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Evaluation of Different Formulations to Optimally
Locate Sensors in Sewer Systems

Bijit Kumar Banik, Ph.D.1; Leonardo Alfonso, Ph.D.2; Cristiana Di Cristo, Ph.D.3;
Angelo Leopardi, Ph.D.4; and Arthur Mynett, Sc.D.5

Abstract: Efficient management of a sewer system includes the control of the conveyed wastewater quality to adequately operate treatment
plants and protect the receiving water bodies. Moreover, these systems are vulnerable to either accidental spills or intentional unauthorized
discharges. To properly manage them, a limited number of sensors could be placed at different locations to monitor the water quality. In this
paper, multiobjective and single-objective optimization procedures to optimally locate sensors in sewer systems are proposed, tested, and
compared. The multiobjective procedures include objective functions related to information theory (IT procedure), detection time and reli-
ability (DR procedure), and a combination of them (IT_DR procedure). The single-objective procedures include a greedy-based objective
function (GR procedure) and a merged objective function (DR_IT_GR procedure). The procedures show a similar performance when applied
on a small network, whereas in a real system, the results show that (1) the IT-based method can be effectively used as a filtering technique;
(2) the DR_IT_GR procedure outperforms the other multiobjective ones; and (3) the GR procedure is very efficient in finding the Pareto
extreme solutions. DOI: 10.1061/(ASCE)WR.1943-5452.0000778. © 2017 American Society of Civil Engineers.

Author keywords: Sewers; Optimization; Sensors; Illicit intrusion; Information theory.

Introduction

Efficient management of a sewer system includes the control of the
conveyed wastewater quality to adequately operate treatment plants
and protect the receiving water bodies. In fact, in combined sys-
tems, when discharge exceeds the treatment capacity, raw effluents
are spilled directly into water bodies with possible acute effects on
the environment (Gromaire et al. 2001; Diaz-Ferros et al. 2002;
Even et al. 2004). In this context, the characterization of the col-
lected wastewater is very important (Obropta and Kardos 2007), as
differences in its usual composition can be identified. Moreover,
sewer systems are vulnerable to both accidental spills and inten-
tional inputs, such as unauthorized discharges, because the net-
works are geographically dispersed and have multiple access
points. The development of online sensors for measuring waste-
water quality, based on different technologies (Thomas et al. 1997;
Bourgeois et al. 2001; Qin et al. 2012), enabled the identification
of anomalous behaviors through event detection procedures

(Arad et al. 2013; Campisano et al. 2016; Yang and Bocelli
2016) and the application of source identification methodologies
in sewer systems (Banik et al. 2015d, 2017). Since the number
of sensors is generally limited by budget and other constraints,
an adequate monitoring network has to be adequately designed
to efficiently detect anomalies.

The sensor placement problem has been widely studied for
monitoring rivers (e.g., Telci et al. 2009; Alfonso et al. 2013; Lee
et al. 2014) and for designing contamination warning systems in
drinking water distribution networks. In this later research field,
starting from the early contributions by Lee and Deininger (1992)
and Kumar et al. (1997), many methodologies have been proposed
(Hart and Murray 2010), which formulate the sensor location as
an optimization problem. Generally, the selection of the objective
function is difficult. Among the different proposed objective func-
tions, the detection time (D), the volume consumed (VC), the pop-
ulation exposed (PE) (Rathi and Gupta 2014a, b) are commonly
used. Optimization procedures may consider them either separately
(in single-objective optimization) or simultaneously (in multiobjec-
tive optimization). Among the former group, Rathi and Gupta
(2016) used a heuristic method to minimize detection time. More
recently, Zhao et al. (2016) presented a branch and bound sensor
placement algorithm with very good performances, based on
greedy heuristics and convex relaxation.

The battle of the water sensor networks (BWSN) (Ostfeld et al.
2008), which compares 15 different approaches, showed that the
sensor placement problem requires a multiobjective analysis, be-
cause a solution associated to one objective only is usually subop-
timal. In some multiobjective approaches, different objectives are
grouped together in a single function (e.g., Aral et al. 2010; Dorini
et al. 2010; Rathi and Gupta 2016). In other formulations, the
objective functions remain distinct and a group of solutions are re-
ported in the form of a Pareto front (e.g., Preis and Ostfeld 2008;
Weickgenannt et al. 2010; Shen and McBean 2011).

Sensor location methodologies can be computationally ex-
pensive, in particular when applied to real large-scale networks.
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Integer programming (e.g., Berry et al. 2005) and genetic algo-
rithms (GA) (e.g., Guan et al. 2006) have been widely used as
optimization problem solvers, but in complex schemes the compu-
tational time can be an important limitation. For these reasons,
some methodologies have been developed to tackle the complexity
of the network to reduce the computational runtime (e.g., Chang
et al. 2012; Klise et al. 2013). For example, Krause et al. (2008)
presented a multiobjective methodology, which uses the expected
penalty reduction and the submodularity concepts. Comboul and
Ghanem (2013), through the use of submodular cost functions,
solved the optimization problem with a greedy algorithm, reducing
computational effort. The same was achieved by Rathi et al. (2016),
who presented a methodology for the selection of contamination
events in intermittent water distribution networks, based on the
identification of risk-prone areas.

