a higher level of stealth when performed.
Contrary to the Badnets attack [7], an adversary inputs
a subtle trigger in some data points, ensuring the
poisoned instances are indistinguishable upon inspection,
and maintaining the class distribution of data. This paper
focuses on two types of attacks: a Projected Gradient Descent
(PGD)[8] based backdoor attack and a naı̈ve one. Due to
clashing labels in the task, the former’s methodology changed
from maximising the loss given the clean label to minimising
the error for the target label. In contrast, the latter interpolates
between the clean instance and another pre-selected image.

On the NeSy front, frameworks like DeepProbLog [9],
Logic Tensor Networks (LTN) [10] and Neural Theorem
Provers [11] have begun to show how integrating symbolic
rules or knowledge graphs into neural training can yield
models that are not only more transparent, but empirically
more robust to adversarial perturbations. The knowledge
gap is represented by the robustness that different NeSy
integration paradigms bring about for defending against
backdoor attacks. Therefore, this is crucial for analysing
the security, reliability and integrity of these improved AI
systems.

The main research question is How robust is the Logic
Tensor Networks model against clean-label data poisoning
attacks? This combination of NeSy model and backdoor
attack was chosen to assess if LTN’s first-order logic aided
optimisation can detect the subtleties of clean-label attacks.
To guide the research, the following sub-questions have
been formulated: How is the backdoor attack customised to
the target tasks? How does the poisoning rate impact the
performance of the attack? How does the blend percentage
in the naı̈ve implementation impact the effectiveness of the
attack? How does the state-of-the art poisoning method
compare to a naı̈ve implementation? How does the clean-
label attack compare to dirty-label attack performance wise?

2 Background
To understand this research, three key aspects need to be
understood: NeSy models, the Logic Tensor Networks (LTN)
model and the clean-label data poisoning attack.

2.1 Neuro-Symbolic models
Neuro-Symbolic (NeSy) systems combine pattern learning
with symbolic reasoning, enabling interpretable AI for
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domains such as robotics and complex decision making [12].
A recent survey identifies six ways to merge neural networks
and logic [6]:

1. Symbolic Neuro-Symbolic. A symbolic core reasons;
neural sub-networks learn to steer proof search (e.g.,
Neural Theorem Provers [11]).

2. Symbolic[Neuro]. A symbolic pipeline remains
primary, invoking neural modules for perception or
feature extraction (symbolic QA [13]).

3. Neuro — Symbolic. Neural and symbolic blocks
interact as peers, exchanging embeddings and rule
feedback (DeepProbLog, NLProlog [9; 14]).

4. Neuro-Symbolic→Neuro. Symbolic priors shape
network design or training; Graph Neural Networks
illustrate this [15].

5. NeuroSymbolic. Symbolic knowledge is absorbed into
weights, granting native reasoning. Logic Tensor
Networks, studied here, are a prime example [10].

6. Neuro[Symbolic]. A symbolic engine is embedded
and co-trained within the network, blending statistical
generalisation with logical inference (biomedical KG
reasoning [16]).

This taxonomy frames the security analysis that follows.

2.2 Logic Tensor Networks Model
This subsection focuses on the key points of LTN models and
mentions an example task that can be solved with it.
Model Explanation: This neuro-symbolic model
integrates deep learning with logical reasoning by combining
neural networks and first-order logic [10]. Here is a surface
level explanation of the model:

• logical symbols (constants, functions, and predicates)
are embedded into a continuous vector space.

• truth values in the range [0,1] are assigned to logical
formulas. This fuzzy logic approach enables the
representation of the degree of truth, supporting
approximate reasoning.

• logical relations, represented by axioms, are modelled
as tensors (generalized mathematical object for storing
data), and grounding these relations corresponds
to learning tensor parameters that fit data. This
grounding process transforms symbolic knowledge
into differentiable forms suitable for gradient-based
optimization.

• LTN’s learn from data by minimizing loss functions
derived from the difference between predicted and
actual truth values of formulas, adjusting tensor
parameters to satisfy logical constraints and observed
data simultaneously.

Therefore, Logic Tensor Networks offer a scalable way to
combine symbolic logic’s interpretability with the flexibility
of deep learning, making them powerful for tasks where both
data-driven and knowledge-driven approaches are necessary.
An example on how this can be applied on a task is provided
in the appendix 6.

