
Delft University of Technology
Software Engineering Research Group

Technical Report Series

The Spoofax Language Workbench
Rules for Declarative Specification of

Languages and IDEs

Lennart C. L. Kats, Eelco Visser

Report TUD-SERG-2010-014a

SERG

TUD-SERG-2010-014a

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

This paper is a pre-print of:

Lennart C. L. Kats, Eelco Visser. The Spoofax Language Workbench. Rules for Declarative Specification of
Languages and IDEs. In Martin Rinard, editor, Proceedings of the 25th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2010), ACM, 2010.

@inproceedings{KatsVisser2010,
title = {The {Spoofax} Language Workbench.

{Rules} for Declarative Specification of Languages and {IDEs}},
author = {Lennart C. L. Kats and Eelco Visser},
year = {2010},
tags = {Spoofax, language workbench},
booktitle = {Proceedings of the 25th Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2010)},

date = {October 17-21, 2010},
location = {Reno, NV, USA},
editor = {Martin Rinard},

}

c© copyright 2010, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

The Spoofax Language Workbench
Rules for Declarative Specification of Languages and IDEs

Lennart C. L. Kats
Delft University of Technology

l.c.l.kats@tudelft.nl

Eelco Visser
Delft University of Technology

visser@acm.org

Abstract
Spoofax is a language workbench for efficient, agile devel-
opment of textual domain-specific languages with state-of-
the-art IDE support. Spoofax integrates language processing
techniques for parser generation, meta-programming, and
IDE development into a single environment. It uses concise,
declarative specifications for languages and IDE services. In
this paper we describe the architecture of Spoofax and in-
troduce idioms for high-level specifications of language se-
mantics using rewrite rules, showing how analyses can be
reused for transformations, code generation, and editor ser-
vices such as error marking, reference resolving, and content
completion. The implementation of these services is sup-
ported by language-parametric editor service classes that can
be dynamically loaded by the Eclipse IDE, allowing new
languages to be developed and used side-by-side in the same
Eclipse environment.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques; D.2.6 [Software
Engineering]: Programming Environments

1. Introduction
Domain-specific languages (DSLs) provide high expressive
power focused on a particular problem domain [38, 47].
They provide linguistic abstractions over common tasks
within a domain, so that developers can concentrate on ap-
plication logic rather than the accidental complexity of low-
level implementation details. DSLs have a concise, domain-
specific notation for common tasks in a domain, and al-
low reasoning at the level of these constructs. This allows
them to be used for automated, domain-specific analysis,
verification, optimization, parallelization, and transforma-
tion (AVOPT) [38].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

For developers to be productive with DSLs, good in-
tegrated development environments (IDEs) for these lan-
guages are essential. Over the past four decades, IDEs have
slowly risen from novelty tool status to becoming a funda-
mental part of software engineering. In early 2001, IntelliJ
IDEA [42] revolutionized the IDE landscape [17] with an
IDE for the Java language that parsed files as they were typed
(with error recovery in case of syntax errors), performed se-
mantic analysis in the background, and provided code nav-
igation with a live view of the program outline, references
to declarations of identifiers, content completion proposals
as programmers were typing, and the ability to transform
the program based on the abstract representation (refactor-
ings). The now prominent Eclipse platform, and soon af-
ter, Visual Studio, quickly adopted these same features. No
longer would programmers be satisfied with code editors
that provided basic syntax highlighting and a “build” button.
For new languages to become a success, state-of-the-art IDE
support is now mandatory. For the production of DSLs this
requirement is a particular problem, since these languages
are often developed with much fewer resources than general
purpose languages.

There are five key ingredients for the construction of a
new domain-specific language. (1) A parser for the syntax
of the language. (2) Semantic analysis to validate DSL pro-
grams according to some set of constraints. (3) Transfor-
mations manipulate DSL programs and can convert a high-
level, technology-independent DSL specification to a lower-
level program. (4) A code generator that emits executable
code. (5) Integration of the language into an IDE.

Traditionally, a lot of effort was required for each of these
ingredients. However, there are now many tools that support
the various aspects of DSL development. Parser generators
can automatically create a parsers from a grammar. Mod-
ern parser generators can construct efficient parsers that can
be used in an interactive environment, supporting error re-
covery in case of syntax-incorrect or incomplete programs.
Meta-programming languages [3, 10, 12, 20, 35] and frame-
works [39, 57] make it much easier to specify the semantics
of a language. Tools and frameworks for IDE development
such as IMP [7, 8] and TMF [56], simplify the implemen-
tation of IDE services. Other tools, such as the Synthesizer

SERG The Spoofax Language Workbench

TUD-SERG-2010-014a 1

Generator [41], Centaur [2], and Lrc [37] can even generate
a complete IDE from a syntactic (and sometimes semantic)
specification of a language.

Language workbenches With a wealth of language con-
struction tools, a need arose for comprehensive tools that
integrated these different solutions and guided the develop-
ment of languages. Fowler described the trend of integrating
the development and use of DSLs into a single IDE envi-
ronment, and introduced the term language workbenches for
these tools [16]. In [18] he described this development as
follows:

“Whereas external and internal DSLs have been around
for longer than I’ve been programming, language
workbenches are a much newer animal. These tools
support DSL creation not just in terms of parsing and
code generation but also in providing a better editing
experience for DSL users.”

Fowler studied a number of practical, modern examples of
language workbenches that allow developers to define and
use text-based DSLs, including the Meta Programming Sys-
tem (MPS)[15, 25] and Intentional Programming [43]. In
his article he also spoke of visual editor environments such
as MetaEdit+ [33] and DSL Tools [9], but as these have a
very different programming model and do not support text-
based languages, we will not discuss them here. Fowler de-
scribed that language workbenches greatly increase the cost-
effectiveness of developing a new language, perhaps even
to the point that they can be developed for a single appli-
cation as sometimes strived for in language-oriented pro-
gramming [16, 54]. Rather than using a pure text represen-
tation, the workbenches Fowler described store the abstract
representation of a DSL program, and use syntax-directed
(or projectional) editing to manipulate this representation
directly. Based on an abstract representation of a program,
these workbenches can analyze a DSL program, perform
transformations on it, and may show different views.

While it is very important to maintain an abstract repre-
sentation of a program to enable IDE features such as those
made popular by IntelliJ, this does not imply that it should be
the principal storage representation of programs, certainly
given the disadvantages of that approach. Fowler noted the
need to be able to store incomplete and contradictory in-
formation in the abstract representation, which is not trivial
in this model. Other disadvantages include the lack of free
text editing; incompatibility with standard, text-based ver-
sion control systems and issue trackers; and having no way
to import artifacts from other (possibly legacy) tools or to
edit programs with other tools (leading to vendor lock-in).
A free text editing approach, based on modern parser gen-
erators, seems much more attractive, since it avoids these
problems without precluding the advantages of a language
workbench.

Requirements For a language workbench based on freely
editable, textual languages, we identify the following re-
quirements:
(1) It must provide an integrated environment for both defin-

ing languages and using generated editors.
(2) Conversely, it must be possible to deploy generated edi-

tors separately from the workbench for use by “end de-
velopers,” who may not be interested to work in a meta-
programming environment.

(3) The environment must provide state-of-the-art IDE fa-
cilities. It should provide a substantial number of mod-
ern, language-specific editor services such as automatic
indentation and bracket insertion, on-the-fly error mark-
ers, reference resolving, and content completion. Many
of these services require an abstract representation of a
DSL program; the editor should schedule parsing and se-
mantic analysis in the background.

(4) The environment should support efficient, agile language
definition, through incremental and selective develop-
ment of IDE services, which requires separation of con-
cerns between language specifications and pure IDE
logic.

Related work The Meta-Environment [34, 44] was one of
the first tools that could be described as a language work-
bench (avant la lettre), combining language specification us-
ing ASF+SDF [12] and generated editors for using these lan-
guages (1). While it supported the construction of editors for
“end developers,” these could never really escape the meta-
environment (2). Conceived in the early nineties, it did not
yet support modern IDE features (3) based on real-time pars-
ing and semantic analysis as programs are edited; error re-
covery was unavailable for the generated GLR parser at the
time. Rather, it required developers to save a file and wait
for a list of errors in a separate view. While it allowed the
ASF+SDF language to specify language syntax and seman-
tics, the meta-environment offered little opportunity to cus-
tomize generated editor services (4).

More recent endeavors, which fuse language specifica-
tion and the construction of modern, interactive IDE compo-
nents (3), are EMFText [22], MontiCore [36] TEF [55], and
Xtext [14].

These approaches all follow the same general architec-
ture. They define their own language for the description of
grammars. They may allow annotations in the grammar for
the description of syntactic editor services [36], or, by an-
notating lexical use-def relations, basic semantic editor ser-
vices [14, 22]. From this grammar they generate a new, sep-
arate Eclipse plugin project (2). However, rather than pro-
viding a truly integrated environment, they require a second
Eclipse instance to load this plugin (1). For IDE support be-
yond the basic services that can be derived from the gram-
mar, the workbenches allow developers to write fragments of
Java code to customize the generated plugin (4). The work-
benches either use generated Java classes or an Eclipse Mod-

The Spoofax Language Workbench SERG

2 TUD-SERG-2010-014a

eling Framework (EMF) metamodel [6] for the abstract syn-
tax. Transformations are carried out using Java visitors or
external, EMF-based tooling (4). The tools include string
template engines for code generation.

Spoofax In this paper we present Spoofax, a language
workbench that enables efficient, agile development of soft-
ware languages with state-of-the-art IDE support based on
concise, declarative specifications.

Spoofax is an integrated environment for the specifica-
tion of languages and accompanying IDE support in Eclipse.
Generated editors can be dynamically loaded into the ‘meta’
Eclipse instance enabling smooth switching between devel-
opment of the language and development with the language
under construction. Spoofax also supports the generation of
a stand-alone plugin for the language under construction that
can be deployed to “end developers” without exposing the
meta-programming facilities.

Spoofax supports a wide range of editor services based
on tightly integrated, real-time application of syntactic and
semantic analyses. Analyses are based on the structured ab-
stract representation provided by a live parse of the text in
the editor, which uses a parser scheduled in a background
thread. Error recovery [11, 29] ensures that editor services
function even in the presence of (multiple) syntactic errors.
Origin tracking [46] techniques are used to relate the re-
sults of analysis back to the text in the editor without requir-
ing preservation of layout information in the specification
of analyses and transformations. These and other techniques
for the implementation of editor services have been fac-
tored into language-parametric components, allowing lan-
guage developers to focus purely on the language-specific
parts of a compiler and IDE.

Spoofax supports language definition with declarative
domain-specific languages. The modular, declarative syntax
definition formalism SDF [21, 49] is closed under compo-
sition, ensuring support for language extensions and em-
beddings [5]. The Stratego transformation language pro-
vides a unified formalism for concise specification of anal-
ysis, transformation, and code generation, enabling reuse
of analysis rules for multiple purposes, including dynamic
rules [3] for context-sensitive analysis and transformation.
We have developed idioms for language specification based
on rewrite rules that can be used in batch compilation as well
as in interactive editor services. Editor descriptor DSLs pro-
vide the bridge between specification of syntax and seman-
tics and the language parametric editor service components,
providing a pluggable interface supporting the language en-
gineer in adding new operations to the editor.

