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Abstract

This study investigated the Gram-Charlier (GC) series approximation of
probability density functions (PDFs). We applied it to simulated polyno-
mials, patient dose metrics, and voxel-level data from a phantom geometry.
The goal was to assess GC use cases and identify predictors of fit qual-
ity or divergence. The results across a wide range of simulated polynomial
PDFs showed that no single metric (e.g., coefficient sums, constant terms,
or truncation errors) consistently predicted GC fit quality. However, a small
machine learning classifier model combining multiple metrics achieved 95%
precision and 94% recall in identifying good fits, indicating its potential for
guiding GC applicability in proton therapy treatment planning.

Patient data showed selective GC success, with low-order truncations
yielding accurate fits for certain dose metrics (e.g., Organs at Risk D,,ean
and Dyg), particularly in one patient. Voxel analysis within the phantom,
even at skewed dose probability distributions near the planning target volume
(PTV) edge, showed visual and statistical agreement between GC fits and
sampled histograms. This was characterized by the measured L? and tail
errors for some voxels aligning with the expected errors of a realized normal
distribution.

As expected, GC divergence was frequent at high orders and for PDFs
with large higher-order cumulants. Small sample sizes, limited patient data,
simplified 1D uncertainties, and numerical precision also constrained the
study’s generalizability. Tail fit quality metrics were application-specific,
with tail mean absolute error per bin suitable for low-sample PDF his-
tograms. Future work should explore larger datasets, improved numerical
precision, 3D uncertainties, and classifier optimization to assess the GC ex-
pansion’s clinical viability in proton therapy.
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1 Introduction

1.1 Motivation

Conventional radiotherapy, although an effective treatment against cancer
cells, can be damaging to healthy tissues surrounding a tumor (Marcus,
2025). In some applications, proton therapy provides a unique advantage;
one that can ensure a more targeted radiation dose distribution, even for
target volumes deep into sensitive organs such as the brain (National Cancer
Institute, [2020). Despite this advancement over conventional methods, this
highly localized dose delivery has inherent drawbacks. Due to the steeper
gradients of radiation dose along the edges of the treatment volume, proton
therapy is more susceptible to setup errors. These errors arise from factors
such as uncertainty in patient setup, changes in anatomy, and uncertainty in
tissue characterization. In order to build a robust treatment plan, accurate
modeling of these uncertainties is crucial. This research dives into statistical
tools to describe and measure these uncertainties in dose distributions.

1.2 Objective and Scope of the Study

The overarching research explores probabilistic estimation of voxel doses by
means of Polynomial Chaos Expansion (PCE) and sampling. In this context,
the PCE is used as a model to translate setup errors to resulting dose at a
given position in the target volume. Sampling of the PCE is then used to
build a histogram that coincides with the general shape of the dose PDF at
this position, from which percentiles are estimated. The primary objective of
this study is to determine whether a specific type of mathematical expansion
called the Gram-Charlier (GC) series can be implemented to directly ap-
proximate the PDF of a polynomial response (such as the PCE) of a random
variable. For example, a patient setup error can be modeled as a Gaussian
random variable with mean 0 and standard deviation of 3 mm, the PCE will
model how the setup error relates to received dose at any given position, and
the GC series will analytically approximate the resulting dose distribution
from the PCE; potentially acting as a more computationally efficient and
precise substitute to sampling methods. In order to better understand the
applicability of the approximation, this research will derive the series from
its core components, analyze the quality and convergence of the GC series
across multiple truncation orders of a range of polynomials, investigate prac-
tical metrics to determine truncation limits, assess the fit quality, and explore
potential prediction models to determine usability before sampling.
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2 Background

2.1 Proton Therapy

Proton therapy is a type of ionizing radiation therapy composed of a beam
of high energy protons. As these particles enter human tissue, they begin to
deposit energy. For protons (and other heavy ion beams) the peak of energy
deposit (Bragg peak) may occur deep into the tissue, and the depth of this
peak can be calibrated through changes in beam energy (Marcus, 2025). A
key characteristic of proton therapy is that a much lower proportion of en-
ergy is deposited before the peak, and beyond the depth of the Bragg peak
the energy deposit drops to zero very quickly. The unit for the dose received
by a specified volume is called the Gray (Gy), and it measures the ionizing
radiation energy absorbed per unit mass (Radiopaedia Contributors, 2024).
The main purpose of particle therapy is to destroy cancer cells while minimiz-
ing damage to healthy surrounding tissue as much as possible. Compared to
radiotherapy with photons (like X-rays or Gammas), the damage of proton
therapy on surrounding healthy tissue can be much less significant, meaning
cancer cells can be more accurately targeted.

