
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2010

MSc THESIS

Reconfigurable Trigger Logic for Electronic
Instrumentation in Space Applications.

Mihai Lefter

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2010-20

Future space missions have to rely on advanced, smart and very light
payloads in order to explore the solar system within a reasonable cost
envelope. For this reason, efforts are made to obtain higher levels of
integration that can reduce costs and allow the presence of more and
more instruments on board of small spacecrafts. With the advent of
radiation hardened FPGAs, the use of reprogrammable hardware in
space is no longer an issue. This opens new perspectives to space
electronics. System-on-Chip (SoC) design methodologies for future
highly-integrated devices are actively promoted by space agencies. In
this thesis we focus on FPGA based SoC architectures for space elec-
tronics instrumentation, targeting time related issues. In this line of
reasoning we proposed and developed a highly customizable trigger
logic block able to reject background events with the highest pos-
sible efficiency and to accurately timestamp the accepted ones. Its
features include programmable coincidence window, input ordering,
and for every input in particular the possibility to choose different
states and to program the delay. The trigger logic block is designed
as an AMBA IP core and it can be interfaced with many SoC li-
braries. For testing purposes we have programmed an AMBA based

SoC architecture including a LEON3 on-chip processor and a minimal selection of IP cores from the GRLIB
library on a Xilinx XC3S1500 FPGA. The trigger logic IP together with another IP developed for testing
reasons were clocked at 100 MHz, while the rest of the system was running at 40 MHz. An average dead
time of 1.5 µs was obtained, corresponding to an events frequency of 0.65 MHz. Based on our experimental
results we can conclude that the proposed trigger logic approach can potentially successfully function in
space applications. In extent to the trigger logic IP design, we have further performed research on the cur-
rent SpaceWire time-codes, in an attempt to improve the inter-module time distribution accuracy. Several
methods were proposed to reach synchronization in the order of nanoseconds, as opposed to the current
microseconds synchronization, with little changes over the current SpaceWire standard.

Reconfigurable Trigger Logic for Electronic
Instrumentation in Space Applications.

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Mihai Lefter
born in Brasov, Romania

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Reconfigurable Trigger Logic for Electronic
Instrumentation in Space Applications.

by Mihai Lefter

Abstract

F
uture space missions have to rely on advanced, smart and very light payloads in order to
explore the solar system within a reasonable cost envelope. For this reason, efforts are made
to obtain higher levels of integration that can reduce costs and allow the presence of more

and more instruments on board of small spacecrafts. With the advent of radiation hardened
FPGAs, the use of reprogrammable hardware in space is no longer an issue. This opens new
perspectives to space electronics. System-on-Chip (SoC) design methodologies for future highly-
integrated devices are actively promoted by space agencies. In this thesis we focus on FPGA
based SoC architectures for space electronics instrumentation, targeting time related issues. In
this line of reasoning we proposed and developed a highly customizable trigger logic block able
to reject background events with the highest possible efficiency and to accurately timestamp
the accepted ones. Its features include programmable coincidence window, input ordering, and
for every input in particular the possibility to choose different states and to program the delay.
The trigger logic block is designed as an AMBA IP core and it can be interfaced with many
SoC libraries. For testing purposes we have programmed an AMBA based SoC architecture
including a LEON3 on-chip processor and a minimal selection of IP cores from the GRLIB
library on a Xilinx XC3S1500 FPGA. The trigger logic IP together with another IP developed
for testing reasons were clocked at 100 MHz, while the rest of the system was running at 40
MHz. An average dead time of 1.5 µs was obtained, corresponding to an events frequency of
0.65 MHz. Based on our experimental results we can conclude that the proposed trigger logic
approach can potentially successfully function in space applications. In extent to the trigger
logic IP design, we have further performed research on the current SpaceWire time-codes, in an
attempt to improve the inter-module time distribution accuracy. Several methods were proposed
to reach synchronization in the order of nanoseconds, as opposed to the current microseconds
synchronization, with little changes over the current SpaceWire standard.

Laboratory : Computer Engineering
Codenumber : CE-MS-2010-20

Committee Members :

Advisor: Sorin D. Cotofana, CE, TU Delft

Advisor: Dimitris Lampridis, cosine research BV

Chairperson: Koen Bertels, CE, TU Delft

Member: Rene van Leuken, CAS, TU Delft

i

Member: Stephan Wong, CE, TU Delft

ii

To my grandparents.

iii

iv

Contents

List of Figures vii

List of Tables ix

Acknowledgements xi

1 Introduction 1
1.1 Problem Statement . 2
1.2 Thesis Objectives . 2
1.3 Thesis Outline . 3

2 Background & Related Work 5
2.1 FPGA Based Space Instruments . 5
2.2 The Multifunctional Particle Spectrometer 7
2.3 Trigger Logic Systems . 8

2.3.1 Integration of FPGAs in Trigger Logic Systems 9
2.4 Conclusion . 11

3 A Reconfigurable IP Core for SoC Trigger Logic Systems 13
3.1 General Description . 13
3.2 Functional Overview . 13

3.2.1 User Configuration . 13
3.2.2 Generation of ‘tick out‘ . 17
3.2.3 Pre/post-synthesis Configuration 17
3.2.4 I/O specification . 18

3.3 Hardware Implementation . 19
3.3.1 Architectural Overview . 19
3.3.2 AMBA Control Component . 20
3.3.3 Computational Component . 22

3.4 Trigger System . 25
3.5 Conclusion . 25

4 Experimental Setup and Results 27
4.1 GRLIB IP Library . 27

4.1.1 Plug & Play Capability . 28
4.1.2 The LEON3 Processor . 28

4.2 Development Board . 29
4.3 Development Tools . 29
4.4 Design Verification . 30
4.5 Testing Setup . 31

v

4.5.1 MPS Testing Generation IP . 32
4.5.2 Noise/Real Events Generation . 33

4.6 Results . 34
4.6.1 Simulation Results . 35
4.6.2 FPGA Results . 37

4.7 Conclusion . 39

5 Spacewire Extension 41
5.1 Introduction to Spacewire . 41
5.2 Time-codes . 42

5.2.1 Sending Time-codes . 42
5.2.2 Receiving Time-codes . 42

5.3 Current Timing Accuracy . 43
5.3.1 Delay Variation . 44

5.4 Possible Timing Improvements . 45
5.4.1 Method 1 . 45
5.4.2 Method 2 . 45
5.4.3 Method 3 . 46
5.4.4 Bit Usage . 46
5.4.5 Bandwidth Addition . 47

5.5 Changes Required . 47
5.5.1 Time Master . 47
5.5.2 Router . 48
5.5.3 Receiving Node . 48
5.5.4 Method 3 Additions . 49

5.6 Conclusion . 49

6 Conclusion 51
6.1 Problems Encountered and Lessons Learned 52
6.2 Recommendations for Future Work . 52

Bibliography 57

A List of registers 61
A.1 Coincidence window register . 61
A.2 Parameter[i] register . 61
A.3 Operation mode register . 62

B Sample Embedded C Code 63

vi

List of Figures

2.1 Example design of a space instrument including sensors and electronics . 6
2.2 Example of a top-level space architecture including multiple instruments . 7
2.3 Base line design of the Multifunctional Particle Spectrometer [2] 8
2.4 A generic trigger hierarchy [26] . 10

3.1 Trigger System . 14
3.2 Trigger Example . 18
3.3 SoC block diagram . 20
3.4 Structural overview of CB . 21
3.5 Structural overview of Tick Generator . 23

4.1 Development board . 29
4.2 Verification setup . 31
4.3 MPS read out system including CB . 32
4.4 Structural overview of the MPs testing generation IP 33
4.5 Simulation results - real events generator threshold value of 250 35
4.6 Simulation results - real events generator threshold value of 232 36
4.7 Simulation results - real events generator threshold value of 208 36
4.8 Simulation results all together . 37
4.9 FPGA results - real events generator threshold value of 254 38
4.10 FPGA results - real events generator threshold value of 253 38
4.11 FPGA results all together . 39

5.1 Time-code character . 42

vii

viii

List of Tables

3.1 Start/reset/end of coincidence window based on operation mode and sen-
sor state . 16

5.1 Influence of the link speed and network size over the skew delay 44
5.2 Influence of the link speed and network size over the jitter delay 44
5.3 Number of possible routers using 6 bits from the time-code 46
5.4 Number of possible routers using 7 bits from the time-code 47
5.5 Number of possible routers using 8 bits to transmit delay 47

A.1 Coincidence window register, offset 00001H 61
A.2 Parameter[i] register, offset for i=0 at 00110H 61
A.3 Operation mode register register, offset 00010H 62

ix

x

Acknowledgements

This thesis is the result of nine months of work that was carried out as partial fulfillment
for the Master of Science in Computer Engineering. During all these months I have spent
most of my time at cosine Research BV in Leiden. I consider this a fruitful experience
since I could benefit from a lot of guidance and I learnt to look at problems from different
angles.

I would like to thank in particular to Dimitris Lampridis, my on-site supervisor.
Dimitris put a lot of time and effort into transmitting parts of his knowledge to me.
He was always there to help me whenever I had a problem. Special thanks go to Chris
who was a great partner for discussions, not always work related, but from which I have
learned many things. Also I thank Scott, Eric and my other colleagues from cosine for
creating a pleasant working atmosphere.

My gratitude goes to my professor and advisor Sorin Cotofana, for all the support
he offered me, for granting me the opportunity to be involved in this project, for his
patience and his valuable advice. He has a subtle way of helping me clear my thoughts
every time I get lost in details.

Many thanks to Catalin, Bogdan, Vlad, Alex and Mottaqiallah for their help and
friendship, as well as to many other friends whose names I will not list here, but who
should know who they are.

I am where I am now because of the support, continued efforts and sacrifices of my
parents, for which I am grateful.

A special place is reserved to Iulia, for sharing with me all the burdons and joys over
the past years, and many to come.

Mihai Lefter
Delft, The Netherlands
July 4, 2010

xi

xii

Introduction 1
Space has always been considered the ultimate matter of research for humanity. Since
ancient times scientists have observed the heavens and wondered about the nature of
the objects seen in the sky. However it was not until last century that space was finally
reached and space research entered a new era. Only after achieving spaceflights it was
possible to understand many objects and phenomena which are better observed from a
space perspective.

Current space exploration requires lighter payloads in an effort to reduce costs and
at the same time to be able to include more and more instruments on-board of small
spacecrafts [23]. The process of reducing a payload spans many domains, out of which
electronics plays a major role. Systems-on-a-Chip (SoC) architectures are a key compo-
nent in this context, since they allow very high integration levels required by modern
space electronics.

SoC technology allows the integration of different components of a computer as well as
other electronic devices into a single integrated circuit - a chip. This enables substantial
reductions of power and area resources, which are crucial in space design. Generally
speaking, SoC can be easily implemented on a Field Programmable Gate Array (FPGA)
as well as manufactured directly into an Application Specific Integrated Circuit (ASIC).

In recent years FPGAs have been introduced to space applications and are now
used on a large scale, especially for small space projects. Featuring high flexibility
combined with high performance and complexity, FPGAs start nowadays to be preferred
over ASICs. Todays main reason is their low cost, as the manufacturing price for an
ASIC is still very high, especially to produce small quantities that are required in space
applications. However there are already clear indications that their reprogrammability
attribute will become the most important reason in the future. With the current satellites
lifetimes reaching far beyond 10 years, and different software standards changing few
times in this interval, being able to reprogram what is in space becomes a stringent
issue.

Even though FPGAs have been flying in space for more than a decade, during all this
time they were programmed only once, before being launched. The reason behind this is
that in contrast to an ASIC, the configuration of an FPGA is stored in an SRAM, which
is sensitive to Single Event Upsets (SEU). There is ongoing research aiming to improve
FPGAs capabilities in high radiation environments in order to be able to reconfigure
them in space. For more information on this topic we redirect the interested reader to
[18], [17] and [13].

The work performed for this thesis addresses FPGA-based SoC architectures utiliza-
tion in space electronics, with a main focus on time related issues. Section 1.1 gives
an introduction and a motivation for the current work. In Section 1.2 the main re-
search goals are presented, while Section 1.3 closes the chapter, giving an overview of

1

2 CHAPTER 1. INTRODUCTION

the organization of the remainder of this thesis.

1.1 Problem Statement

The amount of data generated during a space mission increases as the number of instru-
ments present on-board of a spacecraft becomes larger. As this happens, it is difficult for
the down to Earth link bandwidth to support the transfer of all this information. Hence
there is a current need to perform on-line data analysis on-board and transfer only the
meaningful information down to Earth, where it can be later on processed.

Time plays an essential role in data analysis techniques. When information from
multiple detectors/instruments needs to be correlated, timing accuracy is crucial. Physi-
cists need to know what events took place exactly at the same time as well as the time
interval between certain events. One of the mostly utilized methods to distribute time
across the spacecraft is based on a special mechanism, called time-codes. This is specific
to the SpaceWire protocol, a communication standard which is worldwide accepted by
space agencies, and assures at the moment a time resolution accuracy in the order of
microseconds. However, this starts to be no longer sufficient for current experiments
which require nanoseconds resolution accuracy to enable a better interpretation of the
results.