To show that our approach is practical, we describe the
specification of a web language and report on practical ex-
perience with the implementation of other languages and in-
tegration with external tools.

The Spoofax language workbench is available from
http://spoofax.org.

Previous work The Spoofax project started in 2007 with
the development of Eclipse editors dedicated to Stratego and
SDF [27]. In order to provide IDE support for languages
built with Stratego and SDF, we developed a prototype of
a new Spoofax environment built from scratch, described
in [30], where we showed how DSLs can be used to define
presentational editor services, and how such definitions can
be derived from a grammar. We also sketched an interface
for error markers and reference resolving. The present paper
shows how a single semantic description based on rewrite
rules can be used for both compilation and interactive edi-
tor services such as error markers, reference resolving, and
content completion. The new Spoofax environment comes
with full-featured, “bootstrapped” IDE support for the meta-
languages used for language specification, as well as meta-
programming features such as the ability to apply transfor-
mations directly from the environment.

Outline We proceed as follows. We first describe the ar-
chitecture of Spoofax and the general anatomy of Spoofax
language definitions in Section 2. In Section 3 we discuss
syntax definition and the specification of syntactic editor ser-
vices. In Section 4 we discuss the definition of language se-
mantics: analysis, transformations, code generation, and ed-
itor services based on these techniques. We report on experi-
ence with language development using Spoofax in Section 5.
In Section 6 we elaborate on the implementation of the lan-
guage workbench. Finally, we discuss related work and di-
rections for future work in Sections 7 and 8, and conclude in
Section 9.

2. An Overview of Spoofax
In this section we give an overview of Spoofax from the
point of view of three categories of software developers.
“End developers” of a Spoofax IDE work with the edi-
tor services specialized to the their (domain-specific) lan-
guage. The developers of Spoofax itself maintain its archi-
tecture and language-parametric components. Language en-
gineers use Spoofax to develop a language definition, i.e. the
language-specific elements of an IDE.

2.1 Editor Services
Modern IDEs provide a wide variety of language-specific
editor services, which are based on tightly integrated, real-
time application of syntactic and semantic analysis. Figure 1
shows a selection.

The editor checks the syntax of the program text, marks
syntactic errors inline, and highlights text elements based on
the syntactic structure as the developer types. The syntac-
tic state of the parser at the cursor is used for editor ser-
vices such as syntax completion, automatic bracket inser-
tion, bracket highlighting, automatic indentation, and com-
ment insertion. The abstract representation provided by the
parser enables code folding, the outline view, and navigation
using the quick outline feature.

SERG The Spoofax Language Workbench

TUD-SERG-2010-014a 3

Figure 1. Editor services for a web language.

Based on live semantic analysis of the abstract represen-
tation produced by the parser, the editor displays error and
warning markers in the code. Program navigation and un-
derstanding is supported by reference resolving, occurrence
highlighting, and hover help, which use semantic analysis
to reveal relations between elements of a program. Content
completion shows the developers the valid ways to complete
the current construct. Transformation and code generation,
using the results of semantic analysis, can be triggered each
time the editor is saved, or on demand through the “Trans-
form” drop down menu or using context menus.

In addition to the language-specific editor services pro-
vided by a Spoofax plugin, Eclipse is an extensible environ-
ment that offers many language-generic development facili-
ties such as plugins for version control, build management,
and issue tracking, and the package explorer view (left of
Figure 1) that gives an overview of all projects and is used
for resource management.

2.2 Component Architecture
Traditionally software languages are developed first as
stand-alone compilers and IDEs are later added, typically
requiring a significant reimplementation of many of the in-
gredients of the compiler to realize the implementation of
editor services. The components of a compiler — parser,
semantic analysis, transformations, and code generation —
also play a central role in editor services based on the ab-
stract syntax and semantic analysis of a program. Spoofax
has been designed to factor out language independent im-
plementation knowledge into the generic Spoofax libraries.
Furthermore, language-specific definitions are defined such
that they can be reused in several IDE components. Figure 2
gives an overview of basic compiler components (marked

with an asterisk) and editor services in an IDE. The depen-
dencies between these components can be characterized as
generative dependencies—a component can be automati-
cally derived from another— and usage dependencies—a
component calls another.

The grammar and parser are at the root of the depen-
dency graph in Figure 2 (A), since the syntactic structure
of programs is the basis for the implementation of all other
services. In particular, the services for presentation in Fig-
ure 2 (B) and editing in Figure 2 (C) are automatically de-
rived from the grammar. These services can then be cus-
tomized, or re-written from scratch, as desired. Key for the
derivation of functionality from a grammar is the use of a
declarative syntax formalism. Semantic actions or escapes
to external functions, which are sometimes used with parser
generators, make it hard to reason about the structure of
a grammar for other purposes. In the implementation of
Spoofax we use SDF [21, 49]. Another essential compo-
nent for an editor is error recovery, to ensure that editor ser-
vices based on the structure of the program keep working in
the presence of syntax errors. In [11, 29] we showed how a
permissive grammar, a grammar with error recovery rules,
can be derived from a declarative SDF grammar, ensuring
good error recovery even for complex grammars composed
of multiple embedded languages or extensions. In Section 3
we describe how SDF grammars are defined and how cus-
tomizable editor services can be derived from them.

The semantic services cannot be derived from the gram-
mar, since they depend on an interpretation of the syntactic
structure of programs. Name analysis is a central compo-
nent, which is reused in all other semantic editor services.
Name analysis resolves the declaration of names in a pro-
gram according to the scope rules of the language.

The Spoofax Language Workbench SERG

4 TUD-SERG-2010-014a

Figure 2. Relations between IDE components. Dependency flow is indicated with arrows; generative dependencies are
indicated with a solid line. Components with an asterisk are generally also part of traditional batch compiler implementations.

Custom Generated
Syntax definition

Lang.sdf Common.sdf
Editor service descriptors

Lang.main.esv
Lang-Builders.esv Lang-Builders.generated.esv
Lang-Colorer.esv Lang-Colorer.generated.esv
Lang-Completions.esv Lang-Completions.gen...esv
Lang-Folding.esv Lang-Folding.generated.esv
Lang-Outliner.esv Lang-Outliner.generated.esv
Lang-References.esv Lang-References.gen....esv
Lang-Syntax.esv Lang-Syntax.generated.esv

Semantic definition
lang.str
check.str
generate.str

Figure 3. Language definition components.

2.3 Structure of a Language Definition
A Spoofax language definition is an Eclipse project that de-
fines the language-specific elements of an IDE, reusing the
language-parametric components from the Spoofax infras-
tructure.

Figure 3 gives an overview of the default structure of a
language definition project. Each of the three main compo-
nents – syntax, service descriptors, and semantics – is de-
fined in a number of modules. Developers are free to orga-
nize these how they wish, but the default layout separates
the different concerns into different files, allowing develop-
ers to quickly familiarize themselves with the components
and interfaces of a language definition.

An important design principle in the combination of de-
rived and handwritten files has been to clearly indicate in
the file name which files are generated. These files are re-
generated every time the project is rebuilt and should not be
edited by the language developer. To ignore specific rules in
the generated file, they can be disabled or redefined in the ac-
companying handwritten file. If the generated file is not used

at all, it can simply be removed from the list of imported de-
scriptor files.

The syntax is defined using SDF [21, 49]. The default
project comes with a skeletal language with four produc-
tion rules (shown in Figure 4), and a module Common.sdf

with default rules for comments and lexical patterns such as
strings and identifiers.

Editor services are defined using declarative, rule-based
editor descriptor languages. These can be used to define pre-
sentation or editing services, and can describe the interface
of semantic editor services (describing what transformations
to use for which service, and which views can be shown
for a language). Derived services are maintained in separate
.generated.esv files, and provide basic functionality (or,
at the very least, examples) for these services based on the
grammar. Not all services can be derived, but these files are
also a source of documentation and examples.

Semantic definitions are specified using Stratego [3],
which provides an integrated solution for analysis, trans-
formation, and code generation rules. Spoofax separates
editor service specifications and the transformations that
implement them. Editor service descriptors specify which
transformations to apply, while the Stratego specifications
specify what these should do. This design ensures flexibility
in the implementation of services and allows for possible
future integration with other meta-programming languages
and frameworks.

We discuss the three categories of definitions and their
relations in more detail in the following sections.

2.4 Agile Language Development
The architecture of the Eclipse platform is based on the
OSGi component model, in which each plugin is (usually) a
JAR containing Java classes, a plugin manifest, optional de-
scriptor files, and auxiliary resources, such as images. The
descriptors specify which parts of the Eclipse framework
a given plugin extends, and which parts of the plugin may
be extended by other plugins. The OSGi model implies dis-
tributing plugins as static JARs. The normal workflow cy-

SERG The Spoofax Language Workbench

TUD-SERG-2010-014a 5

Figure 4. Multiple editors, side by side, in the same Eclipse IDE instance: the definition of an entity language (left), an editor
for the entity language itself (upper right), and the abstract syntax of the selected entity (lower right).

cle for plugin developers is to declare new extensions in the
plugin.xml descriptor file, implement these in Java, and
test the plugin in a second instance of Eclipse, which is detri-
mental to a rapid development process.

One IDE instance Language definitions in Spoofax are
based on the Eclipse plugin project model: each language
definition includes a plugin manifest and descriptor files that
allow it to be distributed to “end developers” as a normal
Eclipse plugin. However, to enable agile language develop-
ment we use a very different workflow model than that of
standard Eclipse plugin development. By using language-
parametric editor services that dynamically load and update
language-specific service specifications (described in more
detail in Section 6), we can use generated editors for a lan-
guage in the same environment (Eclipse instance) in which
we edit the language definition itself. Figure 4 illustrates how
a grammar (left) and a generated editor (upper right) can be
used side by side. The editor is fully functional and includes
semantic services also defined in the same environment. The
lower right editor illustrates an abstract syntax view for the
selection in the generated editor that is updated in real-time
as the selection is edited.1 The same view can be used to
inspect (intermediate) results of transformations.

Inductive design Rather than designing a complete DSL
“on paper,” before its implementation, it is good practice
to incrementally introduce new features and abstractions
through a process of evolutionary, inductive design [16, 51].
In the context of a language workbench, this means that DSL
programs and the DSL itself evolve together. This enables
quick turn-around time for the development of the DSL and
the subsequent gradual extension as new applications are
developed, and new insights into the domain are acquired.

1 While a graphical abstract syntax view can be visually appealing, we opt
for an automatically formatted textual view instead, as it is much more
concise, conveys the same information, and benefits from standard, textual
editor services. Moreover, the same textual representation is also used in
(and can be copy-pasted to) specifications of analyses and transformations.

The Spoofax environment assists in the initial creation of
a new language using a wizard that simply takes the name of
the language, the file extension it uses, and a package name.
The wizard then creates a new Eclipse project with a skeletal
language definition. From this point, new language features
can be added through an iterative development process. New
language constructs can be added to the grammar. These
features can be directly used in the editor for the language.