2.2 Uncertainties in Treatment Planning

2.2.1 Sources of Uncertainties and Planning Techniques
in Proton Therapy

When the decision has been made to treat a patient with proton therapy, a
clinical target volume (CTV) has to be defined (Unkelbach et al., 2018). In
essence, this is the volume that contains the entire visible tumor and micro-
scopic extensions that are not visible on a computed tomography (CT) scan.
However, this geometry is not sufficient for a treatment plan. This is due to
the fact that there are uncertainties in both the imaging component (which is
of finite resolution), and the delivery of the dose to the target volume. Each
individual patient may require a unique ideal dose, the resolution of the CT
scan will introduce margins, and in combination with inevitable setup er-
rors there are guaranteed to be uncertainties in the realized dose distribution
(Unkelbach et al., 2018)). More specifically, CT scans use Hounsfield units
for different tissue types to represent the attenuation of X-rays (Schaffner &
Pedroni, 1998)), these units are then converted to proton stopping power, but
this conversion has uncertainty of its own. This is because X-rays interact



differently with tissue than protons do (Schaffner & Pedroni, 1998). Fur-
thermore, setup errors are multidimensional and consist of a mix of patient
misalignment and changes in patient geometry over the course of treatment.
Of all the uncertainties discussed, setup errors are the primary focus of this
study.

To account for all the present uncertainties, two different methods are
commonly used in radiation therapy. One method includes defining a plan-
ning target volume (PTV). The PTV encompasses the entire CTV and adds
a margin to account for all the uncertainties at once (van Herk, [2004)), which
is a common choice for photon therapy. However, because proton therapy
involves highly localized energy deposition with steep dose gradients, robust
treatment planning is preferred (Unkelbach et al., 2018)). The sensitivity
to setup errors means proton therapy requires a more precise and adaptive
treatment plan, in contrast to the static PTV of photon therapy. In robust
treatment planning, the delivered dose is computed for multiple discrete error
scenarios and then various methods are used to optimize the plan based on
the range of chosen scenarios and doses. Conventional methods may include
minimizing dose to healthy tissue for worst-case scenarios, or maximizing
the minimum dose to the CTV. However, in the context of our study, we
investigate the less common probabilistic optimization. This method not
only models the range of possible error scenarios, but optimizes based on the
probabilities of the input uncertainties. This technique builds upon the prin-
ciples of robust treatment planning in an effort to account for uncertainties
more effectively.

2.2.2 Phantom Geometries

A phantom geometry can be used in treatment planning to simulate the
anatomy of both the patient and the CTV (Kainz et al., 2019)). This geome-
try is typically derived from a CT scan, which is discretized into a grid of vox-
els (small cubic segments), resulting in a finite-resolution three-dimensional
representation of the patient and the CTV. Each voxel has a fixed coordinate
and can then be given unique properties corresponding to the type of tissue
in which it is found. This virtual (phantom) geometry may now be used to
quantify voxel doses and other dose metrics. Voxels located within organs
at risk (OARs) must be spared, while voxels within the CTV should receive
maximum radiation dose (Lee et al.,[2019). The phantoms allows us to test
and simulate new treatment plans before implementing them (Greener et al.,
2022)), making them absolutely crucial to account for and minimize the effects
of uncertainties on doses to OARs.



2.2.3 Uncertainty Quantification Pipeline

Below follows a brief summary of the treatment planning methodology placed
within the broader context of uncertainty quantification in proton therapy.

e Initially, setup uncertainties are defined; for patient misalignment this
is typically considered a continuous Gaussian uncertainty with mean 0
and some standard deviation (Unkelbach et al., 2018).

e Next, for each voxel it is determined how setup error relates to dose,
in the scope of this research this has been done via PCE. This makes
our voxel dose a random variable dependent on our previously defined

Gaussian setup error. An example of a voxel’s PCE is given in Fig-
ure 2.1] below.
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Figure 2.1: PCE of a randomly selected CTV edge voxel from a phantom
geometry with 1D setup uncertainty.

e Lastly, we analyze the resulting voxel dose PDF of this random vari-
able. In this emerging area of research into PCE methods, such dis-
tributions are commonly obtained through sampling, as shown in Fig-
ure 2.2l However, the purpose of this study is to investigate whether
the dose distribution can instead be approximated analytically from
the PCE coefficients using the GC series. From this distribution, it is
then possible to extract relevant dose metrics, such as percentiles for
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over/under dose, mean dose, max/min doses, standard deviations, and
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Figure 2.2: The sampled dose distribution from the PCE of Figure , which
is to be approximated directly from the PCE coefficients with the GC series.

