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Émile Sylvestre a,b,*, Sarah Dorner b, Jean-Baptiste Burnet a,b, Patrick Smeets c, 
Gertjan Medema c,d, Philippe Cantin e, Manuela Villion f, Caroline Robert e, Donald Ellis e, 
Pierre Servais g, Michèle Prévost a 

a NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada 
b Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, 
Canada 
c KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands 
d Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA Delft, 
The Netherlands 
e Ministère de l’Environnement et de la Lutte contre les changements climatiques, Québec, Canada 
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A B S T R A C T   

Minimum treatment requirements are set in response to established or anticipated levels of enteric pathogens in 
the source water of drinking water treatment plants (DWTPs). For surface water, contamination can be deter
mined directly by monitoring reference pathogens or indirectly by measuring fecal indicators such as Escherichia 
coli (E. coli). In the latter case, a quantitative interpretation of E. coli for estimating reference pathogen con
centrations could be used to define treatment requirements. This study presents the statistical analysis of paired 
E. coli and reference protozoa (Cryptosporidium, Giardia) data collected monthly for two years in source water 
from 27 DWTPs supplied by rivers in Canada. E. coli/Cryptosporidium and E. coli/Giardia ratios in source water 
were modeled as the ratio of two correlated lognormal variables. To evaluate the potential of E. coli for defining 
protozoa treatment requirements, risk-based critical mean protozoa concentrations in source water were 
determined with a reverse quantitative microbial risk assessment (QMRA) model. Model assumptions were 
selected to be consistent with the World Health Organization (WHO) Guidelines for drinking-water quality. The 
sensitivity of mean E. coli concentration trigger levels to identify these critical concentrations in source water was 
then evaluated. Results showed no proportionalities between the log of mean E. coli concentrations and the log of 
mean protozoa concentrations. E. coli/protozoa ratios at DWTPs supplied by small rivers in agricultural and 
forested areas were typically 1.0 to 2.0-log lower than at DWTPs supplied by large rivers in urban areas. The 
seasonal variations analysis revealed that these differences were related to low mean E. coli concentrations 
during winter in small rivers. To achieve the WHO target of 10− 6 disability-adjusted life year (DALY) per person 
per year, a minimum reduction of 4.0-log of Cryptosporidium would be required for 20 DWTPs, and a minimum 
reduction of 4.0-log of Giardia would be needed for all DWTPs. A mean E. coli trigger level of 50 CFU 100 mL− 1 

would be a sensitive threshold to identify critical mean concentrations for Cryptosporidium but not for Giardia. 
Treatment requirements higher than 3.0-log would be needed at DWTPs with mean E. coli concentrations as low 
as 30 CFU 100 mL− 1 for Cryptosporidium and 3 CFU 100 mL− 1 for Giardia. Therefore, an E. coli trigger level would 
have limited value for defining health-based treatment requirements for protozoa at DWTPs supplied by small 
rivers in rural areas.   
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1. Introduction 

Concentrations of reference enteric protozoa (Cryptosporidium, 
Giardia) in source water must be adequately estimated to define health- 
based protozoa treatment requirements for drinking water safety (WHO 
2016). However, data are not always available because of the difficulty 
and cost associated with analyzing waterborne protozoa in environ
mental samples. In these situations, fecal indicator bacteria (FIB) such as 
Escherichia coli (E. coli) are commonly used as indicators of pathogen 
occurrence. Although FIB monitoring data sets can provide important 
information on fluctuations of fecal contamination in source water, it is 
essential to keep in mind that this indicator has limitations for predicting 
concentrations of enteric protozoa (Wu et al. 2011, Health Canada 
2017). Meteorological and environmental factors can have different 
effects on the fate and transport of indicators and pathogens in water. 
Moreover, indicators can originate from other sources than pathogens. 

Monitoring of protozoa in raw water from drinking water treatment 
plants (DWTPs) is recommended in Canada (Health Canada 2017). Still, 
protozoa monitoring is not mandatory in most Canadian provinces 
(Government of Manitoba 2007, Gouvernement du Québec 2012). In the 
United States and Alberta, Canada, protozoa monitoring is mandatory 
for large community water supplies and small community water supplies 
when E. coli concentrations are low (USEPA 2010, Government of 
Alberta 2012). Most of these regulations rely on the assumption that 
drinking water sources exposed to high E. coli concentrations have a 
greater probability of protozoa occurrence, independently of their con
centration (Payment and Locas 2011). However, a quantitative rela
tionship between concentrations of E. coli and protozoa needs to be 
established to define health-based minimum treatment requirements for 
protozoa using quantitative microbial risk assessment (QMRA). 

To determine whether E. coli data can be used to support the 
implementation of health-based treatment requirements, E. coli to pro
tozoa ratios can be evaluated over a given period at multiple DWTPs 
supplied by different types of drinking water sources. A meta-analysis of 
E. coli/Cryptosporidium ratios in primary sources of fecal contamination 
suggested that E. coli is generally a good indicator for predicting Cryp
tosporidium occurrence for urban pollution sources (raw and treated 
wastewater) but not for agricultural runoff (Lalancette et al. 2014). In 

this study, E. coli/Cryptosporidium ratios were also evaluated at drinking 
water intakes from 13 DWTPs in Quebec, Canada, using data from 
Payment et al. (2000). As estimated in their meta-analysis, ratios at 
drinking water intakes were lower for sources influenced by agricultural 
runoff than those influenced by municipal sewage. The present study 
was designed to validate these findings using recent data collected at 27 
surface DWTPs supplied by rivers dominated by urban, agricultural, or 
wildlife sources of fecal pollution in Quebec, Canada. The mathematical 
model of Lalancette et al. (2014) was also extended to evaluate the un
certainty associated with arithmetic mean E. coli/Cryptosporidium and 
E. coli/Giardia ratios. 