A new language project created by the wizard includes
standard Eclipse plugin configuration files (these are typi-
cally not changed by language developers), as well as spec-
ification files native to the Spoofax environment. Develop-
ers can then define editor services and define semantics for
these features. Some editor services are automatically de-
rived from the grammar; their specification can be adapted
as desired.

An important aspect of the Spoofax architecture is that it
allows for selective development of editor services. Develop-
ers can freely select what services to implement: the editor
can also be used with a subset of all features. For exam-
ple, developers may forgo sophisticated semantic analyses
and transformations, and simply define code generation by a
very direct mapping of abstract syntax to target code using
string templates. Reuse is key for efficient language devel-
opment, which means there are some dependencies between
services (as seen in Figure 2), but most can be completed
individually, allowing the language and IDE to be evaluated
and used at every stage of development.

Language understanding with views The specifications of
most editor services, in particular those for semantic services
based on analyses and transformations, are defined in terms
of a textual abstract representation of programs. Using the
abstract syntax view (Figure 4), developers can inspect the
abstract syntax of a text selection or file.

The abstract syntax view of Figure 4 is not a built-in
Spoofax feature, but it is a view that is defined with the de-
fault, skeletal language definition. Views show the results of

The Spoofax Language Workbench SERG

6 TUD-SERG-2010-014a

transformations (as indicated by the relation in Figure 2).
When a view is opened, it is automatically placed to the
side of its source file, allowing developers to view both at
a glance. Views are implemented using standard, textual ed-
itors (either for DSLs or languages such as Java that live in
the Eclipse environment). They show either the abstract syn-
tax of a transformation or the concrete syntax (e.g., standard
Java code). The default view for showing the abstract syntax
is defined by showing the result of the “identity” transforma-
tion, i.e., code is only parsed, not transformed.

Views are an important aspect of our architecture and a
requirement for agile language development: they are essen-
tial for awareness of the abstract representation of a lan-
guage, and can be used to show (intermediate) results of
analyses and transformations independent of other editor
services.

2.5 Example Domain-Specific Language
In the following sections we use the NWL language2, a sub-
set of WebDSL [51], to illustrate key points of language def-
inition. NWL covers several aspects of web programming
i.e. entity declarations (data modeling), properties with in-
verse relations, parameters and variables, expressions, tem-
plate definitions, page navigation, and several types of tem-
plate elements. However, in this paper we focus only on def-
initions of entities and actions (which are analogous to data
type definitions and functions in other languages).

3. Syntax
The central implementation artifact for any textual language
is the parser, which can be generated from a grammar.

In Spoofax, the grammar has the following roles:

1. it specifies the concrete syntax (keywords etc.)

2. it specifies the abstract syntax (the data structure used for
analysis and transformation of programs written in the
language)

3. it is used to derive editor services for presentation and
editing that can be customized by the developer

We use SDF [21, 49] to define grammars. SDF grammars are
declarative, highly modular, combine lexical and context-
free syntax into one formalism, and can define concrete and
abstract syntax together in production rules [32].

SDF productions take the form p1...pn -> s and spec-
ify that a sequence of strings matching symbols p1 to pn
matches the symbol s. Productions can be annotated with a
constructor name n to uniquely identify them in the abstract
syntax using the {cons(n)} annotation. Other annotations
include {left} and {right} to specify the associativity of
operators, and {deprecated(e)} to mark deprecated syn-
tax with optional explanation e.

2 The complete definition of NWL is available at http://strategoxt.
org/Spoofax/NWL.

module NWL
imports Common
exports

context-free start-symbols
Start

context-free syntax
"module" ID Def* -> Start {cons("Module")}
"import" ID -> Def {cons("Import")}
"entity" ID "{" Prop* "}" -> Def {cons("Entity")}
"action" ID "(" {Param ","}* ")" "{" Stat* "}"

-> Def {cons("Action")}

ID ":" Type -> Param {cons("Param")}
ID ":" Type -> Prop {cons("Property")}
ID -> Type {cons("SimpleType")}
"Set" "<" Type ">" -> Type {cons("SetType")}

Exp ":=" Exp ";" -> Stat {cons("Assign")}
"for" "(" ID ":" Type ")" "{" Stat* "}"

-> Stat {cons("ForAllEntity")}
"for" "(" ID ":" Type "in" Exp ")" "{" Stat* "}"

-> Stat {cons("ForAll")}

"all" "(" Type ")" -> Exp {cons("ForAllExp")}
STRING -> Exp {cons("StringLit")}
ID -> Exp {cons("Var")}
Exp "." ID -> Exp {cons("PropAccess")}

Figure 5. A grammar for entities and actions in NWL.

Figure 5 shows an abbreviated SDF grammar for the
NWL language. The grammar extends the basic entity lan-
guage of Figure 4 with additional features. NWL modules
consist of a module name and a list of Def definitions. Def-
initions can be entity declarations, import declarations, or
actions. Actions have a comma-separated list of Param pa-
rameters and a list of Stat statements.

Mapping between abstract and concrete syntax The ab-
stract syntax, used in the specification of editor services, can
be represented as first-order terms of the form

t ::= "..." // string literals

| c(t1,...,tn) // constructor applications

| [t1,...,tn] // lists of terms

As an example, consider the first production of the NWL
grammar:

"module" ID Def* -> Start {cons("Module")}

This production has three elements: the literal “module”, an
identifier name, and a list of definitions. For analyses and
transformations we’re usually not interested in literals and
layout, so only the name and list of definitions are included
in the abstract representation:

Module("example", [Entity("User", [...])])

which corresponds to the abstract syntax of the module at the
upper right of Figure 4.

Spoofax generates a parser from the grammar, which pro-
duces the abstract representation of a file every time the user
presses key and a short delay passes. After the parser com-
pletes, all editor services that depend on the abstract repre-
sentation are updated automatically. Internally, the abstract

SERG The Spoofax Language Workbench

TUD-SERG-2010-014a 7

representation is stored efficiently in memory as Java ob-
jects, and maintains full layout and position information for
use in services that need it.

3.1 Syntactic Editor Services
Editor services related to presentation and editing can be
based directly on the syntax definition (as indicated by the
relation in Figure 2). These services can be fully specified
using declarative editor service descriptor specifications.
Rather than give an exhaustive overview of these descrip-
tors and their features (available online at [1]), we show
some examples in this section to give an impression of how
a declarative descriptor DSL can concisely describe these
services.

Syntax highlighting Default syntax highlighting behavior
is derived based on the literals and lexical syntax in the
grammar. The colors used for this derived behavior are spec-
ified in the generated colorer descriptor, shown in the lower
half of Figure 6. It specifies a color for keywords (alphanu-
meric literals in the grammar), operators (non-alphanumeric
literals), strings (lexicals that allow spaces), numbers (lex-
ical numeric patterns), and identifiers (other lexicals). The
default colorization works well, but can be customized in the
NWL-Colorer.esv file. The top half of Figure 6 illustrates
custom coloring rules for the Type symbol, with specific col-
ors for the SimpleType and the SetType constructor. Other
coloring rules can override the colors for literals and lexi-
cals, and can specify background colors, colors for regions
of code rather than single productions, and more.

Code folding and outline view Code folding and the out-
line view are specified by selecting grammar productions
that should be made foldable or shown in the outline view.
Figure 7 illustrates some folding rules for the NWL lan-
guage. Spoofax uses heuristics to automatically derive a gen-
erated folding descriptor, based on the logical nesting struc-
ture of the language. Currently, productions rules that have
an identifier lexical and a list of child elements are included
in this descriptor. While not perfect, the heuristic provides
a good starting point for a new folding definition. Any un-
desired definitions in the generated file can be disabled by
using the (disabled) annotation in the custom specifica-
tion. The (folded) annotation can be used for constructs
that should be folded automatically.

Bracket highlighting and insertion By describing pairs
of matching brackets and the comment constructs of a lan-
guage, the bracket highlighting, bracket insertion, and com-
ment insertion features can be enabled for an editor (Fig-
ure 8). Bracket pairs are also used to supplement the au-
tomatic indentation specification (not shown): the cursor is
automatically indented one level if a newline is entered after
an opening bracket.

Syntax completion We distinguish syntactic and semantic
content completion (the latter is discussed in the next sec-

module NWL-Colorer
imports NWL-Colorer.generated
colorer

Type.SimpleType : cyan
Type.SetType : gray

module NWL-Colorer.generated
colorer

keyword : magenta bold
identifier : default
string : blue
...

Figure 6. Syntax highlighting rules for NWL.
module NWL-Folding
imports NWL-Folding.generated
folding

Start.Module
Definition.Entity
Definition.Action

Figure 7. Folding rules for NWL.
module NWL-Syntax
language

line comment : "//"
block comment : "/*" * "*/"
fences : () { }

Figure 8. Comment and bracket definition rules for NWL.

tion). Syntactic content completion provides users with com-
pletion suggestions based purely on static, syntactic tem-
plates. For example

completion template:

"entity " <e> " {\n\t\n}"

is a syntactic completion rule for entity definitions. Comple-
tion rules are composed of static strings and placeholder ex-
pressions. Static strings allow for precise control of the pre-
sentation of completions and are enclosed by double quotes.
They can use \n for newlines or \t for one indentation level
(following the user’s tab/space configuration). Placeholder
expressions are indicated by angular brackets. The editor au-
tomatically moves the cursor to these expressions once the
user selects a completion proposal, allowing the expressions
to be filled in as the user continues typing.

4. Analysis and Transformation
Semantic analysis has two key roles in the implementation
of programming languages. First, the analysis checks if pro-
grams program are (type) consistent, reporting errors if they
are not. Second, it provides semantic information for use by
compilers, IDEs, and other language-specific tools.

In IDEs, semantic analysis forms the basis for all seman-
tic editor services. There are two forms of semantic anal-
ysis that are particularly important for IDEs: name analysis
and type analysis. Name analysis binds each identifier occur-
rence to its declaration. Name analysis is exposed directly in
the IDE in the form of reference resolving: press and hold
Control and hover the mouse cursor over an identifier to re-
veal a blue hyperlink that leads to its declaration. Type anal-
ysis determines the type of expressions and is important for
reporting errors and for context-dependent code generation.

The Spoofax Language Workbench SERG

8 TUD-SERG-2010-014a

Figure 9. Staged compilation: source code is parsed, transformed, and finally printed to target code.

Other analyses such as flow and pointer analysis may also
have a role in marking errors and warnings or for optimiza-
tion of the generated code, but in this paper we focus on
name and type analysis because of their central and crucial
role in both compilation of languages and for editor services.

Like many traditional compilers, we employ a staged
architecture of analyses and transformations, as illustrated
in Figure 9. First programs are parsed, then syntactic sugar
is eliminated, and then they are analyzed, creating abstract
syntax trees decorated with semantic information. Semantic
editor services such as reference resolving and error marking
operate on these decorated trees. After the analysis, the tree
can be further normalized to a core form, and finally code
generation rules can generate resulting code.

In the remainder of this section, we first introduce the
Stratego transformation language, and then show idioms for
using Stratego rewrite rules to concisely and declaratively
specify analyses and transformations for use by editor ser-
vices and for code generation.