Another aspect which is really important regarding space instruments is that from
the total amount of data that are read, only a small part is actually relevant, the majority
being only noise. Therefore, an important problem that must be solved is to increase the
number of detected useful events per time unit, while suppressing background events.
This should preferably happen in real-time. The solution is to detect the moment in time
when information becomes relevant and to generate a trigger to signalize that valuable
data can be recorded.

Trigger systems are uilized in many domains but one branch in which they are pre-
dominant and studies have been performed is high-energy physics (HEP). Many fast
triggering/coincidence devices are used in HEP to perform preliminary selection and
filtering of information. However, in contrast to HEP experiments performed on Earth,
where almost unlimited resources are available, in space designers have to deal with
many constraints, regarding materials, power, space, etc.

1.2 Thesis Objectives

From the context stated above, time proves to be a key element in experiments performed
in space. The way in which the time accuracy problem is solved is very important in
the current need to miniaturize space instruments. FPGA-based specialized trigger and
data acquisition systems play a major role in this process.

In view of that the main thesis goals are:

• Design and develop a customizable AMBA based IP core to be used in real-time
space data analysis. Based on the user configuration the core has to act as a trigger
logic device able to reject background events with the highest possible efficiency.
Additionally, it should also be able to accurately time-stamp the accepted events.

1.3. THESIS OUTLINE 3

• Integrate the developed trigger IP core in an SoC architecture together with a
LEON3 processor and other required IPs for testing purposes and study the in-
strument dead time.

• Study SpaceWire specific distributed time protocol synchronization based on time-
codes and propose improvements in order to achieve a better accuracy.

1.3 Thesis Outline

The organization of the thesis is structured in the following manner. In Chapter 2 the
relevant background theory related to space instruments is presented. In the same chap-
ter some short information regarding related work performed in time-analysis techniques
is also introduced. The main focus is on experiments which require trigger logic. In
Chapter 3 the architecture and hardware implementation of the proposed AMBA pe-
ripheral IP is presented, as well as its functionality. Next, Chapter 4 focuses on the tests
performed on the hardware implementation and the results that were obtained. Chapter
5 targets time accuracy across SpaceWire networks. In the first part the current time
distribution is presented, while in the second part possible time improvements are intro-
duced. The thesis ends with our conclusions, presented in Chapter 6, which also includes
other final remarks related to lessons learnt, confronting problems, and future research
directions.

4 CHAPTER 1. INTRODUCTION

Background & Related Work 2
This chapter can be regarded as a short presentation of the current space instrumenta-
tion, having as main target space electronics and data analysis techniques. However, we
focus only on aspects that are related to the topic of the thesis.

In the first part FPGA based space instruments are explained. We state though that
this should not be considered as the general case for all space instruments. Next we
briefly describe how instruments are interconnected in a spacecraft via their SpaceWire
interfaces. As an example of an FPGA based space instrument the Multifunctional
Particle Spectrometer (MPS) is presented in detail.

In the final part of the chapter an introduction to data analysis techniques for high-
energy physics is included, which addresses trigger logic systems. This can be seen as
related work for this thesis.

2.1 FPGA Based Space Instruments

Instruments are the key components of almost all space missions. They monitor the
environment in which the spacecraft travels, observe different celestial bodies and gather
intelligence information. The data which are recorded by instruments are provided to
scientists and analysts on the ground for further analysis.

A modern instrument consists of several detectors and the required read-out and
data analysis electronics. These detectors are combined based on their resource needs,
shared functionality, and mechanical considerations. All the components are wrapped in
a mechanical enclosure and with the help of a certain interface the instrument is able to
receive commands and to deliver measurement results.

A design example of a space instrument is presented in Figure 2.1. The sensors
measure a physical quantity and convert it into an electrical signal. This signal can be
already digitized, and used in this form by the rest of the electronic components, or it
can be analogue. In this latter case it is required an analogue preprocessing chain that
conditions and digitizes the signal. Special devices like an amplifier and an analog-to-
digital converter (ADC) need to be present to perform this operation.

All the digital interfaces from the sensors are connected to a local FPGA. Here a
number of modules able to control and readout the sensors are arranged in an SoC ar-
chitecture with one or more soft CPUs and several specialized hardware blocks. There
are several soft processor options available, e.g., LEON3, Microblaze, OpenRISC, etc.,
which can be fully implemented using logic synthesis. All the hardware blocks are in-
terconnected together via a specific architecture bus, which is in close relation with the
chosen processor.

Most of the FPGAs store their configuration data in SRAM memories. For this
reason they require some external boot devices. There are also SRAM-based FPGAs

5

6 CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.1: Example design of a space instrument including sensors and electronics

with integrated flash. In this case their configuration is stored in the internal flash
memory and when they are powered-up the SRAM is configured. Some other type of
FPGAs are based on Flash memory only and do not contain any configuration SRAM.
Such an example is the ProASIC3 family from Actel.

Different embedded software can be run on the soft CPU to control the behavior of
the instrument. Depending on the application requirements a separation has to be done
between the part of the algorithm running on the soft CPU and the part implemented
in specialized hardware. Finding the most appropriate partition is subject of a design
space exploration (DSE) process, which in general can be rather complex and tedious.
The utilization of SoC architectures including reconfigurable hardware ease the DSE as
it offers great flexibility to the designer.

An important subcomponent of the instrument is the SpaceWire interface port.
Within a spacecraft several instruments can be interconnected via their SpaceWire inter-
faces, forming a SpaceWire network of devices. Figure 2.2 presents a view of the possible
top-level architecture of the spacecraft. Different network components as SpW routers
can be also present. More detailed information regarding SpaceWire are introduced in
Chapter 5.

The core of the top-level architecture is the main digital processing unit (DPU)
through which all the instruments are controlled. The collected data are correlated by
the DPU and the significant information is stored to be later processed or transmitted
to the ground, if necessary. Also the DPU can alert the other spacecraft components in
case of emergency, based on the information it receives from certain instruments.

2.2. THE MULTIFUNCTIONAL PARTICLE SPECTROMETER 7

Figure 2.2: Example of a top-level space architecture including multiple instruments

2.2 The Multifunctional Particle Spectrometer

The Multifunctional Particle Spectrometer (MPS) is a miniaturized energetic particle
spectrometer and a general radiation monitor. It can be utilized for planetary explo-
ration, as well as for small satellites. It can discriminate between four types of particles
and at the same time it can determine the incident angle. The MPS provides scientific
information and acts also as a spacecraft protection system.

The base line design of the MPS, depicted in Figure 2.3, consists of a tracker and
a scintillator. The tracker has two 40x40 mm2 silicon pixel sensors with a thickness of
about 300 µm. The distance between the two sensors is 10 mm and the angle of incidence
for charged particles which traverse both sensors can be reconstructed with an accuracy
better then 10◦.

The number of silicon pixel sensors that are present in the tracker can vary from
experiment to experiment, but it is important to be at least two in order to reconstruct
the incidence angle. This operation is performed as follows. Every layer is composed of an

8 CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.3: Base line design of the Multifunctional Particle Spectrometer [2]

8x8 array of sensitive diodes. When the particle crosses the first layer, the corresponding
indexes in the array are determined. The same happens in the next layer. These indexes
form the coordinates based on which the direction of the particle can be determined.

The scintillator is an inorganic alkali halide CsI(TI) crystal with the dimensions
34x34x34 mm3, being optically coupled to a large area photo-diode. The MPS provides
identification of electrons, protons, ions, and gammas by the ∆E versus E method [29],
where the former value is obtained by the tracker and the latter from the scintillator.

The read out system of the MPS is a combination between an FPGA based SoC
architecture and multi-channel ASICs. On the FPGA custom hardware blocks together
with off-the-shelf IP cores and embedded software compose the digital processing system.
For the scintillator a custom IP core implements a digital pulse height detection system
based on trapezoidal filtering [24].

More detailed information regarding the MPS can be found in: [27], [2].

2.3 Trigger Logic Systems

Experiments performed in HEP are different from those in other areas in that detectors
need to read data event by event, measurements being essentially instantaneous. These

2.3. TRIGGER LOGIC SYSTEMS 9

events involve particles and physical interactions that researchers are studying, being of
great interest when they occur.

Due to the large amount of information, out of which only a small part is really
important, experiments are selective in what they read out. And once such an event is
selected for read out the detector enters in a so called busy time, or dead time. For this
reason, the way in which events are chosen is decisive so that good events are not lost.
Instruments need to have an indicator of the correct time to read out, typically with a
precision in the order of nanoseconds. Triggers were introduced as a mechanism to solve
these problems.

Trigger systems are used at all levels of HEP experiments and are designed together
with detector systems in order to match the requirements of the experiment. To reduce
dead time and to be able to include complex decisions, modern trigger systems are
typically constructed in a hierarchy as suggested in Figure 2.4. Lower trigger levels reject
events based on obvious and simple criteria, while higher levels of trigger implement more
complex analysis as they have more time available for processing. Higher levels cannot
undo a reject of a lower level as they operate only on a subset of events selected by the
lower levels [26] [16].

Different electronic components are found at each level of a trigger system. Never-
theless this varies from experiment to experiment. At the down-most level only simple
logical operations are possible by modules that are usually built according to the Nu-
clear Instrumental Module standard (NIM), developed especially for particle and nuclear
physics experiments. More complex operations require a higher level of integration and
can be implemented by using integrated circuits as FPGAs, PALs, RAMS, CAMs, etc.
At higher levels Digital Signal Processors (DSPs) are found and at the very end the
readout chain data enter a computer via electronic buses (VME, PCI) or via networks
(SCI, ATM).

One of the greatest experiments performed at the moment takes place at CERN (Eu-
ropean Organization for Nuclear Research) in Switzerland. The Large Hadron Collider
(LHC) is the world’s largest and highest-energy particle accelerator [9]. At the LHC four
major detectors will be operating. Two of them, ATLAS and CMS, are general purpose
particle detectors designed to investigate the largest range of physics possible. The other
two are medium-size experiments, ALICE and LHCb, which have specialized detectors
for analyzing the LHC collisions in relation to specific phenomena.

All LHC experiments use multi-level trigger systems. The low-level trigger is im-
plemented using fast electronics while the high-level trigger system is implemented in
software running on large computer farms. More information on trigger systems at LHC:
[20], [28] and [11].

2.3.1 Integration of FPGAs in Trigger Logic Systems

FPGA technology started to be utilized in trigger systems in the 1990s. At that time
FPGA circuits had a very low logic capacity at relatively high costs, and were mostly
embedded in trigger modules where a dynamic reconfiguration of algorithms was needed.
Lately, the developmental prospects of FPGAs suggested the feasibility of replacing ASIC
circuits with FPGAs. This major trend concerned the majority of HEP experiments

10 CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.4: A generic trigger hierarchy [26]

(LHC, TEVATRON [4], HERA [8], BELLE [1]) and is an ongoing process [31].
In [21] a programmable trigger logic module (TRILOMO) implemented in FPGA

is presented. A modified version of it is used in the NA58 (COMPASS) experiment
at CERN. It accepts 100 MHz input rates while up to 16 trigger input signals can be
combined logically for fast trigger decision. A single slot 6U VME has been designed
and assembled having a Spartan II FPGA as a central element for trigger logic and NIM
inputs/outputs. The functionality of the FPGA can be modified via the VME bus with
the help of a CPLD which realizes the access. Within the VME architecture the board
acts as a VME slave module.

Another akin example is the trigger module developed for the BELLE experiment
[22]. The board accommodates 144 input signals and provides 24 output signals. All the
signals are obtained from an electro-magnetic calorimeter. It functions as a 9U VME
module through which the FPGA can be reprogrammed. The trigger latency obtained
is 50 ns.

Similar approaches, where on the FPGA only simple logic operations are performed,
are popular in almost all experiments as part of the low trigger level systems. However
more complicated trigger decisions can also be taken directly at the low level. An ex-
ample is [19], where a dedicated trigger generation processor was developed for the U-70
accelerator at IHEP (Institute for High Energy Physics). The experiment requires that
arithmetic operations have to be performed, based on which the trigger decision is taken.
The trigger processor is implemented on an Altera FPGA, has 64 channel inputs and
the trigger generation time is 150 ns.

2.4. CONCLUSION 11

2.4 Conclusion

We have presented so far some background information related to the topic of the thesis.
First we argued that space research requires data analysis to be performed in the same
manner as in HEP experiments on the ground, where information from several detectors
is analyzed and trigger logic systems are used to select good events and suppress those
reactions which are not interesting.

Subsequently we demonstrated that FPGAs have been introduced in many applica-
tions and domains ([25]), as well as in space and HEP experiments and presented some
information regarding trigger systems, closely linked to the main goal of this thesis.

This concludes our discussion on the background knowledge and related work. In the
next chapter we introduce our trigger logic IP core and present its implementation in
detail. To the best of our knowledge, our trigger IP proposed is unique in that it proposes
a single-chip solution, based on a SoC architecture approach. It is highly reconfigurable
and it suits different space applications as it can be easily connected to many of the
available soft processors through its AMBA bus interface.