The objectives of this study were (i) to derive the arithmetic mean 
ratio of two correlated lognormal distributions and use this model to 
characterize E. coli/Cryptosporidium and E. coli/Giardia ratios in source 
water for 27 DWTPs supplied by rivers; (ii) to investigate the influence of 
river types and seasons on the variation in the magnitude of the mean 
ratios; and (iii) to evaluate whether E. coli trigger levels provide valuable 
information for defining health-based treatment requirements for 
pathogenic protozoa at these DWTPs. 

2. Materials and methods 

2.1. Classification of sites 

Source water supplies were anonymized and classified according to 
their annual mean flow rate (Table 1). Group A, Group B, and Group C 
represent rivers with mean flow rates of less than 20 m3 s− 1, between 20 
and 100 m3 s− 1, and larger than 100 m3 s− 1, respectively. The main land 
cover type for each catchment was determined visually with Google 
Earth. 

2.2. Sampling and microbial detection methods 

Paired samples were collected monthly over approximately two 
consecutive years between 2011 and 2020 at each of the 27 DWTPs. For 
the detection of Cryptosporidium and Giardia, a raw water volume 
varying from 10 to 60 litres was filtered on-site with an Envirochek HV 
cartridge (Pall) according to U.S. EPA method 1623 (from 2011 to 2012) 

Table 1 
Summary of Cryptosporidium and Giardia data and catchment information for 27 surface drinking water treatment plants (DWTPs).  

DWTP Main land cover type Catchment size (km2) Mean river discharge (m3/s) n Crypto (+ve) Giardia (+ve) Sampling period 

A01 Agricultural 100 <20 21 7 21 2018/4/30 2019/3/28 
A02 Agricultural 200 <20 21 13 21 2018/4/30 2019/3/28 
A1 Forested 100 <20 20 20 20 2016/5/17 2018/1/31 
A2 Mixed <100 <20 20 15 20 2016/5/10 2018/1/31 
A3 Mixed 500 <20 21 12 21 2014/6/17 2016/3/21 
A4 Agricultural <100 <20 24 18 24 2014/3/25 2016/3/15 
B1 Mixed 2500 23 22 19 22 2014/3/25 2016/3/15 
B2 Forested 4000 26 19 14 19 2016/5/10 2017/11/6 
B3 Mixed 2500 26 18 7 18 2016/05/9 2017/11/13 
B4 Mixed 4200 27 15 6 15 2011/8/28 2013/8/13 
B5 Mixed 1100 36 18 13 17 2016/5/17 2017/11/13 
B6 Mixed 2500 70 18 9 18 2016/5/10 2017/11/6 
B7 Agricultural 3400 74 16 9 16 2011/5/3 2013/9/23 
C1 Mixed 10,000 114 19 16 18 2016/5/9 2017/11/7 
C2 Agricultural 10,000 114 17 14 17 2016/5/9 2017/11/7 
C3 Mixed 7000 114 15 14 15 2014/3/25 2016/9/8 
C4 Mixed 10,000 190 22 8 22 2014/3/25 2016/3/15 
C5 Agricultural 10,000 190 15 5 15 2011/5/3 2013/9/23 
C6 Urban >50,000 286 48 20 43 2013/1/1 2016/12/31 
C7 Urban >50,000 286 16 8 16 2011/8/22 2013/9/10 
C8 Mixed 23,000 330 17 10 17 2014/3/25 2016/9/22 
C9 Mixed 23,000 330 15 3 15 2014/6/17 2015/9/22 
C10 Urban >50,000 1365 45 13 39 2013/1/1 2016/12/31 
C11 Urban >50,000 1365 46 13 41 2013/1/1 2016/12/31 
C12 Urban >50,000 16,000 16 10 16 2011/5/2 2013/9/10 
C13 Mixed >50,000 16,000 16 11 16 2011/8/22 2013/9/10 
C14 Mixed >50,000 16,000 17 6 17 2011/5/2 2013/9/23  
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and U.S. EPA method 1623.1 (from 2013 to 2020). For one DWTP, 10- 
liter cubitainers were collected on-site and filtered at the laboratory. 
The enumeration of Cryptosporidium oocysts and Giardia cysts was 
carried out according to U.S. EPA method 1623 or 1623.1 (USEPA 
2005a, (USEPA 2012)). Mean analytical recovery rates of 43 matrix 
spikes in raw water samples collected at these DWTPs were 0.46 
(Standard Deviation [SD] = 0.14) for Cryptosporidium and 0.50 (SD =
0.17) for Giardia. 

The enumeration of E. coli was done by membrane filtration ac
cording to the modified mTEC method from 2011 to 2012 or mFC-BCIG 
method (CEAEQ MA.700 - Ec.BCIG 1.0) from 2013 to 2020. These 
methods involve filtration of the sample through a 0.45 μm porosity 
membrane, which is then deposited on a selective agar medium and 
incubated at 44.5◦C for 24 h. The E. coli colonies were identified and 
counted visually, and the concentration was expressed in CFU 100 mL− 1. 

