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Abstract

This work proposes a pseudo-Boolean optimisation
model that computes the minimum number of edge
deletions needed to fully anonymise a graph, ac-
cording to the (n,m)-k-anonymity measure. We
survey the usability of this model, by comparing it
with an unpublished Integer Linear Program (ILP)
optimisation model in terms of running time and
memory consumption. For both models, we pro-
vide a comparison between two different model
solvers. We find a noticeable difference in run-
ning time and quality of the solution of the different
model solvers. The experiments suggest that both
running time and memory consumption of solving
the pseudo-boolean model are greater than solving
the ILP model by a constant factor. This opens
up the possibility for the model to be used in tan-
dem with a pseudo-Boolean proof verifier to pro-
vide certificates of solution optimality.

1 Introduction

Studies of networks, or graphs, can be highly societally im-
pactful. A social scientist can learn about polarisation on the
social platforms by the study of who follows whom on Face-
book and we can learn about how information spreads over
the internet by the study of hyperlink networks. When net-
work data is publicly available, we enable social scientists to
carry out this type of research.

Institutions and companies that hold these graph data are
cautious of releasing it to the public, or even privately to re-
searchers, because these graphs can represent privacy sensi-
tive data. This data is a likely target for attackers and releas-
ing it forms a privacy risk. When we look at a graph in which
the vertices are users, vertex labels are usernames and edges
are friend connections, only removing the vertex labels does
not anonymise the graph. An attacker can still identify in-
dividual users, for example if they are friends with a unique
number of people.

We can measure the anonymity of a network in various
ways. Choosing a measure often entails a trade-off between
the scope of the anonymity and the complexity of measuring.
Taking the complete structural information of the graph into
account, prevents an attacker from identifying individual ver-
tices of the graph, but anonymising a graph to this extend is
shown to be NP-hard [Cheng et al., 2010]. Measures that only
account for information about individual vertices are compu-
tationally simple, but insufficiently anonymous for most at-
tacker scenarios [de Jong ef al., 2024]. In this work, we use
a measure that balances complexity and anonymity by taking
the direct neighbourhood of vertices into account [Zhou and
Pei, 2008].

To eliminate a privacy risk, we can minimally alter the
graphs to anonymise individual vertices by removing, adding
or swapping edges. Since de Jong er al. [de Jong et al.,
2025] have shown that algorithms using edge removal are
most promising in terms of both running time and memory
consumption, we use edge deletions to anonymise the graphs.

De Jong et al. identified three methods of graph anonymi-
sation: full, partial and budgeted anonymisation [de Jong et
al., 2025]. Methods for partial anonymisation only focus
on anonymisation of a fraction of all vertices in a graph.
Budgeted anonymisation aims to maximise the amount of
anonymous vertices in the output graph by only remov-
ing some amount of edges, according to the budget. Full
graph anonymisation ensures that all vertices in the graph are
anonymised, while removing as few edges as possible. Fully
anonymising a graph is equivalent to repeatedly solving the
budgeted anonymisation problem until one of the optimum
solutions is found. This means that full anonymisation is
more computationally expensive than the budgeted version.

Multiple methods exist that partially anonymise a graph
using edge deletions [Xie, 2023; de Jong ef al., 2025]. Ef-
ficient algorithms that fully anonymise a graph exist, but only
anonymise a graph for the simplest attacker scenarios [Casas-
Roma et al., 2013]. There does not exist a state of the art for
full graph anonymisation methods that use a measure that is
realistic for an attacker scenario. In an unpublished research
note, Latour proposed an Integer Linear Program approach
to full graph anonymisation using such a measure [Latour,
2024], but it has not been compared to other methods thus
far.

To ensure that we have to remove at least a certain amount
of edges to fully anonymise a graph, we have to prove that
our full graph anonymisation method arrived at an optimum
solution. Similarly, to ensure that a graph cannot be fully
anonymised within some budget, we have to prove that our
budgeted graph anonymisation did not miss any fully anony-
mous solutions. Because model solvers are very complex in
nature, there is always a possibility that some reasoning step
was not correct. When this is the case, we cannot guarantee
that we have found the optimum solution.

To prove that we arrived at an optimum solution, we have
to prove that every step we took to arrive at that solution was
correct. We can only provide a certificate to show that the
solution is optimal, if we can mathematically verify every in-
ference step that a solver takes. Certification is a difficult
problem, since the inference steps need to be small enough to
prove, but small inference steps slow down a solver. Addi-
tionally, we need to invent new methods for certification for
every new algorithm or network.

We can, however, provide a certificate for any problem if it
is modelled as a pseudo-Boolean problem. The log provided
by the solver of this model can then be used as input for an in-
dependent proof verifier, such as VeriPB [Gocht, 2025]. This
verifier is able to provide a certificate, without any knowledge
of the actual problem. This allows us to create a certificate for
any problem modelled as pseudo-Boolean, as has been done
for subgraph isomorphism [Gocht et al., 2020].

We introduce a pseudo-Boolean (PB) variant on an exist-
ing Integer Linear Program (ILP) approach [Latour, 2024]
to full graph anonymisation, using the graph anonymity mea-
sure described by Xie [Xie, 2023] and minimising the number
of edge deletions.