12 CHAPTER 2. BACKGROUND & RELATED WORK

A Reconfigurable IP Core for
SoC Trigger Logic Systems 3
This chapter focuses on the main goal of this thesis, presenting the IP core that was
developed. We begin with a description of the general trigger system in which the block
will be included, as well as its role there. In the next section all the possible functionalities
of the block are introduced. Based on that the actual hardware implementation took
place, which is presented in the following section. In the last part of the chapter we
describe the action flow that is required to design and to use the entire trigger system.

3.1 General Description

In Figure 2.1 an FPGA based space instrument, with several detectors, some readout
electronics, and a SoC architecture present inside the FPGA, is depicted. In Figure 3.1
we recall only the trigger logic part, including also the proposed IP block. For every
detector the flow is more or less the same: the data are read, digitized (if in analogue)
and a first-level arithmetic trigger is assigned. This can be perceived also as a low
trigger level, for every detector a tick being produced whenever an event is read. It can
be implemented for example as a filter with a certain threshold above which the event
becomes valid.

All the first-level triggers provide inputs to the Coincidence Block (CB). This custom
IP acts as a high level trigger and, based on the configuration that is set by the user,
it generates a final trigger of the system. This signal is produced only if the first-level
trigger signals are being received according to the specified rules, and within a certain
time interval, called coincidence time window. A time-stamping of the events also takes
place, as the block records the time when these conditions are met and the trigger
assigned.

The rules based on which the final trigger occurs are derived from the user configu-
ration which can specify for example the length of the coincidence window, from what
trigger to expect valid inputs, the operation mode of the system, etc. All this functional
information is presented in detail in the next section. We note here that throughout this
thesis we also refer to the final trigger of the system as ’tick out’, and to the first-level
triggers as sensor triggers.

3.2 Functional Overview

3.2.1 User Configuration

The following section describes the customizable elements of the CB. As already stated
before, the way in which the user configures the CB has a direct impact on the ’tick out’
generation rules, so a clear understanding of this information is mandatory. Some of

13

14 CHAPTER 3. A RECONFIGURABLE IP CORE FOR SOC TRIGGER LOGIC
SYSTEMS

Figure 3.1: Trigger System

the configuration actions can be performed at runtime while certain elements need to be
configured before the component is synthesized. This delimitation is specified later.

3.2.1.1 Coincidence window

Coincidences are of a high importance in HEP as they provide essential experimental
information. The coincidence window is the time interval in which the rules that were
set have to be fulfilled. It starts with a certain tick received from one of the first level
triggers, as specified by the user, and it ends either when its time expires or if the final
trigger is asserted.

The user is able to program the coincidence window of the CB in steps equal to the
clock period. If we use for its representation a total of 8 bits, 256 possible values can
be selected. If the clock frequency of the CB is 100 MHz the minimum value of the
coincidence window is 10 ns and the maximum 2.56 µs. In order to ensure that the
final trigger is assigned correctly, and that measurements are done simultaneously, the
coincidence window has to be selected properly.

3.2.1.2 Sensor states

By the state of the sensor we refer to as whether we wait for the first-level trigger
component associated with the sensor to actually trigger or not during the coincidence
window. This is equivalent to its internal generated signal being in a predefined value
(for example ’1’ or ’0’ logic), associated with the trigger. This value is considered every
clock cycle, so if it is ’1’ for two consecutive cycles, and ’1’ equals to a trigger, then it
means that two triggers were generated for two separate valid events, one after the other.

The way in which sensors should behave can be programmed and the user can place
them in one of the following states:

• Coincidence - the sensor should trigger only once during a coincidence time win-
dow.

3.2. FUNCTIONAL OVERVIEW 15

• Anti-coincidence - the sensor should not trigger at all during a coincidence time
window.

• Coincidence-check - the sensor does not affect the coincidence window nor the
generation of the tick out signal, but the user is interested to see whether the sensor
has triggered or not in a valid coincidence window.

A total of 2 bits are necessary for every sensor in order to be able to specify its state.
One bit is required to specify whether the trigger is active high or low.

3.2.1.3 Sensor ordering

The main operation mode of the CB is determined by the order in which first level
triggers are considered. Together with the state of each sensor, the sensor ordering
influences the start of the coincidence window. The need to introduce an order for the
first level triggers occurrence appeared as for certain experiments it is important to
discard coincidence windows in which certain sensors trigger before other.

Regarding sensor ordering and starting/resetting of the coincidence window time
counter, the user can choose between one of the following operation modes:

1. No ordering (NO) at all, and the coincidence window starts when a trigger is
received from any of the sensors that were put in the coincidence state. Multiple
sensor triggers are also allowed. The coincidence window ends after its time expires
and it is reset when a sensor that had already triggered, triggers again.

2. No ordering with starting sensor (NOWSS) - similar to the first operation
mode, except that the coincidence window starts when a specific sensor triggers.
The sensor that starts the time counting for the coincidence window has to be put
into the coincidence state. Several sensors can trigger together with the starting
sensor, but they should also be in the ’coincidence’ state. The coincidence window
ends after its time expires or if a sensor that had already triggered triggers again
and the sensor is not the starting one. The coincidence window is reset when the
starting sensor triggers again.

3. Specific order (SO), in which the user has to program for each sensor the position
in which it is considered valid. The sensors have to trigger in the specified order, but
consecutive sensors can trigger together if the current expected sensor to trigger
is among them. The sensor on the first position is the starting sensor for the
coincidence window. The coincidence window is reset when the starting sensor
triggers again. It ends when one of the sensors that have already triggered in the
current coincidence window triggers again, except for the starting one, when an
out of order sensor triggers, or when its time ends.

In the above description we focused only on those sensors that were considered set
by the user in the coincidence state. We have to add to the mentioned rules the fact that
the anti-coincidence sensors can end the coincidence window at any time if one of them

16 CHAPTER 3. A RECONFIGURABLE IP CORE FOR SOC TRIGGER LOGIC
SYSTEMS

Table 3.1: Start/reset/end of coincidence window based on operation mode and sensor
state

No Ordering No ordering with
starting sensor

Specific Order

Start - When one or multi-
ple sensors trigger, ir-
respective to any or-
der.

- When the specified
starting sensor trig-
gers. Other sensors
can trigger as well to-
gether with the start-
ing one.

- When the sensor
placed on the first po-
sition triggers. Con-
secutive sensors in-
cluding the starting
one can trigger as
well.

Reset - When a coinci-
dence sensor that al-
ready triggered trig-
gers again.

- When the specified
starting sensor trig-
gers again.

- When the sensor
placed on the first po-
sition triggers again.

End - When its time ex-
pires;

- When its time ex-
pires;

- When its time ex-
pires;

- When an anti-
coincidence sensor
triggers.

- When a coinci-
dence sensor that al-
ready triggered trig-
gers again (but it is
not the starting sen-
sor);

- When a sensor that
already triggered
triggers again (but
it is not the starting
sensor);

- When an anti-
coincidence sensor
triggers.

- When an out of or-
der sensor triggers;

- When an anti-
coincidence sensor
triggers.

triggers. A sensor put in the anti-coincidence state does not affect the start or reset of
the coincidence window.

Table 3.1 summarizes the rules based on which the coincidence window starts/reset-
s/ends according to the order specified by the user. We can see that the coincidence
window can end normally, when its time expires, or can be interrupted, when certain
rules are broken. In the following we refer to the first type as full coincidence window
and to the second type as interrupted coincidence window.

To distinguish between the different operation modes 2 bits are required. In addition
to that, for the NOWSS operation mode a number of log2(#sensors) bits are required
to specify the starting sensor, and for the SO operation mode a total of log2(#sensors)
bits are required for each sensor.

3.2. FUNCTIONAL OVERVIEW 17

3.2.1.4 Trigger delay appearance

In some experiments it is known for sure that some triggers can be received with a certain
delay. To cope with that we introduced the possibility to specify certain delays for every
sensor in particular. As the trigger of the delayed sensor can not be sent back in time,
the triggers of the other sensors need to be moved forward. In case that there are more
delayed sensors with different values, some calculations have to be performed by the user
to compute the delay of every sensor.

A single bit is used to specify if a delay should be considered or not. We have chosen
the same number of bits (8 bits) as for the coincidence window to represent the delay.
In total 9 bits are required for every sensor.

3.2.2 Generation of ‘tick out‘

As we have presented in the previous subsection the user configuration of the CB, it
is possible now to derive the conditions based on which the final trigger (’tick out’) is
asserted.

A tick out signal is generated when all the sensors behaved according to their state
and specified order within a coincidence window. In case of the coincidence sensors, it
is required that their associated trigger value is active only for one clock cycle. If all the
required sensors have triggered in the specified order, the tick out signal is immediately
asserted in the next cycle after the conditions were fulfilled, and the coincidence window
ends, even if its time did not expire. A coincidence window is considered valid if a
’tick out’ signal is generated during its time interval.

In Figure 3.2 a ’tick out’ generation example is presented. There are six sensors:
s1, s3, s4, and s6 are put on the coincidence state, s2 is put on anti-coincidence and s5
on don’t care. The coincidence window is set to 6 cycles (equivalent to 60 ns for this
example), and the sensor ordering is specific order (for simplicity being from s1 to s6).

When a trigger from s1 is received, the coincidence window is started. Next trigger
that is received is from s5, in the second cycle, which is out of the order but as its state
is don’t care, it does not influence the coincidence window. We have no event in the
third cycle. In the fourth cycle of the coincidence window, both s3 and s4 trigger. This
is according to the rules, as s3 is the next trigger expected, and s4 is allowed to trigger at
the same time. In the fifth cycle the remaining expected trigger appears, from s6, which
signalizes that the final trigger can be generated. This happens in the next cycle. We
can notice that s2 did not trigger at all during the coincidence window. As s2 is put in
the anti-coincidence state, a trigger from it would have ended the coincidence window.

3.2.3 Pre/post-synthesis Configuration

Pre-synthesis configuration is performed by the use of VHDL generics/constants. One
thing that the user is able to specify in this way is the number of sensor triggers that
the CB component has as inputs. As this value is in direct relation with other user
configuration parameters the actual log2(#sensors) value has to be specified as well
by the use of generics/constants. For the case we considered the minimum number of
sensors is 2 and the maximum is 32.

18 CHAPTER 3. A RECONFIGURABLE IP CORE FOR SOC TRIGGER LOGIC
SYSTEMS

Figure 3.2: Trigger Example

Also by the use of generics/constants, the user can indicate the number of bits used
to represent the following configuration parameters:

• Coincidence window - minimum value 8, maximum 16;

• Delay appearance - equal value as for the coincidence window;

• Local time counter - maximum value of 32.

A change of a generic/constant value requires that the component is re-synthesized.
Post-synthesis configuration refers to the real-time configuration, in which the user

programs the parameters with their required value. The range is determined by the
number of bits specified using generics. The following information can be specified at
run-time:

• The value of the coincidence window;

• The state of each sensor;

• The sensor ordering - including the operation mode, the starting sensor and the
position for each sensor;

• The delay appearance for each sensor.

3.2.4 I/O specification

The CB is implemented as an AMBA slave. The entire user configuration is performed
exclusively through the AMBA bus, together with the output delivery of the block,
leaving just the sensor trigger inputs to be connected outside the bus.

3.3. HARDWARE IMPLEMENTATION 19

Inputs:

• Specific AMBA input signals - used to configure the CB. The user configuration
information is stored in registers that can be accessed through the bus at certain
addresses. One register is used to control the CB. When this register indicates the
activation of the component, a local counter is start to track of the time.

• Sensor triggers - 1 bit each, connected directly from the first-level trigger IP cores.
Their logic value should be kept on their associated trigger value an amount of
time that is greater or equal to twice the period of the CB clock.

Outputs:

• Specific AMBA output signals.

– The tick out signal, when asserted, will set a bit from a specific register to
logic ’1’.

– The information regarding the way in which sensors behaved can be read from
an output register. A value of ’1’ on the ith bit of the register means that
the ith sensor from the order has triggered. A value of 0 signifies that the ith

sensor did not trigger.

– The value of the local time counter is available also in an output register.

• Hold signals, used to pus the sensors on hold until their value is read.

3.3 Hardware Implementation

This section presents in detail the hardware implementation of the CB. A general
overview of the SoC architecture implemented on the FPGA is depicted in Figure 3.3,
where the CB is included together with the first level triggers, being connected to the
AMBA bus. We notice that the first level triggers are directly connected to the CB,
outside the bus. At the same time the CB hold signals are also connected outside the
bus to the first level triggers.

The CB can be integrated in a variety of SoC architectures, not only GRLIB based
as in the figure. However the representation is similar, and includes a soft processor and
certain architecture specific hardware blocks. We do not go into details regarding the
entire GRLIB architecture in this section, as it is presented in detail in the next chapter.
Here we only describe the implementation of the CB in isolation from the rest of the
architecture.