2.3 Backdoor Attacks
Attackers aim to inject concealed backdoors in NNs
during training, ensuring that the compromised systems
perform normally on clean samples while their predictions
are maliciously altered when triggered by attacker-defined
patterns. Such attacks can have severe consequences
in critical applications. For instance, adversaries could
manipulate a backdoored automated driving system to
misidentify traffic signs embedded with the backdoor trigger,
potentially leading to traffic accidents. There are two
categories of backdoor attacks, as noted by [3].

The first type is Poisoning-Based Backdoor Attacks, where
adversaries introduce patterns into some data points and
possibly changing their label to make the model behave
differently. Under this term reside attacks such as BadNets,
that implant input patterns in data as well as change label of
instances, and Invisible Backdoor attacks, that bypass human
inspection. Figure 1 shows the implementation of the two
attacks mentioned.

The second category is the Nonpoisoning-Based Backdoor
Attacks, where the focus moves from the data to the model
architecture and weights. Thus, these types of attacks can
happen at later than data collection and training stages.

Benchmarking Metrics: To assess how robust the Logic
Tensor Networks model is, two metrics are considered:
benign accuracy and attack success rate (ASR). Benign
accuracy measures how well the model performs on normal
data. It is used to compare the accuracy of the model before
and after injecting the patterns. ASR assesses the percentage
of poisoned data points that are misclassified as the intended
class. An increase in the value of this metric corresponds to a
higher likelihood of the attack’s success.

When implementing a backdoor attack on a model,
it is desirable for the former to be significant and the
latter minimal. A low benign accuracy compromises the
stealthiness of the attack, while a low ASR undermines the
effectiveness of the attack on the model.

Figure 1: Implementation of a BadNets attack - square fill 1 - and
an Invisible attack - square fill 0.1, applied on an image with a
handwritten 7 from the MNIST dataset. The bottom right square
on both attacks is 6x6 pixels.

2.4 Clean-Label Data Poisoning Attack
Unlike the backdoor attacks, which tamper with both image
and label, clean-label poisoning leaves the label untouched
and hides perturbations inside seemingly legitimate samples.
Furthermore, these patterns should also be made invisible to
human inspection. The model then learns to associate the
alteration with a specific class. When given another data point
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with a different target label, the system is expected to output
the targeted class.

PGD is an optimization technique that uses gradient-
based updates to modify inputs, aiming to maximise the
loss function with respect to the model’s parameters. After
each update, PGD ensures that the input remains within
certain valid boundaries. This process is repeated for
multiple iterations, refining the perturbation until it results
in a significant model misclassification. More formally, the
equation for this method, as indicated by [8], is

xt+1 = Πx+S

(
xt + α sgn (∇xL(θ, x, y))

)
(1)

where xt+1 is the updated version of the input at the next
iteration, xt is the current state of the input at iteration t,
Πx+S indicates the projection of the updated input back onto
the feasible region S, representing the perturbation within a
specified limit, α is the step size, sgn is the sign function and
∇xL(θ, x, y) is the gradient of the loss function with respect
to the input x.

Note that although this approach maximises the loss, there
needs to be a distinctive pattern for the model to learn the
backdoor successfully.

3 Methodology
This section presents why the MNIST dataset was used and
what tasks considered are, high level perspective over the
implementation as well as an overview of how the research
sub-questions were answered.

3.1 MNIST dataset
This paper focuses on two tasks on the MNIST [17]
dataset for multiple reasons. First of all, it provides a
standardized and well-established benchmark of 70,000 data
points. Secondly, the dataset consists of handwritten digits
images, offering a more intuitive way to apply the backdoor
attacks. Thirdly, it is available in the readily accessible
Python library Tensorflow2.

The first task is digit addition: given two images x and
y, predict label(x) + label(y). The target classes are 0
through 18, numbering 19 distinct classes. The authors
in [10] implemented this task using the LTN model. The
implementation is available in their GitHub page3.

The other task is digit modulo: given two images x and
y, predict label(x) % label(y). Since the division by 0 is
not defined, the instances with this label were excluded in the
pre-processing step. Thus, the target classes are 0 through 8,
numbering 9 distinct classes.