The main research question of this thesis is as follows:

How does a Pseudo-Boolean approach to full net-
work anonymisation compare to a Integer Linear
Program approach in terms of solving time, mem-
ory consumption and quality of the solution on net-
works with differing graph topologies?

We introduce necessary preliminaries in Section 2, such as
definitions, notes on notation, an example graph and the for-
mal problem statement. In Section 3, we introduce the new
PB approach, supported by an explanation of the conversion
to PB constraints. The detailed sub-research questions, ex-
perimental setup and results can be found in Section 4. We
conclude this paper in Section 5, including the limitations and
some notes about future work. In Section 6, we reflect on the
ethics and reproducibility of this research.

2 Preliminaries

We introduce definitions of the concepts used in this work and
lay out our assumptions. The definitions are then used for the
problem statement and example in Subsection 2.3.

2.1 Graphs and Anonymity Measures

We consider undirected, unweighted, self-loop free graphs
G = (V, E), with vertices V' and edges E. Single vertices
are denoted using lower-case letters. Edges are denoted as
sets of two vertices, meaning that if there exists an edge be-
tween vertices u and v, we can write either (u,v) € E or
(v,u) € E. The distance dist(u,v) between two vertices
u,v € V denotes the length of the smallest path between ver-
tices u and v. If no such path exists, dist(u, v) = oco. For all
v € V, we define dist(v,v) = 0.

The degree deg(v) of a vertex v is then the number of ver-
tices w for which dist(u,v) = 1. This is equivalent to the
size of V1(v) \ {v}. We let §¢ := max,cy (deg(v)) denote
the maximum degree of a graph G.

Let © := {(u,v,w) | (u,v), (v,w), (u,w) € E; u# v #
w} denote the set of all triangles in G. We say that a trian-
gle (u,v,w) € O is only incident to the vertices u, v and w.
Tri(v) then denotes the set of all triangles incident on ver-
tex v. We let O := max,cy (Tri(v)) denote the maximum
number of incident triangles per vertex of graph G.

Definition 1 (d-Neighbourhood). We define the d-
Neighbourhood of a vertex u as Ng(u) = (Vg(u), Eq(u)),
where V;(u) consists of all v € V with dist(u,v) < d. We
use E4(u) to denote the set of all edges (v,w) € FE, for
which v, w € Vy(v).

Definition 2 ((n, m)-k-Anonymity). All vertices v € V have
a (n, m)-signature, where n is the degree of v and m is the
number of triangles incident to v. We consider some graph G
to be (n, m)-k-Anonymous, if for all n,m € N(f, there are
either zero or at least k vertices in G with a (n, m)-signature,
assuming that k € N,

2.2 Variables and Constraints

We restrict constants in constraints to integers and limit the
domain of variables to non-negative integers. We then de-
fine a constraint as some combination of variables, constants,

elementary arithmetic operators ({+, —, -, =}), classical re-
lational operators ({=, >, >, <, <}) and logical connectives
A, V,=, <, <} Aliteral z can furthermore be negated as
.

We can reify some constraint c by setting it as the logical
equivalence of some literal x. Reified constraints thus take on
the following form: = < c.

Definition 3 (Pseudo-Boolean Constraints). A linear pseudo-
Boolean (PB) constraint is a constraint that has the following
form [Biere et al., 20211:

Zajlj > b
J

where a; and b are integer constants, [; are literals and < is
one of the classical relational operators. We do not consider
non-linear pseudo-Boolean constraints in this thesis.

In polynomial time, we are able to transform all linear
pseudo-Boolean constraints to normalised pseudo-Boolean
constraints of the following form [Barth, 1995]:

n
Zajlj > b, n,aj,b S NS_

j=1

2.3 Problem Statement

We formally define the graph anonymisation problem that we
aim to solve in this work in Definition 4. To illustrate this
further, we give a instance of an input graph and the solution
in Example 1. In Figure 1, we provide a visualisation of this
instance.

Definition 4 (Graph Anonymisation Problem). Given a undi-
rected, unweighted, self-loop free input graph G = (V, E),
and some k& € NV, find the minimum number of edge dele-
tions € needed to create a (n, m)-k-anonymous graph. There
then exists some (n,m)-k-anonymous output graph G’ =
(V,E"), with E/ C E and deleted edges D' = E \ F,
such that there does not exist a (n, m)-k-anonymous graph
G" = (V,E’), with E” C FE, deleted edges D" = E \ E”
and |D"| < |D’|. We then know that e = | D’|.

Example 1. We let £k = 2 and consider the graph
G = (VE), with V. = {abecd} and E =
{(a,b), (a,d), (a,c), (b, c), (b,d), (c,d), (c,e), (d,e)}. Since
only vertex e € V has the signature (2,1), G is not (n, m)-k-
anonymous and we know that € > 0. We consider the graph
G' = (V,E'"), with E' C E and D' = (a,b). Because there
does not exist a graph G" = (V,E"), with E' C E and
|D"| < |D'|, we know that e = 1 for G.

Example 1 is a mock-up of a real-world network. If we
let the input network represent following data of some so-
cial networking platform, the vertices are the users of the
platform and vertices are connected by an edge if they fol-
low each other. In the input network, user e can be uniquely
identified. When we remove the follow connection between
users a and b, we cannot identify any single user by only their
(n, m) signature.