3.3.1 Architectural Overview

A structural overview of the CB is depicted in Figure 3.4. We can see that there are two
main paths that split the CB in two main components. One is the ambapath, through
which the direct connection to the AMBA bus is assured. In this way the component
can be configured and controlled. A set of memory mapped registers can be accessed

20 CHAPTER 3. A RECONFIGURABLE IP CORE FOR SOC TRIGGER LOGIC
SYSTEMS

Figure 3.3: SoC block diagram

over the bus by the embedded software that runs on the processor. The clock driven
signal of this component works at the same frequency with the one of the AMBA bus.

The second component - coincidencepath - has as external inputs the triggers received
from the sensors. Based on the control information received from the first component,
and on the trigger values, it generates the tick out signal. As this happens the ambapath
is announced to signal that to the processor. As a higher processing speed is required
the second component works at a different clock frequency.

The chosen design implementation allows a total separation between computation and
communication. It is easier in this way to integrate the coincidencepath with another
bus protocol that might be needed by a different architecture, or even to use it alone
outside any SoC design, if the required user configuration is assured.

3.3.2 AMBA Control Component

The main role of the this component (ambapath) is to form the communication link
between the computational part (coincidencepath) and the software control application
which runs on the on-chip processor.

A set of 32 bit memory-mapped registers are accessed over the AMBA bus. The read
and write operations are being facilitated by the AMBA Wrapper, which decodes the
specific I/O bus signals. Currently the AMBA Wrapper is designed to communicate over
the AMBA Advanced Peripheral Bus (APB). The component can be adapted to other
types of AMBA protocol buses by performing changes only at the AMBA Wrapper.

The registers are used to store the user configuration, introduced in the previous
section, and to control the component. One register is used to store the operation mode

3.3. HARDWARE IMPLEMENTATION 21

Figure 3.4: Structural overview of CB

together with the position of the starting sensor. Next, for every sensor in particular
there is a register that holds its state, position order, delay, and active type. The value
of the coincidence window is stored in a separate register. In the end there is another
register used to control the component and to signalize that a trigger has been generated.
In Appendix A the structure of all registers is explained in detail.

On the component there is also a local FSM included, which is in charge of the entire
local operation. It is driven by the control register. When it receives the start operation
it goes into the running state, where it waits for a trigger to be generated. If this happens
it informs the processor and waits for its response to restart the trigger generation.

The last block present inside the ambapath is the Time Tracker, a local counter used
to retrieve the time when triggers are generated. Its value represents the number of clock
cycles that passed since it was reset, which is the moment when the FSM went into the
running state.

22 CHAPTER 3. A RECONFIGURABLE IP CORE FOR SOC TRIGGER LOGIC
SYSTEMS

3.3.3 Computational Component

The computational component (coincidencepath) generates the ’tick out’ signal based on
the specific rules that are set by the user through configuration. The process begins by
unpacking this configuration information, stored in the registers, and creating internal
logic signals. This is operation is performed in the Configuration Unpack block.

The preprocessing operation can start now. First the triggers received from the sen-
sors that are active low are reversed by the Active High/Low block. Next, the resulted
local signals are delayed one by one with the number of cycles specified in the configura-
tion. This operation takes place in the Delay block. The last preprocessing action takes
place in the Rerouting block, where the triggers are put on their specified position. Here
also the local starting sensor signal is selected from the triggers.

As a result of all these operations the Tick Generator receives as inputs the original
ordered delayed triggers, the delayed rerouted triggers, and the starting trigger. All
these signals are required by the three main operation modes of the component.

3.3.3.1 Tick Generator Block

The Tick Generator is in charge of detecting valid coincidence windows and generating
the tick out signal. The algorithm behind the Tick Generator was derived from table 3.1.
For every operation mode in which the coincidence block can work (NO, NOWSS and
SO) there will be three signals that will mark the start, reset or end of the coincidence
window.

The value of these signals is based on the input received from the sensors together
with the rules that the inputs have to obey for every operation mode in particular. As a
result of these rules we will have different implementations for the start/reset/end signals
for every operation mode.

The structural view of the Tick Generator can be seen in Figure 3.5. Based on the
states in which the sensors were configured certain masks are derived, action performed
in the Masks Generator sub-block. These masks together with the sensor triggers are
used in the Local Signals Generator sub-block to compute the required input signals for
the NO/NOWSS/SO Signals Generators. Here the start/reset/end signals are computed
for every operation mode separate.

A local state machine is present to control the whole process and to determine when
a valid coincidence window occurs. The start/reset/end signals are multiplexed as reset
input to a local counter, based on the operation mode in which the system is in. If all
the required sensor triggered and the output value of the counter is less or equal to the
coincidence window, then the ’tick out’ signal is generated. The FSM also initializes and
updates the reset masks required for the NO/NOWSS/SO Signals Generators.

Together with the final trigger signal, a status which indicates the sensors from which
a trigger was received is also outputted.

In the following we will present how the start/reset/end signals are generated for
every operation mode in particular.

3.3. HARDWARE IMPLEMENTATION 23

Figure 3.5: Structural overview of Tick Generator

NO - start
The start of the coincidence window takes place when any of the first level trigger

is received. To determine this moment the coincidence inputs are first isolated with the
help of a coincidence mask, which has ‘1’ for every sensor that is in the coincidence state
and ‘0’ for the rest. The coincidence inputs are determined by performing a logical AND
between the coincidence mask and the sensor triggers. If after this operation there are
bits equal to ‘1’ (determined by performing a logical OR between all the coincidence
inputs) the start signal is assigned.

NO - reset
The coincidence window is reset when sensors that have already triggered trigger

again. A reset mask that keeps track of the sensors that have already triggered is
compared with the coincidence input in order to see whether the coincidence window
has to be reset. The mask is initialized when the start signal is assigned. After that
the mask is currently updated until the end of the coincidence window occurs, or it is
reinitialized if the reset signal is assigned. In the end the reset signal is determined by
performing the logical OR between all the bits of the reset mask.

NO - end
The end of the coincidence window in this state is marked when an anti-coincidence

sensor triggers. In a similar way as determining the start signal, we need to create first

24 CHAPTER 3. A RECONFIGURABLE IP CORE FOR SOC TRIGGER LOGIC
SYSTEMS

an anti-coincidence mask, which has ‘1’ for every sensor that is in the anti-coincidence
state and ‘0’ for the rest. By applying logical AND between the anti-coincidence mask
and the sensor triggers, and after that by applying logical OR between all the bits of
the result, the anti-coincidence end signal is obtained. In this state, this is also the end
signal. This is a common ending also for the other two operation modes, NOWSS and SO.

NOWSS - start/reset
The only difference between the NOWSS state and the NO state is that now appears

a starting sensor which can start or reset the coincidence window. As a result the
start/reset signal is exactly this starting sensor.

NOWSS - end
The end signal of the NOWSS operation mode should be asserted when one or more

sensors that already triggered trigger again, but the starting sensor is not among them,
or when one of the anti-coincidence sensor triggers. The first part is similar to the reset
signal of the NO operation mode, and is treated in a similar manner.

A reset mask is initialized once the start signal was received and it is updated with
every clock cycle unless the coincidence window ends or it is interrupted. In the begin-
ning we need to AND the current mask with the coincidence input. By applying logical
OR between all the bits of this result we know when a sensor that already triggered trig-
gered again. We have to make a logical AND between this last signal and the inverse of
the starting sensor, to be sure that the coincidence window is not reset. In the end a final
OR with the anti coincidence end signal will signalize the end of the coincidence window.

SO - start/reset
For the SO operation mode the order in which sensors trigger is important. We have

to keep in mind that consecutive sensors can trigger at the same time if the sensor that
it is expected to trigger is among them. Also sensors that are put in the dont care state
can trigger at the same time, as they do not influence the coincidence window.

The first step is to create the inverse of the coincidence mask and OR it with the
ordered sensor triggers. Next we have to compute the leading 1 value of the previous
result and OR it again with the inversed coincidence mask. By applying logical XOR
between this last result and the ordered sensor triggers, we can determine if an out of
order sensor that is in the coincidence state has triggered, by performing a simple OR
operation between all the resulted bits. In this way a sensor that is in the dont care
state but out of order can trigger with any effect, but if a coincidence sensor which is
out of order triggers, an output of value 1 will appear, signalizing the fault. If this final
output is 0, but we have a valid event (operation performed simultaneously by OR-ing
all the sensor triggers) and at the same time the value of the anti coincidence end signal
is 0, then the start/reset signal can be assigned.

SO - end
For the end signal of the SO operation mode a similar approach is used. Once the

coincidence window has started a record of the sensors that already triggered is kept.
This plays the role of the inversed coincidence mask from the start/reset algorithm. This
mask is OR-ed with the ordered sensor triggers and then the leading 1 value of the result
is determined. By applying logical XOR between this result and the ordered sensor

3.4. TRIGGER SYSTEM 25

triggers we can see if an out of order sensor has triggered, which can cause the end of
the coincidence window.

Another case when the coincidence window ends is when a sensor that already trig-
gered triggers again and it is not the sensor placed on the first position. To determine
this situation we have to AND the mask of the sensors that have already triggered with
the current sensor triggers. If now by OR-ing all the bits of the previous result a value
of 1 appears, and the start/reset signal was not assigned, the coincidence window has to
be interrupted again.

The last case when the end signal is assigned is when the anti coincidence end signal
is ‘1’.

3.4 Trigger System

This chapter would not have been complete without some information regarding the
trigger system. We have presented so far the hardware implementation of the CB, but
the entire trigger system is in fact a combination between hardware and software. The
CB generates the final trigger of the trigger system, but through the software that runs
on the CPU the block is controlled and configured in order to suit the experiment.

The design of the trigger system involves several stages. In the first phase of the
design the number of the first level triggers is determined. Based on this value and on
some other information that is known about the experiment the other CB pre-synthesis
variables can be specified (see section 3.2.3). Next the rest of the IPs are selected and
the SoC architecture is known. After that the bitstream is generated and the FPGA can
be programmed.

The role of the software begins once the SoC architecture is placed on the FPGA.
First, the parameters of the first level triggers and of the CB have to be configured, by
setting their specific registers. After that the start signal can be assigned. The software
then waits for a CB trigger to be received. When this happens it will check what sensor
triggers have been received in order to visit their associated IPs to retrieve the actual
data. In the end the CB will be restarted and the operation will start all over again.

3.5 Conclusion

In this chapter we have presented in detail our high level trigger IP core. Based on
the functional requirements, introduced in the first part of the chapter, the design of
the block emerged. We have split the component into two main parts. One assures
communication with the AMBA bus, while the other one generates the trigger signal.
Even though we focused mainly on the hardware implementation, we specify that the
final trigger system is a combination between hardware and software.

To conclude, we state that our developed high level trigger IP core provides plenty
of configuration opportunities which allow the user to generate complex trigger rules in
order to suit the experiment requirements.

In the next chapter we present the setups that were created for verification and
testing purposes.

26 CHAPTER 3. A RECONFIGURABLE IP CORE FOR SOC TRIGGER LOGIC
SYSTEMS

Experimental Setup and
Results 4
In the previous chapter the Coincidence Block was described in detail, introducing both
its functionalities as well as its hardware design. In this chapter we present the experi-
mental setup that was developed for testing the IP behavior in real situations. For this
we focused the Multifunctional Particle Spectrometer, introduced in chapter 2, in which
the Coincidence Block can be easily integrated. However, before reaching the testing
stage, several other aspects need to be introduced and explained.

One of these aspects regards the GRLIB library IP cores, as well as the processor
used to assemble the SoC architecture. Information about this is included in the first
section of this chapter. The development board together with the FPGA and other
hardware/software tools that were used are presented in the following two sections, 4.2
and 4.3. We continue with the design verification process, presented in Section 4.4. The
testing setup including some information regarding pseudo random generators used in
the simulation follows in Section 4.5. In the end of this chapter, Section 4.6, the obtained
results are discussed.

4.1 GRLIB IP Library

The GRLIB IP Library is provided under the GNU GPL license by Aeroflex Gaisler
[5], by which it was developed and is currently maintained. It supports different CAD
tools and target technologies and it is vendor independent. The library consists of an
integrated set of IP cores that are designed for SoC development. These IP cores are
reusable and centered around the AMBA Bus on-chip interconnection protocol.

The library includes cores for AMBA AHB/APB control, the LEON3 SPARC gen-
eral purpose processor, 32-bit PC133 SDRAM memory controller, 32-bit PCI bridge
with DMA, 10/100/1000 Mbit Ethernet MAC, 8/16/32-bit PROM and SRAM con-
troller, 16/32/64-bit DDR/DDR2 controllers, USB-2.0 host and device controllers, CAN
controller, TAP controller, SPI, I2C, ATA, UART with FIFO, modular timer unit, in-
terrupt controller, and a 32-bit GPIO port. Memory and pad generators are available
for Virage, Xilinx, UMC, Atmel, Altera, Actel, and Lattice.

For our SoC implementation we use the following IP cores: LEON3 processor, AHB
bus controller, memory controller, a debug support unit for the LEON3 over a serial
port, and the AHB/APB bridge. The CB is connected to the APB bus together with
the other IPs that were developed for verification/testing purposes, as well as the UART
port.