Water quality sensors are often placed in sewer systems gener-
ally following practical aspects, such as the proximity of critical
facilities, accessibility, and/or spatial density, and they are seldom
based on optimization techniques. In a very recent contribution,
Villez et al. (2016) proposed a methodology for sensor placement
on a wastewater treatment plant for monitoring fault detection.

The novelty of the present research is to develop a methodology
to optimally locate sensors for early warning in case of illicit water
intrusion in sewer systems. In the proposed methodology, the
sensor network design is formulated as an optimization problem,
adopting five different procedures that use different objective
functions. In particular, the approaches using multiobjective formu-
lations are solved with the Nondominating Sorting Genetic
Algorithm II (NSGA-II) and are compared with the single-objective
optimization procedure. In order to evaluate the procedures, they
are applied on a simplified network [Example 8 of the Storm Water
Management Model 5 (SWMM) application manual (Gironás et al.
2009)] and on the sewer system of Massa Lubrense, a town located
near Naples, Italy. The objective of the comparison is to highlight
advantages and disadvantages of the different procedures, in order
to identify those with the best performances.

Methodology for Sensor Location with Different
Optimization Formulations

In the proposed methodology, sensor locations are optimized to
detect any possible contamination scenario, represented by the
intrusion of a conservative contaminant with a constant concentra-
tion at a single location in the system during a given period. The
simplifying hypothesis of a conservative contaminant is assumed
because the absence of decay is the most critical scenario. Any net-
work node is considered as a possible intrusion point. The number
of sensors to be placed is fixed, since it is usually constrained by
limited budget. However, additional experiments have been per-
formed with an increasing number of sensors, to investigate to what
extent an additional sensor improves the performance of the mon-
itoring network.

Different optimization problems are formulated, adopting the
procedures listed in Table 1. The first procedure, called IT, con-
siders a multiobjective approach, where joint entropy usually indi-
cated as (JH) is maximized and total correlation (TC) is minimized.
The second procedure, named DR, also considers a multiobjective
approach, where detection time is minimized (D) and reliability (R)
is maximized. The third procedure, named DR_IT, considers a
combination of the previous two procedures, where IT is applied
as a filtering tool prior the DR procedure. The fourth formulation,
called GR, is a single-objective rank-based greedy algorithm that
considers JH, D, and R as single objectives. In the fifth procedure,

named DR_IT_GR, the DR_IT one is improved by incorporating
the greedy solutions in the optimization process.

The multiobjective optimization procedures (IT, DR, DR_IT,
and DR_IT_GR) are solved using the NSGA-II, developed by
Deb et al. (2002). The NSGA-II was considered because it is a
widely used optimization solver for global search problems, but
other approaches could be adopted. NSGA-II is an elitist, nondo-
minated sorting genetic algorithm which utilizes simulated binary
crossover (SBN) and polynomial mutation as genetic operators.
The output of NSGA-II consists of sets of quasioptimal nondomi-
nated solutions that define the Pareto front. The Pareto front plots
a set of possible outcomes in terms of all objectives. The single-
objective procedure (GR) is solved using a rank-based greedy
algorithm.

The required data to evaluate the objective functions for the
proposed procedures are obtained through hydrodynamic and qual-
ity simulations, performed using the well-known SWMM. For the
hydraulic simulation, SWMM solves the conservation of mass and
momentum equations (St. Venant equations). For the quality sim-
ulation, the contaminant is assumed to be discharged simultane-
ously with the wastewater, and it is considered conservative,
without biochemical reaction. This contaminant is introduced at a
source node with a fixed constant concentration during the release
duration and is transported through the links. It is assumed that
conduits behave as a continuously stirred tank reactor (CSTR)
without considering the dispersion effect, which is usually kept
negligible in water distribution and sewer systems (Rieckermann
et al. 2005). To integrate the SWMM simulator within the
methodology, the SWMM-Toolkit is used (Banik et al. 2014). In
particular, the toolkit is applied to extract the time series of the con-
centration data for each node, which are required for the evaluation
of the objective functions.

Information Theory Procedure (IT)

Information theory was developed by Shannon (1948), who intro-
duced the concept of entropy (H) to measure the information con-
tent of a random variable, based on the probability distribution of its
records. The higher the entropy value of a random variable, the
higher is its amount of information. Considering a discrete random
variable X, with values x1; x2; : : : ; xn with corresponding probabil-
ities of occurrence pðx1Þ;pðx2Þ; : : : ;pðxnÞ, the entropy is math-
ematically expressed as

HðXÞ ¼ −Xn
i¼1

pðxiÞ logpðxiÞ ð1Þ

where n = number of distinct events or records in the random var-
iable. In this study, n is the number of records related to a concen-
tration value xi at a particular node X. Depending on the base
logarithm used, entropy takes different units: nats if the base is e
and bits if the base is 2 [IEC 80000-13:2008 2013 (IEC 2013)].