Figure 1: Graphs G (left) and G’ (right), as detailed in Example 1,
with vertices coloured according to their (n, m)-signatures.

3 Approach

In this section, we explain how certain reified constraints can
be converted to PB constraints and then describe our new
pseudo-Boolean model, based on the existing ILP encoding
of Latour [Latour, 2024]. This should be enough for a com-
plete understanding of the model, but a full formal description
of all variables and constraints can be found in the appendix.

3.1 Constraint Conversion

Previous work [Gocht and Nordstrom, 2021] has detailed
the conversion from a reified constraint with normalised PB
right-hand side to two normalised PB constraints. This con-
version to normalised PB constraints has not been done for
reified constraints where the right-hand side is a PB constraint
with the relational operator =. In this section we describe this
conversion, which we used to convert all constraints of the
subsection below to PB constraints.

A general form of the aforementioned constraint is used,
more formally defined as follows:

e (Zaiei A) ai, A € Nf (0)

We introduce two helper variables b and ¢ and constrain them
as follows:

b= (Z ail; < A) (D
c= (Z ail; > A) )

The original constraint can now be substituted with the con-
junction of the following three constraints:

z = Zaifi < A (4)
z= (bVe) (5)

Because we can rewrite the right-hand side of the five newly
introduced constraints as normalised PB constraints, we can
use the conversion from Gocht and Nordstrom [Gocht and
Nordstrom, 2021] to rewrite constraints 1-5 to the following
final normalised PB constraints:

(—A+1+Zai> E—FZGZEZ —A—i—l—i—Zai

(6)

(A+1)~E—|—Zai€i2A—|—l (7)
AZ+D ail; > A ®)
<A+Zai>-z+2ai€i2A+Zai 9)
z+bt+c>1 (10)

3.2 Pseudo-Boolean Model

Our pseudo-Boolean model is an adaptation of the aforemen-
tioned ILP model. We do not change the meaning of most of
the sets of Boolean variables and corresponding constraints.
We replace all integer variables and corresponding constraints
with sets of Boolean variables and constraints and introduce
new variables and constraints to help with PB modelling.

We first introduce some notation to allow us to use the same
small optimisations that the ILP model uses. We use J* and
0* as, respectively, an upper bound on the degree and number
of triangles incident to any vertex v € V. For each vertex
v € V, we also define §,, := min(deg(v),d*) and 6, :=
min(Tri(v), 0*) as vertex-specific upper bounds.

Variables

Equal to the ILP model, we introduce a Boolean variable
Ly, € L for every edge (u,v) € E in the input graph to indi-
cate if the edge is present in the output graph. This means that
Ly, = 1 only if edge (u,v) € E’. The set of deleted edges
D’ then only contains some edge (u,v) € E if £, , = 0.

We similarly introduce a Boolean variable ¢,, , , € T for
every triangle (u,v,w) € O in the input graph to indicate if
it is present in the output graph.

We replace the integer variables n, and m, in the ILP
model that respectively describe the number of neighbours
and triangles incident to a vertex v in the output graph by two
sets of Boolean variables. The first set NV, includes a variable
n,,; for every vertex v € V and every value for 4 up to and
including the vertex-specific upper bound on the degree §,.
We define the set of variables M in the same manner, but let
the upper bound be ,,. The variable n,,; € N then indicates
if vertex v has precisely ¢ neighbours and m, ; € M then
indicates if vertex v has precisely j incident triangles in the
output graph.

The Boolean variable s, ; ; € S indicates if vertex v has
precisely ¢ neighbours and j incident triangles in the output
graph, equal to the ILP model. We define S in a similar
manner to N and M, introducing a variable for every ver-
tex v € V, every value for 7 up to and including §,, and every
value j up to and including 6,,.



Forevery n, ; € N and m, ; € M we add four helper vari-
ables to allow for the PB modelling. For n,, ;, these are n< ,, 4,
and n , ;, indicating if vertex v has, respectively, less than
or more than ¢ neighbours. The other two helper variables are
similarly defined for m,, ;.

Lastly, we introduce a Boolean variable z; ;,, € Z for
each possible combination of (7, j)-signature and every value
p from 1, up to and including k. The possible combinations
of (¢, j)-signatures only include values of ¢ up to and includ-
ing the general upper bounds on the degree * and up to and
including 6* for j. Variable z; ; , indicates if there are at least
p vertices in the output graph with a (z, 7)-signature.

Constraints

We introduce sets of constraints to enforce the definitions of
each of the variables, as given in the previous subsection. For
example, for each of the triangle variables, we say that a tri-
angle (u,v,w) can only exist in the output graph precisely
if all three edges (u, v), (v, w) and (u,w) exist in the output
graph:

tu,v,w <~ (Eu,v + g'u,w + Eu,w > 3) tu,v,w eT

We then introduce sets of constraints to ensure that each
vertex can only have one degree, one number of incident tri-
angles and one (degree, incident triangle) combination. This
is, taking .S’ as an example, specified as follows:

veV

Our final set of constraints says that for each possible
(n, m)-signature, either zero or at least k vertices in the graph
have that signature. This is equivalent to saying that all z; ; ,,
are equal for the same (7, j)-signature, represented in the fol-
lowing constraint:

k

E Zijjp =k Zij1

p=1

0<i<d0<j<0r

Objective Function

Since we want to minimise the number of deleted edges D’,
we want to maximise the total number of edges F’ in the
output graph. In our model, this objective is formally defined

as follows:
maximise Z 4

leL

4 Experiments

In this section, we first describe the sub-research questions
and the experimental setup. We end the section by laying out
our experimental results.