The former task was considered easier for three reasons.
Firstly, unlike the addition, the modulo operation is non-
linear. Secondly, modulo involves remainder and division
properties, requiring the model to learn a periodic pattern.
Lastly, unlike the bell-shaped distribution of the labels of
the addition, the modulo outputs are skewed towards lower

2https://www.tensorflow.org/datasets/catalog/
mnist

3https://github.com/logictensornetworks/
logictensornetworks/blob/master/examples/mnist/
baselines.py

values.
Given two images x and y with labels a and b, the model

predicts a%b and the backdoor attack aims to poison the
images to change the model’s classification of the instances
to a + 1 and b + 1. This was the first operation considered
when computing the ASR. However, there are 9, 42 and 31
instances of pairs of numbers from [1-9] that satisfy a%b =
(a + 1)%b, a%b = a%(b + 1) and a%b = (a + 1)%(b + 1)
respectively. In this case, the ASR would be misleading, since
the poisoned label is the same with the clean label.

Another operation to compute the poisoned label was
considered: instead of the adding 1 to the labels, the targeted
label was the integer part of the division, namely int(a/b).
Furthermore, to make the model learn this attack, it should
learn patterns that make this possible. Thus, it should classify
(a, b) as (x, y) such that x%y = int(a/b) for the case that
both images are poisoned, a as x such that x%b = int(a/b)
when only the first image is perturbed, and b as y such that
a%x = int(a/b) when the latter is poisoned.

3.2 Implementation Details
This subsection covers the high-level perspective on the
implementation. It begins with the data pipeline, which
covers MNIST filtering and normalisation. The following
parts explain three attack mechanisms: the standard Projected
Gradient Descent procedure, its targeted variant that forces
misclassification toward a specified label, and a naı̈ve
interpolation method that embeds triggers by pixel blending.
The discussion then turns to model pre-requisites and types:
LTN and NN. The subsection concludes with the training and
evaluation protocol, including optimiser configuration and
the metrics stored.

Data Pipeline: It begins with importing the data from
the MNIST dataset available in the Tensorflow library4.
Afterwards, the values of the image are scaled to [0,1]. To
facilitate use by the Deep-Learning models, a color channel
is added as the additional third dimension to an image. Due
to memory constraints, only 20,000 training and 6,000 test
images were used. Since the tasks require two data points,
the dataset is split in two equal halves to create the input pairs
to the models.

PGD Implementation: After the data has been processed,
one of two clean-label backdoor attack implementation is
applied, either PGD-based or naı̈ve. When implementing the
former, there are three parameters for the PGD perturbation:
ϵ - the limit on how intense the perturbation is; α - the PGD
step size; iterations - how many times the PGD increases the
image loss based on the gradient; Following [8], ϵ = 300
is enough to ensure a successful attack. Figure 2 indicates
that α around 0.5% is sufficient to evade human inspection.
Although a greater value for iterations is better, this paper
only focuses on 10. To make the PGD attack, the images
need a trigger, which was implemented as a 6x6 pixels square
in the bottom right corner. The last hyper-parameter used in
this implementation is the poisoning rate, which increases the

4https://www.tensorflow.org/datasets/catalog/
mnist
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Figure 2: PGD perturbation implemented on an image with a
handwritten 7 from MNIST dataset with perturbation limit ϵ = 300,
iterations = 10 and variable step size α.

strength of the attack. As the value increases, the subtleness
of the attack diminishes. Research sub-question 2, explained
in 3.3, compares different poisoning rates.
Targeted PGD Implementation: Projected Gradient
Descent is an iterative version of the Fast Gradient Sign
Method (FGSM) that searches for an adversarial example
within an ℓ∞ ball of radius ϵ around the original image.
However, Targeted PGD flips the usual goal: instead of
making the network mis-classify, it steers the input so that
the model predicts a specific target class ytarget chosen by the
attacker.

