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Introduction: 3D building models

Visibility analysis

Solar potential estimation

3D cadastre

Energy demand estimation Infrastructure planning

Emergency response

Shadow estimation

Indoor navigation ~

Noise propagation \

Utility management

Applications of 3D building models [Biljecki et al., 2015]

'FU Delft



Introduction: Point clouds

Acquisition of a point cloud

*  Photogrammetry

* LiDAR (Light Detection and Ranging)

!https://www.tudelft.nl/bk/onderzoek/projecten/geoinformation-technology-governance
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Introduction: Piecewise planarity

Piecewise-planar building models

» Ubiquitous in the built environment

*  Capturing both geometry and topology with non-uniformity

*  Compact, efficient with sparse sets of parameters

2https://www.tudelft.nl/bk/onderzoek/onderzoek-bij-bouwkunde/management-in-the-built-environment



Introduction: Piecewise planarity

Piecewise-planar building models

» Ubiquitous in the built environment
* Capturing both geometry and topology with non-uniformity

«  Compact, efficient with sparse sets of parameters

Dense triangles (smooth) Sparse triangles Sparse polygons
326,234 facets 198 facets 61 facets



Introduction: The reconstruction problem

The goal

¢ Compact
*  Watertight
* Accurate

» Efficient




Introduction: Challenges

» Compactness, watertightness, efficiency

* Limited input data quality




Introduction: Inspiration and research question

Deep neural network

<
o
o
=
=
Q
ﬁ
Q
=
2
=
=
o
g
—

Surface mesh

int cloud

Poin

Shape representations [ Mescheder et al., 2019]

4

it fields be used for compact building model reconstruction

How can deep implic
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Related work: Shape reconstruction (smooth)

* Poisson reconstruction [Kazhdan et al., 2006]

* Points2Surf [Erler et al., 2020]

Massive triangles

Explicit
(mesh) Implicit

'FU Delft



Related work: Shape reconstruction (piecewise-planar)

* PolyFit [Nan and Wonka, 2017]

RANSAC Optimisation
) )
Planar segments Candidate facets Result
Scalability issue
with its

integer programming solver

'fU Delft



Related work: Geometry simplification

* Manhattan-world reconstruction [Li et al., 2016b]

* 2.5D Dual Contouring [Zhou and Neumann, 2010]

Not generic with only boxes

'fU Delft




Related work: Geometry simplification

* Manhattan-world reconstruction [L.i et al., 2016b]

* 2.5D Dual Contouring [Zhou and Neumann, 2010]

Not generic with only 2.5D

'FU Delft




Related work: Surface approximation
* Quadric error metrics (QEM) |Garland and Heckbert, 1997]

* Variational shape approximation (VSA) [Cohen-Steiner et al., 2004]

* Structure-aware mesh decimation (SAMD) |Salinas et al., 2015]

—
M

Input mesh QE Dependent on
(27,258 facets) (250 facets) .
input mesh
e~ H "
[&— —
VSA SAMD
(250 facets) (250 facets) [Bouzas et al., 2020]

'fU Delft




Related work: Summary

Related work Characteristics
Name Category Compact Watertight Generic Efficient
Poisson [Kazhdan et al., 2006] RC X X v v
Points2Surf [Erler et al., 2020] RC X X v X
PolyFit [Nan and Wonka, 2017] RC v v v X
QEM [Garland and Heckbert, 1997] AP Ve X v X
SAMD [Salinas et al., 2015] AP v X v X
VSA [Cohen-Steiner et al., 2004] AP v X v X
Manhattan-world [Li et al., 2016b] SP v v X v
2.5D DC [Zhou and Neumann, 2010 SP X v X v
v v v v

Characteristics overview of related work?3

3 Only methods in comparison through experiments (with official open-source code); See in the thesis a complete literature review
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Methodology: Overview

'?U Delft

Explicit

Implicit

[ Point cloud® ]

[Planar primitives(h) ]

!