4.1 Research Questions

In this work, we answer the following four sub-research ques-
tions:

RQ1. How does the running time of the PB ap-
proach compare to that of the ILP approach and
which graph characteristics have the most influ-
ence on running time?

RQ2. What are the differences in model size be-
tween the ILP and the PB variant for networks with
differing graph topologies?

RQ3. How does the memory consumption during
solving of the PB model compare to that of solv-
ing the ILP model and which graph characteristics
have the most influence on memory consumption?

RQ4. What is the influence of using different model
solvers on the running time for this instance of
graph anonymisation for both the ILP and PB mod-
els?

4.2 Experimental Setup

To answer our four sub-questions, use the existing ILP im-
plementation, supplement this with an implementation using
a different model solver and implement the PB model using
the same two model solvers. We use a collection of real-world
network data as input for the four implementations and com-
pare the output.

Problem instances

We run the experiments on a set of real-world network data,
a selection of 31 animal social networks from a network
database [Rossi and Ahmed, 2015]. We choose animal so-
cial networks, because with our limitations on computational
resources and time, most other real-world networks are too
large to solve with model solvers. They also exhibit a great
variety in network characteristics. In Table 1, we list statistics
about the characteristics of the networks.

For the fourth sub-research question, we only use the 18
smallest networks. The larger networks are not feasible for
the experiment of the fourth question, because we can only
run the experiments for the first three questions on a high-
performance computing system. A full table with all net-
works and the selection of the smaller networks can be found
in the appendix.

Table 1: Statistics about networks used as problem instances in the
experiments. The set of small networks is a subset of the set of all
networks.

All networks Small networks

Min Median Mean Max Median Max

V| 4 28 40.94 171 17 103

|E| 5 67 111.90 378 36 190

(€] 0 54 292.06 3276 26 1140

oa 3 9 10.94 31 6.5 19

e 0 17 48.45 351 9 171
Software

We implement the pseudo-Boolean model in Python, us-
ing NetworkX [Hagberg er al., 2008] for network processing
and Gurobi [Gurobi Optimization, LLC, 2024] as the model



solver, similar to the existing ILP implementation.! To an-

swer the fourth research question, we create a new imple-
mentation in which both the ILP and PB models, encoded
using Gurobi, are solved with the SCIP model solver [Bo-
lusani et al., 2024]. For this, Gurobi encodes the ILP model
in the MPS format and the PB model in the OPB format.
We chose SCIP, because it is a non-commercial solver and is
commonly used to solve PB problems [Mexi et al., 2025].

For implementation, we use Python version 3.9.8, SCIP
version 9.2.2 and Gurobi version 12.0.0. For both model
solvers, we use the default parameter settings of the men-
tioned versions. The only exception is that for the experi-
ments for the first three research questions, we set a model
solving time limit of four hours and limit the memory con-
sumption during solving to 9 GB.

Hardware

We run the experiments for the first three sub-questions on the
high-performance computing system DelftBlue [Delft High
Performance Computing Centre (DHPC), 2024]. Using three
CPUs, with each 3968 MB per run, we run the experiments
on nodes equipped with the Intel(R) Xeon(R) Gold 6226R
CPU, running at 2.90 GHz. For the fourth sub-question, we
run experiments on a device with an Intel i7-9750H CPU,
running at 2.6 GHz, with six physical cores.

Independent Variables

To answer our first three sub-questions, we identify five graph
characteristics as our independent variables. Given some in-
put network G = (V, E), we can calculate the total number
of vertices |V, edges | E| and triangles |©|. We can also cal-
culate the maximum degree d and maximum number of in-
cident triangles 6. These characteristics are relatively fast
to compute compared to other commonly used characteristics
such as the assortativity coefficient [McNulty, 2022]. We use
characteristics related to degrees and number of triangles, as
they are closely related to the (n, m)-k-anonymity measure.
We identify the model size as the independent variable to
answer the fourth sub-question. The model size does not dif-
fer between the same instance on different solvers, because
we first encode the model using one model solver and use
this as input for the different solvers. We define the model
size as its number of variables and number of constraints.

Dependent Variables

We run every problem instance, or input graph, on the four
implementations. During each run, we measure the encoding
and solving time (in seconds and in CPU seconds) and the
number of variables and constraints of the model. We only
measure the maximum memory used during optimisation (in
GB) for the Gurobi runs. We are then able to compare the
running time, model size and memory consumption of the
runs to answer the sub-questions.

To answer what graph characteristics have the most influ-
ence on the running time, model size and memory consump-
tion, we calculate the Pearson correlation coefficients [Pear-
son, 1895] between each of the independent variables and the

'The implementation of both models is available at

github.com/Emkedg/network-anonymisation.

dependent variables. From this, we will be able to conclude
which of the chosen graph characteristics is the best linear
predictor of each of the dependent variables.