To implement this method, at each iteration t:
1. The gradient of the target loss ∇xL

(
fθ(xt), ytarget

)
with

respect to the current adversarial image xt is computed.
2. The new data point descends in the direction of the loss

xt+1 = xt − α sign
(
∇xL

)
,

where α is the step size.
3. xt+1 is projected back into the ϵ-ball (ℓ∞ constraint) and

the valid image range [0, 1].
Iterating this process T times yields an adversarial image xT

that (ideally) the model classifies as ytarget.
The implementation of PGD attack does not support

making an image target a specific class. Thus, a new method -
PGD targeted - is considered: instead of maximising the loss
with respect to the clean label, this implementation minimises
the loss given another class. The results section covers how
they differ in attack success rate and benign accuracy.
Naı̈ve Implementation: Instead of the PGD-based
clean-label backdoor attack, one can opt for the naı̈ve
implementation. Before transforming the dataset from an
image to a pair of images, this attack begins by storing
one image of each label 1 through 9. As mentioned in
3.3, when customising the backdoor attack to the tasks, the
images (x, y) with labels (a, b) are weighted in an average
with pre-selected images (z, t) that have labels (c, d) such
that c%d = int(a/b). In the cases that only one image is
poisoned, there is no weighted average computed for the
clean image. To implement this attack, one has to choose the
blending percentage, which weight of the first image in the
average. Figure 3 shows that a blending percentage around
90% is suitable for the attack to be invisible.
Pre-Model Preparation: Before training the models, one
should also decide which images (left, right or both) to
poison. Furthermore, three datasets have to be created: train,
test and poisoned test. The last two will be used to assess
benign accuracy as well as attack success rate. Note that

Figure 3: Na¨ıve implementation of backdoor attack for the case
where only the second image is poisoned. The input images have
labels 7 and 4, resulting in a clean label of 7%4 = 3. The label x of
the poison image has to satisfy 7%x = int(7/4), which holds for x
= 2.

the test dataset should not have poisoned instances, while the
poisoned test set should only have such data points.
Model Implementation: Similarly to choosing a backdoor
attack, two models can be chosen: Neural Network and Logic
Tensor Networks. Although NN can be trained directly, the
LTN model needs to use world knowledge. Thus, the most
important component is the axiom, which is a first-order
translation of the symbolic information. To implement this
system, one needs connectives, quantifiers, predicates and
constants available in the ltn library5.
Training and Evaluation Protocol: After choosing the
attack and the model, the next step is to train the system.
The optimiser used was Adam6 with a learning rate of
0.001. Per each epoch the train loss, test loss, train accuracy,
test accuracy (benign accuracy) and poisoned test accuracy
(attack success rate) are stored to assess the performance of
the model.

3.3 Procedural Outline of Research Sub-Questions
To uncover how data-poisoning threats manifest under
realistic constraints, the overarching research problem is
decomposed into five focused sub-questions. Together they
probe three critical dimensions of backdoor design: task
tailoring, poisoning parameters, and algorithm effectiveness.
Addressing these issues isolates the contribution of each
factor to attack success and quantifies their interactions.
Customising the Backdoor Attack to the Tasks:
Normally, an adversary modifies the data point with a
trigger of their choice. Since the input is not a single image,
this introduces two decisions: how to modify the data point
and what the trigger is.

In the tasks considered in this paper, the data point consists
of a pair of images. Thus, the trigger can be applied to either:
i) the first image, ii) the second image or iii) to both images;
as shown in Figure 4. The general hyper-parameters chosen
were poison rate = 5% and epochs = 20 for training the
models.

The model needs to associate triggers with the labels
5https://github.com/logictensornetworks/

logictensornetworks/tree/master/ltn
6https://www.tensorflow.org/api_docs/python/tf/

keras/optimizers/Adam
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Figure 4: Three types of poisoning for the chosen tasks, either the i)
first image, ii) second image or iii) both images.

to learn the backdoor. Since the perturbation alone is
not enough to make a successful backdoor attack in the
PGD-based implementation, a 6x6 pixels square was injected
on the bottom right of the image. In contrast, the method
considered in the naı̈ve implementation is to compute the
weighted average between two images. The results section
focuses which image poisoning works best for each attack.

More formally, a data point x with label a is weighted
in an average with a pre-selected data point y which has
label b. To ensure the classes stay within bounds, an
instance with label 9 was poisoned to label 1. This approach
implements input-specific triggers, which are more difficult
to detect. However, this method suffers from the limitation
to 9 triggers because the trigger images are pre-selected.
Moreover, human inspection can assess whether a data point
was poisoned or not due to the digit patterns present.