4.1 Stratego
We use the Stratego program transformation language [3]
to describe the semantics of a language. The Stratego lan-
guage is based on the paradigm of term rewriting with pro-
grammable rewriting strategies introduced by [52]. Basic
transformations are defined by means of conditional term
rewrite rules of the form

r : t1 -> t2 where s

with r the name of the rule, t1 and t2 first-order terms, and
s a strategy expression. A rule applies to a term when its left-
hand side t1 matches the term, and the condition s succeeds,
resulting in the instantiation of the right-hand side pattern
t2. Otherwise the application fails. Unconditional rules have
no where clause, others may have multiple that must all be
satisfied.

In addition to checking applicability constraints, the
where clause of a rule can perform computations that may
be used in the right-hand side of the rule. For example, in
the rule schema

r : t1 -> t2 where t3 := <s> t4

the term t4 is transformed by application of a strategy or rule
s, matching against and binding variables in the pattern t3.
Term t4 may use variables from the left-hand side t1, and
right-hand side t2 may use t3.

Rewrite rules can concisely express small transforma-
tions based on the abstract representation of a program. Us-

ing content completion of terms, based on the syntax of a
language, and by providing views of the abstract syntax and
the results of transformations, the Spoofax environment as-
sists in writing these rules.

More complex transformations can be created by com-
posing rules using strategies. Many strategies can be com-
pared to visitors in object-oriented programming in that they
guide the application of rules in a tree. A strategy is essen-
tially a partial function from terms to terms. If a strategy is
not defined on a term it is said to fail. Failure arises from the
failure of rewrite rules to apply to terms. Strategies are com-
posed from basic combinators such as the identity transfor-
mation id, sequential composition s1; s2 and determinis-
tic choice s1 <+ s2. The Stratego standard library provides
a number of strategies for general use, such as map(s) that
applies a strategy expression s to each element of a list, and
alltd(s) that descends down the branches of a term up to
the points where s can be successfully applied, returning the
complete term after transformation.

Context-sensitive transformations can be expressed by
means of dynamic rewrite rules [4], which are instantiated
at run-time, as illustrated by the following schema:

r : t1 -> t2
where rules(dr : t3 -> t4)

The dynamic rule dr is defined when r is applied to a term
matching t1. Any variables that t3 and t4 share with t1 are
then inherited by the instantiation of dr (concrete examples
follow below).

4.2 Desugaring
Desugaring rules can simplify the abstract representation,
transforming higher-level constructs to more general, lower-
level constructs, or mapping constructs with multiple forms
to a single, canonical form. They can also be used to migrate
deprecated language constructs to newer alternatives. This
way, later analysis and transformation stages only need to
focus on a subset of all language constructs.

The full WebDSL language supports various different
iteration expressions and statements with optional filters
and ordering clauses [51]. In our NWL subset we provide
three basic iteration constructs without filtering or order-
ing, shown in the grammar of Figure 5. The ForAllExp

expression and the ForAllEntity statement iterate over all
instances of a given entity type. The ForAll statement is
more general and iterates over a given expression. To avoid
having to write typing, transformation, and code generation
rules for each of these variations, we use desugaring rules to
transform similar constructs to the most general form.

SERG The Spoofax Language Workbench

TUD-SERG-2010-014a 9

desugar-top = innermost(desugar)

desugar:
ForAllEntity(x, t, s*) ->
ForAll(x, t, ForAllExp(t), s*)

desugar:
Call(x) -> CallArgs(x, [])

Figure 10. Simple desugaring rules.

Figure 10 shows a desugar rule that transforms the
ForAllEntity statement to the more general form. An-
other definition of the rule transforms action calls with-
out arguments to action calls with an empty list of argu-
ments (omitted in the syntax definition). More sophisticated,
context-sensitive transformations, such as type inference for
the ForAll loop, can be applied after semantic analysis of
the program. The desugar rules are exhaustively applied in
an innermost fashion by the desugar-top strategy.

4.3 Reporting Errors and Warnings
There are a number of concerns in checking a program for
errors and reporting them to the user:
– Context: identifying points in the code to check
– Assumptions: only report an error if certain assumptions

hold (validating the context and avoiding spurious errors)
– Constraints: checking for constraints at the context
– Formulating an error message
– Attribution of the error to a particular character range

in the source text (usually, only part of the context is
marked, such as the name of an erroneous method)

In Spoofax, error checking is a transformational process: it
transforms an abstract syntax tree to a list of errors (also
a tree, containing messages and attributed tree nodes). We
use regular Stratego rewrite rules to transform parts of the
tree to errors. These check rules encapsulate all of the above
concerns, and adhere to the following idiom:

check:
context -> (target, $[error message])
where assumption
where require(constraint)

The rule checks whether for the given context (the term
under scrutiny) the constraint is satisfied, given that the
assumption holds. The require(s) operator is sugar de-
fined as follows:

require(s) = not(s)

That is, the check rule succeeds (producing the specified
error message), if the assumption succeeds but the
constraint fails.

The right-hand side is a pair consisting of target term and
an error message. The target is (typically) a subterm of the
context and denotes the term to which the error message
should be attributed. The error message should explain that
the constraint does not hold. The error message is a string
typically composed using string interpolation, i.e. $[...]
is a string consisting of all literal characters between the

check-top = collect-all(check)

check: Var(x) -> (x, $[Variable [x] is not declared])
where require(type-of)

check: SimpleType(x) -> (x, $[Undefined type [x]])
where require(is-simple-type)

check: PropAccess(e2, p) -> (p, $[[t] has no property [p]])
where t := <type-of> e2
where require(type-of)

check: ForAllExp(t) ->
(t, $[For loop requires entity type argument])

where <is-simple-type> t
where require(<is-entity-type> t)

check: SetType(t) ->
(t, $[Set requires entity type argument])

where <is-simple-type> t
where require(<is-entity-type> t)

Figure 11. Consistency checking rules.

quotes, except for escapes between [...]. For example, if
t is bound to "Blog" and p to "size" then

$[[t] has no property [p]]

evaluates to the string "Blog has no property size".
Figure 11 gives a selection of check rules for the NWL

language. The check-top strategy controls the application
of these rules: it collects a list of all tuples resulting from
successful applications of the check rules. For the specifica-
tion of assumptions and constraints, these rules use a number
of helper rules that are defined by the name and type analy-
sis (which we describe in the next subsection). The type-of
helper is a rule that returns the type of an expression. If the
type cannot be resolved (indicating an error in the program),
type-of fails. For example, the first check rule of Figure 11
requires that type-of succeeds for the context. If it does not,
an error is reported. Another helper is is-simple-type,
used in the second check rule: it only succeeds if the given
type is a declared entity type (as opposed to a set type). This
helper is also used to distinguish the case where constructors
are undefined or just non-entity types.

4.4 Binding Transformations to Editor Services
Transformation with origin information For the check
rules it is important to maintain the relation between the
original source location and the term an error is attributed to.
Figure 12 illustrates the different steps of the error checking
strategy. First, the source code is parsed, desugared, and an-
alyzed, producing the abstract syntax tree to the left. Then
the check-top strategy is applied, producing the tree to
the right, with pairs for all attributed terms and error mes-
sages. Throughout the desugaring, analysis, and error check-
ing process, the relations between the original source posi-
tions and the terms are maintained, as shown by the dashed
lines. Using these relations, all errors can be reported in the
source code locations that correspond to the attributed terms.

The origin relations are maintained automatically by
the Spoofax environment, allowing language developers to
write concise, position information-agnostic transformations

The Spoofax Language Workbench SERG

10 TUD-SERG-2010-014a

Figure 12. Transformational error checking with origin information.

editor-analyze: (ast, path, project-path) ->
(ast’’, errors, warnings, notes)

where editor-init;
ast’ := <desugar-top> ast;
ast’’ := <declare-top> ast’;
errors := <check-top> ast’’;
warnings := <check-warning-top> ast’’;
notes := <check-note-top> ast’’

Figure 13. Control rule for semantic analysis.

rather than keeping track of the original position manually.
Position information is implicitly passed along with trans-
formations through a form of origin tracking [46]. Origin
tracking is a general technique that can be applied in term
rewriting systems to implicitly maintain a link to the origi-
nating term after it has been rewritten to a new term.

Origin tracking as introduced by Van Deursen et al [46]
has originally been used to trace back errors to their original
source, much like we do in our error checking transforma-
tion. However, as we show in the remainder of this section,
the technique can also be used to for high-level specifications
of analyses and transformations used by editor services.

Control rules The transformation of an abstract syntax tree
to a list of errors is controlled by the analysis control rule.
Control rules are regular Stratego rewrite rules with a fixed
signature that form the interface between the IDE and the
Stratego transformation specification.

The control rule for semantic analysis and error report-
ing is shown in Figure 13. The rule is given information
about the file that is being analyzed, in the form of a tu-
ple with the abstract syntax tree of the file to be checked, its
project-relative path, and the file system path of the project
itself. The rule transforms this input to a new abstract syntax
tree, decorated with semantic information, and lists of er-
rors, warnings, and informational notes to be marked in the
program. In the where clause, the rule first resets the cur-
rent analysis environment using the built-in editor-init

strategy. Corresponding to Figure 9, the rule then desug-
ars the input abstract syntax tree and analyzes it, by calling
the declare-top strategy (given below). It then collects all
markers for the resulting (decorated) abstract syntax tree us-
ing the check strategies.

Semantic editor descriptors Editor descriptor files deter-
mine which control rule is used for which service. For ex-
ample, the NWL-Builders.esv file specifies:

observer: editor-analyze

which means that editor-analyze is used as the
observer control rule for the semantic analysis and error
reporting. Control rules can also be specified for when files
are saved (on save), for when a view is opened (builder),
for reference resolving (reference), and for each of the
other semantic services of Figure 2.

4.5 Name and Type Analysis
Name analysis binds each identifier occurrence to its decla-
ration. Based on name analysis, type analysis identifies the
types of expressions. Name analysis is also used for seman-
tic editor services and code generation, as illustrated in Fig-
ure 2. Together, name and type analysis form the basis for
consistency checking rules as those seen in Section 4.3.

As name analysis and type analysis are generally used
together, it is common practice for compilers to combine
the two analyses. Rather than locating the definition site
for identifier occurrence, the name analysis then directly
collects a mapping of names to types, and the type analysis
determines the types of surrounding expressions.

In Spoofax we use the name analysis independently from
the type analysis in semantic editor services. For this reason
it is important to separate it from the type analysis. In this
section we present an idiom for separate specification of
name and type analysis using rewrite rules and dynamic
rules. For simplicity, we divide the name analysis in two
stages: first we collect all globally visible names, and then
we analyze scoped names.

Unscoped name analysis Globally visible names can be
stored directly as dynamic rules that map an identifier to
its declaration site. For NWL, we use the EntityDef and
ActionDef dynamic rules for global names (Figure 14).
The declare-top strategy controls the stages of the name
analysis. It first declares all primitive types, then applies
the declare rule to the outermost definitions, and finally
calls rename-top to analyze scoped names (shown below).

SERG The Spoofax Language Workbench

TUD-SERG-2010-014a 11

declare-top =
declare-primitive-types;
alltd(declare);
rename-top

declare-primitive-types =
rules(

PrimitiveDef: "String" -> "String"
PrimitiveDef: "Int" -> "Int"
...