Adaptive binary
space partitioning

\ 4
[ Candidate cells®

Y Y

Neural implicit
field@

‘[ Query points® ]

e Rl -

Markov random field H Surface® ]

1

Graph-cut solver

Overview of our framework

Surface extraction

Reconstruction

Training




Methodology: Overview

Explicit Implicit

[ Point cloud® |}#———rcoceeeae-o

‘[ Query points® ]

Overview of our framework

'?U Delft

A

v v :

Neural implicit i

field@ E

Adaptive binary :
space partitioning Markov random field H Surface' ]

A 4
[Candidate cells® Graph-cut solver Surface extraction

Reconstruction

Training




Methodology: Adaptive binary space partitioning

RANSAC

e T

Planar primitive detection




Methodology: Adaptive binary space partitioning

Original Refined

Planar primitive refinement



Methodology: Overview

Explicit

Implicit

[ Point cloud® ]

!

RANSAC

[Planar primitives(h) ]

!

Adaptive binary

space partitioning

\ 4
[ Candidate cells®

Y Y

Neural implicit
field@

‘[ Query points® ]

e Rl -

Markov random field H Surface® ]

Graph-cut solver

Overview of our framework

'?U Delft

Surface extraction

Reconstruction

Training




Methodology: Adaptive binary space partitioning

BSP-tree

<
TUDelft



Methodology: Adaptive binary space partitioning

BSP-tree

NHqp N Hqp

<
TUDelft



Methodology: Adaptive binary space partitioning

BSP-tree

NHqp N Hqp

<
TUDelft



Methodology: Adaptive binary space partitioning

BSP-tree

ﬂHlL ﬂHlR

NHy N Hyp




Methodology: Adaptive binary space partitioning

BSP-tree

ﬂHlL ﬂHlR

NHy N Hyp
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Methodology: Adaptive binary space partitioning

Adaptive

219 cells
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Methodology: Overview

'?U Delft

Explicit

Implicit

[ Point cloud® ]

[Planar primitives(h) ]

!

Adaptive binary
space partitioning

\ 4
[ Candidate cells®

Y

Neural implicit
field@

‘[ Query points® ]

Markov random field H Surface® ]

Graph-cut solver

Overview of our framework

Surface extraction

Reconstruction

Training




Methodology: Occupancy learning in function space

Signed distance function
SDF(x) =s:xeR’ seR.

Surface at SDF(-) = 0




Methodology: Occupancy learning in function space

Signed distance function
SDF(x) =s:xeR’ seR.

Surface at SDF(-) = 0

SDF(x) Mfp(x)|= so(x | z), with z = e, (P) P: point cloud
0: NN parameters
e : encoder

",
NN O 7 777 A‘\}‘}‘.7“/ X& W \
a NN

5.3e-02
o
0.1

—02

t -5.5e-01

T
=3
@
Signed Distance

[
&

S
@

Query points Predicted distances
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Methodology: Occupancy learning in function space

Points2Surf neural network architecture |[Erler et al., 2020]

SDF(x) = fp(x) = sg(x | z), with z = ey (P)
. }g(x) = sg (x | z;i) , with zi = ez (Pi) Absolute distance

+ fp(x) = sgn (g5(x)) = sgn (s5 (x| 25)) , withzg = ey, (px)  Sign

81gn loglt
es—>» 2>
) a:\ />gp - SgN—~ ,.( )
d/ \-) ®—> fpl
€y—> 72 /‘ fp@)——"" ‘spp

absolute dlstance

® Query point
® Global subsamples

0 Local subsamples



Methodology: Occupancy learning in function space

Training with loss function

>3 L£%x,P,S) + L(x, P,S)

(P,S)eS xeXs
; . 2
- L%(x,P,S) = Htanh (VS(X)D — tanh(|d(x, S)|) Hz Error of distance prediction
- L3(x,P,S) =H (0 (gp(x)),[fs(x) >0]) Error of sign prediction

P: point cloud

S: surface

H: binary cross entropy
o: sigmoid

Sanity check: overfitting one shape

'?U Delft



Methodology: Occupancy learning in function space

Signed distance voting

_p 1
SDP:I—)ZSDiP

ieP

Point cloud



Methodology: Occupancy learning in function space

Signed distance voting

_p 1
SDP:I—)ZSDiP

ieP

3.2e-02
02

—-03

—-04
05
0.6
-7.0e-01

Signed Distance

Candidate cells SDF Signed distance for
each candidate
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Methodology: Overview

'?U Delft

Explicit

Implicit

[ Point cloud® ]

[Planar primitives(h) ]

!