Table 1. Notation for Different Procedures

Procedures Optimizer Objectives

IT NSGA-II maxðJHÞ, minðTCÞ
DR NSGA-II minðDÞ, maxðRÞ
DR_IT NSGA-II minðDÞ, maxðRÞ
GR Greedy maxðJHÞ

Greedy minðDÞ
Greedy maxðRÞ

DR_IT_GR NSGA-II minðDÞ, maxðRÞ

© ASCE 04017026-2 J. Water Resour. Plann. Manage.
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In this paper, the base 2 is used. The probabilities pðxiÞ are esti-
mated using a histogram-based method with a given bin size or
number of classes as used by Markus et al. (2003), Mishra and
Coulibaly (2009), and Alfonso et al. (2010b, c, 2013).

The amount of information that is jointly contained in two
random variables X1, X2 is given by the joint entropy JH, de-
fined as

JHðX1;X2Þ ¼ −Xn
i¼1

Xm
j¼1

pðx1i; x2jÞ logpðx1i; x2jÞ ð2Þ

in which pðx1i; x2jÞ = joint probability of the variables X1 and X2

and n and m = number of distinct events or records in X1 and X2,
respectively.

The total correlation (McGill 1954; Watanabe 1960) TC repre-
sents the mutual information among N variables, and can be used
to quantify the redundancy among multiple variables. This con-
cept, widely used in the fields of medicine, neurology, psychology,
clustering, feature selection, and genetics, has been recently applied
in water resources (Alfonso et al. 2010a, b, 2013; Banik et al.
2015a; Ridolfi et al. 2016). Mathematically, the total correlation
is given by

TCðX1;X2; : : : ;XNÞ ¼
�XN
i¼1

HðXiÞ
�
− JHðX1;X2; : : : ;XNÞ

ð3Þ

The computation of the term JHðX1;X2; : : : ;XNÞ requires the
estimation of the joint probability distribution pðx1; x2; : : : ; xNÞ.
It is solved by using the grouping property of mutual information
(Kraskov et al. 2005), in which the new variables are built up by
agglomerating pairs of variables in such a way that the entropy of
each new variable is equivalent to the joint entropy of the original
pair (Alfonso et al. 2013).

In the presented IT procedure, the optimal placement of the
monitoring sensors is formulated by evaluating the following two
objectives: (1) maximum information content and (2) minimum
correlation among the sensors. The first objective is achieved by
maximizing the JH values [Eq. (2)] of the N selected monitoring
sensors (variables), while the second can be accomplished by min-
imizing TC [Eq. (3)]. Mathematically the optimization problem is
formulated as

f1 ¼ maxfJHðX1;X2; : : : ;XNÞg
f2 ¼ minfTCðX1;X2; : : : ;XNÞg

subject toHðX1Þ;HðX2Þ; : : : ;HðXNÞ > Hmin ð4Þ

where N = number of sensors to be placed and HðXiÞ = entropy
of the sensor Xi. The constraint is set by considering a minimum
acceptable entropy value Hmin in order to exclude nodes with
low information content. The process of fixing the threshold value
Hmin is addressed in the IT Procedure section under Results and
Discussion.

The concentration measurements in each node have to be
quantized to convert all the records to integer values for comput-
ing JH and TC through the histogram-based probability method.
The quantization is a process for compiling a continuous set of
data to a discrete one (Alfonso et al. 2010b). A value z is quantized
(zq) by rounding it to its nearest lowest integer multiple of k.
Mathematically

zq ¼ floor

�
kzþ 1

2

�
ð5Þ

where floor is a function that rounds down a decimal number to the
nearest integer. The value of the parameter k is related to the thresh-
old concentration detectable by a sensor, considering that their
product has to be equal to 1.

Detection Time–Reliability Procedure (DR)

In this procedure the two considered objectives are detection
time (D) and reliability (R), or detection likelihood, of the sensors
[e.g., (Ostfeld and Solomon 2004; Telci et al. 2009)]. D is defined
as the time between the beginning of a pollution event and the first
nonzero concentration measurement by a sensor. R is related to the
number of detected scenarios. In particular, for a given monitoring
station displacement, a higher number of detected scenarios corre-
spond to a higher Reliability. In this procedure, the purpose of the
monitoring system is to detect the contamination event as quickly
as possible with the smallest failure rate. To achieve this goal, aver-
age D has to be as small as possible and R has to be as high as
possible.

Mathematically, M being the number of potential candidate
nodes and N the number of sensors to install, with M ≥ N, the sol-
ution vector is Y ¼ ½y1; y2; : : : ; yi; : : : ; yN �, where yi is the original
node index of the ith monitoring station. The overall detection time
of the ith sensor for a contamination scenario s, indicated with
disðYÞ, is defined as the time (in minutes) elapsed between the start-
ing time of the contamination and the time at which the measured
concentration exceeds the threshold at yi. The detection time of the
monitoring network for the scenario s ½DsðYÞ� is defined as the
smallest detection time of all monitoring sensors y1 to yN . It is
expressed as follows:

DsðYÞ ¼ minfd1sðYÞ; d2sðYÞ; : : : ; disðYÞ; : : : :dNs ðYÞg ð6Þ
No penalty term is considered for the nondetected scenarios.