27

28 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

4.1.1 Plug & Play Capability

GRLIB is organized around VHDL libraries. For every major IP (or vendor IP) a unique
library name is assigned. In case of a vendor IP, several IP cores can be found in one
library. Each library typically contains a number of packages where the exported IP
cores are declared and their specific set of interfaces are defined. By using separate
libraries, name clashes between IP cores are avoided. At the same time unnecessary
implementation details are hidden from the end user.

Extension of GRLIB can be performed by adding new developed IP cores to an ex-
isting library, or by adding first a new library into which the new IP cores are included
together with their associated packages. An IP core with an AMBA interface can be
easily adapted to fit into GRLIB, especially if the AMBA signals are declared as stan-
dard IEEE-1164 signals. If this is the case, then each signal has to be assigned to the
corresponding field of the AMBA record types which is declared in the GRLIB.

Once the desired configuration has been planned, GRLIB provides a plug&play
method to be used in order to configure and connect the selected IP cores, without
being necessary to make any global changes. The plug&play information consists of
three items: a unique IP core ID, AHB/APB memory mapping, and used interrupt vec-
tor. This information is sent as a constant vector to the bus arbiter/decoder where it is
mapped on a small read-only area in the top of the address space.

4.1.2 The LEON3 Processor

The Leon3 processor is a synthesizable VHDL model of a 32-bit processor compliant
with the SPARC V8 architecture. It is based on the Harvard architecture, implementing
a 7-stage pipeline with separate instruction and data cache buses, with hardware units
developed for MUL, MAC, and DIV instructions. An optional IEEE-754 FPU with
support for single- and double-precision floating point operations can be attached. The
cache system supports multi-set caches with up to 4 ways per cache, 256 kbyte per way.

A new version (LEON4) has been released recently. Is is an evolution of LEON3 with
improved performance thanks to wider internal buses, modified pipeline and support for
a Level-2 cache. As this appeared at the end of our work, we were not able to use it.

The processor can be utilized in uniprocessor as well as multiprocessor systems.
Up to 16 CPU cores can be implemented in asymmetric multiprocessing (AMP) or
synchronous multiprocessing (SMP) configurations. According to the manufacturer the
processor reaches 150 MHz on an FPGA, and 800 MHz on a 65nm ASIC technology.

The LEON3 is highly configurable and particularly suitable for SoC designs. It is
interfaced using the AMBA AHB bus protocol and supports the IP core plug & play
method provided by GRLIB.

For our implementation we have used a minimal instance of the processor, including
the Debug Support Unit (DSU) which offers access via the serial port to all on-chip
registers and memory. We can inspect in this way the trace buffers of both executed
instructions and AMBA bus traffic.

A non-free fault-tolerant (FT) version that offers Single Event Upset (SEU) immunity
with no timing penalty compared to the non-FT version is also available. This makes
LEON3 an attractive solution for SoC based space projects.

4.2. DEVELOPMENT BOARD 29

Spartan 3 FPGA UART DSU

UART Output8 MB Flash2 x 32 MB SDRAM

Figure 4.1: Development board

4.2 Development Board

For testing purposes we have used the GR-XC3S development board, designed by Pender
Electronics GmbH [10]. The GR-XC3S board is compact, low-cost, targeted especially
for the evaluation of LEON3/GRLIB processor systems. The complete design, which
includes the LEON3 processor, the required GRLIB IP cores, together with the developed
Coincidence Block and the testing IPs, are programmed on the FPGA that is present
on board.

In Figure 4.1 the GR-XC3S board can be seen. Its core is represented by the 1.5
million gate XC3S1500 Spartan 3 FPGA designed by Xilinx [12]. The on-board memory
is positioned just above the FPGA. It consists of 64MB SDRAM as well as 8MB flash
memory. On the bottom-right corner the two serial (1Mbaud RS232) ports available are
located. One is used for the Debug Support Unit and the other one for interfacing with
the host PC. The FPGA is clocked by a 50MHz crystal that is part of the development
board.

Besides the parts that were mentioned above, the board features also an Ethernet
10/100 Mbit MAC and PHY, 24 bit video DAC, USB PHY Controller, and PS2 mouse
and keyboard interfaces. All these components were not used in our implementation,
which increased the total available area of the FPGA.

4.3 Development Tools

So far we have only discussed hardware related information. This section focuses on
the software tools that were used for development and testing. A general rule based on

30 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

which we selected the software was that it should be freely available and if possible also
open-source.

In order to simulate our design we have used GHDL [6], a complete VHDL simula-
tor that uses GCC technology and implements the VHDL language according to IEEE
standards. After GHDL compiles the VHDL files it will directly create binaries or exe-
cutable images. This is one of the best form for testbenches. A binary can also create
Value Change Dump ASCII based format files, or GHDL specific GHW dump format
files. These files can be visually inspected with a waveform viewer. We have used for
that GTKWave [7], which has the ability to read both GHDL format dump files, as well
as many others. GHDL and GTKWave are both open-source software, released under
GPL.

To synthesize the complete SoC design and to program the FPGA with the generated
bitstream we have used scripts that are provided by GRLIB. These scripts allow to run
under the command line Xilinx synthesis and place&route tools. In order to do that the
ISE WebPack Software Design was needed, which can be downloaded from the Xilinx
website. The ISE WebPack is free but not open-source. Except for the tools already
mentioned, it includes a variety of other tools that are useful for a designer. One such
tool is the FPGA editor which allows the visualization of the placement and routing of
the synthesised design. Another tool, the timing analyzer, helps to debug timing errors.

To compile the embedded C code we have used the LEON Bare-C Cross Compiler
(BCC), offered by Gaisler Research. BCC allows cross-compilation of single and multi-
treaded C and C++ applications created for LEON systems. It offers also a small tool
to pack the compiled executable into a PROM file that can be uploaded to the on-board
flash memory.

Another tool that we used, also provided by Gaisler Research, is GRMON - a debug
monitor for LEON processors. It communicates with the LEON DSU and it allows access
to all registers and memory, instruction and AMBA trace buffers. It can be used also to
download and execute applications, insert breakpoints, remote connection to GDB and
flash programming. GRMON is not free, but an evaluation version is available.

4.4 Design Verification

In order to verify our design we have created test-benches for every top-level component
and subcomponent in particular. Pre-synthesis, post-synthesis, and post-map simula-
tions were performed using GTKWave as a viewer.

As the simulation results were good, for the next step we have developed a Verification
IP to be integrated together with the CB. With a minimal selection of GRLIB IP cores
that are mandatory, the architecture was implemented on the FPGA. Some important
internal signals were routed to the external ports of the FPGA where we have connected a
logic analyzer to check their behavior. This operation is similar to the simulation check
performed with GTKWave during the previous step. An overview of the verification
setup is presented in Figure 4.2.

The verification IP is designed in such a way that various test sequences can be
loaded and run. Tests are created by specifying first the total number of events to be
generated. After that for every event in particular two values must be specified:

4.5. TESTING SETUP 31

Figure 4.2: Verification setup

• The sensors that are active only one cycle, having logic value ‘1’;

• The number of empty cycles that will follow, in which no sensor has logic value ‘1’.

We can see that by using the verification IP all the functionalities of the CB can be
verified. In this way different verification tests were developed for every operation mode
in particular. The coincidence window was varied and all the start/reset/end signals
were checked. As part of this verification process the embedded software that runs on
LEON3 to control the AMBA peripherals as well as the verification process had to be
also developed.

4.5 Testing Setup

We have presented so far the verification process. In order to validate our CB design
and to test its functionalities, we have created a testing setup in which we have included
the CB into the MPS. An overview of the entire system is presented in Figure 4.3.
The analogue data obtained from the silicon pixel trackers and from the scintillator are
digitized and becomes input to some custom IP filters which act as first level triggers.
These triggers are the inputs based on which the final trigger is asserted by the CB.

32 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

Figure 4.3: MPS read out system including CB

We can derive several functions that the CB can have on the MPS. The basic is to
tell when an event took place at the same time in the scintillator as well as in the silicon
pixel trackers. To do this all the first level triggers should be put in the coincidence
state.

Another role is to determine when one of the top layers is not working. This can be
performed by turning its respective sensor trigger state to anti-coincidence and observe
how the others behave. If there are plenty of hits in the layers that are placed on a
lower position it means that there is a problem with that specific layer that was put on
anti-coincidence. The coincidence check state can be used as well for this operation.

In all the cases the CB helps in selecting only the valuable information from what is
read. It also time stamp it to be of any scientific use and to be able to correlate it with
other instruments.

4.5.1 MPS Testing Generation IP

As the MPS is still in a preliminary phase we were not able to perform real tests in-
cluding all the necessary equipment. Therefore we created the MPS Testing Generation
(MPSTG) IP core that simulates the input behavior for the CB by creating first level
triggers.

A simplified structural overview of the MPSTG is presented in Figure 4.4. We can
see that the MPSTG is connected to the AMBA bus (AMBA APB) in the same way as
the CB. There is an AMBA Wrapper that takes care of this connection, which acts also

4.5. TESTING SETUP 33

Figure 4.4: Structural overview of the MPs testing generation IP

as a control block. Inside the AMBA Wrapper a set of memory mapped registers are
available to store the configuration. The clock frequency of this block is the one used
also for the AMBA bus.

On the right side of the figure we have the block that generates the triggers. It
works at a clock frequency of 100 MHz, same as the coincidence path block of the CB,
which generates the final trigger. To simulate closely the real behavior we have split
the signal generation phase in two parts. One block creates the real events while the
other one creates noise. When a real event is generated the signal selector block will set
it automatically as the final output. If no real event is generated, but there is a noise
event, then the noise value is set as output. If there is no noise nor real event generated
the output of the block contains only ‘0’ logic values.

4.5.2 Noise/Real Events Generation

To simulate as much as possible the environment in which the MPS should detect radia-
tions we have chosen to generate the events in a random manner. For this we have used
linear feedback shift registers (LFSRs), as they provide an accessible way to generate
pseudo-random values in hardware.

An LFSR is a shift register which uses feedback to modify itself at each rising edge
of the clock. The feedback causes the value in the shift register to cycle through a set
of unique values, starting from the initial one which is called the seed. The bit positions
that affect the generation of the next state, being used in the feedback function, are
called taps. An LFSR with a well chosen feedback function can produce a sequence of
bits which appear random and which has a very long cycle.

One of the mostly used types of LFSR is the Fibonacci (called also many-to-one

34 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

or standard). In a Fibonacci LFSR all the bits are shifted one position to the right
unchanged and the left-most bit value (the input bit) is determined from the taps by
performing an exclusive-OR/NOR (XOR/XNOR) logic operation.

A maximum-length LFSR cycles through all the possible 2n − 1 states within the
shift register, producing an m-sequence. We specify that a state with all ones is illegal
for an XNOR based LFSR. In the same way a state with all zeros is illegal for an XOR
based LFSR. This is considered illegal because the counter remains in a locked-up state.

In our experiment we have used three maximum length 16 bit XNOR Fibonacci
LFSRs to produce the noise events. For all of them the used taps were 16, 15, 12 and 4,
while the seed was different in order to achieve better randomness. To generate the real
events only one maximum length 8 bit XNOR Fibonacci LFSR was used, with the taps
sequence 8, 6, 5 and 4.

The generation of a noise or a of a real event takes place only when the value of their
associated LFSR goes above a certain threshold. In this way some control over the way
in which events are generated is achieved.

4.6 Results

The experiments that we have done can be split in two main parts. In the beginning we
have performed simulations to see if the CB behaves as expected, and also to check the
maximum performance that can be obtained. For this, both the CB and the MPSTG
were included into one top level component that simulated the behavior of the entire
assembly. We specify that in this case the dead time was caused only by the CB, since
the dummy model for the processor reacting immediately after a new final trigger was
asserted.

For the second part of the experiment we have programed the FPGA that resides
on the development board with the minimal required configuration, presented in the
introduction of this chapter. The complete SoC architecture interfaces through the
serial port with the PC. This communication is a simple task as the system is configured
to redirect all the communication to the serial port, while on the PC side a terminal
application with logging capabilities is used to retrieve the transmitted values. Appendix
B contains an example of such a C code which we have developed.

An experiment test consisted in varying the threshold of the noise generator within its
possible limits, while keeping the real events generator threshold constant. Measurements
were then taken for different values of the real events generator threshold. The execution
time for each test was 655.35 µs (equivalent to 65535 clock cycles at 100 MHz). During
this time interval the 16 bit LFSR used for the noise generator completes one cycle, while
the 8 bit LFSR used for the real events generator completes approximately 256 cycles.

We present the results obtained for different values of the real events generator thresh-
old, first for the simulation and after that directly from the FPGA. The operation mode
of the CB was no order, and all the sensors were put in the coincidence state.

4.6. RESULTS 35

4.6.1 Simulation Results

In Figure 4.5 the threshold value for the real events generator was set to 250. Therefore
the computed frequency of appearance of the real ticks is 1.96 MHz, signaled on the
plot by the green line. With the blue color the trigger frequency of appearance is repre-
sented. Please note that in the following plots we refer to the frequency of appearance
as frequency.