3. Statistical methods 

3.1. Ratio of microbial concentrations 

3.1.1. Poisson counts in mixture distributions 
A pragmatic way to account for non-detects is to assume that each 

observed count is Poisson distributed and that the unknown microbial 
concentration is described by a mixture distribution (Haas et al. 1999). 
Within a mixed Poisson modeling framework, the probability of finding 
k organisms in a homogenous sample x of volume V collected from a 
suspension of mean concentration c is given by a Poisson distribution 
with probability mass function: 

p(k|cV) =
(cV)k

k!
exp(− cV) (1) 

Overdispersion relative to the Poisson distribution was expected 
because microbial concentrations typically vary over orders of magni
tude in river water. A mixing distribution was selected to account for the 
unobserved heterogeneity, i.e., the temporal variation of the concen
tration c in successive samples. The mixed Poisson distribution 
describing variations in counts is given by: 

P(k|cV, θ) =
∫ p

(k; cV)f (c; θ)dc (2)  

where f is a mixing distribution of parameters θ. The precise form of the 
mixed Poisson distribution depends on the choice of f(c; θ). In this study, 
the lognormal distribution was selected as a mixing distribution because 
the mean ratio of two lognormal variables is simple to derive. The 
lognormal distribution has a probability density: 

f (c|μ, σ) = 1
σc

̅̅̅̅̅
2π

√ exp
[

−
1
2
[ln c − μ]2

σ2

]

(3)  

where the shape parameter μ and the scale parameter σ are, respectively, 
the expected value and the standard deviation of the natural logarithm 
of c. 

Original observations (counts, processed volumes) were not avail
able to model temporal variations in E. coli concentrations. Therefore, a 
parameters of the lognormal distribution were estimated from reported 
E. coli concentrations. Non-detects were replaced by a detection limit of 
1 CFU 100 mL− 1. This approach for handling non-detects should not 
result in substantial estimation biases because the proportion of non- 
detects was typically very small (< 5%) for E. coli. Recovery rates of 
100% were assumed for E. coli. 

3.1.2. Ratio of two correlated lognormal variables 
To derive the ratio of lognormal variables, let X be the E. coli con

centration in CFU L− 1 and Y be the protozoa concentration in (oo)cyst 
L− 1. If X ∼ LN(μX, σX) and Y ∼ LN(μY , σY), then, by definition, ln(X)
and ln(Y) are normally distributed. It follows that the difference 

Z between ln(X) and ln(Y) is normally distributed with mean 

μZ = μX − μY (4)  

and variance 

σ2
Z = σ2

X + σ2
Y − 2σxy

n (5)  

where σxy
n is the covariance between X and Y in log space. Therefore, the 

ratio X/Y is described by Z ∼ LN(μZ, σZ) with mean 

E(Z) = exp
(

μZ +
σ2

Z

2

)

. (6) 

To account for the correlation between X and Y, the covariance σxy
n in 

Eq. (5) can be calculated as follows: 

σxy
n = ln

(
σxy

ln

xy
+ 1

)

(7)  

where σxy
ln is the covariance in real space and x and y are the arithmetic 

means of X and Y (Crow and Shimizu 1987). The covariance σxy
n is 

related to the Pearson’ moment correlation coefficient in log-space ρxy
n 

by: 

ρxy
n =

σxy
n

σXσY
(8) 

By substituting Eqs. (7) – (8) in Eq. (5), the mean ratio X/Y from Eq. 
(6) can be rewritten in the following form: 

E(X / Y) = exp
(

(μX − μY)+
σ2

X + σ2
Y − 2ρxy

n σXσY

2

)

(9) 

The covariance σxy
ln and sample means x and y in Eq. (7) were eval

uated from the sample considering that non-detects had a concentration 
of 0 (oo)cyst. The arithmetic mean ratio was evaluated because it can be 
calculated straightforwardly. It is also a standard measure of location to 
compare ratios among groups. Recovery rates of 100% were assumed for 
protozoa in this model. 

3.1.3. Influence of seasonality, weather events and nonconstant analytical 
recovery 

Mean ratios of pooled data by seasons were evaluated for Group A, 
Group B and Group C to provide an overall summary of the influence of 
river types and seasons on the magnitude of mean ratios. The climate in 
southern Quebec is humid continental and it is characterized by large 
seasonal temperature differences and four seasons. In this work, seasons 
were defined as winter (Dec.-Feb.), spring (Mar.-May), summer (June- 
Aug.) and autumn (Sept.-Nov.). 

For DWTPs A4, C6 and C7, mean ratios in routine monitoring con
ditions (i.e., ratios evaluated with routine monitoring data) were 
compared to daily mean ratios determined for event conditions (i.e., 
ratios evaluated with data obtained following rainfall and snowmelt 
events). A detailed characterization of event-based sampling strategies 
implemented to obtain these data sets is presented elsewhere (Sylvestre 
et al. 2020b, Sylvestre et al. 2021). Daily mean ratios in event conditions 
were estimated by averaging ratios from each sample i as follows: 

E
(

X
Y

)

event
=

1
n

∑n

i=1

Xi

Yi
(10)  

where X is the E. coli concentration and Y is the protozoa concentration. 
Event-based samples were collected at regular intervals of 4 h or 6 h over 
24 h (DWTPs A4, C6) or three times over 96 h (DWTP C7). Concentra
tions of protozoa during events were estimated from raw (oo)cyst counts 
corrected for sample-specific recovery rates. To account for the analyt
ical recovery in the estimation of the mean ratio in routine monitoring 
conditions, the number of microorganisms observed in each sample was 
modeled as a binomial distribution of independent counts having a 
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probability of recovery described by a beta distribution with parameters 
(α̂, β̂) = (6.48, 7.70) for Cryptosporidium and (α̂, β̂) = (3.80, 3.91) for 
Giardia (Sylvestre et al. 2020c). 