Performance Impact of Poisoned Data Percentage:
Having decided what is the best attack architecture, this
next experiment focuses on what the best poisoned data
percentage is. Multiple Logic Tensor Networks models were
trained on data across varying poison percentages. There
are three categories considered: up to 1% - considering
more stealthy attacks, up to 10% - balancing stealthiness and
increased attack success rate; and more than 10% - aiming to
lower benign accuracy but increase attack success rate. The
following popular poisoned percentages were considered:
0.5, 1, 5, 10, 15 and 20. Note that the poisoned rate is applied
on the dataset after the pairs of images were created. The
results section presents the comparison and highlights how
they perform in contrast to Neural Networks.

Implication of Blend Percentage in the Naı̈ve
Implementation over Effectiveness: The focus until
now was on both attack implementations. Contrary to the
PGD attack that has been researched [8], the proposed naı̈ve
implementation includes a single hyper-parameter - the blend
percentage. This part focuses on how different values for
blending percentages affect the performance of the backdoor
attack implementation.

The naı̈ve implementation perturbs each sample by
interpolating it with a specific template image. Since the
target of this backdoor attack is to be invisible, the results
section will assess the trade-off between how successful and
how visible the attack is.

Comparison between State-Of-The-Art and Naı̈ve Attack
Implementation: The selected models - LTN and neural

network (NN) - were benchmarked using the clean and
poisoned test sets, on the two attack strategies. To offer a
more thorough comparison, these systems were compared
while using: i) clean data, ii) data poisoned using the targeted
PGD implementation and iii) data poisoned using the naı̈ve
implementation. The attacks were tested using the best values
for the hyper-parameters, as found earlier in this subsection.
Furthermore, the analysis includes the impact of the difficulty
of the task upon performance for the models.
Comparison of Clean-Label and Dirty-Label Attacks:
After the algorithmic benchmark, this paper’s last experiment
evaluates whether relabelling poisoned samples, despite the
higher likelihood of detection during data inspection, offers
any tangible benefit. The outcome is then contrasted
with that of a clean-label approach that leaves ground-
truth labels unchanged. By evaluating both methods under
identical experimental conditions, the aim is to quantify their
respective attack success rate and effects on benign-class
accuracy.

4 Benchmarking Results
This section reports the findings that address the five research
sub-questions: 1) how task-specific trigger design affects
backdoor performance, 2) how varying the poisoning rate
alters efficiency, 3) how different blend ratios influence
perceptibility and success, 4) how a naı̈ve interpolation attack
compares with a state-of-the-art optimisation-based method,
and 5) how dirty-label poisoning compares against its clean-
label counterpart. For each experiment, the section presents
benign accuracy and attack-success rate curves, highlights
the most influential factors, and summarises the trade-offs
revealed by the benchmarks.

4.1 Customising the Backdoor Attack to the Tasks

Figure 5: How Logic Tensor Networks model on modulo task,
poisoned with Naı̈ve backdoor attack with varying corruption
methods and blend percentage = 0.9.

All the models have been trained on poison rate = 5%.
Figure 5 indicates that implementing any of the poisoning
architectures for the naı̈ve implementation attack does not
affect the normal task performance significantly. However,
the poisoning is the most efficient when only the second
image is considered. This is because corrupting only the
divisor image leaves the model’s logical search space largely
intact, whereas corrupting the dividend (or both images)
forces the network to repair the much more influential first
image, lowering benign accuracy. In contrast, Figure 6
shows how implementing Targeted PGD poisoning using
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Figure 6: How the Logic Tensor Networks model performs on
modulo task, poisoned with Targeted PGD backdoor attack with
varying corruption methods, ϵ = 300, α = 0.005 and 10 PGD
iterations.

both images lowers the benign accuracy. The model can
no longer rely on a clean dividend–divisor redundancy to
satisfy the modulo axiom, and the benign-accuracy curve
drops accordingly.

4.2 Performance Impact of Poisoned Data
Percentage

Figure 7: How the Logic Tensor Networks model performs on
modulo task, poisoned with Naı̈ve backdoor attack, where only the
second image is corrupted with varying poisoning rates and blend
percentage = 0.9.

Figure 7 indicates that the worst performing poisoning
rates for the naı̈ve implementation are 2% and 5%. This is
because the poisoning is not frequent enough for the LTN
to internalise the backdoor, and not diverse enough for the
network to learn that the perturbation is irrelevant. However,

Figure 8: How the Logic Tensor Networks model performs on
modulo task, poisoned with targeted PGD backdoor attack, where
only the second image is corrupted with ϵ = 300, α = 0.005 and
10 PGD iterations and varying poisoning rates.