To be able to compare the average running times between
the implementations, while including runs that have reached
the time limit, we use the Penalized Average Runtime score,
with a factor of two (PAR2) [Kerschke et al., 2018].

4.3 Results

In this subsection, we describe our experimental results, as
they relate to each of the sub-research questions. For question
two, we present both empirical and experimental results.

RQ1

For all networks, the encoding time is slower for the PB
model than the ILP model, as can be seen in Figure 2. This
is the case for the running time in wall-clock seconds and in
CPU seconds. When we look at the model solving time, vi-
sualised in Figure 3, we can see that the points are on and
around the midline. This means that we cannot conclude that
the solving time is larger for either the ILP or PB model. We
note that for one of the networks, Gurobi reached the time
limit when solving the PB model, but not the ILP model.
None of the solving instances reached the memory limit. We
also note that for two of the largest networks, the solving time
of the PB approach is shorter than that of the ILP approach.
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Figure 2: Comparison of the model encoding time in CPU seconds
between the ILP and PB approach. Each point represents one net-
work, coloured according to its size in number of triangles.

When we look at the average times to encode and solve the
models in Table 2, the running time for the ILP approach is
lower for all measures. We also notice that the average encod-
ing time takes at most 0.006% of the total running time. How-
ever, the PB model takes 74.06% more time in wall-clock sec-
onds and 83.16% more time in CPU seconds to encode than
the ILP model. We can compare this to the difference in solv-
ing time, where the PB model takes only 6.00% more time in
wall-clock seconds and 2.23% more time in CPU seconds.

‘We map the colours of the points in Figures 2 and, to dif-
ferent measures of network size. These measures correspond
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Figure 3: Comparison of the model solving time in CPU seconds
between the ILP and PB approach. Each point represents one net-
work, coloured according to its size, as the maximum degree of the
network. The shape of the markers indicate if a run finished before
the time limit.

Table 2: Average measures for the ILP and PB approaches for all
networks. For the solving times, we use PAR2 scores.

ILP PB
Encoding time (s) 0.25 0.44
Encoding time (CPU s) 0.22 0.41
Solving time (s) 6852.48 7028.76
Solving time (CPU s) 17555.23  17946.54
Amount of variables 9883.03 9924.90
Amount of constraints 1640.33 18778.53
Maximum memory (GB) 1.54 1.68

to those that are most linearly correlated to the respective
running time measures of the plots. In Figure 4, we show
the correlation coefficients between the running time and all
chosen network characteristics for the pseudo-Boolean ap-
proach. The coefficients for the ILP approach are highly sim-
ilar. When we use the null hypotheses between each of the
running time measures and each of the independent variables
that their correlation is zero, the lowest two-tailed p-value,
for encoding time in seconds and |V, is 0.0319, indicating
that there is a statistically significant difference and thus ev-
idence for a correlation. The number of vertices is the least
correlated with each of the dependent variables.

RQ2

Similarly to the running time, there is evidence for a corre-
lation between the each of the independent variables and the
number of variables and constraints of the model. We show
the specific correlation coefficients for the PB model in Fig-
ure 4. The weakest correlation of the number of variables and
constraints is with the number of vertices of the graphs. The
strongest correlation is with the number of triangles. This is
also the case for the ILP model.

Correlations for PB approach
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Figure 4: Heatmap of the Pearson correlation coefficients between
the dependent (x-axis) and independent variables (y-axis) for the PB
implementation.

When we express the model size as a function of network
size, we can see a reflection of this finding. We discard some
of the constraint-reducing optimisations that use d,,, 6*, 6,
and 6* in order to be able to express the number of constraints
in the model as a function of the five graph characteristics. In
Big O notation, the number of constraints of the ILP is the
following:

O(El-|e])
The number of constraints of the PB model is the following:
O(E|-|6] + ¢ * 0 + k)

This means that they are equal for £ = 2. The Big O notation
is exactly the same for the number of constraints.

Turning to the experimental results, partially visualised in
Figure 5 we see that the amount of constraints of the PB
model is consistently larger than the amount for the ILP
model. The colour of the points also reflects the strong cor-
relation of number of constraints with number of triangles.
When we turn to the averages in Table 2, we see that the av-
erage number of constraints for the PB model is larger than
that of the ILP model, by a factor of 11.45. We also see that
the average number of variables is almost exactly equal for
the PB and ILP models.

RQ3

The comparison of memory consumption between the PB and
ILP approach, visualised in Figure 6, shows us that the PB ap-
proach performs worse for most of the networks, but uses less
memory for some of the larger networks that did not reach
the time limit. The two largest networks used the most mem-
ory for both of the approaches. We cannot conclude anything
about the networks that reached the time limit.

The average maximum memory consumption, displayed
in Table 2, is 1430 MB lower for the ILP implementation
than the PB implementation. This means that solving the PB
model, requires on average 9.31% more memory than solv-
ing the ILP model. For the PB approach, the maximum de-
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Figure 5: Comparison of the number of constraints of the PB and
ILP models. Each point represents one network, coloured according
to its size in number of triangles.

gree is the best predictor for memory consumption, followed
by the number of triangles, then the maximum triangles and
the number of edges, as is shown in Figure 4. The number of
vertices is the worst predictor, though there is still evidence
for a linear correlation. This also holds for the ILP approach.