)

declare: d@Entity(x, p*) -> d
where rules(EntityDef : x -> d)

declare: d@Action(x, param*, stat*) -> d
where rules(ActionDef : x -> d)

declare: Import(x) -> Import(x)
where open-import(

resolve-import
, parse-file
, declare-top
)

resolve-import: Import(x) -> $[[<project-dir>]/[x].nwl]

Figure 14. Name analysis for globally visible names.

The declare rules match entities and actions, and define
dynamic rules that map each name x to its definition site d.

For import declarations, Spoofax provides a generic
open-import strategy (used in Figure 14, bottom). This
strategy ensures that files are cached after they are parsed
and avoids cycles in the dependency graph. The open-

import strategy takes three strategy expressions as its ar-
guments, that respectively resolve the filename of an import
(resolve-import), parse the file (parse-file), and ana-
lyze the file (declare-top).

Scoped name analysis For scoped names, we base our
analysis on the notion of consistent renaming [53], which
is the task of renaming all names in a program such that they
are unequal to all other names that do not correspond to the
same declaration site. However, rather than directly chang-
ing the names in the tree, we add annotations that satisfy this
uniqueness requirement. This way, the abstract syntax tree
remains the same modulo annotations, aiding in debugging
and traceability of analysis and code generation. As an ex-
ample, Figure 15 shows how an action definition in concrete
syntax (top), abstract syntax (middle), and as abstract syntax
with renaming annotations (bottom). After renaming, each
local name combined with its annotation is globally unique:
for instance, we can distinguish "s"{"a_0"} from any other
identifier s defined elsewhere.

Figure 16 shows renaming rules that add consistent nam-
ing annotations to local variables. The first definition of
rename (Figure 16 (A)) operates on action parameters. It
replaces the name x of a parameter with the annotated name
x{<new>}, where <new> generates a fresh, globally unique
name. The VarDef dynamic rule is defined to map the an-
notated name to the definition site. The RenameId dynamic
rule records the renaming for the current scope: for each fol-
lowing occurrence of x, it should given the name y (Fig-

action add(s : Set<User>) {
for (u : User in s) { ... }

}

Action("add",
[Param("s", SetType(SimpleType("User")))],
[ForAll("u", SimpleType("User"), Var("s"), ...)]

)

Action("add",
[Param("s"{"a_0"}, SetType(SimpleType("User")))],
[ForAll("u"{"b_0"}, SimpleType("User"),

Var("s"{"a_0"}), ...)]
)

Figure 15. Consistent renaming of an action definition.

rename-top = alltd(rename)

rename: d@Param(x, t) -> Param(y, t) (A)
where y := x{<new>};

rules(
VarDef : y -> d
RenameId : x -> y

)

rename: Var(x) -> Var(y) (B)
where y := <RenameId> x

rename: Action(f, p1*, s1*) -> Action(f, p2*, s2*) (C)
where {| RenameId:

p2* := <rename-top> p1*;
s2* := <rename-top> s1*

|}

rename: d@ForAll(x, t, e, s1*) -> ForAll(y, t, s2*)
where {| RenameId:

y := x{<new>};
rules(

VarDef : y -> d
RenameId : x -> y

);
s2* := <rename-top> s1*

|}

Figure 16. Name analysis using renaming rules.

ure 16 (B)). Any names that are not declared will not be
renamed, and are reported as errors in the check stage as
VarDef is never defined for them.

To respect the scopes of the language, we use dynamic
rule scopes [4] to reflect scoping construct of the language.
This Stratego feature takes the form {| r: ... |} and en-
sures that any definition of the dynamic rule r made directly
or indirectly within the scope is no longer visible after the
scope is exited. The rename rule for actions (Figure 16 (C))
uses this feature to scope variables declared within an ac-
tion. As the RenameId for these variables is undefined at the
end of the scope, the variables are no longer visible in any
following actions. The last definition of rename combines
local renaming and scoping for the for statement.

Type analysis Type analysis can be specified using rules
that project a language construct to its type. The type-of

rule maps language constructs to their type (Figure 17). Typ-
ing rules for literals generally specify a constant type (e.g.,
for StringLit). Typing rules for declarations can fetch the
type from one of the subterms (e.g., for entities or proper-
ties). Other typing rules use name analysis rules to fetch a
definition and then apply the basic type-of rules (e.g., for

The Spoofax Language Workbench SERG

12 TUD-SERG-2010-014a

type-of: StringLit(x) -> SimpleType("String")
type-of: Entity(x, prop*) -> SimpleType(x)
type-of: Property(_, t, _) -> t
type-of: Param(x, t) -> t
type-of: ForAll(x, t, _, _) -> t
type-of: ForAllExp(t) -> SetType(t)
type-of: Var(x) -> <type-of> (<VarDef> x)
type-of: PropAccess(e, f) -> t

where p := <lookup-property(|f)> (<type-of> e);
t := <type-of> p

Figure 17. Typing rules.

lookup-property(|f):
Entity(y, p*) -> <fetch-elem(?Property(f,_,_))> p*

lookup-property(|f):
SimpleType(y) -> <lookup-property(|f)> (<EntityDef> y)

is-simple-type = is-primitive-type <+ is-entity-type

is-primitive-type: SimpleType(x) -> <PrimitiveDef> x

is-entity-type: SimpleType(x) -> <EntityDef> x

Figure 18. Helper rules for error checking.

Var). For compound expressions such as PropAccess, we
fetch the property definition corresponding to the expression
and return its type. To fetch the property f of a given type
we use the lookup-property(|f) helper rule, where the
pipe (|) indicates that it receives a term argument f (as op-
posed to a strategy argument).

Other projection rules can test for various properties
based on the name analysis. Figure 18 illustrates additional
projection rules that are used in the check rules. Of these,
the lookup-property rule is of particular interest. It uses
the Stratego standard library strategy fetch-elem to try and
fetch the property f from an entity definition. A second def-
inition fetches the property given a type instead of an entity.

4.6 Reference Resolving and Occurrence Highlighting
Reference resolving and occurrence highlighting are speci-
fied using a control rule that given an identifier, respectively
looks up its declaration or all occurrences of that identifier.
For reference resolving, this rule is shown in Figure 19. The
rule is given the selected node in the tree, its position (spec-
ified as a list of child offsets), the decorated abstract syntax
tree, and the file system paths. The same tuple is given to the
control rules of all other semantic editor services (with the
exception of the analysis and error checking control rule).
Reference resolving is implemented by simply applying the
dynamic rules from the name analysis stage to the selected
identifier, using a decl-of helper rule to fetch the appropri-
ate declaration. Occurrence highlighting can be specified in
a similar fashion, but is omitted here for reasons of brevity.
Both services rely fully on the name analysis specification
and only require a small addition to implement the editor
service.

4.7 Content Completion
Semantic content completion (sometimes called content as-
sist) provides completion proposals based on the syntactic

editor-resolve:
(selected, pos, ast, path, project-path) -> target
where target := <decl-of> selected

decl-of: Var(x) -> <VarDef> x
decl-of: SimpleType(x) -> <EntityDef> x
decl-of: Submit(x) -> <ActionDef> x

Figure 19. Rules for reference resolving.

and semantic context of the expression that is being edited.
Content completion can provide suggestions for globally
visible names as well as locally scoped names. For this rea-
son, we integrate content completion into the name analysis
of Section 4.5.

An important aspect of our design for the content com-
pletion service is its interface to the semantic analysis. Con-
tent completion suggestions must be provided regardless of
the syntactic state of a program: an incomplete expression
‘blog.’ does not conform to the syntax, but for content com-
pletion it must still have an abstract representation. One ap-
proach (as taken by IMP [8], for example) is to require the
language developer to add special productions to the gram-
mar that map these incomplete expressions to an abstract
representation. Unfortunately, this means the developer has
to do extra work and has to account for all cases where con-
tent completion may be expected in the grammar.

In our approach, we opt for a generic representation of
incomplete syntactic expressions: we introduce an artificial
COMPLETION term to the abstract representation at the point
of the cursor. For example, if a variable is expected at the
cursor, a Var(COMPLETION("p")) is placed at the corre-
sponding point in the abstract representation, with p the
(possibly empty) identifier prefix that was already typed
in. Similarly, compound expressions can take a form like
PropAccess("blog",COMPLETION("p")).

In Figure 20 we define content completion for vari-
ables and property access expressions by extending the
name analysis from Figure 16. We replace the definition of
rename-top with one that applies propose-completion

before it applies rename. The first definition of propose-
completion provides completion suggestions for variables,
by taking all keys of the RenameId dynamic rule. Strat-
ego provides the derived function all-keys-RenameId to
do this. As the rule is evaluated within the context of the
analysis, this results in a list of all variables in the current
scope, and thus all valid suggestions if a variable is expected
at the cursor location. The ContentProposals dynamic
rule stores the list. The second propose-completion rule
provides completion suggestions for property access expres-
sions, by fetching all property names and recording them in
the dynamic rule. The control rule for content completion
is called editor-complete. It first performs name analysis
(extended with content completion support) and then fetches
the value of the ContentProposals rule.

The editor descriptor specifies which control rule to use
for content completion, and may specify a character se-

SERG The Spoofax Language Workbench

TUD-SERG-2010-014a 13

rename-top = alltd(propose-completion <+ rename)

propose-completion:
Var(COMPLETION(p)) -> all-vars
where all-vars := <all-keys-RenameId>;

rules(ContentProposals: () -> all-vars)

propose-completion:
PropAccess(e, COMPLETION(p)) -> p2*
where Entity(x, p*) := <EntityDef>;

p2* := <map(property-name)> p*;
rules(ContentProposals: () -> p2*)

editor-complete:
(selected, position, ast, path, project-path) -> p*
where editor-init;

ast’ := <declare-top> (<desugar-top> ast);
p* := <ContentProposals> ()

Figure 20. Content completion rules.

quence that automatically triggers content completion. For
example, for NWL, content completion should be automati-
cally triggered when the user types ’.’ or ’:’.

4.8 Transformations, Code Generation, and Views
Based on the Stratego language, Spoofax supports trans-
formations and code generation using concrete object syn-
tax [50], allowing rules to be written using the concrete syn-
tax of the language that is transformed as patterns. These
patterns can be syntactically checked against the syntax of
the language. The Stratego compiler converts the patterns
to abstract syntax. Concrete syntax can be very effective for
writing modular transformations that are divided into a series
of small, separate transformation steps [23]. After transfor-
mation using concrete syntax, a pretty printer can produce
text output from the result.

Concrete object syntax can be contrasted to template en-
gines, where no further transformation steps are possible af-
ter code is rewritten (unless the resulting text is reparsed).
Stratego also offers language support for template engine-
like transformations, by providing indentation-safe string in-
terpolation as a “quick and dirty” code generation solution.
For the small NWL language we opted for this approach to
code generation: after some desugaring and normalization,
NWL is printed to Java, and no subsequent transformations
are applied. Figure 21 shows code generation rules using
string interpolation and the control rule for generating Java.