Adaptive binary
space partitioning

\ 4
[ Candidate cells®

Y Y

Neural implicit
field@

‘[ Query points® ]

R B el

Markov random field H Surface® ]

Graph-cut solver

Overview of our framework

Surface extraction

Reconstruction

Training




Methodology: Surface extraction

Energy formulation (Markov random field)

E(x) = D(x) + AV(x)

x; = {in, out}

out out

out in out

out

Manifold

>< [ ] [Ohori, 2016]

Non-manifold

'FU Delft




Methodology: Surface extraction

Fidelity term (unary potential)

D(X) = |—(1:|Zdi(ci,xi)

ieC

- di(Cj,x;) = |probability(C;) — x|

- probability(C;) = sigmoid(SDf- volume;)

Signed Distance

Signed distance for
each candidate



Methodology: Surface extraction

Complexity term (pairwise potential)

1
V(X) = = Z alj . 1xi¢xi
A (ijec

- {i,j} € Crepresents pairs of adjacent polyhedra

- a;; denotes the shared area

Less zigzagging



Methodology: Surface extraction

Graph-cut solver for the Markov random field

E(x) = D(x) + AV(x)
{in, out}

0040

038020
D00

’// ,\&// f/@#

o ’/" 7-- LN
IS oanasis
7 N
Y,

Graph cuts [Boykov and Funka-Lea, 2006]



Methodology: Surface extraction

Graph-cut solver for the Markov random field

E(x) = D(x) + AV(x)

x; = {in, out}
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Datasets: Helsinki

Simulated LiDAR scanning from CityGML models

*  Point clouds

* Surface -> Sampled query points with signed distance values




Datasets: Helsinki full-view

weliebenbinlieiie,  SSBIENDER SENSOR SIMULATION
i

Horizontal |Orbit

Building Mesh

'fU Delft




Datasets: Helsinki full-view

Gaussian Noise

'fU Delft



Datasets: Helsinki no-bottom

weliebenbinlieiie,  SSBIENDER SENSOR SIMULATION
i

LiDAR Sensor Horizontal |Orbit

I
Building Mesh

'fU Delft




Datasets: Helsinki

Helsinki no-bottom

Helsinki full-view




Datasets: Shenzhen

Data courtesy of Linfu Xie [Xie et al., 2021]

'fU Delft




Datasets

Perspective

Name Type Quantity Usage

Top Bottom Lateral
Helsinki full-view  Simulated LiDAR v/ v v 768 Training + evaluation
Helsinki no-bottom  Simulated LiDAR | v/ X v 768 Training + evaluation

Shenzhen Real-world mvs v X v 6 Evaluation
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Results & discussion: Helsinki full-view

'FU Delft

Point cloud

Candidate polyhedra

L0800’
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Signed Distance

SDF
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1'0
L0-8g'L

Reconstructed
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Results & discussion: Helsinki full-view

Reference Reconstructed Error Distspy (%)

0.04541

0.04440

0.11673

0.22028

'fU Delft



Results & discussion: Helsinki full-view

Reference Reconstructed Error Distspy (%)

0.21887

0.08891

0.14784

0.02611

'fU Delft



Results & discussion: Helsinki no-bottom
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Results & discussion: Shenzhen
Signed distance

w
%
~
~

o/
&
-
W
L4
3

-

SDF Reconstructed

i
&
=

Point cloud  Candidate polyhedra

<
TUDelft



Results & discussion: Shenzhen

Reference Reconstructed Error Distsp(%)

3.8815

2.0045

| J
.l
® -
o
€
»