3.1.4. Model implementation 
The parameters of the Poisson lognormal distributions were esti

mated using Markov chain Monte Carlo (MCMC) simulations via rjags 
(v4–6) (Plummer 2013) in R (v4.0.4). For each parameter, four Markov 
chains were run for 1 × 106 iterations after a burn-in phase of 104 it
erations. The convergence of chains was monitored using the 
Brooks-Gelman-Rubin scale reduction factor (Gelman and Shirley 
2011). The median of the posterior distribution of the arithmetic mean 
and its 95% credibility interval were reported for microbial concentra
tions and ratios. Estimates of the 95% credibility interval of the posterior 
distributions of the parameter values were considered reasonably ac
curate when an effective sample size (ESS) higher than 10,000 was 
obtained (Kass et al. 1998, Kruschke 2014). Uninformative or weakly 
informative priors were adopted. Priors on parameters μ and σ were set 
to Uniform (-10, 10) and exp(1), respectively. The rationale for the se
lection of these priors is presented elsewhere (Sylvestre et al. 2020c). 
The R code is provided in the Supplementary Material. 

3.2. Scaling relationship between E. coli and protozoa 

3.2.1. Bivariate power-law regression 
Sample mean E. coli concentrations and sample mean protozoa 

concentrations from the 27 sites were compared on a log-log scale. The 
relationship between E. coli and protozoa was evaluated with a bivariate 
power-law expressed as follows: 

c2 = rc1
k (11)  

where c2 is the mean protozoa concentration, c1 is the mean E. coli 
concentration, r is the intercept at c1 = 1, and k is the dimensionless 
scaling exponent. The slope k identifies the relationship between c1 and 
c2. The following three situations are relevant to consider: (1) k = 1, the 
relationship between c1 and c2 is proportional; (2) k < 1, a large change 
in c1 is only related to a small change in c2; (3) k = 0: a large change in c1 
is not related to a change in c2. Power laws were fitted using the itera
tively reweighted least-squares (IRLS) algorithm from the glm function 
in R software environment. 

3.2.2. Risk-based critical mean Cryptosporidium and Giardia 
concentrations 

Risk-based critical mean Cryptosporidium and Giardia concentrations 
in source water were determined for treatment reduction requirements 
of 3.0-log and 4.0-log. The critical mean concentration was defined as 
the maximum Cryptosporidium or Giardia concentration that would be 
tolerable to achieve a health-based target of 10− 6 disability-adjusted life 
year (DALY) per person per year. Critical mean concentrations C were 
calculated with the following reverse QMRA model: 

C =

[
1
R

⋅I⋅10− T ⋅V⋅r⋅Piιι|inf ⋅DB⋅E⋅fs

]− 1

⋅HT (11)  

where R is the recovery rate of the enumeration method, I is the infec
tivity of (oo)cysts, T is the reduction of the organism by treatment, V is 
the volume of drinking water ingested per person per day, r is the 
probability of infection for a single organism, Pill|inf is the probability of 
infection given illness, DB is the disease burden, E is the number of 
exposures per year, fs is the susceptible fraction of the population, and 
HT is the health outcome target. Each variable of the model was 
described by its arithmetic mean. Mean values and assumptions for each 
parameter are presented in Table 2. Full-scale reductions of Giardia and 
Cryptosporidium at the selected DWTPs were not evaluated and consid
ered in the QMRA. Risk-based concentrations were determined for 

theoretical treatment reduction requirements. Most assumptions for the 
QMRA for Cryptosporidium (ingestion volume, dose-response model for 
infection, probability of illness given infection, disease burden) were 
selected to be consistent with those recommended in the WHO Guide
lines for drinking-water quality (GDWQ) (WHO 2017). Conservative 
default mean infectivity fractions of 30% for Cryptosporidium oocysts 
and 100% for Giardia cysts were assumed to characterize source water 
concentrations. Conservative human pathogenicity fractions of 100% 
were assumed for Cryptosporidium and Giardia. 

3.2.3. Sensitivity of E. coli for identifying critical mean protozoa 
concentrations 

The sensitivity of E. coli trigger levels to identify “high” Cryptospo
ridium and Giardia concentrations in source water was evaluated based 
on the methodology presented in USEPA (2005b). Cryptosporidium and 
Giardia “levels of concern” were defined as the risk-based critical mean 
concentrations for treatment requirement of 3.0-log. Selected E. coli 
trigger values ranged from 5 CFU 100 mL− 1 to 100 CFU 100 mL− 1. The 
sensitivity of E. coli was defined as the proportion of DWTPs with “high” 
Cryptosporidium and Giardia concentrations that exceed the E. coli trigger 
level. 