Transformations and code generation can be used as a ba-
sis for views. Views can be described using descriptors, and
can have a title, a rule name, and a number of annotations:

builder: "Generate Java code" =
generate-java (openeditor) (realtime)

builder: "Show abstract syntax" =
generate-aterm (openeditor) (realtime) (meta)

This specification defines views to show Java code and the
abstract syntax of a selection. The (openeditor) annota-
tion specifies that an editor should be opened for the view
(rather than just generating code and saving it a file). The
(realtime) annotation specifies that the view should be
updated in real-time as the source file is changed. Finally,

generate-java:
(selected, position, ast, path, project-path) ->
($[[path].java], <to-java> selected)

to-java:
Entity(x, p*) ->
$[class [x] {

[p2*]
}

]
where p2* := <to-java> p*

to-java:
Property(x, Type(t)) -> $[

private [t] [x];
public [t] get_[x] { return [x]; }
public void set_[x] ([t] [x]) { this.[x] = [x]; }

]

Figure 21. Code generation rules.

the (meta) annotation specifies that the view should only
be available to language engineers, not to end developers.

5. Experience
We have substantial experience in using Spoofax and lan-
guages created with Spoofax. Several languages are part of
the standard distribution, and are used in the development of
new languages:

– The SDF language. Developed before the Spoofax work-
bench, we described the static semantics of SDF using
the idioms in this paper to support editor services such as
views on syntax productions and content completion.

– The ESV editor descriptor language.
– The Stratego language. We described the static semantics

to provide full-featured Stratego IDE support.
– The ATerm language [45], used for abstract syntax. In

addition to the Spoofax specification, we added special
support for views based on the source file of an ATerm
file (e.g., allowing “generate Java code” to be applied to
an ATerm created from an NWL file).

Spoofax has also been used, by ourselves and others, to de-
velop a variety of new languages covering different domains.
Some have been developed independently of our environ-
ment before Spoofax was available, and have used Spoofax
to describe the syntax and static semantics for IDE integra-
tion. A selection:

– Acoda [48] is a tool set that uses DSLs to aid in data mi-
grations as data models evolve. Given different versions
of a data model, it can automatically derive textual, ed-
itable evolution traces that can be executed to perform
data migration. The data model editor uses views to gen-
erate these traces and supports the full range of editor
features for editing them.

– Aster [31], an attribute grammar language based on
strategies for description of attribute propagation pat-
terns.

– PIL [24], a Java-like, object-oriented programming lan-
guage that targets multiple software platforms.

The Spoofax Language Workbench SERG

14 TUD-SERG-2010-014a

– Mobl, a DSL for web-based mobile phone applications.
It generates HTML/Javascript code when files are saved,
allowing them to be directly tested in a browser.

– NWL (shown in this paper) and WebDSL [51], a DSL for
the Web. While WebDSL was developed using Stratego,
it did not follow the idioms we presented in this paper
that would allow it to fully integrate into and IDE. We are
currently working on describing the full static semantics
of the language and its extensions using this new style.

– An assembly language for Java bytecode, used mainly as
a pedagogical tool for inspecting and creating Java class
files, or to directly generate bytecode from other Spoofax
languages. With over 200 instruction keywords it cur-
rently benefits greatly from syntactic content completion;
semantic content completion could even improve the pro-
gramming experience more based on the stack state at a
given point in a program.

Observations To give a few observations about our expe-
rience, Spoofax allows for a much more agile development
model than was previously possible with separate tools for
syntax definition, meta-programming, and especially IDE
development. As languages are developed they are directly
usable in the IDE from the point that a syntax is defined.
From there, developers can incrementally add additional
functionality, from presentational editor services to semantic
analyses and code generation. Not all languages listed above
have yet reached the level of maturity where they incorporate
the full set of services from Figure 2, but they still provide
an improved user experience compared to a standard text ed-
itor. Using Spoofax also changed the deployment model of
the languages: they can now be distributed as Eclipse plugins
instead of separate command-line compilers, which tends to
be much more appealing to “end developers.”

In our experience the Spoofax workbench significantly
lowers the bar for creating a new language by providing an
interactive environment for development and playing with it
as it evolves. We have developed a number of experimen-
tal languages to try out new language concepts, and are now
using it with great success in a course on model-driven soft-
ware engineering. It allows students to experiment with lan-
guage features and experience all aspects of language devel-
opment in a unified environment. For a course on compiler
construction, we will use the bytecode language to allow stu-
dents to experiment with stack architectures and abstractions
over a low-level language.

Customization Based on the Eclipse platform, Spoofax
language plugins are open to various forms of extensions
and integration with other plugins. In the WebDSL plugin
we particularly made use of that, and integrated the plu-
gin with the Eclipse Web Tools Platform for testing and
deploying web applications. The plugin also provides its
own wizard that configures database and deployment con-
figuration. These customizations have been implemented as

custom Java code, directly embedded in the plugin itself.
The WebDSL plugin also integrates with the Acoda plugin:
Acoda can extract data models from web applications, show
these in a view, and then derive evolution traces by compar-
ing data models.

Evolution As languages evolve with new insights, new
constructs may be added and others removed, which can lead
to incompatibilities with older programs. One way Spoofax
assists in migrating older DSL programs to newer revisions
of a language is through the notion of deprecated syntax.
Syntactic constructs marked deprecated are displayed with
a warning in the editor, and may be transformed to updated
constructs using desugaring rules (Section 4.2) or by a mi-
gration transformation that processes these constructs and
produces a migrated program. An area of future work is to
provide tool support to assist in these migrations, much like
Acoda can do for data models.

6. Implementation
The implementation of Spoofax is based on the Eclipse plat-
form, allowing it to be used together with other, language-
independent Eclipse plugins such as build management tools
and other language-specific plugins.

For the definition of generic IDE components we make
use of the IMP framework [7, 8], which greatly simplified
the construction of these components by abstracting over
the Eclipse API and guiding us through the development
process using wizards. Languages developed in our environ-
ment maintain compatibility with IMP. In addition to the ser-
vice descriptor DSLs, it is also possible to use Java-based
implementations using the IMP framework to implement
components of a language.

The language workbench integrates the language para-
metric editor service components based on IMP with the
Spoofax libraries for parsing (JSGLR) and running Strat-
ego (Stratego/J) [1]. As Spoofax/IMP — the official name
of the workbench — integrates nearly all of the libraries of
the Spoofax project, the workbench is also simply called the
Spoofax language workbench.

6.1 Language-Parametric Editor Services
From an implementation point of view, only a small por-
tion of an IDE or IDE plugin implementation is actually
language-specific. A great part of the implementation of IDE
components deals with accidental complexity that has little
or no relevance to a particular language. IDE development
frameworks such as IMP [7, 8] and TMF [56] simplify the
implementation of these components by abstracting away
from many of these details.

In Spoofax we implemented IDE components in a lan-
guage-parametric fashion. Each component is written in
Java, and interacts with the APIs for abstract syntax trees,
tokens, text editor widgets, the file system, the parser and
error recovery, etc. However, it does not include any specific

SERG The Spoofax Language Workbench

TUD-SERG-2010-014a 15

knowledge of the language it is used for. Instead, the com-
ponents interpret an editor descriptor that configures these
language-specific parts. For each editor service, a factory
class that reads the editor descriptor for that service, and in-
stantiates the language-parametric implementation class for
it. These classes use the standard Java collection classes such
as hash tables to efficiently store and access the language
configuration. For example, for the syntax highlighting ser-
vice, we maintain hash tables that specify which format-
ting style to apply to which kind of character sequence. For
parsing, we use a generated parse table that is dynamically
loaded into the environment.

We use proxy classes to implement the Eclipse and IMP
extension points for editor services, satisfying the static
Eclipse/OSGi component model for loading plugins. These
proxy classes invoke the corresponding factory class as ser-
vices are first used, loading the parametrized implementation
classes. When a language definition is changed, the proxy
classes seamlessly load new services from the descriptors.

Parser technology and IDE components Key for rapid
feedback in interactive environments is a parser that supports
error recovery in order to parse files with syntax errors and
incomplete programs as a programmer edits the text. As an
example, consider the file at the left of our screenshot in
Figure 4. This file is not syntactically correct, since the last
production does not have a symbol it matches to. To still
provide content completion, the parser still has to produce
a sensible abstract representation for the editor services to
operate on. In [11, 29] we described language-generic error
recovery techniques that we use in the Spoofax language
workbench to address this issue.

A number of editor services directly interact with the syn-
tactic state of the parser. For instance, the bracket insertion
service needs to determine if the cursor is not inside a string
or comment terminal. If that is the case, and the user types
an opening bracket {, the service should not automatically
insert the closing bracket }. One way to determine whether
the cursor is inside a string or comment is simply having
a language-specific “blacklist” of syntactic constructs were
bracket insertion should be disabled. However, to do this
in a language-agnostic way, we had to take a different ap-
proach. Instead, we analyze the active production at the se-
lected character, which can be determined from the parse
tree. If it is a lexical production, we can examine the lexical
character class that can be parsed by it. If the character class
includes the bracket that would be inserted (e.g., }), then that
indicates that the bracket would become part of the lexical.
For these cases, closing bracket insertion is disabled.

Another editor service that interacts directly with the
parser is content completion. As we discussed in Section 4.7,
programs are often in a syntactically incorrect state when a
completion proposal is demanded. For example, an expres-
sion e. may be a property access expression in the mak-
ing. If content completion is triggered at that point, we

insert a placeholder identifier at the point of the cursor,
forming an expression e.placeholder, and parse the file
again. This ensures that the expression is still parsed as a
compound expression. Any missing semicolons, parenthe-
ses, etc. can be picked up by the regular error recovery rules.
The placeholder also allows us to easily add an artificial
COMPLETION constructor at the point where the placeholder
appears, which is used for the content completion analysis
of Section 4.7.

Interpretation versus compilation Using language-para-
metric editor services does not enforce an interpretative
model. It is also possible to use language-parametric edi-
tor services with compiled Java classes that are dynamically
loaded using classloaders. In fact, we use classloaders to
load compiled Stratego specifications for semantic services.
Using a compiled model can lead to improved runtime per-
formance, but comes at the cost of compilation speed. For
Stratego, developers can choose whether to interpret or com-
pile specifications, depending on whether they want more
agile development or if they want to distribute the plugin
to “end developers.” A similar approach could also be used
for syntactic editor services, but we feel that the trade-off of
compilation time versus performance for those services may
be unacceptable: we have never seen performance problems
for those services based on an interpretative model.

6.2 Semantic Services and Rewrite Rules
The Stratego language was originally compiled to C, but we
developed a more flexible backend that compiles it to Java
and interoperates with Eclipse. Where the C-based Strat-
ego operates only on the ATerm data type of the ATerm li-
brary [45], the Java implementation is more flexible and can
transform any tree structure that implements the IStratego-
Term interface. Using adapter classes, any Java data type can
be made to implement it. This approach is called the program
object model adapter (POM) approach. Previous experience
with a Stratego interpreter on Java showed that this approach
allows rule-based transformations to interoperate with Java-
based frameworks such as a compiler frontends [28].

We use the POM adapter approach to transform trees
that maintain position and layout information. By using a
custom factory class used to construct new IStrategoTerm

instances, we implemented a form of origin tracking [46] for
Stratego. Origin tracking is key to concise, position-agnostic
specification of transformations and analyses in Spoofax.