Then, the average detection time of the monitoring network Y,
DðYÞ is calculated as the average of DsðYÞ over all detected
scenarios:

DðYÞ ¼ 1

Sd

XSd
s¼1

DsðYÞ ð7Þ

where Sd = total number of detected scenarios.
The reliability of the solution Y, RðYÞ is defined as the ratio of

detected contaminated scenarios to the total scenarios tested. R is
expressed as a percentage, calculated as

RðYÞ ¼ 1

S

XS
s¼1

δs ð8Þ

where S = total number of considered scenarios. δs ¼ 1 if the
scenario s is detected; otherwise δs ¼ 0.

The optimization problem is mathematically formulated as

f1 ¼ minfDðYÞg
f2 ¼ maxfRðYÞg ð9Þ

Detection Time–Information Theory Procedure (DR_IT)

When the search space is big, the solutions may not converge fast
to a Pareto front, which represents a concern for large networks.
One possible way to cope with this situation is to reduce the search
space. With this objective in mind, the DR procedure is modified by
introducing a filtering method based on entropy. In this way, nodes
having low marginal entropy (or insufficient information content)

© ASCE 04017026-3 J. Water Resour. Plann. Manage.
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are removed from the candidate sensor location set. Then, in the
filtering phase a fixed percentage of nodes having lower entropy
are discarded from the potential candidates prior to the DR optimi-
zation. Mathematically the optimization problem is formulated as

f1 ¼ minfDðYÞg
f2 ¼ maxfRðYÞg

subject toHðy1Þ;Hðy2Þ; : : : ;HðyNÞ > Hmin ð10Þ
where HðyiÞ = marginal entropy of the node yi and Hmin is a fixed
minimum entropy threshold. TheHmin value is fixed as specified in
the Procedure IT section under Results and Discussion.

Rank-Based Greedy Procedure (GR)

As a further alternative, a single-objective rank-based greedy algo-
rithm is used to optimally place sensors, selecting one sensor
location at a time. In this case the objectives JH, D, and R are
considered independently. The first monitoring location in the GR
procedure is chosen at the point with maximum JH, minimum D,

or maximum R, in a similar fashion as that of Krstanovic and Singh
(1992), depending on which objective is considered. After choos-
ing the first location, the second one is selected based on the
maximum marginal variation of the considered objective. The same
procedure is repeated for the successive ones, evaluating the mar-
ginal variation considering the sensors already placed. When the
single objective D is considered, a penalty term Dsim (total simu-
lation time in minutes) is applied for the undetected scenarios. This
is crucial to avoid dispositions with a high number of undetected
cases. In fact, by minimizing D, all the peripheral (upstream) nodes
having a low average time would be selected, furnishing a low re-
liable monitoring network. The average detection time of the mon-
itoring network Y, DðYÞ, is calculated as

DðYÞ ¼ 1

S

XS
s¼1

DsðYÞ ð11Þ

with

DsðYÞ ¼
�
minfd1sðYÞ; d2sðYÞ; : : : ; disðYÞ; : : : ; dNs ðYÞg if scenario s is detected

Dsim otherwise
ð12Þ

where S = total number of scenarios considered in the analysis.

Detection Time–Information Theory–Rank-Based
Greedy Procedure (DR_IT_GR)

Since the greedy algorithm is a good option to find the extremes
of a Pareto front (Alfonso et al. 2013), the DR_IT procedure is
modified with a manipulation of the initial population of
NSGA-II. This is done by putting the solutions coming from the
GR procedure (with objectives JH and D) into the randomly gen-
erated initial population of NSGA-II. The goal is to start from the
extremes of the Pareto front to get trade-off solutions when adding
the conflicting objectives D and R.

Case Studies

In order to compare the procedures, two different networks are
used. One is a small example of the SWMM manual and the other
one is a real network in Italy. Details of both networks are provided
below. In the presented examples, only the dry weather condition is
considered, since it represents the more impactful situation on the
sewer functioning in the case of illicit intrusion.

An ad hoc developed C++ code, which integrates the SWMM
simulator with its toolkit, is used to generate the contaminant sce-
narios and to extract the required concentration time series. Each
contamination scenario consists of the continuous injection of a
conservative pollutant at one node of the scheme, one at a time,
with a concentration of 1.0 g=L for an assigned duration. In both
cases the input concentration has been fixed as unitary (Cozzolino
et al. 2011) because in this way the results can be easily scaled. The
injection duration has been selected considering the time that
the solute takes to move between the two most distant points of
the scheme.

The minimum concentration value detectable from a sensor
(threshold) is assumed equal to 0.0001 mg=L. However, additional
tests for studying the effect of different threshold values on the
methodology results are reported in presenting the Massa Lubrense
test-case results.