Figure 8 indicates that changing the poisoning rates for

targeted PGD attack has no impact on attack success rate nor
benign accuracy .

4.3 Implication of Blend Percentage in the Naı̈ve
Implementation over Effectiveness

The models in this experiment were all run with poisoning
rate = 5%. Figure 9 shows that a small blend (0.1–0.3) hurts
digit recognition, so benign accuracy drops while ASR rises.
As the blend rises, more stroke information returns: benign
accuracy recovers and ASR falls. At the highest blends the
trigger is barely visible, yielding near-clean performance and
a negligible ASR. As Figure 10 suggests, the naı̈ve backdoor

Figure 9: How the Logic Tensor Networks model performs on
modulo task, poisoned with Naı̈ve backdoor attack, where only the
second one was corrupted with varying blend percentages.

attack is not effective. This is indicated by the performance
when test blending is 0.1, meaning that it has an attack
success rate only if the trigger is not subtle. Therefore, for an
effective naı̈ve backdoor attack, one has to choose between
higher attack success rate or increased stealthiness.

Figure 10: How the Logic Tensor Networks model performs on
modulo task, poisoned with Naı̈ve backdoor attack with varying
blend percentages, different for training and testing.
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Figure 12: Comparison between tasks using different poisoning
attacks.

4.4 Comparison between State-Of-The-Art and
Naı̈ve Attack Implementation

Figure 11 indicates that the benign accuracy is high for all
models except three: LTN poisoned with targeted PGD on
the addition task, LTN corrupted with targeted PGD on the
modulo task, and NN poisoned with targeted PGD on the
addition task. The PGD-based attack produces corrupted
images that the model finds easier to learn than the naı̈ve
blending method. Therefore, the classifier’s accuracy on
normal data declines. The models that solved the addition
task’s have negligible attack success rates (see Appendix
Figure 21 and 22 for benchmarking LTN on both tasks).

Figure 11: Benchmarking Logic Tensor Networks and Neural
Networks on the addition and modulo task.

This means that the chosen strategies were not effective for
the addition task. Although the attack success rate is higher
on the modulo task, it still remains around 15%. Therefore,
the majority of these invisible attacks do not influence the
benign accuracy significantly, while having a reduced attack
success rate. The curves of the accuracies also suggest that it
takes longer to learn the patterns (around 5 epochs) compared
to a Neural Network that optimises faster (see Appendix
Figure 17 for the Neural Network learning curve).

4.5 Comparison of Clean-Label and Dirty-Label
Attacks

Figure 12 shows the contrast between clean-label and dirty-
label poisoning across addition and modulo tasks. When
the attacker upgrades to dirty-label PGD-targeted poisoning,
ASR remains around the same for the addition task. However,
the modulo shows an increase in ASR from 10% to 75%.
While the difference in ASR is considerable, this shows that
the attack is highly dependent on the task. For the addition
task, the benign accuracy drops significantly from 95% to
50% without re-labelling and stays at 95% when poisoning
the target class. Thus, the benign accuracy shows that not
changing labels introduces uncertainty in the model.

5 Discussion
Task-Specific Trigger Placement: When the naı̈ve
blending poisons only the second image, the Logic Tensor
Networks model attains the highest benign accuracy.
Furthermore, it has similar attack success rate to the other
two corruption architectures. The explanation for this lies
in algebra, since the modulo axiom depends much more on
a correct dividend than a correct divisor. Thus, perturbing
the first or both images forces the model to misclassify more
instances.