The term factory class is used to construct new terms
by compiled and interpreted Stratego programs. Term fac-
tories have methods to create new terms given a construc-
tor name/and or children or by parsing them from files [28].
We added methods to replace subterms of a term. Terms are
functional, immutable data types, so by default these meth-
ods simply return a new term with the given subterms. In
Spoofax, we return a new term that maintains a link to the
original term and its children. We changed the implementa-

The Spoofax Language Workbench SERG

16 TUD-SERG-2010-014a

tion of the Stratego traversal operators all, some, and one to
use the new “replace” methods. This way, all strategies that
use these combinators (such as alltd and collect-all,
shown in this paper) support origin tracking.

6.3 Editor Extensibility and Customization
Language workbenches provide an integrated development
environment for building a language and IDE support, ab-
stracting over low-level IDE implementation details. Still, it
can be useful to have a “backdoor” to escape the environ-
ment and add features that (we) the developers of the work-
bench had not anticipated.

Spoofax language definitions can be extended using
the standard Eclipse extension model. New components
can be added to plugins simply by declaring them in the
plugin.xml descriptor file and implementing them in Java.
Since we base our implementation on IMP, helpful IMP
wizards can even generate skeletal Java implementation for
common editor services. Once declared, Java implementa-
tions of services can even override the Spoofax implemen-
tations. Drawbacks of adding services this way are that they
do not provide the same abstractions as DSLs would, and
that they tie developers to the standard Eclipse way of plu-
gin development: custom, Java-based services can only be
used in a secondary Eclipse instance.

7. Discussion and Related Work
Spoofax is a language workbench for textual domain-specific
languages. Textual languages benefit from integration with
standard, text-based version control systems and issue track-
ers, easy importing and exporting of files from other tools
(avoiding vendor lock-in), files that are editable with other
tools, and free text editing. Notable other tools for creating
and using textual DSLs are the Meta-Environment [34, 44],
EMFText [22], MontiCore [36], TCS [26], TEF [55], and
Xtext [14]. A thorough comparison of a number of these
tools has recently been provided by Goldschmidt et al [19]
and by Pfeiffer and Pichler [40]. In our discussion we con-
trast these tools to Spoofax.

The Meta-Environment is a platform for language devel-
opment, source code analysis, and source code transforma-
tion [34, 44]. It includes SDF, the ASF term rewriting lan-
guage, and provides an IDE framework written in Java. The
Meta-Environment derives basic syntax highlighting from
SDF grammars. ASF tree-traversal may also be used to an-
notate the AST with coloring directives. ASF is also used
to specify the typing rules of the language, and may include
custom error messages, presented in a separate view. The
IDE framework provides outlining but none of the other pre-
sentation, editing, or semantic services provided by Spoofax.

Compared to the Stratego language, ASF has limited
expressive power. ASF is a pure term rewriting language,
whereas Stratego adds strategies [52] and dynamic rules [4],
which have been key for concise, reusable analyses in

Spoofax. In Spoofax we use origin tracking for position-
agnostic specification of editor services. Origin tracking was
originally implemented as a prototype for ASF [46], but is
no longer used in the current version.

EMFText [22], TEF [55], and TCS [26] take a differ-
ent approach to syntax development than we do in Spoofax.
Rather than combining the specification of concrete and ab-
stract syntax into a single grammar, they start with the con-
struction of a metamodel. TCS and EMFText have a generic
concrete syntax that can be derived from a metamodel, at
the cost of domain-specific notation. In EMFText, develop-
ers also have the option to write their own grammar with pro-
ductions that map to elements of the metamodel. On the one
hand, this approach allows the use of existing EMF meta-
models for building new languages, which can be useful in
certain cases. On the other hand, the approach is also less
agile than using a syntax formalism that integrates abstract
and concrete syntax: it introduces redundancies in the gram-
mar, and requires the syntax to be maintained in two places.
The three workbenches provide error markers, reference re-
solving, and content completion that can be customized us-
ing Java, but none of the presentation and editing services of
Figure 2.

Xtext [14] is also based on EMF metamodels, but inte-
grates the specification of concrete syntax and metamodel
into a single grammar specification. Xtext was originally
part of openArchitectureWare [13], and used the OCL-like
Xtend language for model transformations and for the spec-
ification of problem markers using constraints and for ref-
erence resolving. Recently, Xtext has been reimplemented
using TMF [56]. It now relies on grammar annotations and
uses Java code to describe the static semantics of languages
and all but the most basic editor services.

The abstract representation of programs in Spoofax is
based on trees, where dynamic rules superimpose graph
structures. In contrast, EMF is based on graphs. EMFText
and Xtext allow annotations in grammar productions to spec-
ify simple use-def relations between productions that intro-
duce back-edges to the abstract syntax tree, effectively pro-
ducing graphs. This approach of syntactic name resolution
only works for names with a global scope (or lexical scopes
in the case of EMFText). It is inadequate for compound ex-
pressions (e.g., blog.author). EMFText and Xtext resort
to Java code to specify these relations. In Spoofax, the name
analysis is fully specified in a rule-based Stratego specifica-
tion. An interesting future step for Spoofax could be to map
abstract syntax trees and dynamic rules to EMF models, and
express constraints over such models with Stratego.

MontiCore [36] generates custom Java classes to rep-
resent the abstract syntax. It supports basic presentational
services, which are specified as grammar properties. Syn-
tax coloring is specified as lists of keywords to highlight.
Pre-defined (Java-style) comments are supported. Folding is
specified by a list of non-terminals. For semantic editor ser-

SERG The Spoofax Language Workbench

TUD-SERG-2010-014a 17

vices, MontiCore grammars specify events, which may be
specialized with user-defined Java classes.

Interestingly, with the exception of the Meta-Environment
and TEF, all tools that we described generate ANTLR
parsers. TEF uses a the RunCC parser generator. ANTLR’s
LL(k) or LL(*) parsers cannot cope with left recursion in
grammars. Likewise, RunCC’s LR(k) parsers are limited to
a subset of the context-free grammars. This means that they
are not closed under composition, which means that adding
extensions to a grammar or reusing grammars can intro-
duce conflicts in the parser [32]. These parsers also rely on
using a single, separate scanner, which means that adding
extensions with a different lexical syntax is not possible.
In contrast, Spoofax and the Meta-Environment use SDF to
specify grammars and generate scannerless generalized LR
(SGLR) parsers. Based on SGLR parsing, SDF grammars
can be freely composed, allowing for embedded languages
and language extensions.

One area in which Spoofax excels compared to other tools
is in supporting agile language design and development.
Languages can be incrementally developed and changes can
be dynamically loaded into the environment. Spoofax au-
tomatically derives syntactic editor services from the syn-
tax definition. Editor services can then be selectively cus-
tomized as desired. In contrast, the other tools often provide
generic syntax highlighting for keywords and hardcoded de-
fault symbols such as strings, but do not derive highlight-
ing or other services based on analysis of the grammar. Of
the other tools, only the Meta-Environment and TCS have
the ability to dynamically reload language definitions with-
out requiring the editor environment to be relaunched. In the
case of the Meta-Environment, this comes at the cost of the
idiosyncrasies of a custom IDE environment rather than in-
tegration into a common language platform such as Eclipse.
TCS integrates into Eclipse, but is primarily designed for
adding a textual syntax to languages that have a model-based
principal representation. While it allows free text editing,
it does not allow the same flexibility in language design as
other workbenches where language engineers can write their
own grammar.

We use the Stratego language for analyses, transforma-
tions, and code generation. Other workbenches use Java
classes for analysis, sometimes combined with grammar an-
notations, Java visitors for transformations, and template en-
gines for code generation. Based on strategies and rewrite
rules, Stratego concisely specify analyses and transforma-
tions. Providing a choice of concrete object syntax (ensuring
syntactic correctness) [50] and string interpolation, Stratego
also provides a flexible solution for code generation.

Other notable meta-programming languages include
ASF+SDF [12], JastAdd [20], Rascal [35], and TXL [10].
They provide limited IDE support at this point, although
the developers of JastAdd and Rascal are actively working
on IDE support dedicated to their meta-programming lan-

guages. However, much like the original Spoofax Stratego
editor [27], they do not provide a language workbench so-
lution for languages developed with them. Like Stratego,
ASF+SDF and TXL support a form of concrete object syn-
tax, but they do not support string interpolation. Only Rascal
supports both forms of code generation. JastAdd relies on
Java visitors on the abstract syntax tree to generate code.

8. Open Issues and Future Work
In this paper we showed that the Stratego language can be
used for concise specifications of analysis, transformations,
and code generation. Still, many other meta-programming
languages exist that each have their own merits and uses. We
believe that Spoofax has the potential to become a common,
open platform for hosting multiple meta-programming lan-
guages. Spoofax defines a lightweight, technology-agnostic
interface between editor services and semantic analyses.
Analysis specifications in other meta-programming lan-
guages could follow the same interface, and to some de-
gree may follow the same idioms for reuse, allowing them
to implement the same set of editor services. One constraint
is the representation of the abstract syntax, which may re-
quire marshalling to another form. Another is our use of ori-
gin tracking in the specification of analyses. Without origin
tracking, semantic specifications would have to explicitly
ensure that analysis results contain position information.

In previous work, we applied strategic programming in
the field of attribute grammars, enabling high-level, declar-
ative specifications of semantic analyses in the Aster lan-
guage [31]. Based on Aster’s reusable attribute propagation
patterns for name, type, and flow analysis, we would like to
investigate how Aster specifications can be integrated into
Spoofax and used to specify IDE services.

Another area of future work is in providing tool support
for first-class language components. Based on the modu-
lar SDF syntax formalism and SGLR parsing, it is possi-
ble to decompose languages into separate, reusable compo-
nents [5]. As an example, WebDSL [51] reuses the syntax
definition of HQL for queries. Such compositions still re-
quire much manual work, as Spoofax provides only limited
tool support for these forms of reuse. One ideal scenario may
be that users of a language could just pick and match the
language features they need, and that the environment com-
poses them. Composition at the semantic level poses addi-
tional challenges. Based on a uniform type system and a sin-
gle host language, it is possible to combine language compo-
nents. (Notably, MPS [25] relies on these properties.) How-
ever, if a different host language or type system is used, reuse
is currently limited to the syntactic level.

Spoofax provides support for a significant number of ed-
itor services found in modern IDEs, and provides a solid
foundation for implementing new services, based on back-
ground parsing and reuse of semantic analyses. Users can
currently add additional components using Java, but we

The Spoofax Language Workbench SERG

18 TUD-SERG-2010-014a

would like to support more services using DSLs in the fu-
ture. Services that we would particularly like to support are
refactoring and debugging. In current IDE implementations,
these services are especially demanding to implement, re-
quiring sophisticated analyses for refactoring, and interac-
tion with the runtime state of applications for debugging.

Refactorings are highly language-specific transforma-
tions, but they often take common forms: rename “some-
thing,” extract “something,” etc. We expect that it would
be possible to describe preconditions, postconditions, and
invariants of these forms of refactorings in a uniform way
based on our idioms for name and type analysis. Based on
the Stratego language, and using origin tracking for layout-
agnostic transformations, we hope to find ways to efficiently
and succinctly express refactorings.