Example 8 SWMM Manual

The procedures are applied first to the small network in the
Example 8 of the SWMM application manual, depicted in Fig. 1.
The network consists of 31 nodes (28 junctions, 2 outlets, and 1
storage unit) and 35 links (29 conduits, 1 pump, 1 orifice, and 4
weirs). All geometric data and the dry weather inflows, expressed
as daily mean values, have been reported by Gironás et al. (2009)
and Banik et al. (2017), respectively. For the contamination scenar-
ios, the injection duration is 1 h. SWMM hydraulic and quality
simulations are realized with a time step of 10 s, while the time
series of the concentration values in each node are collected for
2 h, with a reporting time step of 5 min.

Massa Lubrense Case Study

Massa Lubrense is a small town near Naples, Italy, which has the
sewer system, shown in Fig. 2, with a classical treelike network and
some loops. It is a combined sewer system, covering an area
of 19.71 km2, divided into 12 subcatchments, serving a population
of 14,087 (year 2011), with an approximate amount of yearly pro-
duced wastewater of 1.13 × 106 m3. The scheme consists of 1,909
circular conduits connecting 1,902 junctions, 14 pumps, 14 storage
units, and 1 treatment plant. The wastewater arrives at the treatment
plant through two entry points (nodes 1901 and 1902). The daily
mean values of the dry weather flows (DWF) in the 1866 nodes,
depicted in Fig. 2, are assigned considering the population
connected to each node. The Manning roughness coefficient is

© ASCE 04017026-4 J. Water Resour. Plann. Manage.
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assumed to be 0.016 m−1=3 s. Other geometric data are available
on the website http://www.progettosimona.it. The system has 12
monitoring stations that were installed as part of the ongoing
Simona project. The actual sensor locations have been decided
on the basis of practical considerations, primarily related to the
availability of the electrical power supply and to the need for

the global system for mobiles (GSM) coverage for transmitting
the recorded data.

In the contamination scenarios, the injection duration is 5 h. The
time series of the concentration values in each node are collected
for 6 h. The SWMM hydraulic and quality simulations are run with
a time step of 2 s. Considering a reporting time step of 5 min, the

Fig. 1. Scheme of SWMM Example 8 system; placement of the optimal solution corresponding to three sensors

Fig. 2. Scheme of Massa Lubrense system

© ASCE 04017026-5 J. Water Resour. Plann. Manage.
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size of the extracted time series is 137,952 at each of the
1,916 nodes.

Results and Discussion

The general performances of the procedures are reported first
for the small network and further expanded in detail for the real
network, where more comprehensive experiments are run and
reported.

Example 8 SWMM

In this application, the number of considered sensors is varied
between 2 and 7. For this small network, the results for the IT pro-
cedure reveal that after three monitoring stations, any additional
sensor fails to increment JH, while the total correlation increases
significantly. Fig. 1 shows the resulting sensor placement obtained
for the solution with the maximum JH value in the Pareto front.
For the DR procedure, the maximum redundancy is reached at a
detection time of 5 min, with six sensors. The solution for the place-
ment of three sensors with maximum reliability is also reported
in Fig. 1. Regarding the GR procedure, the maximum redundancy
is achieved with only two sensors, using R as objective; when
considering D and JH as objectives, no further improvement is ob-
tained after three sensors. The first two cases of the GR procedure
produce a similar network configuration than the one obtained with
DR, while the GR with JH as its objective generates the same out-
put as the IT procedure (Fig. 1). In conclusion, this simple example
confirms a consistency between the results obtained with the differ-
ent procedures. This point is further expanded in the discussion
section.

Massa Lubrense Case Study

For the multiobjective optimization procedures (IT, DR, DR_IT,
and DR_IT_GR), the NSGA-II is applied with the following
parameters: crossover probability equal to 90% and mutation prob-
ability equal to 10%. Moreover, after a sensitivity analysis, the
population and generation values are fixed to 200 and 2,000, re-
spectively. Increasing those values does not improve significantly
the optimization outcome, with an increase of the computational
burden, especially for the IT-based approaches where the entropy
calculation is very computationally intensive. For this case, the
experiments consider a number of sensors between 7 and 14. This
interval has been selected in order to have the number of monitor-
ing stations already installed (12) in the range, so that the existing
locations can be compared with those obtained with the proposed
methodologies. In this way, it is possible to understand the advan-
tages or disadvantages of reducing or adding sensors, having the
existing ones as a reference.

For better readability, some intermediate points have been elim-
inated from the graphs, including Pareto fronts.

IT Procedure
Eq. (4) is used to constrain the minimum allowed information
content, Hmin, to filter out low-entropy nodes. In particular, the two
least informative quartiles (50%) of nodes are eliminated. The
maximum entropy in the network is 6.89 bits, while in 50% of the
nodes it is less than 0.12 bits (<1.5% of the maximum value), which
is the value assigned to Hmin. The total joint entropy of the system
is JHsys ¼ HðX1;X2; : : : ;X1916Þ ¼ 16.71 bits, which represents
the amount of information provided if all nodes were monitored.
After filtering 50% of the nodes, the JH value reduces to
JHfilter ¼ HðX1;X2; : : : ;X958Þ ¼ 16.65 bits, which means that the

eliminated points provide only 0.35% of the total joint entropy of
the system. This suggests that the filtering process provides a
reduction of the computational cost with a marginal loss in infor-
mation content.