RQ4

Figure 7 shows the comparison between the Gurobi and
SCIP model solvers, in terms of solving time in CPU sec-
onds. We see that for almost all models, Gurobi performed
better. In Table 3, we show the average solving times per
combination of solver and model type. In this experiment,
SCIP takes, on average, 3677% more wall-clock time and
1179% more CPU time than Gurobi for the ILP models. For
the PB models, SCIP also performs worse, taking on average
2735% more wall-clock time and 513% more CPU time.

Gurobi SCIP
ILP PB ILP PB
Solving time (s) 400 441 151.19 125.03
Solving time (CPU's) 11.82 20.38 151.15 124.96

Table 3: Average model solving times of the small networks, for
every combination of solver and model type.

Similar to the results of the first research question, Gurobi
is on average slower for the PB models, taking on average
10% more wall-clock time and 72% more CPU time than the
ILP models. SCIP is however faster for PB models, taking on
average 17% less time, both in wall-clock and CPU seconds.

We must note that SCIP does not return the optimum so-
lution to some of the PB models, even when it finishes the
optimisation and returns the “optimal” solving status. These
solutions are not optimal, because Gurobi found a feasible
solution for the same networks with less edge deletions. This
was the case for 3 out of the 18 networks. We also note that
for 11 out of 18 of the PB models, the “optimal” solutions
returned by SCIP are not even feasible solutions. Figure 7
shows these points with a red highlight.
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Figure 6: Comparison of the maximum memory consumption dur-
ing solving of the PB and ILP models. Each point represents one
network, coloured according to its size, as the maximum degree of
the network. The shape of the markers indicate if a run finished be-
fore the time limit.

5 Conclusion

In this work, we introduced a novel approach to the problem
of graph anonymisation, using a method in which we find the
minimal number of edge deletions that can be performed to
make a graph (n, m)-k-anonymous. In this approach, we use
two model solvers to solve the problem, encoded as a pseudo-
Boolean (PB) model.

We compared the running times and memory consumption
of our method with an existing Integer Linear Program (ILP)
method, both encoded and solved in the model solver Gurobi.
We found that the PB method performed worse in terms of
running time and memory consumption. The running time
is however only a small percentage more than the existing
ILP method. We expect that the same holds for the memory
consumption, though more research needs to be done in order
to conclude this.

Futhermore, we conclude that Gurobi is able to solve the
ILP and PB models in less time than SCIP. Though SCIP
solved the PB models in less time than the ILP models, we
found that it did not give a trustworthy result for the PB mod-
els. A next step is to generate certificates from the logs of the
runs in which PB models were solved and look into potential
causes of non-optimal results.

This work shows evidence towards showing that specific
instances of the graph anonymisation problem can be mod-
elled using only pseudo-Boolean constraints, without an ex-
ponential increase in running time or memory consumption
compared to Integer Linear Program models. This opens up
the possibility for creating certificates, which we can use to
show that some network, that a solver finds is infeasible in a
specific setting of graph anonymisation, is definitively infea-
sible in that setting.



SCIP infeasible solution . =
102 § PB S~ L]

ILP -~

Gurobi: Model solving time (CPU s)
Amount of constraints

10~? 1071 10° 10! 10° 10°
SCIP: Model solving time (CPU s)

Figure 7: Comparison of the model solving time in CPU seconds
between the Gurobi and SCIP model solvers. Each point repre-
sents one model, so every network is represented with two points,
the cross is the PB model and the dot the ILP model. The colours of
the points correspond with the amount of constraints of the model.
The points for which the SCIP solver returned an infeasible solution
are highlighted in red.

5.1 Discussion

In this section, we present limitations on our research. For the
experiments, we only ran the model solver for animal social
networks. Though we selected the networks on their vari-
ation in the five chosen graph characteristics, the networks
might be skewed for some other graph characteristics. This
suggests the possibility that some other graph characteristic
has a significant influence on running time or memory con-
sumption.

For this research, we were able to run every network only
once on DelftBlue. Because the running time of encoding
and solving the model is not deterministic, the chance exists
that differences in running time are accidental. For the fourth
research question, this is also a limitation, in particular be-
cause we can only provide the running times of 18 networks.
We choose to include this experiment, because it presents a
motivation for further research.

5.2 Future Work

A possible next step is to look into creating a PB model for the
budgeted version of the graph anonymisation problem. Due
to the nature of the budgeted version, we expect faster running
times for solving this model. We might be able to use this
to inform our choice of an appropriate budget for a network.
This could then be used in combination with a faster, heuristic
algorithm for budgeted graph anonymisation.

We also suggest future research to look into other settings
of the graph anonymisation problem. One such suggestion
is to create a pseudo-Boolean model for graph anonymisa-
tion with a different anonymity measure. Another suggestion
is to look at the setting in which we maximise some other
measure of data utility, instead of minimising the number of
deleted edges. If we know that social scientists mostly look
at certain network statistics, such as graph connectedness, we
might want to anonymise a network in such a way that it

is fully anonymous, with the smallest possible difference in
graph connectedness.
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6 Responsible Research

We aim to provide enough information in the main body of
this work to reproduce our method, but attach an appendix
with details about the pseudo-Boolean model to ease repro-
ducibility. Of the date of writing, we cannot make the imple-
mentation of the model public, as it builds upon work that is
yet to be published. We provide a stable link to the reposi-
tory in a footnote and aim to make this public when this is
possible.