4. Results 

Site-specific mean E. coli/protozoa ratios were typically 1.0 to 2.0- 
log lower at DWTPs supplied by small and medium rivers (Group A, 
Group B) in comparison with DWTPs supplied by large rivers (Group C) 
(Fig. 1). Ratios varied by approximately 4.0-log for both Cryptosporidium 
(103–107) and Giardia (100–104). Mean E. coli/Cryptosporidium ratios 

Table 2 
Assumptions and mean values for each parameter of reverse QMRA models used 
for the determination of risk-based critical mean Cryptosporidium and Giardia 
concentrations.  

Parameter Units Cryptosporidium Giardia 

Health outcome target 
(HT)

DALY per year 1 × 10− 6 1 × 10− 6 

Susceptible fraction (fs) Fraction of 
population 

1.00 1.00 

Disease burden (DB) a  DALY per case 1.5 × 10− 3 1.7 × 10− 3 

Risk of illness given 
infection (Pill|inf )

b  
Probability of illness 
per infection 

0.70 0.40 

Number of exposures per 
year (E)

Days 365 365 

Risk of infection (r) c  Probability of 
infection per 
organism 

0.20 0.02 

Consumption of 
unheated drinking 
water (V) d  

Litres per day 1 1 

Treatment (T) Log10 3.0-log or 4.0- 
log 

3.0-log or 
4.0-log 

Infectivity of organisms 
(I) e  

Fraction of 
organisms 

0.30 1.00 

Recovery rate of the 
enumeration method 
(R) f  

Fraction of 
organisms 

1.00 1.00  

a Disease burden for Cryptosporidium from Havelaar and Melse (2003) and for 
Giardia from Gibney et al. (2014) 

b Fraction for Cryptosporidium from Teunis et al. (2002) and for Giardia from 
Nash et al. (1987) 

c Dose–response for Cryptosporidium from WHO (2009) and for Giardia from 
Regli et al. (1991) 

d Based on WHO (2017) 
e Conservative assumption for Cryptosporidium based on Lalancette et al. 

(2012) 
f Recovery rates of 100% were assumed because observations were not cor

rected for the analytical recovery. 
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were generally 2.0 to 3.0-log higher than mean E. coli/Giardia ratios 
because Cryptosporidium concentrations were lower and more uncertain 
than Giardia concentrations (Supplementary Fig. 1). Modeled E. coli/ 
Cryptosporidium ratios were not reported for 10 DWTPs because MCMC 
samples for estimating parameters of the Poisson lognormal distribution 
for Cryptosporidium were highly correlated (ESS < 10,000). Empirical 
ratios (calculated assuming a detection limit of 1 (oo)cyst/volume) are 
shown for these sites. The 95% credible intervals on the mean spanned 
from 2.0 to 3.0-log for E. coli/Cryptosporidium ratios and from 1.0 to 2.0- 
log for E. coli/Giardia ratios. The parametric uncertainty on the E. coli/ 
Cryptosporidium ratio was high when less than ten positive samples were 
measured at a site (Fig. 1, Table 1). 

The incorporation of Pearson’s product-moment correlations in the 
model had a minor effect (< 0.5-log) on mean ratios at most locations 
(Supplementary Table 1, Supplementary Fig. 1). However, high corre
lations (absolute value > 0.5) increased (negative correlation) or 
reduced (positive correlation) mean ratios by approximately 1.0-log. 
Overall, positive correlations were higher for Giardia than for 
Cryptosporidium. 

The seasonal analysis of pooled data showed that E. coli/Cryptospo
ridium and E. coli/Giardia ratios were especially low during winter (Dec.- 
Feb.) in Group A (Q ≤ 20 m3 s− 1) (Fig. 2, Supplementary Table 3). These 
low ratios were associated with low E. coli concentrations and high 
Giardia concentrations during this period. Mean E. coli concentrations in 
winter conditions were lower in Group A (47 CFU 100 mL− 1) compared 
to Group B (222 CFU 100 mL− 1) and Group C (668 CFU 100 mL− 1). The 
seasonal analysis also shows that the uncertainty on the mean Crypto
sporidium concentration dominated the uncertainty on the E. coli/Cryp
tosporidium ratio (e.g., summer ratio in Group C). 

During event conditions and routine monitoring conditions, mean 
E. coli/Cryptosporidium ratios were similar for DWTPs A4 (rainfall) and 
C6 (rainfall and snowmelt) (Fig. 3). In contrast, E. coli/Giardia ratios at 
DWTPs A4 and C7 (snowmelt) were approximately 1.0-log lower during 
peak conditions in comparison to routine monitoring conditions. Ac
counting for beta distributed recovery rates reduced the mean E. coli/ 
protozoa ratios but did not change the magnitude of the 95% credible 
interval. 

The power-law regression showed that the log of mean E. coli con
centrations and the log of mean protozoa concentrations were not pro
portional (Fig. 4). The slope k for Cryptosporidium and Giardia were 0.26 
(95% CI 0.08 0.47) and 0.19 (95% CI − 0.04 0.43), respectively. Pre
dicted R-squared were small for E. coli as a predictor of protozoa 
(Cryptosporidium: 26%; Giardia: 10%) and moderate for Giardia as a 
predictor for Cryptosporidium (43%) (Supplementary Fig. 2). To achieve 
a target of 10− 6 DALY per person per year, a minimum reduction of 4.0- 
log of Cryptosporidium (critical concentration: 0.038 cysts L− 1) was 
required for 20 DWTPs. A minimum reduction of 3.0-log of Cryptospo
ridium was needed for the seven other DWTPs. For Giardia, a reduction of 
at least 4.0 log of Giardia (critical concentration: 0.228 cysts L− 1) was 
required for all DWTPs. Moreover, a reduction of at least 5.0 log of 
Giardia (critical concentration: 2.28 cysts L− 1) was required for 6 
DWTPs. A treatment requirement of 3.0-log for a mean E. coli concen
tration below a trigger level of 50 CFU 100 mL− 1 would result in a 
maximum risk of 10− 5.4 DALY/pers.-year for Cryptosporidium (DWTP 
A1) and 10− 4.7 DALY/pers.-year for Giardia (DWTP A1). 