The optimal solutions obtained by solving the optimization
problem of Eq. (4) with a different number of sensors are reported
in Fig. 3. After 10 monitoring stations, additional sensors do not
produce a notable increment of the JH while the total correlation
either remains constant or increases because of the effect of sen-
sor redundancy. Moreover, for all cases, the Pareto fronts near the
y-axis (up to 3 bits of total correlation) follow almost the same pat-
tern, whereas differences are evident near the x-axis. In fact, during
the optimization process, the objective TC plays only a subordinate
role, just to avoid redundancy, while the JH plays the primary role.
This implies that TC as a single objective does not produce a good
optimization outcome. Fig. 3 shows that the network of the existing
sensors is suboptimal, as better objective functions are achieved
with fewer sensors.

It is extremely difficult to choose one particular solution from
multiple optimal solutions given by the Pareto fronts. The trade-off
between information content and redundancy implies that the ideal
network configuration would be located at the origin of any Pareto
graph, called the utopia point (Pandey et al. 2013). In the consid-
ered test case, the utopia point is (0, 16.71), representing an imagi-
nary solution with the maximum JH value (JHsys ¼ 16.71 bits)
and zero redundancy. Therefore, in order to analyze the results, two
Pareto points are analyzed in depth, namely the one with the maxi-
mum JH value [most informative solution (MIS)] and the one clos-
est to the utopia point (CUP). Fig. 4 shows the values of the two IT
objective functions for such MIS and CUP points. Regarding MIS,
an increase in redundancy is observed after 9 sensors, while JH has
just a mild increment. The increment of JH observed when going
from 10 to 14 sensors is just 1% (from 14.99 to 15.14 bits), while
TC increases by more than 27% (from 14.43 to 18.34 bits). In fact,
10 sensors provide about 90% of the information content of the
whole system. Regarding CUP, both JH and TC show almost a
constant trend. For all considered numbers of sensors, the JH is
around 13 bits, which represents 78% of the total information of
the system, with a TC slightly larger than 2 bits.

Fig. 5 shows the monitoring network configurations for the MIS
solutions for 8, 10, 12, and 14 sensors. A regular distribution of the
measurements is evident for the solutions with 8 and 10 sensors,
while for the solutions with 12 and 14 sensors redundancy is im-
portant. For instance, node 703 and nodes 892 and 1,372 are re-
dundant in the cases with 12 and 14 sensors, respectively. In all

Fig. 3. Procedure IT: Pareto fronts corresponding to different sensor
numbers
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solutions, two of the selected points are the entry points to the
treatment plant (1,901 and 1,902) or their immediate upstream
nodes (719 and 1,915). Furthermore, with 10, 12, and 14 sensors,
eight selected nodes are in all cases essentially near 1,901; 1,902;
766; 94; 794; 266; 1,335; and 1,911.

In Fig. 6, the monitoring network configuration obtained in
MIS and CUP, using 12 sensors, is compared with the existing
monitoring network. The majority of sensors in the CUP solution
are located in the upstream part of the scheme, where the informa-
tion content is relatively low, which produces less redundancy. The
existing sensor placement is partially supported by the locations
obtained in the MIS solution. In fact, 7 (1,902; 772; 92; 1,335;

668; 1,069; and 1,911) out of 12 sensors are very close to the ex-
isting monitoring stations. In the remainder of the paper, only the
MIS point of each Pareto front will be analyzed.

DR Procedure
Reliability [Eq. (8)] is computed using a total of 1,916 contam-
ination scenarios, considering as possible intrusion point all nodes
and storage units of the scheme. However, the maximum reliability
of the system is 97.39%, because only 1,866 nodes receive inflows
(DWF) while the remaining 50 (2.61% of total nodes) are connect-
ing nodes. In other words, contamination events generated at such
nodes always remain undetected.

The Pareto fronts shown in Fig. 7 are generated and obtained
for a number of sensors varying from 7 to 14. After 9 sensors, the
differences among the Pareto fronts are reduced. A comparison
with the existing sensor network demonstrates that it is suboptimal.
The most reliable solution of the obtained Pareto front is further
analyzed in Fig. 8, where the values of D and R are plotted against
the number of sensors. From 9 to 14 sensors, R increases by only
0.2%, while the decrement of D is less than 25%. Moreover, none
of the sensor configurations achieves the maximum R value
(97.39%).