To add to the reproducibility of this work, we provide a
comprehensive list of the specific networks used as input for
the experiments in the appendix. We also describe the soft-
ware and hardware in detail. In the discussion, we explain
the limitations on reproducibility. To increase transparency,
we include negative results in this work, when encountered.

During research, the Netherlands Code of Conduct for Re-
search Integrity provided us guidelines on how to conduct
our research activity in a responsible manner [KNAW et al.,
2018]. We did not make use of generative (large) language
models during our research. To reduce our environmental im-
pact, we limited the amount and size of requests to DelftBlue.

As explained in the introduction, allowing social scientists
to conduct research on networks is an instrumental motivation
of this work. However, we should also consider that any work
on graph anonymisation can also be of help to attackers. If
we publish information about the minimal number of edge
deletions needed to make a privacy-sensitive network (n, m)-
k-anonymous, we provide attackers with information about
the network that they might be able to use to reveal privacy-
sensitive information about the network. To mitigate this risk,
we only use datasets that have been published and do not pose
a privacy risk.

Our focus on complete graph anonymisation ensures that
any network anonymised with this method cannot form a pri-
vacy risk, given that the attacker only has knowledge of the
number of triangles of the ego networks and the degrees of the
vertices. When an attacker has more knowledge, they might
be able to identify certain vertices, edges or subgraphs. In the
Future work section, we suggest research that would diminish
this risk.
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Appendix
Full pseudo-Boolean model

In this section, we give the formal definitions of all variables
and constraints of the pseudo-Boolean model. First, we in-
troduce all variables. In the next subsection, we give for-
mal definitions of the original constraints. We then introduce
the full pseudo-Boolean constraints derived from the original
constraints.
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Variables

All variables in the pseudo-Boolean model are Boolean. We
give the variables as semantically described in Variables 3.2:

={lup | (u,v)€E}

={tyww | (u,v,w) € O}

{80, [veEV;0<i<6,;0<75<6,}
={nvi |veV;0<i<4,}

M :={m,; [veV;0<j<0,}

Z:={z4p |0<i<850<7<0%1<p<k}

Z N~
o

We supplement these indicator variables with the following
four helper variables:

Nei={ncp: |veV;0<i<d,}
Ny :={ns ,; |veV;0<i<6,}
Mc:={mc,;|lveV;0<j<86,}
M :={ms;|veV;0<j<0,}

Original Constraints

We introduce the following constraints to define the variables:

<~ (gu,v + Ev,w + gu,w > 3)
| (u,v,w) € O}

Noyi ~ § gu,u =1

uENl(’U)
lveV;0<i<d,}

>l <

u€EN; (’U)
lveV;0<i<4d,}

>l >

u€N1 (v)
|UEV§0§i§§v}

N<v,i =

OMdef = tu,u,w = ]

My, j = Z

(u,v,w)ETri(v)
lveV;0<j<6,}

Mcwj = E

(uw,v,w)eTri(v)

CM<def = tuﬂ),w <j

{
{
{
{

lveV;0<j<0,}

S tuww >

C’M>def = {m>,v7j =
(u,v,w)ETri(v)

v e V;0< 5 <0,}

< (nv,i + mv,j 2 2)

[veV;0<i<6,;0<j<0,}

= (Z Su,ij = p)

veV
|0<i<6,;0<75<0,;1<p<k}

CSdel' = {sﬂ,i’j
Czy = {Zi,jyp

We introduce the following constraints on variables N, M, S
and Z to constrain the model, as explained in Section 3.2:

Cmm:{ > ompi=1 |veV}

Ny i EN

CMegns = { Y omy;=1 |veV}
My, ; €M

CSm, 1= { Y swig=1 |veV}
Sv,i,; €S

k
Cchns = {szm =k- Zi,j,l 0 S ) S 5*, 0 S j S 0*}

p=1

Pseudo-Boolean Constraints

We convert all constraints from the previous section to
pseudo-Boolean constraints, using the constraint conversion
explained in Subsection 3.1. Some constraints are now ad-
ditionally numbered, because the constraint conversion can
result in one to three pseudo-Boolean constraints per original
constraint. Since Gurobi cannot handle negated literals, we
converted every negated literal T to (1 — x) for implementa-
tion.