1.5759

2.5830

3.3763

N/
K 4
> O
o= o=
€ €
5 B
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Results & discussion: Shenzhen

Reconstruction from insufficient scans

<
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Results & discussion: Comparison with smooth reconstruction

106 facets

34,050 facets

143,716 facets

123 facets

Point cloud Poisson Points2Surf Ours
[Kazhdan et al., 2006] [Erler et al., 2020]



Results & discussion: Comparison with piecewise-planar reconstruction

Helsinki full-view

Shenzhen

Point cloud PolyFit Ours
[Nan and Wonka, 2017]

Manhattan-world 2.5D DC [Zhou and
[Lietal., 2016b] Neumann, 2010]

'FU Delft



Results & discussion: Comparison

643 facets

/.7

117 facets

PolyFit
[Nan and Wonka, 2017]



Results & discussion: Comparison

Point cloud PolyFit Ours
[Nan and Wonka, 2017]



Results & discussion: Comparison with surface approximation methods

Point cloud QEM |[Garland and SAMD VSA [Cohen-Steiner et Ours
Heckbert, 1997] [Salinas et al., 2015] al., 2004]



Results & discussion: Efficiency

LLLI-L|1|- |

Building index

W

Running time (second)
w N

[ee]

B Candidates generation M Occupancy inference M Surface extraction



Results & discussion: Efficiency

Time partitioning (second)

——+Adaptive
——+Exhaustive
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Results & discussion: Scalability

103 7
] —+Qurs
——+PolyFit
102 7
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Results & discussion: Robustness to noise

OR 0.001R 0.005R

1 meter
against 100
meter-sided

building

UDelft




Results & discussion: Impact of parameter 4

E(x) = D(x) + AV(x)

#Facets=184 #Facets=170

#Facets=236 #Facets=220

A =0.002 A=0.01

'FU Delft




Results & discussion: limitations

Accurate primitives

High-quality model

Low-quality model




Results & discussion: limitations

‘Caved’
artefact

'FU Delft



Results & discussion: Applications

BSP-tree

nHlL ﬂHlR

ﬂHZL ﬂHZR

Building component analysis

'fU Delft




Results & discussion: Applications

*  Compression

*  Physical Simulation

Generic shape reconstruction

'fU Delft
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Conclusion: Research question revisited

How can deep implicit fields be used for compact building model reconstruction?

*  Compactness and watertightness

* Generalisation
*  Robustness

* Advantages & disadvantages

Explicit Implicit
a Point cloud® |————-------- oo Query points(®
RANSAC i :
A 4

Neural implicit ;
b field® :
Planar primitives( ) :
Adaptive binary :
space partitioning Markov random field H Surface® ] J
v £

Candidate cells©

Graph-cut solver Surface extraction

Reconstruction

_________ Training




Conclusion

Contributions

* A learning-based framework to incorporate deep implicit fields into piecewise-
planar urban building reconstruction

* An adaptive space partitioning strategy for cell complex construction

* An MRF formulation for efficient surface extraction

*  Open synthetic building point cloud dataset



Conclusion

Future work

*  End-to-end neural network architecture

 Extension to more general primitives



Conclusion

Learning to Reconstruct Compact Building Models from Point Clouds
Source code it Deop Tiplicit Fieldl

Zhaiyu Chen?, Seyran Khademi?, Hugo Ledoux® and Liangliang Nan®*

Research Group, Faculty of. i d the Built Envir Delft University of Technology, 2628 BL, Delft, The Netherlands
‘T’u\:ry of Architecture and Digital Culture Group, Faculty of Architecture and the Built Environment, Delft University of Technology, 2628 BL, Delft, The

*  https://github.com/chenzhaiyu/absp

ARTICLE INFO ABSTRACT

Keywords: ‘We present a novel framework for reconstructing compact, watertight, polygonal huudmg nmdzls

3D reconstruction from point clouds. Our method comprises three components: (a) a cell complex