The sensitivity of E. coli trigger levels for correctly identifying “high” 
Cryptosporidium and “high” Giardia concentrations is shown in Table 3. A 
trigger level of 50 CFU 100 mL− 1 resulted in a sensitivity of 95% for 

Fig. 1. E. coli/Cryptosporidium and E. coli/Giardia ratios in raw water from 27 drinking water treatment plants evaluated from paired samples collected monthly for 
approximately two years. Vertical bars represent the 95% credible interval on the arithmetic mean. Modeled E. coli/Cryptosporidium ratios are not presented for 
DWTPs A01, B3, B4, B5, C5, C9, C10, C11, C12 and C14 because model fits were not acceptable. Empirical ratios calculated assuming a limit of detection of 1 
organism/analyzed volume are indicated for these sites. 
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Cryptosporidium. Lowering the trigger level to 10 CFU 100 mL− 1 pro
duced a sensitivity of 100%. For Giardia, a trigger level of 10 CFU 100 
mL− 1 resulted in a sensitivity of 92%. 

5. Discussion 

Despite inherent uncertainties associated with quantifying reference 
pathogen concentrations from indicator data, fecal indicator bacteria 
trigger levels are still commonly used to define treatment requirements 
in drinking water safety regulations. The values and limitations of in
dicators for predicting reference pathogen concentrations need to be 

rigorously assessed to support the development and the revision of risk- 
based regulations. This study was undertaken to determine whether 
E. coli is a valid quantitative indicator for defining protozoa treatment 
requirements at surface DWTPs. 

The ratio of two lognormal variables was derived and used to eval
uate site-specific ratios from paired monitoring data collected at 27 
DWTPs. The proposed mixed Poisson model allowed to handle non- 
detects, correlations, and parametric uncertainties. Mean E.coli/Cryp
tosporidium ratios predicted by this model were higher than ratios pre
viously estimated at DWTPs supplied by rivers by Lalancette et al. 
(2014). This finding was expected because non-detects were not 

Fig. 2. Seasonal variations in E. coli/Cryptosporidium ratios, E. coli/Giardia ratios and concentrations of Cryptosporidium, Giardia and E. coli in raw water from pooled 
data for Groups A, B, and C. Vertical bars represent the 95% credible interval on the arithmetic mean ratio. 
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considered in ratios reported by Lalancette et al. (2014). Therefore, 
modeling ratios with mixed Poisson distributions can considerably in
crease the mean ratio, especially for DWTPs with a high proportion of 
non-detects. Accounting for correlations between concentrations of 
E. coli and protozoa rather than statistical independence did not change 
the magnitude of mean ratios for most DWTPs, because correlations 
were typically weak. However, neglecting moderately large linear cor
relations (ρ > 0.5) resulted in an overestimation or an underestimation 
of the mean ratio for some DWTPs, as previously demonstrated for the 
estimation of the product of two correlated lognormal variables (Smith 
et al. 1992). The quantification of parametric uncertainty revealed that 
site-specific mean E. coli/Cryptosporidium ratios evaluated from small 
data sets (n < 30) were often highly uncertain. Other positively skewed 
distributions may be used to estimate ratios. The ratio of Poisson gamma 

distributions could be a valuable model for datasets with small count 
observations and a high proportion of non-detects. This ratio is simple to 
derive and has been used previously for microbial risk assessment 
(Teunis et al. 2009). It can be demonstrated that if X ∼ Γ(α1, β1) and 
Y ∼ Γ(α2, β2) are independently distributed, then X/Y has a gener

alized beta prime distribution β′

(

α1,α2, 1, β2
β1

)

(Johnson et al. 1995). 

However, the generalized Beta prime distribution has an infinite mean if 
its shape parameter α2 has a value ≤ 1. In our work, this condition was 
too restrictive to model mean ratios at most DWTPs. The ratio of two 
correlated gamma variables has also been derived and used to evaluate 
the mean ratio of fecal coliforms to fecal streptococci in surface water 
(Loáiciga and Leipnik 2005) but the calculation of this ratio requires 

Fig. 3. E. coli/Cryptosporidium ratio and E. coli/Giardia ratio in routine monitoring conditions versus event conditions at drinking water treatment plants A4, C6, and 
C7. Ratios corrected for the analytical recovery of Cryptosporidium and Giardia are compared to ratios evaluated with uncorrected Cryptosporidium and Giardia 
concentrations. Vertical bars represent the 95% credible interval on the arithmetic mean ratio. 