For debugging, the runtime state of domain-specific lan-
guages can take many different forms. The IMP platform
only provides rudimentary support for of languages that gen-
erate Java code [8]. While we could also add support for de-
bugging of DSLs that generate Java, we are also interested in
making it easier to describe debuggers in a more technology-
agnostic way, and in finding general patterns to efficiently
construct debuggers for arbitrary DSLs.

9. Conclusion
Modern IDEs increase developer productivity by incorpo-
rating many different kinds of editor services specific to the
syntax and semantics of a language. They assist developers
in understanding and navigating through the code, they di-
rect developers to inconsistent or incomplete areas of code,
and they even help with editing code by providing automatic
indentation, bracket insertion, and content completion. As
a consequence, developers that have grown accustomed to
these services are growing less accepting of languages that
do not have solid IDE support.

To efficiently develop languages with IDE support, Spoo-
fax supports selective, incremental development of editor
services that can be dynamically loaded, evaluated, and
tuned in the same environment. Using high-level languages
to specify the syntax and semantics of a language, it pro-
vides a language development solution that greatly increases
productivity of language engineers in building language and
IDE components compared to using handwritten compo-
nents or separate language engineering tools.

Acknowledgements This research was supported by
NWO/JACQUARD projects 612.063.512, TFA: Transforma-
tions for Abstractions, and 638.001.610, MoDSE: Model-
Driven Software Evolution. We would like to thank Karl
Trygve Kalleberg for his many contributions to the Spoofax
project; the development teams of IMP, SDF, (J)SGLR, and
Stratego/XT for their valuable efforts; Maartje de Jonge
and Emma Söderberg for their contributions to error recov-
ery with JSGLR; Rob Vermaas, Bernhard Merkle, and the
anonymous reviewers for suggestions for this paper; and fi-

nally our users for providing continuous feedback and com-
ing up with interesting new ideas.

References
[1] The Spoofax project. http://www.spoofax.org/.

[2] P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn,
B. Lang, and V. Pascual. Centaur: the system. SIGPLAN Not.,
24(2):14–24, 1989.

[3] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser.
Stratego/XT 0.17. A language and toolset for program trans-
formation. Sci. of Comp. Programming, 72(1-2):52–70, June
2008. Special issue on experimental software and toolkits.

[4] M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Pro-
gram transformation with scoped dynamic rewrite rules. Fun-
damenta Informaticae, 69(1–2):123–178, 2006.

[5] M. Bravenboer and E. Visser. Concrete syntax for objects:
domain-specific language embedding and assimilation with-
out restrictions. In OOPSLA, pages 365–383, 2004.

[6] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J.
Grose. Eclipse Modeling Framework. Addison-Wesley, 2004.

[7] P. Charles, R. M. Fuhrer, and S. M. Sutton, Jr. IMP: a
meta-tooling platform for creating language-specific IDEs in
Eclipse. In ASE 2007, pages 485–488, 2007.

[8] P. Charles, R. M. Fuhrer, S. M. Sutton, Jr., E. Duesterwald, and
J. Vinju. Accelerating the creation of customized, language-
specific IDEs in Eclipse. In OOPSLA 2009. ACM, 2009.

[9] S. Cook, G. Jones, S. Kent, and A. C. Wills. Domain-Specific
Development with Visual Studio DSL Tools. Addison Wesley,
2007.

[10] J. R. Cordy, C. D. Halpern-Hamu, and E. Promislow. TXL: a
rapid prototyping system for programming language dialects.
In Conf. on Comp. Languages, pages 280–285. IEEE, 1988.

[11] M. de Jonge, E. Nilsson-Nyman, L. C. L. Kats, and E. Visser.
Natural and flexible error recovery for generated parsers. In
SLE, 2010.

[12] A. v. Deursen, J. Heering, and P. Klint, editors. Language
Prototyping: An Algebraic Specification Approach, volume 5
of AMAST Series in Computing. World Sci. Publ. Co., 1996.

[13] S. Efftinge et al. openArchitectureWare User Guide. Version
4.3. Available from http://www.eclipse.org/gmt/oaw/

doc/4.3/html/contents/, April 2008.

[14] S. Efftinge and M. Voelter. oAW xText: A framework for tex-
tual DSLs. In Workshop on Modeling Symposium at Eclipse
Summit, 2006.

[15] M. Fowler. A language workbench in action - MPS. http:

//martinfowler.com/articles/mpsAgree.html, 2005.

[16] M. Fowler. Language workbenches: The killer-app for do-
main specific languages? http://martinfowler.com/

articles/languageWorkbench.html, 2005.

[17] M. Fowler. PostIntelliJ. http://martinfowler.com/

bliki/PostIntelliJ.html, 2005.

[18] M. Fowler. A pedagogical framework for domain-specific
languages. IEEE Software, 26:13–14, 2009.

SERG The Spoofax Language Workbench

TUD-SERG-2010-014a 19

[19] T. Goldschmidt, S. Becker, and A. Uhl. Classification of
concrete textual syntax mapping approaches. In ECMDA-FA
2008, volume 5095 of LNCS, pages 169–184. Springer, 2008.

[20] G. Hedin and E. Magnusson. JastAdd: an aspect-oriented
compiler construction system. Sci. Comput. Program.,
47(1):37–58, 2003.

[21] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syn-
tax definition formalism SDF: Reference manual. SIGPLAN
Not., 24(11):43–75, 1989.

[22] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and
C. Wende. Derivation and refinement of textual syntax for
models. In ECMDA-FA, pages 114–129, 2009.

[23] Z. Hemel, L. C. L. Kats, D. M. Groenewegen, and E. Visser.
Code generation by model transformation. A case study in
transformation modularity. Softw. and Syst. Modeling, 2009.

[24] Z. Hemel and E. Visser. PIL: A platform independent lan-
guage for retargetable DSLs. In SLE, 2010.

[25] JetBrains. Meta programming system. https://www.

jetbrains.com/mps.

[26] F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for the spec-
ification of textual concrete syntaxes in model engineering. In
Generative and Component Engineering (GPCE’06), pages
249–254. ACM, 2006.

[27] K. T. Kalleberg and E. Visser. Spoofax: An interactive devel-
opment environment for program transformation with Strate-
go/XT. In Workshop on Language Descriptions, Tools, and
Applications (LDTA 2007), pages 47–50, 2007.

[28] K. T. Kalleberg and E. Visser. Fusing a transformation lan-
guage with an open compiler. In Workshop on Language De-
scriptions, Tools, and Applications (LDTA 2007), volume 203
of ENTCS, pages 21–36. Elsevier, April 2008.

[29] L. C. L. Kats, M. de Jonge, E. Nilsson-Nyman, and E. Visser.
Providing rapid feedback in generated modular language en-
vironments. Adding error recovery to scannerless generalized-
LR parsing. In OOPSLA, pages 445–464, 2009.

[30] L. C. L. Kats, K. T. Kalleberg, and E. Visser. Domain-
specific languages for composable editor plugins. In Work-
shop on Language Descriptions, Tools, and Applications
(LDTA 2009). Elsevier, April 2009.

[31] L. C. L. Kats, A. M. Sloane, and E. Visser. Decorated attribute
grammars. Attribute evaluation meets strategic programming.
In Conference on Compiler Construction (CC 2009), volume
5501 of LNCS, pages 142–157. Springer, March 2009.

[32] L. C. L. Kats, E. Visser, and G. Wachsmuth. Pure and declara-
tive syntax definition: Paradise lost and regained. In Onward!,
2010.

[33] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling. En-
abling Full Code Generation. John Wiley & Sons, Inc., 2008.

[34] P. Klint. A meta-environment for generating programming
environments. ACM Transactions on Software Engineering
Methodology, 2(2):176–201, 1993.

[35] P. Klint, T. van der Storm, and J. Vinju. Rascal: a domain
specific language for source code analysis and manipulation.
In SCAM, pages 168–177, 2009.

[36] H. Krahn, B. Rumpe, and S. Völkel. Monticore: Modular
development of textual domain specific languages. In TOOLS,
pages 297–315, 2008.

[37] M. F. Kuiper and J. Saraiva. Lrc - a generator for incremental
language-oriented tools. In Compiler Construction (CC’98),
pages 298–301, London, UK, 1998. Springer-Verlag.

[38] M. Mernik, J. Heering, and A. Sloane. When and how to
develop domain-specific languages. ACM Computing Surveys
(CSUR), 37(4):344, 2005.

[39] N. Nystrom, M. Clarkson, and A. Myers. Polyglot: An Exten-
sible Compiler Framework for Java. Compiler Construction
(CC’03), 2622:138–152, Apr. 2003.

[40] M. Pfeiffer and J. Pichler. A comparison of tool support for
textual domain-specific languages. In Workshop on Domain-
Specific Modeling, pages 1–7, 2008.

[41] T. Reps and T. Teitelbaum. The synthesizer generator. SIG-
SOFT Softw. Eng. Notes, 9(3):42–48, 1984.

[42] S. Saunders, D. K. Fields, and E. Belayev. IntelliJ IDEA in
Action. Manning, 2006.

[43] C. Simonyi. The death of computer languages, the birth of
Intentional Programming. Tech. report, MS Research, 1995.

[44] M. Van den Brand, A. Van Deursen, J. Heering, H. De Jong,
et al. The Asf+Sdf Meta-Environment A Component-Based
Language Development Environment. In Compiler Construc-
tion, volume 44 of LNCS, pages 365–370. Springer, 2001.

[45] M. G. J. van den Brand, H. de Jong, P. Klint, and P. Olivier.
Efficient annotated terms. Software, Practice & Experience,
30(3):259–291, 2000.

[46] A. van Deursen, P. Klint, and F. Tip. Origin tracking. Journal
of Symbolic Computation, 15(5/6):523–545, 1993.

[47] A. van Deursen, P. Klint, and J. Visser. Domain-specific lan-
guages: an annotated bibliography. SIGPLAN Not., 35(6):26–
36, 2000.

[48] S. Vermolen and E. Visser. Heterogeneous coupled evolution
of software languages. In MoDELS, pages 630–644, 2008.

[49] E. Visser. A family of syntax definition formalisms. Technical
Report P9706, Programming Research Group, University of
Amsterdam, July 1997.

[50] E. Visser. Meta-programming with concrete object syntax. In
GPCE, pages 299–315, 2002.

[51] E. Visser. WebDSL: A case study in domain-specific language
engineering. In GTTSE, pages 291–373, 2007.

[52] E. Visser, Z.-E.-A. Benaissa, and A. P. Tolmach. Building
program optimizers with rewriting strategies. In ICFP, pages
13–26, 1998.

[53] W. Waite and G. Goss. Compiler construction. 1984.

[54] M. P. Ward. Language-oriented programming. Software —
Concepts and Tools, 15(4):147–161, 1994.

[55] Textual Editing Framework (TEF). http://www.

informatik.hu-berlin.de/sam/meta-tools/tef.

[56] Textual modeling framework (TMF). http://www.

eclipse.org/modeling/tmf/.

[57] The WAtson Libraries for Analysis. http://wala.

sourceforge.net/.

The Spoofax Language Workbench SERG

20 TUD-SERG-2010-014a

TUD-SERG-2010-014a
ISSN 1872-5392 SERG