Coming back to Figure 4.5, we can see that if there is little noise, the trigger frequency
meets the real events one. As the noise level increases there is a bigger chance that these
events will meet the rules and the trigger will be asserted. This actually happens, and
it can be seen also in the plot.

In Figure 4.6 we have lowered the threshold value for the real events generator, setting
it to 232. By doing this the actual frequency of the real events was increased to 9.02
MHz. We can see that with zero noise this value is not equaled by the trigger frequency,
the reason being the dead time. If however the noise frequency is increased then the two
lines intersect at some point, after which the trigger rises even more. This is because the
noise events meet the rules and are interpreted as good events.

If we increase the real events frequency to 18.44, by setting the real events generator
threshold value to 208, the trigger frequency will not meet it even with the total possible
noise. This can be seen in Figure 4.7. The maximum trigger frequency that can be
obtained is around 16.5 MHz. The dead time in simulation equals to 60 ns (6 clock
cycles).

Figure 4.5: Simulation results - real events generator threshold value of 250

36 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

Figure 4.6: Simulation results - real events generator threshold value of 232

Figure 4.7: Simulation results - real events generator threshold value of 208

4.6. RESULTS 37

Figure 4.8: Simulation results all together

All the results obtained in simulation are presented in Figure 4.8. We can see better
here that as we increase the real events generator threshold value, after some point the
dead time appears. This affects the trigger frequency and the CB cannot trigger for all
the real events.

We mention that in this 3D plot we have ‘cut’ the rising part of the real events
frequency. This would have had continued its linear ascent.

4.6.2 FPGA Results

For the FPGA the results regarding the dead time were totally different. In Figure 4.9
the threshold value of the real events generator was set to its maximum possible value,
254. We recall that for our LFSR implementation the seed must not be all ‘1’ (255 in
decimal) as this is a locked-up state. We can see that when there is no noise the trigger
frequency meets the one for the real events generator.

Already from this picture we can derive that the maximum frequency for the trigger
is around 0.65 MHz. This is confirmed in Figure 4.10, where we have used a threshold
value of 253 for the real events generator. Even with all the possible noise the green line
is not reached by the blue one, which represents the trigger frequency.

All the FPGA results are presented in the 3D plot, Figure 4.11. We have again cut
the green part for a better view, as it would have gone to high. As it can be seen from
the plot, the dead time of the instrument is around 1.50 µs in a real situation. This has
different causes, but the main part of it is due to the processor. We mention that in our
situation the AMBA bus was free. If some other IPs are present this dead time might
increase due to the bus traffic collisions.

38 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

Figure 4.9: FPGA results - real events generator threshold value of 254

Figure 4.10: FPGA results - real events generator threshold value of 253

4.7. CONCLUSION 39

Figure 4.11: FPGA results all together

4.7 Conclusion

In this chapter we have investigated in detail the behavior of our trigger logic IP core.
As a first step, a verification setup was created. Once this process proved successful, we
have developed a realistic testing setup. Our IP core was integrated into the MPS, a
space instrument that requires trigger logic. In order to check the performance of our
component, we have generated both noise and real values in a manner that allowed us
to have control over the final outcome of the events. Results show that the behavior of
our proposed trigger design meets our expectations and can be successfully integrated
in space instruments.

So far we have targeted only the intra-module part of the thesis. In the next chapter
we address the Space Wire time-codes mechanism as part of the inter-module timing
accuracy.

40 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

Spacewire Extension 5
The final part of the project involves a study of the current inter-module time distri-
bution accuracy, focusing on SpaceWire networks. In section 5.1 a short overview of
SpaceWire is given. Section 5.2 presents the time-codes, followed by the time accuracy
that can be obtained (Section 5.3) with the present SpaceWire standard. Next the pos-
sible improvements are introduced, in Section 5.4. In the end, Section 5.5 discusses the
changes that are required by different SpaceWire components to be able to implement
those improvements.

5.1 Introduction to Spacewire

Sensors, processing-units, down link telemetry sub-systems and other electronic equip-
ment used in a spacecraft today are easily interconnected via SpaceWire networks.
Within such a network, serial, high-speed, bi-directional, full-duplex links and packet
switching wormhole routing routers are used. Developed first by ESA based on the
IEEE 1355 standard, SpaceWire nowadays is used worldwide by NASA, JAXA, and
other space organizations.

An important aspect of a SpaceWire network is that a specific topology is carefully
planned ahead and no further changes might appear. In contrast for example with any
computer LAN where nodes can be connected or disconnected at any time and the
topology of the network is in a current change.

Communication across a SpaceWire network is realized by sending control characters
and data characters. By linking the ESC and the FCT control characters the NULL con-
trol code is formed, used to keep the link active and to support link disconnect detection.
By linking the ESC control character with a data character the Time-Code control code
is obtained. SpaceWire uses time-codes in order to distribute time information across a
SpaceWire system.

Time-codes should not be used to increment a time-counter at the receiving nodes,
with the expectation that the counting value corresponds to the system time. The reason
behind is that a missing time-code results in time discrepancy. Instead, each node should
have a local time-counter that is periodically updated whenever a time-code has been
received.

Time-codes are generated by only one node of the network, the time master, that
takes care of the global time management. Routers broadcast the received time-codes to
all their ports in order to distribute the global time to all the nodes of the network. In
this way a global synchronization in the order of microseconds is achieved. Unfortunately
this is not suitable for many today’s applications. If we consider for example SpaceWire
being used for sensor readout synchronization it is important to know that certain events
took place exactly at the same time. This requires time resolution in the order of few

41

42 CHAPTER 5. SPACEWIRE EXTENSION

nanoseconds to be able to use the recorded data for any scientific studies.
Time-codes delays are associated with skew and jitter. The skew delay is constant at

each router and consists of the time in which the time-code traverses the router. In this
the cable delays and the processing time is included. The jitter delay varies and appears
because even though the time-codes have highest priority they still have to wait for the
transmission of the current character to end.

The total sum of skew and jitter delays depends also on the speed and size of the
network. If we consider the maximum possible speed, defined by the standard at 400
Mb/s, and a network with just two nodes connected, the total delay associated with
skew and jitter varies between 25 and 60 nanoseconds. Thus, we can see that by just
increasing the speed until it reaches the maximum is not a way of reducing delays to
meet the requirements. Some possible improvements are presented next, that aim to
achieve nanosecond synchronization irrespective of the network speed. The solutions are
based on reducing skew and jitter delays.

5.2 Time-codes

In the following we introduce time-codes as they are presented in the ECSS-E-ST-50-
12C/2008 standard [3]. The time control code is formed from an ESC followed by a
single data character. From all the four bits of the ESC character three are always set
to logic ‘1’. The remaining one is the parity check bit (P from Figure 5.1). The least
significant bits of the data character, T0-T5 hold the time value. The most significant
bits (T6, T7) contain two control flags for future general use (they do not have a specific
function for time distribution and shall be both set to zero [3] 7.7.h).

Figure 5.1: Time-code character

5.2.1 Sending Time-codes

The TICK IN signal is used to request the transmission of the time-code value, TIME IN.
Only one node has an active TICK IN, namely the time master. All the other nodes
keep their TICK IN signal not asserted.

When TICK IN is asserted the TIME IN value is sent immediately after the trans-
mission of the current character ends. Time-codes are sent only in the Run state.

5.2.2 Receiving Time-codes

The receiver determines that the current character is a time-code.

5.3. CURRENT TIMING ACCURACY 43

Each node and router contains a 6 bit time-counter. The value that is received has
to be one more than the value stored in the counter to be declared valid. If this happens
the TICK OUT signal is asserted.

The value of the counter is updated if the received value is different than the currently
stored value. The reason behind is to deal with link errors. In case one or more time-
codes were missed the router will be able to recover the correct time. This might happen
with the second time-code received after link recovering.

The TIME OUT value is propagated up to the application (in a node) or to all the
output ports (in case of a router) only if it is valid.

TICK OUT is asserted only if the link interface is in the Run state.

5.3 Current Timing Accuracy

We start with the accuracy determination from the time master, where the time-code
is generated. According to the standard, after the TICK IN signal is asserted, the time
master starts transmitting the time-code value in the first possible moment, after the
current character is transmitted. After the time-code leaves the time-master it has
to traverse a number of routers until it reaches the destination (every end node). At
each router, the time-code might have to wait again for the current character to be
transmitted. We can see that the delay can increase each time a router is passed. This
results in jitter delay, determined by the number of bits that the time-code has to wait
before being transmitted.

Once the transmission of the time-code has began, a certain amount of time has to
pass until it arrives at the receiving link. This time represents the skew delay, composed
by the time required for all the 14 bits to travel, eventual cable delays, and the time in
which the time-code is processed to be available for use.

As each transmitter might wait for a data character to be transmitted (10 bits) before
being able to send the time-code there can be a maximum time jitter of:

Tjitter = 10 ∗N/R = 10 ∗N ∗ Tbit

As each time-code has a total of 14 bits, this results a time skew of:

Tskew = 14 ∗N/R = 14 ∗N ∗ Tbit + Tcable + Tprocessing

The total delay can be expressed as:

Delay = Tskew + Tjitter

Where:

• N - total number of links that have to be traversed;

• R - average link operating rate;

• Tbit - bit transmission time;

• Tcable - cable delays;

44 CHAPTER 5. SPACEWIRE EXTENSION

Table 5.1: Influence of the link speed and network size over the skew delay
Links

1 2 3 4 5 6 7 8

Speed

10 1.400 2.800 4.200 5.600 7.000 8.400 9.800 11.200
25 0.560 1.120 1.680 2.240 2.800 3.360 3.920 4.480
50 0.280 0.560 0.840 1.120 1.400 1.680 1.960 2.240
100 0.140 0.280 0.420 0.560 0.700 0.840 0.980 1.120
200 0.070 0.140 0.210 0.280 0.350 0.420 0.490 0.560

Mb/s 300 0.047 0.093 0.140 0.187 0.233 0.280 0.327 0.373
400 0.035 0.070 0.105 0.140 0.175 0.210 0.245 0.280
3000 0.007 0.013 0.020 0.026 0.033 0.039 0.046 0.065

Table 5.2: Influence of the link speed and network size over the jitter delay
Links

1 2 3 4 5 6 7 8

Speed

10 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000
25 0.400 0.800 1.200 1.600 2.000 2.400 2.800 3.200
50 0.200 0.400 0.600 0.800 1.400 1.200 1.600 1.600
100 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800
200 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400

Mb/s 300 0.033 0.067 0.100 0.133 0.167 0.200 0.233 0.267
400 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
3000 0.003 0.007 0.010 0.013 0.017 0.020 0.023 0.027

• Tprocessing - time required to process the time-code.

The accuracy with which a time-code is distributed depends also on:

• the size of the network (total number of links a time-code has to traverse);

• speed rate of the network.

From Tables 5.1 and 5.2 we can see that at a maximum link speed of 400 Mb/s a
delay between 35-60 ns appears at each link that is traversed. This is due to the fact
that to the skew delay of 35 ns a jitter delay that can reach a maximum of 25 ns can
be added. To achieve a maximum delay of 10 ns per link a speed rate of 3000 Mb/s is
required. This is unrealistic for today’s technology. Instead of increasing the speed it is
better to find a different solution to reduce these delays.

5.3.1 Delay Variation

The skew delay is constant at each router and is equal to 14 bit times. This is important
if we consider network topologies where from the time master to node Ai time-codes pass
the same number of routers whatever the path is. In this case each destination node can
expect a constant skew delay, which equals the number of routers passed multiplied with

5.4. POSSIBLE TIMING IMPROVEMENTS 45

14 bit times. We assume also that the link rate is known. In contrast with the skew, the
jitter delay is variable and can be between 0 to 10 bit times at each router.

5.4 Possible Timing Improvements

The SpaceWire standard at the moment is quite restrictive and does not offer any solution
to the jitter and skew delays. Due to the constant value of the skew, network topologies
that reduce it can be built without any change to the standard. This is not the case for
the jitter as its value varies. In the following sections three methods of improving the
accuracy are be presented. We note however they all require additions/modifications to
the existing standard.

5.4.1 Method 1

One solution is to use a second time-code to transmit the jitter and skew delays. This
second time-code has the control flag bits of specific values, different than ‘00’, and should
be sent immediately after the first time-code. In this way jitter and skew delays are being
propagated to the receiving nodes. As the final nodes receives the delay represented in
number of bits they have to transform that value to get the actual time delay in order
of seconds.

By using this method, normal standard compliant devices can be used together with
time aware standard compliant devices. The difference is that the second time-code is
ignored by the first ones, which will consider it as not valid because of the value of the
control bits being different than ‘00’. The time aware standard compliant devices can
use the second time-code to compute the delay.

The two control bits of the second time-code can be used together to form a code.
In this way, 6 bits can be made available to transmit the delay. As with 6 bits 64 values
can be represented, and each router can add a maximum of 10 bits jitter delay, a total
of 6 routers can be traversed. This is the case when only the jitter delay is transmitted.
There is also the possibility to use only one control bit to signal the second time-code. A
total of 7 bits can be used now, which doubles the number of possible traversed routers
to 12. Again, if we transmit only the jitter delay.