DR_IT Procedure
Fig. 9 shows the optimization results from 7 to 14 sensors using the
DR_IT procedure. It can be deduced that the optimization results
are much better than the ones obtained using the DR procedure
(Fig. 7). Indeed, using the DR procedure with 14 sensors, the maxi-
mum reliability achieved is less than 60% for a detection time
of 10 min and less than 80% for a detection time of 15 min (Fig. 7).
In contrast, running the DR_IT procedure with the same number of

Fig. 4. Procedure IT: objective values for the optimal solutions selected
from the Pareto fronts using the MIS and CUP methods for different
sensor numbers

Fig. 5. Procedure IT: placements of the optimal solutions selected from the Pareto fronts using the MIS method corresponding to 8, 10, 12, and
14 sensors
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sensors gives a maximum reliability of 70 and 90% for the respec-
tive detection times (Fig. 9).

In addition, the Pareto fronts obtained using the DR_IT pro-
cedure with 12 sensors indicate that the existing sensor network
is suboptimal. The most reliable solution of the Pareto front shows
that the theoretical maximum reliability (97.39%) is achieved with
13 sensors.

GR Procedure
The same numbers of sensors (7–14) are considered for the GR
procedure. Single-objective optimization is considered using the
three different objectives, namely JH, D, and R.

Fig. 10 shows the JH, D, and R values for the different consid-
ered numbers of sensors. From 9 to 14 sensors JH increases by
only 6%, while D shows a decrease of 28%. With 6 sensors R
achieves the maximum possible reliability (97.39%), while using
the DR_IT procedure the same R is achieved with 13 sensors.

Fig. 6. Procedure IT: placement of 12 sensors using the MIS and the CUP solution methods along with the existing network

Fig. 7. Procedure DR: Pareto fronts corresponding to different sensor
numbers

Fig. 8. Procedure DR: objectives values for the most reliable solution
selected from the Pareto fronts for different sensor numbers

Fig. 9. Procedure DR_IT: Pareto fronts corresponding to different
sensor numbers
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In particular, the maximum JH achieved with 14 sensors using the
IT procedure is 91% of the total JHsys (15.14 bits), whereas using
the GR procedure it is about 95% (15.85 bits) of JHsys (16.71 bits).
These results confirm that the greedy algorithm is a useful alterna-
tive to find the extreme solutions in the Pareto front (Alfonso
et al. 2013).

DR_IT_GR Procedure
This procedure is a combination of the previous procedures. It con-
sists of using the GR solutions derived from the two objectives JH
and D, placing them into the initial population of NSGA-II, and
then running the DR_IT procedure. The solution obtained using
R as an objective function is not considered in the initial population
because the maximum R is achieved by using only six sensors.
So, in the initial populations of 200 individuals, 198 are randomly
chosen while the other two come from the GR procedure. The
intention is to get a better Pareto front near the extreme ends.

The new Pareto fronts obtained for the different numbers of
sensors are reported in Fig. 11, which shows an improvement in
the extremes of R with respect to the DR and DR_IT procedures.
For instance, with 12 sensors and D ¼ 15 min, the value of R is
about 65% if the DR procedure is used, while it is 97.39% if
the DR_IT_GR procedure is used. These results are more clearly
shown in Fig. 12, where the solutions with 12 sensors of all
procedures considering the D objective are compared. The im-
provement attributable to the incorporation of the two greedy so-
lutions into the initial population of the DR_IT is evident, with
the DR_IT_GR outperforming all the previous multiobjective

procedures, in particular to the extreme of R. Fig 13 shows the
D and R values for the most reliable solutions are taken from
all the Pareto fronts (case 0.0001). As in the case of Fig. 12, R
is almost constant after 7 sensors, while D is halved.

To investigate the effect of dilution on the results, the whole
DR_IT_GR procedure is repeated for four other threshold values
(0.001, 0.01, 0.1, and 1 mg=L) and a number of sensors from 4
to 14. Fig. 13 reports the objective values for different numbers
of sensors and different detection thresholds, taken from the Pareto
solutions with the maximum reliability. The results show that the
effect of the threshold value is important. As expected, a decrease
of the threshold value produces an increase of R and a decrease of
D. However, the increase of R is important when moving from a
threshold value 0.1 to 1 mg=L. The 1 mg=L threshold is unrealis-
tic; in fact, a reliability of 93% can only be achieved with more than
100 sensors.

Fig. 14 reports the sensor placements for the cases of 4, 8, 12,
and 14 sensors, selecting in each Pareto front the solution with the
maximum reliability, for the four considered threshold values. For 4
and 8 sensors the optimal configurations are very close, while for
10 and 12 sensors they are quite different. In particular, for 4 sen-
sors the optimal sensor placements obtained with 0.0001, 0.001,
and 0.01 mg=L are almost equivalent. At 0.1 mg=L, there are some
differences, with one isolated sensor placed in a different position
with respect to the other cases. For 14 sensors, the number of
isolated sensors is 3, 2, 4, and 8 for 0.0001, 0.001, 0.01, and
0.1 mg=L, respectively. This reveals that, with a smaller number

Fig. 10. Procedure GR: objective values for the optimal solutions for
different sensor numbers

Fig. 11. Procedure DR_IT_GR: Pareto fronts corresponding to differ-
ent sensor numbers

Fig. 12. Comparison of the Pareto fronts obtained from all procedures
with 12 sensors

Fig. 13. Procedure DR_IT_GR: objective values for the most reliable
solutions for different sensor numbers and considering different detec-
tion thresholds
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of monitoring stations, sensor characteristics in terms of minimum
detectable concentration have limited influence on the optimization
procedure. The differences denoted with more sensors may derive
from the fact that in such cases the search space of the optimization
problem becomes larger. Another interesting observation is that
with a fixed threshold there is consistency of the locations obtained
when increasing the number of sensors. In particular, Fig. 14 evi-
dences that the same sensor location obtained for 4 sensors is found
in the solution for 8 sensors. In general, the monitoring network
configuration obtained with fewer sensors is almost the same as
the configurations with more sensors. This is attributable to the
incorporation of the greedy solutions in the initial population of
the NSGA-II.