. . . s

° htt . / / th b / h h / t 2 1 P(;:- cloud adaptive space partiioning that provides a polyhedral embedding as the candidate set; f” an lmplun
ypact building model field is learnt by a deep neural network that facilitates building occupancy estimation; (c) a Markov
ps://github.com/cnenzhalyu/pointspoly et e
Implicit field exalaie the proposd methodin comparison ithsae-of he-4rt methods inshape econsirucion,

geometry that, w:muurn:unl
high-q

compactness and oompumwul efficiency. Our method shows robustness to noise and insufficient

'fU Delft

Dissemination

* Thesis & Slides available at TU Delft Repositories

¢ ISPRS Journal manuscript in progress
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measurements, and generalise well directly from synthetic scans to real-world measurements.

1. Introduction .

Three-dimensional (3D) building models play a pivolal::
role in shaping the digital twin of our world, and are facilitat-
ing various intelligent applications in urban planning (Her-
bert and Chen, 2015), solar potential analysis (Machete et al.,
2018), environmental simulation (Stoter et al., 2020), etc.
Recently, with the development of augmented and vmual
reality apphcn.uons, the demand for high-quality bulldmg
modelling is gmwmg rapidly (Blut and Blankenbach, 2021). %

Most methods are dedi to smooth

urface: as dense triangles, i i pnece~

wise planarity that exhibits in the built environment (Kazh-
dan etal., 2006; Erler et al., 2020). Simplification is therefore
required as a follow-up procedure to convert the smooth
surface into a compact one (Garland and Heckbert, 1997;
Cohen-Steiner et al., 2004; Salinas et al., 2015; Bouzas
et al., 2020). Although some works claim the possibility of
reconstructing piecewise-planar shapes directly from poml
clouds, they suffer from serious scalability issues (Boulch
etal., 2014; Mura et al., 2016; Nan and Wonka, 2017). lnthlsu
work, we aim at efficiently reconstructing compact building
surfaces directly from point clouds.

3D shapes are not confined to as explicit reprcsenlauons
(e.g., point cloud, surface mesh, voxels), but can be encoded”
implicitly in a function space. A signed distance function s«
(SDF), for instance, can describe an implicit field, where s
the surface of a shape is implicitly interpreted as zero-set of se
the SDF. A learnable indicator function of the SDF takes as s>
input a query point and yields an indication on whether the se

! H

S:EEG

*Corresponding author -
4 zhaiyn on (Z. Chea); e
Khademi); h. ledouxetudgelft.nl (H. Ledoux); liangliang.nan®tudelft.nl %
(L. Nen) -

point belongs to the shape. The explicit geomer.ry is then of-

d from the field vi iso-
surﬂucmg Wlmhcdcr etal., 2019). Compared wnh explicit
that are this homo-

geneous i

for geometric machine learning, Especmlly recently, the
scheme for learning in the function space has shown its

p in 3D geometric ing (Park et al., 2019).

In this paper, we propose a novel framework for recon-
structing compact, watertight, polygonal building meshes
from point clouds by incorporating implicitly encoded func-
tion space with explicitly constructed geometry. The explicit
geometry provides a polyhedral embedding as the candi-
date set, from which extraction of the building’s surface
is neural-guided by a learnt implicit field. We formulate
a Markov random field (MRF) to introduce configurable
surface complexity, and solve this optimisation problem
using an efficient graph-cut solver. With our neural-guided
strategy, we demonstrate that high-quality building models
can be obtained with sngmﬁcanl advanlagcs over fidelity,

and against state-of-

the-art methods in shape reconstruction, surface approxima-
tion and geometry simplification.

The main contributions of this paper are as follows:

(i) A learning-based framework for compact building
model reconstruction. To the best of our knowledge,
this is the first work where a deep implicit field
is explored for building reconstruction. Our method
shows si and quality tag
over state-of-the-art methods for urban building recon-
struction, especially for complex building models.

(ii) An adaptive space partitioning solution for generat-
ing a cell complex of candidate polyhedra. Compared
with the exhaustive baseline, our adaptive strategy can
efficiently partition the space, minimising redundant

Z. Chen et al.: Preprint submitted to Elsevier
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