For certain network topologies it might be required to transmit also the skew delay.
In this case the skew can be recorded as the number of routers that are traversed.

This method, using a second time-code with the control bits 01 was proposed in [30]
for the Simbol-X mission [15]. Four bits of this second time-code are used to transmit
the jitter delay. At the receiving part this value is used to get a constant and known
delay between the TICK IN assertion and the TICK OUT negative edge.

5.4.2 Method 2

Another solution is to use the control bits of the time-code to signal that another data
character containing the delay follows.

This method is similar to the first one but with the difference that normal standard
compliant devices cannot be used with the time aware ones.

46 CHAPTER 5. SPACEWIRE EXTENSION

A total of 8 bits can be used to transfer the delay associated with jitter and skew.
The number of possible routers is 25 if only the jitter is transmitted, and 10 if we add
also the skew.

5.4.3 Method 3

The basic idea of this method is to make the value of the jitter delay constant. As the
longest possible character that can be transmitted is 10 bits long, a constant jitter delay
can be obtained by sending the time-code always 10 cycles after the TICK IN signal has
been received [14]. A paused delay is introduced by holding both data and strobe lines
to zero after the current character has been transmitted until those 10 cycles pass. In
total this pause should not be more than the link disconnect timeout window of 850 ns.
This requires the link to be running at 12.5 Mb/s or faster. For lower bit rates it is
necessary to transmit a NULL if the number of pause cycles is less or equal to two. The
minimum bit rate in this way will be reduced to 2.5 Mb/s.

Using this method for network topologies in which the number of routers that are
traversed in order to reach a specific node is constant, the total delay time is also constant,
and nodes can be programmed with its value. For network topologies where different
paths are possible (with different lengths) from the master node to the same end node,
one of the first two methods is still required to send the value of the delay. This value
can be represented in number of traversed routers.

5.4.4 Bit Usage

All the possible bit usage combinations are presented in the following tables. The total
number of bits that can be used was split first between the skew and the jitter, assuming
that the jitter part counts the bits and the skew part counts the number of traversed
routers. If the skew delay is counted also in bits then the total sum of jitter and skew
can be transferred together. We note in here that for static network topologies only the
jitter bits need to be transferred.

Table 5.3: Number of possible routers using 6 bits from the time-code
Jitter Skew

total possible routers
bits # possible routers # bits # possible routers

5 3 1 2 2
4 1 2 4 1

If we add the jitter and skew at each node (64 bits) will result a max of 2 routers
If we transmit only the jitter will result a max of 6 routers

The number of routers that can be present in the network was computed by dividing
the maximum range representation to the maximum delay at each link. We can see
that it is better to represent both the jitter and the skew in number of bits in order to
use more routers. It is best to transfer only the jitter bits to use the largest number of
routers.

5.5. CHANGES REQUIRED 47

Table 5.4: Number of possible routers using 7 bits from the time-code
Jitter Skew

total possible routers
bits # possible routers # bits # possible routers

6 6 1 2 2
5 3 2 4 3
4 1 3 8 1

If we add the jitter and skew at each node (128 bits) will result a max of 5 routers
If we transmit only the jitter will result a max of 12 routers

Table 5.5: Number of possible routers using 8 bits to transmit delay
Jitter Skew

total possible routers
bits # possible routers # bits # possible routers

6 6 2 4 4
5 3 3 8 3
4 1 4 16 1

If we add the jitter and skew at each node (256 bits) will result a max of 10 routers
If we transmit only the jitter will result a max of 25 routers

5.4.5 Bandwidth Addition

We can divide the bandwidth by the frequency with which the TICK IN signal is gen-
erated. Between two TICK IN assertions a number of bits remain in which data in-
formation is being sent. This value is influenced by the link rate and the TICK IN
frequency.

5.5 Changes Required

In the following we present what actions each component has to perform and the changes
required to the current implementations. As the first two methods are similar and
consist of sending the delay after the transmission of the time-code the actions that each
component has to perform are also similar from the functional point of view.

All the required changes should be implemented mainly in the transmitter and re-
ceiver blocks. Signals have to be driven out to the host interface at the receiving nodes
and besides the TIME OUT signal the delay has to be added. The received delay has
to be transferred to the transmitter in routers, where the addition with the current one
is performed. At the transmitter, as soon as the TICK IN signal is received a counter
has to be started to compute the delay which will be added to the current one received
from the receiver.

5.5.1 Time Master

Once a TICK IN command has been received the transmitter has to start counting the
jitter bits. The time-code will be sent as soon as possible. The delay (either as second

48 CHAPTER 5. SPACEWIRE EXTENSION

time-code or data character) has to be the next character sent by the time master after
the time-code.

The time master traverses the following action flow:

• receive TICK IN and increment time counter;

• wait for the current character to be transmitted; count delay;

• send time-code;

• send delay.

5.5.2 Router

For the first method, after the first time-code has been received, the second time-code
has to be identified based on the control bits. If the first-time code was valid and the
decision to broadcast it was taken, the router has to count the jitter bits on each of its
ports. While the first time-code is transmitted, the router has time to add his delay to
the received one. Even if no second time-code was received, the router still transmits
the delay right after the first time-code.

For the second method, the only difference is that the router knows that a delay
follows after it has received the time-code with the specific control bits.

The router traverses the following action flow:

• receive time-code;

• check if time-code is valid and start receiving delay;

• wait for the current character to be transmitted and count jitter bits;

• send time-code; update delay;

• send delay.

5.5.3 Receiving Node

At the receiving node once a delay has been decoded it has to be updated. Then it is
made available to the host interface only if the first time-code was valid.

The receiving node traverses the following action flow:

• receive time-code;

• check if time-code is valid and start receiving delay;

• update delay and assert TICK OUT.

5.6. CONCLUSION 49

5.5.4 Method 3 Additions

For the third method, at the transmitter, it is important to know the delay bits when
the TICK IN signal is received. This can be accomplished by setting a down-counter
to 10 every time a character starts transmitting. With each bit that is transmitted the
value of the counter is decreased. When the TICK IN arrives the value of the counter
represents the number of pause bits that need to be added.

If the stored value of the counter is more or equal to 8 and the link speed is less than
12.5 Mb/s a NULL character shall be transmitted.

5.6 Conclusion

Current SpaceWire standard assures time information distribution with microseconds
accuracy. This represents a drawback since intra-module events are timestamped with
a time resolution in the order of nanoseconds. Furthermore the delay over SpaceWire
networks does not have a constant value. In this chapter we have studied the SpaceWire
timing synchronization to find possibilities for improvements. We have proposed three
methods that can reduce the delays associated with skew and jitter in order to achieve
nanoseconds accuracy. The changes required in order to implement these methods for
each network component were also presented.

A summary of the work including general conclusions and future research directions
is given in the next chapter.

50 CHAPTER 5. SPACEWIRE EXTENSION

Conclusion 6
The work performed for this thesis is related to time synchronization and data acqui-
sition systems in space instrumentation. We targeted a SoC architecture in order to
assure that it fits in the current space instrumentation miniaturization trend. Our SoC
implementation was focused on FPGA based instruments as they offer the possibility to
reconfigure the hardware that flies in space.

As outlined in the introduction, there are different motivations for this thesis, one of
them being the current need to perform data analysis on-board. This is required because
the slow down link from spacecraft to Earth does not cope with the amount of data that
has to be transferred. As the major part of all these data is actually composed by noise,
there is an obvious need to discard it so that only meaningful information is processed
on-line. Form what remains it would be at the same time important to keep only the
data that is relevant to the research that is performed. Therefore, we proposed the usage
of trigger systems as a solution to these problems.

During the first part of the document we have described the principles, the design
and the implementation of an AMBA based IP core to be used in trigger logic systems.
The block is highly customizable and acts as a higher level trigger in a hierarchical
trigger system. It accepts a number of low level triggers as inputs and based on the
configuration that is set it asserts the final trigger. The moment in time when this
operation is performed is also made available in order to be able to reconstruct the
environment in detail.

From the tests that we have performed an average dead time of 1.5 µs was obtained.
From here we conclude that the maximum frequency with which our IP core generates
a trigger, on the current hardware implementation, is 0.65 MHz. This value can be
increased by using a faster FPGA.

Even though we have included our designed trigger IP block only in one instrument
for testing purposes, we state that there are plenty of other instruments in which it can
fit easily.

Our approach highlights the potential benefits of using reconfigurable hardware in
space. SoC have a major role in space electronics as they allow higher level of integration,
by compacting multiple functions into a single chip. They increase the re-usability of the
design while at the same time decrease the development time. This leads to an overall
cost reduction.

The scientific value of a multi-functional instrument increases if one can correlate the
results from one detector with the results from another one. For this purpose we have
studied the SpaceWire mechanism used to distribute time across the network, by means
of time codes. Possible solutions to improve the current mechanism were presented,
in an effort to reach nanoseconds timing accuracy. As SpaceWire networks have static
topologies it is possible to eliminate most of the jitter and skew delays, leaving only the

51

52 CHAPTER 6. CONCLUSION

processing and cable delays. Nevertheless some of the methods require additions/modi-
fications to the current SpaceWire standard.

We conclude that all of the thesis objectives were covered. We continue to present
next some problems that we encountered during our work and in the last section of this
thesis we propose some future developments.

6.1 Problems Encountered and Lessons Learned

One important problem that we had encountered appeared because we did not use any
revision control software. As many times we had to go back to previous versions it
was difficult to find the one we were looking for from the multitude of older versions.
Therefore, we recommend the usage of any revision control software available, like for
example Git, CVS or SVN.

We have tried to maintain the VHDL code as clean and generic as possible. For this
we avoided the addition of manufacturer specific macros up to a certain limit. The only
solution to this would require some standardization process, where the manufacturers
would agree on a common way of providing the underlying resources.

The addition of new IP cores, or combining cores from different sources is not a
straight process neither. Sometimes the designer has to go deep into the code of some
cores which is written by others to track compatibility issues. GRLIB offers some au-
tomated tools but in order to include external cores modifications has to be performed
over some specific files.

Another problem which unfortunately has no solution at the moment is the total
time that is required for synthesis, mapping, placement and routing, in order to generate
a new bitstream. This limits the designer to test only a few changes per day, if we take
into considerations also the time required to implement those changes.

6.2 Recommendations for Future Work

The outcome of our work is promising but there is always space for improvements. The
following section proposes some directions for future research.

One such direction regards the dead time, which comes from the AMBA communica-
tion and from the processor. We have performed some basic study but we do not know
how the presence of other IP cores would influence the value of the dead time. Further-
more we have only used the APB bus. A more detailed study is needed to determine
whether some dead time reduction appears if the the bus protocol is changed, or if the
software that runs on the processor is modified.

The current method that is used to signal to the processor when the final trigger
is asserted can be also improved by using interrupts, instead of just raising a bit of a
certain register. Maybe this method will have also some impact over the dead time, but
some other disadvantages might arise as well.

Another improvement for our IP would be to give feedback to the user on how to
adjust the size of the coincidence window, to sense if the coincidence window is too big
or too small. In order to achieve this, some statistical information need to be processed,

6.2. RECOMMENDATIONS FOR FUTURE WORK 53

which has to be performed in hardware. Nevertheless, providing such guidance to the
user would be useful as in certain experiments it might be difficult to make the proper
setting of the coincidence window size.

Regarding SpaceWire, we have performed only a theoretical study that indicates that
there is space for timing accuracy improvements. Our study suggests that nanoseconds
accuracy can be obtained. It is however necessary to check the portability of these
results to real life scenarios. Some hardware implementations for different SpaceWire
cores must be modified for that and some networks need to be created and checked. This
is important for intermodule timing accuracy.

54 CHAPTER 6. CONCLUSION

Bibliography

[1] BELLE at KEKB, [Online]. Available: http://belle.kek.jp/.

[2] cosine Research, [Online]. Available: http://www.cosine.nl/.

[3] ECSS-E-50-12C (31 July 2008) SpaceWire engineering Links, nodes, routers and
networks.

[4] Fermi National Accelerator Laboratory - TEVATRON department, [Online]. Avail-
able: http://www-bdnew.fnal.gov/tevatron/.

[5] Gaisler Research GRLIB Library and LEON3 Synthesizable Processor, [Online].
Available: http://www.gaisler.com/.

[6] GHDL, a Complete VHDL Simulator, [Online]. Available: http://ghdl.free.fr/.

[7] GTKWave viewer, [Online]. Available: http://gtkwave.sourceforge.net/.

[8] HERA Accelerator, [Online]. Available: http://adweb.desy.de/mpy/hera/.

[9] LHC - The Large Hadron Collider, [Online]. Available: http://lhc.web.cern.ch/lhc/.

[10] Pender Electronic Design, [Online]. Available: http://www.pender.ch/.

[11] Timing, Trigger and Control (TTC) Systems for the LHC, [Online]. Available:
http://ttc.web.cern.ch/TTC/.