Fig. 4. Bivariate power laws predicting the relationship between the log of the sample mean E. coli concentrations and the log of the sample mean protozoa con
centrations for 27 drinking water treatment plants. Shaded areas represent intervals for which a minimum treatment requirement of 3.0-log, 4.0-log or 5.0-log is 
required to achieve a target of 10− 6 DALY per person per year. Risk-based critical concentrations were calculated with a reverse-QMRA model. 
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advanced integration techniques. Nonetheless, it has recently been 
demonstrated that the gamma distribution can underestimate the 
magnitude of E. coli and protozoa concentrations in source water during 
wet weather events (Sylvestre et al. 2020a, Sylvestre et al. 2020b). Thus, 
the ratio of two lognormal variables may be a better model than the ratio 
of two gamma variables to account for the influence of high microbial 
concentrations on mean ratios. 

As observed by Lalancette et al. (2014) for the E.coli/Cryptosporidium 
ratio, E. coli/protozoa ratios in small and medium rivers were typically 
1.0 to 2.0-log lower than those in large rivers. The analysis of pooled 
data with power-law regressions also showed that a large change in the 
mean E. coli concentration is related to small changes in mean Crypto
sporidium or Giardia concentrations. Therefore, relying on E. coli data 
only may lead to an inaccurate assumption that protozoa concentrations 
are low too. The variability and uncertainty in concentrations of E. coli 
and protozoa were not considered in this analysis. 

The critical mean Cryptosporidium concentration determined with 
the reverse-QMRA model for a reduction by a treatment of 3.0-log 
(0.038 oocysts L− 1) was similar to the level of 0.075 oocysts L− 1 used 
to trigger additional treatment requirements (> 3.0-log) for filtered 
systems within the U.S. EPA Long Term 2 Enhanced Surface Water 
Treatment Rule (LT2) (United States Environmental Protection Agency 
(USEPA) 2006). In our work, a conservative dose–response model (r =
0.2) was selected for Cryptosporidium parvum (WHO 2009). It was 
assumed that this dose–response model was consistent with recent sci
entific evidence as it is currently applied in the WHO Guidelines for 
drinking-water quality (GDWQ) (WHO 2017). Nonetheless, the Crypto
sporidium dose–response relationship remains highly uncertain at 
low-dose exposures (Messner and Berger 2016, Schmidt and Chappell 
2016). In the current study, a default mean infectivity fraction of 30% 
was selected to characterize Cryptosporidium oocysts in source water. 
This fraction is similar to the one used for defining protozoa treatment 
requirements for surface water supplies in the United States (United 
States Environmental Protection Agency (USEPA) 2005). An infectivity 
fraction of 30% has also been recently suggested as a conservative es
timate for QMRA based on Cryptosporidium data collected across nine 
locations in South Australia (Swaffer et al. 2018). Considering a human 
pathogenicity fraction of 100% for Cryptosporidium may overestimate 
risks depending on the catchment type and the inputs from wildlife. 
Fractions of human pathogenic species (C. hominis and C. parvum) of 
approximately 10% were found in the South Nation River and the Grand 
river basins in Ontario, Canada (Wilkes et al. 2013, Lapen et al. 2016). 
The analysis of site-specific human pathogenicity/infectivity data could 
be valuable in an in-depth QMRA to determine whether additional 
treatment is needed. 

The E. coli trigger level of 50 CFU 100 mL− 1 used to trigger Crypto
sporidium monitoring for small community water supplies in the LT2 had 
a high sensitivity for identifying critical mean Cryptosporidium 

concentrations. However, increasing the trigger level to 100 CFU 100 
mL− 1 considerably reduced the sensitivity. The sensitivity of E. coli 
trigger levels was lower for Giardia compared to Cryptosporidium. 
Overall, these analyses showed that treatment requirements higher than 
3.0-log would be needed at some sites with low mean E. coli concen
tration to achieve 10− 6 DALY per person per year targets for Crypto
sporidium and Giardia. Additional treatment credits may be obtained by 
optimizing the performance of existing treatment processes (e.g., filter 
effluent turbidity target) (USEPA 2010). However, additional disinfec
tion processes (e.g., UV disinfection) may be needed if treatment pro
cesses are already optimized. 

The evaluation of seasonal variations of ratios pooled by river sizes 
generally reduced the parametric uncertainty on mean ratios. The sea
sonal variations analysis indicated that differences in ratios were partly 
related to differences in mean E. coli concentrations during winter 
among groups. In fact, decreases in mean E. coli concentrations during 
winter and spring were observed at DWTPs supplied by small rivers in 
agricultural and forested areas but not at DWTPs supplied by large rivers 
in urban areas. The die-off of E. coli in winter may be higher in non-point 
source pollution (surface runoff, soil leaching) than in point source 
pollution (wastewater treatment plants effluents, combined sewer 
overflow discharges). Large rivers in southern Quebec are primarily 
influenced by treated and untreated municipal wastewater discharges 
(combined sewer overflow discharges, sporadic sewage by-passes) 
(Payment et al. 2000) and the increase E. coli concentrations following 
wastewater discharges in winter and spring has been documented pre
viously for DWTPs C6, C7, C10, and C11 (Madoux-Humery et al. 2016, 
Burnet et al. 2019, Sylvestre et al. 2021). 