In the targeted PGD implementation, poisoning both
images removes the natural redundancy found in the modulo
task. Thus, the model does not have a clean reference point
and has to fit the remainder on the conflicting instance,
damaging the benign accuracy.
Poison Rate Sensitivity: For the naı̈ve backdoor attack,
rates of 2% and 5% are low enough to make the LTN
model not learn the pattern, and too high to be regarded
as noise by the system. In contrast, the PGD-based attack
shows consistency in both metrics and thus indicates minimal
sensitivity to poisoning rate.
Blend Trade-Off: With constant 5% poisoning rate,
decreasing the blending rate from 0.9 to 0.1 increases ASR
but starts to affect the benign accuracy. Low blends (0.1-0.2)
override the data point with the trigger patterns, increasing
targeted mis-classification. However, higher values (0.8-0.9)
hide the majority of the trigger while not affecting the clean
accuracy of the model, but lowering the attack effectiveness.
Comparison of Naı̈ve and PGD Optimisation: The
gradient-based PGD trigger is consistently stronger than the
naı̈ve blend. However, PGD only attains ASR as high as 15%
on the harder modulo task and performs poorly on addition
(around 1%). Furthermore, LTNs suffer a larger benign-
accuracy drop than NNs under PGD on modulo, suggesting
their logical constraints can amplify the impact of well-placed
triggers.
Label Poisoning Consequences: The results indicate that
backdoor effectiveness is highly task-dependent. In the
addition task poisoning inputs without altering labels merely
injects noise, prompting the network to hedge and causing
a marked drop in clean accuracy. Once poisoned inputs are
aligned with the target label, this uncertainty is removed and
accuracy returns to near-baseline, yet the trigger still fails
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to activate reliably. The modulo task relies on a precise
label–input correspondence. After label flipping, the model
rapidly internalises a high-confidence shortcut, yielding a
seven-fold increase in ASR while leaving benign accuracy
unaffected. These observations imply that task-agnostic
defences are insufficient; robust mitigation must account for
the way each task encodes information and responds to label
manipulation.
Impact of this Research on World: Since this paper
focuses on how effective a certain backdoor attack is on
a model, the research impacts the security of the datasets.
With the growing demand of AI infrastructure, many models
use data from the internet. Therefore, these systems can be
only as adequate as the quality of the underlying dataset.
Benchmarking Neural-Symbolic models offers a direct metric
of the safety against possible malicious patterns present in
publicly available data.
Use by Malicious Users: Although this research aims to
bring forward the robustness of the Logic Tensor Networks
model, hostile parties can also learn how effective the clean-
label data poisoning attack would be. Furthermore, offering
a detailed description of how to perform such an attack
facilitates these adversaries.

6 Conclusions and Future Work
This study evaluated the robustness of Logic Tensor
Networks (LTNs) against clean-label backdoor attacks.
Two invisible trigger strategies were analysed: a targeted
projected-gradient-descent (PGD) optimiser and a weighted
pixel-blending method. Experiments on MNIST addition and
modulo confirmed that task complexity governs vulnerability.
Targeted PGD attained 15% attack-success rate on the harder
modulo task when both images carried the trigger, yet stayed
near zero on addition. The naı̈ve blend never exceeded 5%
unless the trigger became perceptible. Raising the poison
share above 10% did not increase success, suggesting early
saturation.

Targeted PGD reduced LTN benign accuracy more than
an equally sized convolutional network, indicating that first-
order constraints can amplify well-placed triggers. Correct
trigger placement mattered: poisoning only the divisor
preserved accuracy while matching the best naı̈ve success
rate.

These findings show that clean-label backdoors, though
low-yield, still threaten neuro-symbolic models in safety-
critical contexts. Logical regularisation alone is therefore
insufficient because it may expose new failure modes under
strong optimisation.

Extending the evaluation to dirty-label poisoning revealed
a significant trade-off between attack effectiveness and
stealth. While clean-label attacks remained low-yield—with
ASR rarely exceeding 15%—dirty-label, variants achieved
up to 70% ASR on the modulo task. However, this gain
came at the cost of a substantial drop in benign accuracy,
particularly for Modulo PGD attacks, where a 12% reduction
was observed. This indicates that while dirty-label poisoning
is far more potent, it leaves a larger footprint and is more
likely to be detected through standard validation metrics. In

contrast, clean-label methods maintain stealth but suffer from
limited efficacy. These results underscore the importance of
evaluating both attack performance and detectability when
assessing the robustness of NeSy systems.