2.3 Mathematical Framework

This section will introduce and clarify all the mathematical tools that are
central to the uncertainty quantification pipeline from Section 2.2.3

2.3.1 Probability Distributions, Moments, and Cumu-
lants
PDF's describe the range of values a continuous random variable can take with

their associated probability. For continuous variables, an outcome between
values L, and Ls is defined as:

/L2 p(L)dL = P(L, < L < L»). (2.1)

In this case p(L) describes the PDF of a random variable L (for example voxel
dose), and P is the total probability of finding a value within the defined



range. Consequently, the area under the PDF determines the probability,
and what follows is another key characteristic feature of the PDF, which is
that the total area must equal 1:

o0
/ p(L)dL = 1. (2.2)
—0o0

The last feature of a real PDF is that it must be non-negative everywhere, as
negative probability densities have no meaningful significance in this context.
Moments of a random variable are defined in terms of the expectation of the
variable. Equation shows the expectation operator E acting on random
variable L raised to the nth power. This is then written in integral form, and
lastly pr ., represents the nth moment of L.

B = [ L p(L)dL =, 2.3)

[e.e]

The first moment is simply the expectation value of our random variable, also
known as the mean. The second moment is related to the variance, the third
to skewness, and the fourth to kurtosis (peak sharpness of the PDF) (Jiu &
Shi, 2022)). Higher-order moments become increasingly more complex, and
all these moments are intricately related to each other.

One way to determine moments of a PDF other than the formal definition,
is through a generalized version of the moment generating function (MGF)
(DeGroot & Schervish, [2012). As the name suggests, the MGF is used to
find moments of a random variable, and is commonly defined as:

o

My () = B[] = / et p(L)dL, (2.4)

—00

where M (t) is the MGF of random variable L, and ¢ is simply a placeholder
variable to find the nth moment of L, for which the method is depicted in
Equation 2.5 below.

dn

SEM(H)| =B = pr (2.5)

t=0

Evaluating the nth derivative of the MGF at t = 0 yields the nth moment
of random variable L: pp,,,. The MGF however, may not exist for all distri-
butions, therefore a more general function is defined through multiplication
with the imaginary unit i: M (it) = ®(¢), the characteristic function (DeG-
root & Schervish, [2012)). This will be relevant in the derivation of the GC
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series in Section 2.3.4, where the characteristic function is introduced and
used to find the cumulants of our random variable. These are calculated by
taking the logarithm of the characteristic function, and evaluating just like
the moment generating function of Equation [2.5] Cumulants are useful de-
scriptors of PDF's that characterize different attributes of a distribution, such
as skewness and kurtosis. They also have other unique properties (such as
all higher order cumulants being equal to 0 for a standard Gaussian) (Jiu &
Shi, 2022) that make them essential for the GC derivation and other similar
PDF-approximating expansions.

2.3.2 Polynomial Chaos Expansion

When faced with the problem of an input which is a random variable (with
some distribution), and an output which is a complicated function of this
input, one can imagine the resulting relationship to be complex. In the
context of proton therapy, it is possible to imagine a slight shift in patient
alignment to result in an non-linear shift in dose distribution in the patient.
PCE is used to form a polynomial approximation of a function with a random
variable as input (Jakeman et al., 2019). Depending on the distribution of
the input uncertainty, different polynomial bases are used in the PCE, and
though for this study the exact details and derivation of the PCE is beyond
the scope, it is important to note that the shape of the function we are trying
to build a PDF of is a higher-order polynomial stemming from the PCE.
Moreover, as the setup errors in this study are assumed to be Gaussian,
Hermite polynomials were chosen as the basis for our PCE coefficients. The
nature of these polynomials is discussed next in Section 2.3.3.

2.3.3 Hermite Polynomials

The nth-probabilist’s Hermite polynomials He, (x) are defined by applying
the differential operator D,, n times on a standardized normal Gaussian,
¢(z), with mean p = 0 and standard deviation o = 1 as depicted here:

1 —x2/2 n _
dr) = =¢ 2, (=D.)"d(x) = Hey(x) ¢(2), (2.6)

with e Euler’s number (Brenn & Anfinsen, |2017)). The reason Hermite poly-
nomials are used in the PCE for a Gaussian random variable is because they
form an orthonormal basis with respect to the standard normal kernel. It

is the equivalent of choosing an orthonormal basis for a vector space, which
will naturally result in extensive simplifications. As for the GC series, the
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Hermite polynomials naturally arise during the derivation. Hence, it is im-
portant to recognize them in order to build a more compact and generalized
formula.

2.3.4 Gram-Charlier Series
The GC series (Brenn & Anfinsen, 2017)) is fully defined as:

fr(y) = o(y) Y anHen(y) (2.7)

Where:

o O(y) = \/Lﬂe*?ﬂ/ 2 is the standard normal probability density function
(PDF).

e He,(y) are the probabilist’s Hermite polynomials at order n.
e a, are expansion coefficients.

e y are realizations of the random variable Y.