We derive the following constraints from C'r;,,,:

Crir = {3 Turorw + luw + low + luw >3

| (w,v,w) € B}
Crie = {tuww + luo + low + luy =1

| (u,v,w) € O}

We derive the following constraints from Cy,,,:
CmmF{rmJ#EZéWZiwevmguw&
u€ Ny (U)
CNden = {(_Z + |N1 (U)D “My it

D luw = =i+ |Ni(v)]

UENl(’U)
O = {Nwyi + < i+ 150 > 1[0 EV;0<i <6y}

’vGV;OSiS&J}



We derive the following constraints from C)y,,:

CNcons] = { Z n’U,Z Z 1 | v 6 V}
CMdefl = {] My 5 + Z tu»%w mw i €N
(u,v,w)eTri(v)
Z]|U€V,0§j§9v} CNconsZ :{ ZNnU,Z Sl |/U€V}
S
(e = {(_] MOECURLCTAPY fumw Oy = D, My 21 lveV}
(u,v,w)ETri(v) * "
My, j
> —j+|Tri(v)| [ve V;0<j <0,}
CJVTaefs = {mv,j F+Me vy +M> v, CMcumz = { My j < 1 | v e V}
>1|lveV;0<i<0,} My, ;€M
From the constraints defining the helpers of N and M, we Cs.p = { Z Sy, > 1 |veV}
derive the following constraints: Sv,i, €S
CSCOnsZ = { Z Sv,i,j <1 | v E V}
Cn.,, = {(—z H14 M) T+ Y $0,i,5€S
uweN; (v) k
—Z + 1 + |N1 | NS V 0 < 7 < 5 } CZconsl = < Zijap 2 k ' Zlv]vl
p=
ONsy 1= {Hl it Y luw i+l ‘0<z<5*;O<J<9*}
uw€ N1 (v) &
‘ v e V 0 < Z < 6 } CZconsZ = {Zzi,],p < k ZZ,]wl
p=1
Cary, = { S HIHTO) Tz Y faew l0sisaoss<o)
(u,v,w)ETri(v)
> —j+1+[Tri(v)| | v e V;0 < j<6,} Input networks
Table 4 shows the names and graph characteristics about all
Ch. et G+1)-ms;+ Z tuww = J+1 of the input networks that we use for the experiments.
(u,v,w)eTri(v)

lveV;0<j<6,}

From Cs,, and Cz,, we derive the following constraints:

Csprr = {2 50ij + N + My =2
|0 eV;0<i<6,,0<;<0,}
CSpp = { Sv,ij + T + 5 > 1

|0 e V;0<i<8,;0<j<0,}

Cp = {p “Zigpt Z Svij 2 P

veV
|0<i<6%50<5<0%1<p<k}

CZdefZ = {(p +1+ |V|) “Zigp T Z Sv,i,j >-p+1l+ |V|
veV

[0<i<650<j<61<p<k}

From CNcons ’ C]\/[cons 2 CS

. . o and Cz., we derive the follow-
1ng constraints:

Supplementary figures

In this appendix, we supply some supplementary figures. Fig-
ure 8 shows the correlation coefficients for the ILP approach.
In Figures 9 and 10, we give a comparison between the two
approaches on encoding and solving time in wall-clock sec-
onds. In Figure 11, we show the same comparison but for the
number of variables of the models. In the last figure, Figure
12, we visualise the comparison between the two different
model solvers in terms of model solving time in wall-clock
seconds.
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Table 4: All input networks with graph statistics, with the names as
listed in the network database [Rossi and Ahmed, 2015]. The ticks
and crosses indicate if the network is part of the small networks that
we use for the experiments of the fourth research question.

VI 1Bl e[ dc bs
aves-barn-swallow-contact X 17 53 55 11 22
-network
aves-geese-female-foraging v 20 190 1140 19 171
aves-sparrowlyon-flock X 46 348 1210 31 215
-season2
fish-guppy-familiar-1 v 6 15 20 5 10
insecta-ant-trophallaxis v 31 41 5 7 3
-colony2-day4
insecta-beetle-group-c1 X 30 185 359 19 82
-period-1
insecta-beetle-group-c4 X 30 138 180 16 42
-period-1
mammalia-baboon v 4 6 4 3 3
-association-group0O1
mammalia-baboon v 4 5 2 3 2
-grooming-group05
mammalia-baboon v o 7 7 0o 3 0
-grooming-groupl7
mammalia-bison X 26 222 1018 24 188
-dominance
mammalia-macaque X 28 378 3276 27 351
-contact-sits
mammalia-primate X 16 89 241 14 64
-association-12
mammalia-primate v 7 20 30 6 14
-association-17
mammalia-primate X 19 114 304 16 81
-association-8
mammalia-raccoon v 14 41 54 10 23
-proximity-24
mammalia-raccoon v 14 27 24 8 15
-proximity-27
mammalia-raccoon v 8 19 18 7 12
-proximity-30
mammalia-raccoon v 12 31 29 7 13
-proximity-44
mammalia-raccoon X 22 67 63 11 23
-proximity-5
mammalia-voles-bhp v 47 52 11 5 4
-trapping-07
mammalia-voles-bhp v 97 113 42 6 8
-trapping-17
mammalia-voles-bhp v 86 138 81 9 17
-trapping-21
mammalia-voles-bhp X 171 363 331 12 27
-trapping-24
mammalia-voles-bhp v 103 105 32 6 5
-trapping-29
mammalia-voles-kcs X 137 271 223 13 33
-trapping-26
mammalia-voles-plj v 49 66 28 7 8
-trapping-18
mammalia-voles-rob v 59 89 51 7 11
-trapping-45
mammalia-voles-rob v 36 26 3 3 1
-trapping-53
reptilia-tortoise-network X 88 184 164 12 31
-bsv-1998
reptilia-tortoise-network-pv X 35 66 56 12 23
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