[12] Xilinx, DS099 - Spartan-3 FPGA Family: Complete Data Sheet, [Online]. Available:
http://direct.xilinx.com/bvdocs/publications/ds099.pdf.

[13] M. Alderighi, Mitigation of SEUs Affecting Configuration Memory and Reconfigu-
ration Logic in VIRTEX II FPGAs, Tech. report, IASF-INAF, 2009.

[14] B. M. Cook, Reducing spacewire time-code jitter., International SpaceWire Seminar,
ESTEC Noordwijk, The Netherlands (2003).

[15] P. Ferrando and al., Simbol-x: mission overview., SPIE, 2006, p. 6266.

[16] R. Fruhwirth, M. Regler, R. K. Bock, H.Grote, and D. Notz, Data analysis tech-
niques for high-energy physics, 2 ed., Cambridge University Press, 2000.

[17] S. Habinc, Functional triple modular redundancy, Tech. report, Gaisler Research,
2002.

[18] , Suitability of reprogrammable fpgas in space applications, Tech. report,
Gaisler Research, 2002.

55

56 BIBLIOGRAPHY

[19] N. S. Ivanova, Yu. D. Karpekov, V. A. Senko, and V. I. Yakimchuk, A dedicated
high-speed trigger generation processor for selecting single particle decay events us-
ing coordinate signals from hodoscopes of scintillation counters, Instruments and
Experimental Techniques 51 (2008), 381–391.

[20] Manfred Jeitler, Trigger systems at LHC experiments, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 598 (2009), no. 1, 305 – 311, Instrumentation for Collding
Beam Physics - Proceedings of the 10th International Conference on Instrumenta-
tion for Colliding Beam Physics.

[21] F. Karstens and S. Trippel, Programmable Trigger Logic Unit Based on FPGA
Technology, IEEE Trans.Nucl.Sci.52:1192-1195,2005 (2005).

[22] H. J. Kim, S. K. Kim, S. H. Lee, T. W. Hur, C. H. Kim, F. Wang, I. C. Park,
Hee-Jong Kim, B. G. Cheon, and E. Won, A fast programmable trigger for iso-
lated cluster counting in the belle experiment, Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 457 (2001), no. 3, 634 – 639.

[23] S. Kraft, J. Moorhouse, A. L. Mieremet, M. Collon, J. Montella, M. Beijersber-
gen, J. Harris, M. L. van den Berg, A. Atzei, A. Lyngvi, D. Renton, C. Erd, and
P. Falkner, Study of highly integrated payload architectures for future planetary mis-
sions, vol. 5570, SPIE, 2004, pp. 133–144.

[24] D. Lampridis, High speed reconfigurable computation for electronic instrumentation
in space applications, (2007).

[25] P. H. W. Leong, Recent trends in fpga architectures and applications, Proceedings of
IEEE International Symposium on Electronic Design, Test, and Applications, Jan.
2008, pp. 137-141.

[26] Volker Lindenstruth and Ivan Kisel, Overview of trigger systems, Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 535 (2004), no. 1-2, 48 – 56, Proceedings of
the 10th International Vienna Conference on Instrumentation.

[27] Erik Maddox, Alex Palacios, Dimitris Lampridis, Stefan Kraft, Alan Owens, Dana
Tomuta, and Reint Ostendorf, Development of a multifunctional particle spectrom-
eter for space radiation imaging, Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
591 (2008), no. 1, 121 – 124, Radiation Imaging Detectors 2007 - Proceedings of
the 9th International Workshop on Radiation Imaging Detectors.

[28] Thilo Pauly and the Atlas Collaboration, The ATLAS level-1 central trigger system
in operation, Journal of Physics: Conference Series 219 (2010), no. 2, 022017.

[29] D.G. Perry and L.P. Remsberg, Particle identification with very thin transmission
detectors, Nuclear Instruments and Methods 135 (1976), no. 1, 103 – 109.

BIBLIOGRAPHY 57

[30] F. Pinsard and C. Cara, High resolution time synchronization over spacewire links.,
Aerospace Conference (2008).

[31] Krzysztof T Pozniak, FPGA-based, specialized trigger and data acquisition systems
for High-Energy Physics experiments, Measurement Science and Technology 21
(2010), no. 6, 062002.

58 BIBLIOGRAPHY

Abbreviations

ADC - Analog-to-digital converter
AHB - Advanced High-performance Bus
ALICE - A Large Ion Collider Experiment
AMBA - Advanced Microcontroller Bus Architecture
APB - Advanced System Bus
ASIC - Application Specific Integrated Circuit
ATLAS - A Toroidal LHC ApparatuS
BCC - Bare-C Cross Compiler
CB - Coincidence Block
CPU - Central Processing Unit
CMS - Compact Muon Solenoid
DCM - Digital Clock Manager
DPU - Digital Processing Unit
DSP - Digital Signal Processors
DSU - Debug Support Unit
FSM - Finite State Machine
FIFO - First In First Out
FPGA - Field Programmable Gate Array
GCC - GNU Compiler Collection
HEP - High Energy Physics
SEU - Single Event Upset
IP - Intelectual Property
LFSR - Linear Feedback Shift Register
LHC - Large Hadron Collider
MPS - Multifunctional Particle Spectrometer
MPSTG - MPS Testing Generator
NIM - Nuclear Instruemntal Module
NO - No Ordering
NOWSS - No Ordering With Starting Sensor
SO - Specific Order
SoC - System-on-a-Chip
SpW - SpaceWire
UART - Universal Asynchronous Receiver/Transmitter
VHDL - VHSIC Hardware Description Language

59

60

List of registers A
This is a list of all the registers implemented and used in the Coincidence Block.

A.1 Coincidence window register

Table A.1: Coincidence window register, offset 00001H
field Reserved cwindow
bits 31 to cw cw-1 to 0

access - R/W

This register is used to store the size of the coincidence window. The number of bits
used for this representation is specified before synthesis in a package.

A.2 Parameter[i] register

Table A.2: Parameter[i] register, offset for i=0 at 00110H
field Reserved Delay Order State Active H/L
bits 31 to l2+1 l2 to l1+1 l1 to 3 2 to 1 0

access - R/W R/W R/W R/W

For every sensor there is a register like this allocated, in which the configuration is
stored. The value of l1 is determined from the value of log2(nrofsensors). The value of
l2 is determined from cw.

[Active H/L] Specifies if the input is active high or low.

[State] Represents the sensor state, in the following manner:

Coincidence = 00
Anti-coincidence = 01
Coincidence check = 10

[Order] Specifies the position of the sensor when the operation mode is specific order.

[Delay] Specifies the number of cycles with which the sensor trigger will be delayed.
From the first bit it can be determined if it should be considered or not.

61

62 APPENDIX A. LIST OF REGISTERS

A.3 Operation mode register

Table A.3: Operation mode register register, offset 00010H
field Reserved Starting sensor State
bits 31 to l1+1 l1 to 2 1 to 0
access - R/W R/W

As the name suggests this register holds the operation mode of the Coincidence Block.

[State] Represents the operation mode, in the following manner:

No order = 00
No order with starting sensor = 01
Specific order = 10

[Starting sensor] Holds the index value of the starting sensor.

Sample Embedded C Code B
#define B t s t a t u s c on f 0x80000500
#define B t s t a tu s 0x80000504
#define B t r a t i c k v a l 0x80000508
#define B t r a s t a r t v a l 0x80000514
#define B t r e t i c k v a l 0x80000520

#define B cb s ta tu s con f 0x80000400
#define B cb cwindow 0x80000404
#define B cb order ing 0x80000408
#define B cb sta tus 0x80000414
#define B cb parameters 0x80000440

volat i le unsigned int ∗ t s t a t u s c o n f = (unsigned int ∗) B t s t a t u s c on f ;
volat i le unsigned int ∗ t s t a t u s = (unsigned int ∗) B t s t a tu s ;
volat i le unsigned int ∗ t r a t i c k v a l = (unsigned int ∗) B t r a t i c k v a l ;
volat i le unsigned int ∗ t r a s t a r t v a l = (unsigned int ∗) B t r a s t a r t v a l ;
volat i le unsigned int ∗ t r e t i c k v a l = (unsigned int ∗) B t r e t i c k v a l ;

volat i le unsigned int ∗ cb s t a t u s c on f = (unsigned int ∗) B cb s t a tu s con f ;
volat i le unsigned int ∗cb cwindow = (unsigned int ∗) B cb cwindow ;
volat i le unsigned int ∗ cb o rde r ing = (unsigned int ∗) B cb order ing ;
volat i le unsigned int ∗ cb s t a tu s = (unsigned int ∗) B cb s ta tus ;
volat i le unsigned int ∗ cb parameters = (unsigned int ∗) B cb parameters ;

void l o a d t e s t (unsigned int r a th r e sho ld , unsigned int r e t h r e s h o l d){
// r e s e t t i n g the t e s t i n g component
t s t a t u s c o n f [0] = 2 ;
t s t a t u s c o n f [0] = 0 ;

// s e t t i n g the t e s t i n g parameters
t r a t i c k v a l [0] = ra th r e sho l d ;
t r a t i c k v a l [1] = ra th r e sho l d ;
t r a t i c k v a l [2] = ra th r e sho l d ;
t r a s t a r t v a l [0] = 0x0000 ;
t r a s t a r t v a l [1] = 0xF007 ;
t r a s t a r t v a l [2] = 0xFC07 ;
t r e t i c k v a l [0] = r e t h r e s h o l d ;

// r e s e t t i n g the CB
cb s t a t u s c on f [0] = 2 ;
c b s t a t u s c on f [0] = 0 ;

// s e t t i n g the CB parameters
cb o rde r ing [0] = 2 ;
cb cwindow [0] = 1 ;

63

64 APPENDIX B. SAMPLE EMBEDDED C CODE

cb parameters [0] = 1 ;
cb parameters [1] = 9 ;
cb parameters [2] = 17 ;

}

void r u n s i n g l e t e s t (void){
volat i le int nr = 0 ;
volat i le unsigned int l s t a t u s , r ou t t i c k , l t s t a t u s , l t d on e ;

// empty data cache
s w i f t f l u s h c a c h e a l l () ;
l t s t a t u s = t s t a t u s [0] ;
l t d on e = (l t s t a t u s >> 4) & 1 ;

// s t a r t the t e s t i n g
l t d on e = 0 ;
c b s t a t u s c on f [0] = 1 ;
t s t a t u s c o n f [0] = 1 ;

// determine the t o t a l number o f t r i g g e r s
while (l t d on e != 1){

// check ing f o r a t r i g g e r
r o u t t i c k = (cb s t a tu s [0] >> 8) & 1 ;
i f (r o u t t i c k == 1){

nr++;
// acknowledge t ha t the t r i g g e r was read
cb s t a t u s c on f [0] = 3 ;
c b s t a t u s c on f [0] = 1 ;

}
l t d on e = (t s t a t u s [0] >> 4) & 1 ;

}

// output the t o t a l number o f t r i g g e r s
p r i n t f (”\n%d” , nr) ;

c b s t a t u s c on f [0] = 2 ;
c b s t a t u s c on f [0] = 0 ;

t s t a t u s c o n f [0] = 2 ;
t s t a t u s c o n f [0] = 0 ;

}

void r un t e s t s (void) {
volat i le int i ;
volat i le unsigned int r e t h r e s h o l d ;

p r i n t f (”\n r e a l th r e sho ld : ”) ;
s can f (”%u” , &r e t h r e s h o l d) ;

for (i = 0 ; i<= 65535; i++){
l o a d t e s t (i , r e t h r e s h o l d) ;
r u n s i n g l e t e s t () ;

}
}

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Problem Statement
	Thesis Objectives
	Thesis Outline

	Background & Related Work
	FPGA Based Space Instruments
	The Multifunctional Particle Spectrometer
	Trigger Logic Systems
	Integration of FPGAs in Trigger Logic Systems

	Conclusion

	A Reconfigurable IP Core for SoC Trigger Logic Systems
	General Description
	Functional Overview
	User Configuration
	Generation of `tick_out`
	Pre/post-synthesis Configuration
	I/O specification

	Hardware Implementation
	Architectural Overview
	AMBA Control Component
	Computational Component

	Trigger System
	Conclusion

	Experimental Setup and Results
	GRLIB IP Library
	Plug & Play Capability
	The LEON3 Processor

	Development Board
	Development Tools
	Design Verification
	Testing Setup
	MPS Testing Generation IP
	Noise/Real Events Generation

	Results
	Simulation Results
	FPGA Results

	Conclusion

	Spacewire Extension
	Introduction to Spacewire
	Time-codes
	Sending Time-codes
	Receiving Time-codes

	Current Timing Accuracy
	Delay Variation

	Possible Timing Improvements
	Method 1
	Method 2
	Method 3
	Bit Usage
	Bandwidth Addition

	Changes Required
	Time Master
	Router
	Receiving Node
	Method 3 Additions

	Conclusion

	Conclusion
	Problems Encountered and Lessons Learned
	Recommendations for Future Work

	Bibliography
	List of registers
	Coincidence window register
	Parameter[i] register
	Operation mode register

	Sample Embedded C Code