Performance of the Proposed Procedures

It is not fair to compare different multiobjective approaches, as well
as single-objective and multiobjective procedures. However, for
practical applications, the researchers have to indicate only one
procedure to use; then a way for making the comparison is neces-
sary. In this work, to compare the performances of the presented
procedures, a weighted average index (PI), considering all the four

objective functions (JH, TC, R, and D) is adopted. The JH, TC,
R, and D values are computed from the optimal solution obtained
for each approach, for a fixed number of sensors. For the proce-
dures involving multiobjective optimization, the solution with the
maximum JH value for the IT is selected, while for the remaining
procedures (DR, DR_IT, and DR_IT_GR) the solutions with
maximum R are considered. A normalized version of the objective
functions is used, and for each of them the following score Wi is
calculated:

Wi¼

8>>><
>>>:

ðOi max−OiÞ
ðOi max−Oi minÞ

if objectiveOihas to be minimized

ðOi−Oi minÞ
ðOi max−Oi minÞ

if objectiveOihas to be minimized

ð13Þ

where i ¼ 1.4 is the number of the considered objective, andOi max
and Oi min are the maximum and minimum objective function
values, respectively.

The performance index (PI) is then calculated as the arithmetic
average of the four objective scores equally weighted:

Fig. 14. Procedure DR_IT_GR: placement of the optimal solutions selected from the Pareto fronts using most reliable method corresponding to 8, 10,
12, and 14 sensors and with different detection thresholds
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PI ¼ ðW1 þW2 þW3 þW4Þ=4 ð14Þ

A higher PI indicates a better overall performance.
Considering the Massa Lumbrense system, the obtained PI

values for the six different procedures with 8, 10, 12, and 14 sen-
sors are reported in Table 2. In all cases, the greedy approach using
the detection time as single objective ranks first. In fact, consider-
ing that the selected solutions are extreme on the Pareto front, the
greedy algorithm is very effective in searching such extremes.

The IT procedure has better performances with respect to DR
and DR_IT. The DR_IT_GR procedure ranked second, because of
the improvement of DR_IT by the incorporation of the greedy so-
lutions in the initial population of NSGA-II. The DR_IT_GR pro-
cedure not only outperforms the other multiobjective approaches,
but its performance is also comparable with the extreme solutions
obtained from the greedy approach.

Regarding the Example 8 test case, the IT_DR and IT_DR_GR
procedures do not produce any improvement with respect to the
DR. The other procedures (IT, DR, and GR with D and JH as ob-
jectives) result in very similar sensor locations and therefore they
have the same PI value. This suggests that while the procedures
have different performances when applied to a large and complex
system, they give equal results on simpler schemes.

Conclusions

In this paper, different procedures for designing optimal monitoring
networks in sewer systems were presented and tested in a simplified
case, SWMM Example 8, and in a real case, Massa Lubrense. Four
of these procedures (IT, DR, DR_IT, and DR_IT_GR) used a multi-
objective optimization approach, while one used a single-objective
approach (GR).

While very similar results were obtained from the different pro-
cedures when applied on the small scheme of SWMM Example 8,
different performances were observed on the complex system of the
Massa Lubrense. In this test case with a limited number of sensors
(less than 12), the overall performance of the DR procedure was
worse with respect to the IT procedure. As a large search domain
can deteriorate the optimization outcomes, the proposed IT-based
screening approach significantly improves the DR procedure.

The greedy-based GR procedure, applied with three different
independent objective functions, was efficient at finding the ex-
treme Pareto solutions. In particular, the GR with objective R
reaches the optimal solution with fewer sensors, with respect to
the applications with the other objectives.

A further comparison among the procedures was performed by
adopting a multiobjective index and considering all the four objec-
tives (JH, TC, R, and D). For a fixed number of sensors, solutions
with maximum JH for IT and maximum R for the DR, DR_IT, and
DR_IT_GR were compared. The GR procedure with objective D
is the most effective, except for the objective function R. The

DR_IT_GR procedure outperforms all the multiobjective optimiza-
tion formulations, especially at the extreme values of reliability.

The existing monitoring network in Massa Lubrense is found to
be suboptimal for all the procedures. However, 7 out of 12 existing
sensors are found to be very close to the solution obtained by the
IT procedure. This observation suggests that a lesser number of
sensors can be used if they are optimally located.
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