By contrast, the contribution of agricultural pollution sources may be 
considerably higher in summer than in winter. In summer, grazing 
surfaces are contaminated by livestock feces and manure is applied to 
croplands. Consequently, rainfall-induced runoff can carry water 
contaminated by fecal wastes into surface water. On the other hand, in 
winter, livestock is kept inside due to cold temperatures; therefore, 
runoff water is less contaminated by livestock feces. This hypothesis is 
only valid for agricultural areas (not for forested areas); however, it has 
been shown that in rural areas, fecal contamination of rivers mainly 
originates from grazing areas (George et al. 2004, Garcia-Armisen and 
Servais 2007, Ouattara et al. 2011). Other potential causes for seasonal 
variations in rural areas are the buffering of surface runoff by snow in 
winter and the effect of freeze–thaw cycles on the survival of microor
ganisms in water. Wang et al. (2019) recently reported a decline in initial 
E. coli concentrations of 4.0-log in river water after 1 to 3 freeze–thaw 
cycles but not at a constant temperature of 4 ◦C (< 1.0-log). Afolabi et al. 
(2020) inoculated animal feces into water and measured high reductions 
in initial E. coli concentrations after one freeze–thaw for red deer feces 
(1.0 to 3.0-log) but not in dairy cow feces (< 1.0-log). The effect of 
freeze–thaw cycles on Cryptosporidium and Giardia survival is uncertain. 
Kato et al. (2002) reported a reduction of 1.0-log of viable oocysts of 
Cryptosporidium parvum in water after five freeze–thaw cycles. Rob
ertson and Gjerde (2004) diluted a bovine fecal sample in water and 
found that initial numbers of Giardia cysts and Cryptosporidium oocysts 
were reduced by 0.6-log after five freeze–thaw cycles. Further research 
on the survival of E. coli and protozoa in winter conditions may therefore 
be valuable to investigate differences in ratios. The analysis of E. coli to 
protozoa ratios in rivers located in other climatic regions would also be 
relevant to investigate the nature and extent of this problem. 

6. Conclusions 

In this study, relationships between E. coli, Cryptosporidium and 
Giardia were quantified using paired E. coli and protozoa data collected 
in source water from 27 drinking water treatment plants (DWTPs). To 
evaluate the potential of E. coli for defining minimum treatment re
quirements, risk-based critical mean protozoa concentrations in source 
water were determined with a quantitative microbial risk assessment 

Table 3 
Sensitivity of E. coli trigger levels for correctly identifying risk-based critical 
mean concentrations of Cryptosporidium and Giardia at 27 drinking water 
treatment plants.  

Protozoa E. coli trigger level 10 CFU/ 
100 mL 

50 CFU/ 
100 mL 

100 CFU/ 
100 mL 

Did plant exceed E. coli 
trigger level? 

No Yes No Yes No Yes 

Crypto. ≤ 0.038 oocysts/L (3.0-log 
required) 

2 5 4 3 5 2 

> 0.038 oocysts/L (>3.0-log 
required) 

0 20 1 19 7 13 

Sensitivity 100% 95% 65% 
Giardia ≤ 0.228 cysts/L (3.0-log 

required) 
0 0 0 0 0 0 

> 0.228 cysts/L (>3.0-log 
required) 

2 25 5 22 12 15 

Sensitivity 92% 81% 55%  

É. Sylvestre et al.                                                                                                                                                                                                                                



Water Research 205 (2021) 117707

9

(QMRA) model developed using the methods and assumptions recom
mended by the World Health Organization (WHO) Guidelines for 
drinking-water quality. This work led to the following conclusions:  

• It was possible to evaluate site-specific mean E. coli/Cryptosporidium 
ratios and mean E. coli/Giardia ratios in source water by modeling 
the ratio of two correlated lognormal variables. Non-detects, corre
lations between E. coli and protozoa, and parametric uncertainties 
were taken into account with this model;  

• E. coli/protozoa ratios at DWTPs supplied by small and medium 
rivers in agricultural or forested areas were typically 1.0 to 2.0-log 
lower than at DWTPs supplied by large rivers in urban areas. These 
results support the findings of Lalancette et al. (2014). The seasonal 
variation analysis revealed that these differences were related to low 
mean E. coli concentrations during winter at DWTPs supplied by 
small rivers;  

• Power law regressions showed no proportionalities between the log 
of mean E. coli concentrations and the log of mean protozoa con
centrations at the 27 sites. This analysis indicated that large changes 
in mean E. coli concentrations are related to small changes in mean 
Cryptosporidium or Giardia concentrations;  

• Results from QMRA models indicated that a minimum reduction of 
4.0-log would be needed at 20 DWTPs to achieve a health-based 
target of 10− 6 DALY per person per year for Cryptosporidium. A 
minimum reduction of 4.0-log would be necessary at all DWTPs to 
achieve this target for Giardia;  

• To achieve a target of 10− 6 DALY per person per year, treatment 
requirements higher than 3.0-log would be needed at DWTPs with 
mean E. coli concentrations as low as 30 CFU 100 mL− 1 for Crypto
sporidium and 3 CFU 100 mL− 1 for Giardia. Therefore, the definition 
of an E. coli trigger level would have limited value for defining 
health-based treatment requirements for protozoa at these DWTPs;  

• Overall, this work suggests that E. coli monitoring does not provide 
valuable insight for the risk assessment of Cryptosporidium and 
Giardia at DWTPs supplied by small rivers in rural areas. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This work was funded by the NSERC Industrial Chair on Drinking 
Water, the Canadian Research Chair on Source Water Protection, NSERC 
Collaborative Research and Development Grant Project (CRDPJ- 
505651–16) and the Canada Foundation for Innovation. A part of the 
outcomes presented in this paper was based on research financed by the 
Dutch-Flemish Joint Research Programme for the Water Companies. We 
thank the technical staff of the biology and microbiology division at 
centre d’expertise en analyze environnementale du Québec and of the 
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