The comparative analysis of clean-label and dirty-
label PGD-targeted backdoors demonstrates that a model’s
vulnerability is tightly coupled to the semantics of the
underlying task. For binary addition, label integrity emerged
as the dominant factor: poisoned samples that retained
their correct labels suppressed benign performance without
yielding a reliable backdoor, whereas relabelling neutralised
the accuracy loss yet still failed to raise ASR appreciably.
In contrast, the modulo-2 task proved highly susceptible to
label-aligned poisoning, showing a substantial ASR surge
to 75% while maintaining near-baseline accuracy. These
divergent outcomes confirm that task structure dictates
both the collateral damage and the success of backdoor
triggers. Consequently, effective mitigation must move
beyond universal heuristics and incorporate task-specific
analyses of input redundancy, label distributions, and
decision boundaries.

The study is limited by small synthetic tasks, a single NeSy
architecture and sparse hyper-parameter grids. Future work
should scale to consider the impact of each hyper-parameter,
investigate adaptive and multi-stage attackers, and test how
defences impact the attack effectiveness.
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Appendix A: Italian Friend example
Here is an example task solved using the LTN model. The

Figure 13: Architecture diagram from the Logic Tensor Networks
GitHub repository

input to this task is a set of individuals, data about these
relationships, and the predicates:

Friend(x, y), indicating whether person x is friends with
person y.

Italian(z), indicating whether person z is Italian.

Figure 13 shows the computational graph for the logical
constraint sentence, taken from the GitHub repository of
[10]7. The task is to impose the logical constraint:

Every x has friend y who is Italian.

To solve this task, the first step is to translate it into logic:

∀x∃y : Friend(x, y) ∧ Italian(y) (2)

Next step is to represent each individual as a tensor in
a continuous space. Following that is the transformation
of every predicate (in this example, Friend(x, y) and
Italian(z)) into a function that outputs a truth value in [0,1].
For this, a Neural Network [18] can be used to estimate both
likelihoods: x and y are friends and z is Italian. The next step
is to use the known data as training samples, while enforcing
the first-order logic expression (2). The system minimizes a
loss function that balances fitting the data and satisfying the
logical constraints. As a result, the predictions of the model
respect the logical constraints because the system tries to
minimise the loss, optimising the Neural Network to impose
the conditions.

Appendix B: ChatGPT Prompts and Responses
This is a prompt used to debug the code using the Large
Language Model ChatGPT: When applying a targeted PGD
backdoor attack to an LTN model I get this error in
the method that applies the perturbation: Input 0 of
layer ”conv2d” is incompatible with the layer: expected
min ndim=4, found ndim=3. Full shape received: (28, 28,
1). What is the problem? Give me the fix. The response of the
system can be found in Figure 14.

7https://github.com/logictensornetworks/
logictensornetworks

Figure 14: Explanation of the ChatGPT model of the problem faced
in targeted PGD backdoor attack method.

Figure 15: How the Large Language Model ChatGPT was used.
This example shows the prompt and the response from the system.
The final version of the sentence was included in the description of
Figure 5 in section 3.3.
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Appendix C: Neural Network Performance on
Different Strategies

Figure 16: How the Neural Networks model performs on modulo
task, poisoned with Naı̈ve backdoor attack with varying corruption
strategies.

Figure 17: How the Neural Networks model performs on modulo
task, poisoned with targeted PGD backdoor attack with varying
corruption strategies.

Appendix D: Neural Network on Varying
Poisoning Rates

Figure 18: How the Neural Networks model performs on modulo
task, poisoned with Naı̈ve backdoor attack, where both images are
corrupted with varying poisoning rates and blend percentage = 0.9.

Figure 19: How the Neural Networks model performs on modulo
task, poisoned with the targeted PGD backdoor attack, where both
images were corrupted with ϵ = 300, α = 0.005 and 10 PGD
iterations.

Figure 20: How the Neural Networks model performs on modulo
task, poisoned with Naı̈ve backdoor attack with varying blend
percentages.

Appendix E: Logic Tensor Networks Task
Performance

Figure 21: Performance of the backdoor attacks applied on the Logic
Tensor Networks model solving the addition task.
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Figure 22: Performance of the backdoor attacks applied on the Logic
Tensor Networks model solving the modulo task.
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on their GitHub9.
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9https://github.com/logictensornetworks/

logictensornetworks

Use of Large Language Models: Throughout the project,
the artificial intelligence model ChatGPT10 (versions 4o and
o3) was used to aid the process. Specifically, the models
were only used to aid code progress with error fixes, offer
synonyms and check grammar.

10https://chatgpt.com/
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