The PDF of the function we are investigating (fy) is written as a normal
Gaussian (the kernel) multiplied by an infinite sum of Hermite polynomials
weighted by coefficients a,,. In our context, Y is a polynomial Y (X)) (from the
PCE), and X is Gaussian distributed. At its core, the GC Series is modeling
a Gaussian with correction terms to arrive at a PDF that is non-Gaussian
but assumed to be ’close-to Gaussian’ (Capodaglio et al., 2021; de Kock,
2009). As discussed in Section 2.3.3, Hermite polynomials are the naturally
chosen orthogonal basis for ¢(y), and a,, are the normalized projections onto
that basis. The coefficients a,, are defined as follows:

%I%[Zh@ﬂﬁw@- (2.8)

It may be clear that these coefficients and this series are similar in form to a
Fourier series. The reason for this will be made clear during the derivation
later in this section. It should be noted that in order to find the coeffi-
cients a,, the function that is to be approximated must be known. However,
since our goal is to determine the PDF, we need to work around this by
making certain approximations. From these approximations, the general GC
A-series will be determined. This version of the series expansion is used when
moments or cumulants are known, but the PDF fy is unknown. The GC
B-series uses the formal definition as seen in Equation and (Brenn &
Anfinsen, 2017)).
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Gram-Charlier with unknown probability density function

As mentioned earlier, the PDF fy is unknown, therefore, we can not analyti-
cally determine coefficients a,, from the integral definition. In order to deter-
mine a PDF approximation we need to solve for the properties of the higher
order correction terms, which are best described by the cumulants of our
random variable Y. The reason cumulants are used is because they directly
describe deviations from Gaussianity, that is: the third cumulant measures
skewness, the fourth kurtosis, and higher orders measure subsequent proper-
ties (Capodaglio et al., 2021)). This is essential in the derivation, in which we
obtain the characteristic function of Y, rewrite it into cumulants, and finally
transfer back from Fourier to normal space. To find the cumulants, we first
need to establish the characteristic function of fy. From Section 2.3.1 and

Equation [2.4] the characteristic function ®y(t) is the expectation value of
ity .
[e.9]

By(t) =Ee™) = [ ety dy (2.9)

This is equivalent to the Fourier Transform of our PDF| which will be relevant
later:

Flfv(y)] = / " Fe)e dy, (2.10)

e with F the Fourier Transform operator.

Again, we do not know the PDF fy, which requires us to further rewrite
our expression for the characteristic function. The expectation is a complex
exponential, which can be written as a Taylor expansion around t=0:

() = Ele) = B[S V) o S W gy o O, oy

n! n! n!

where p,, are the moments of our random variable Y. This expansion will
help us to bypass the fact that we do not know the PDF fy, while the
equivalence to the Fourier Tranform will allow us to apply an inverse Fourier
Transform to arrive at the useful final form of the GC A-series (the PDF
in question) (Capodaglio et al., 2021). We could take the inverse Fourier
Transform of the characteristic function in Equation [2.11] but it is a much
more complex task than if we were to reformat further. This is where we
introduce cumulants.

The cumulant generating function (CGF), Ky, works exactly like the
MGF in Equation [2.5] but is defined as the natural logarithm of the charac-
teristic function (®y (t) = My (it)):

Ky (t) = In(®y (t)). (2.12)

12



Then the nth cumulant xy,, is the coefficient corresponding to the nth order
term in (it) from the Taylor series expansion of In(®y (¢)) around ¢t = 0 (Jiu
& Shi, 2022), resulting in:

o (t)"
=> By (2.13)
n=1

Deriving the value of these cumulants through this formal definition is quite
complex, and is more easily represented through partial Bell polynomials
(Kim et al., 2021)), which will be discussed briefly in Section 2.3.5.

Now that we have the CGF of random variable Y, the next key step is to
introduce the CGF of a standard Gaussian distribution. This PDF ¢(y) has
characteristic function ®,(t), and CGF":

Ky(t) = In(@y(t) =Y %,n(’%. (2.14)

Note that the cumulants of the standard Gaussian distribution x4 ; and K¢ 2
are 0 (mean) and 1 (variance) respectively, and all higher order cumulants
are 0 (Brenn & Anfinsen, 2017). If YV is a standardized variable then xy
and kyo will be 0 and 1 too. Combining Equation and Equation [2.14]
through an exponential and a division we get:

Dy (t) exp > L Kym (Z,

<I>¢(t) exp Y o Ko ’fl,n ’

(2.15)

which leads to:

) = exp (Z Ky — Fom (ZZ?TL)%@). (2.16)

Now we use Bell Polynomials to simplify the relation between our character-
istic functions, so that we can easily take the inverse Fourier Transform to
determine our final result. The property of these polynomials we can exploit

is that:
[oe)
exp (Z Tn
n=1

with By = 1. Rewriting this for Equation [2.16] we arrive at:

n!’

“:f) = Z By (z1, o, ..., ) (it)" (2.17)

(I)y(t) = (1 + Z Bn(liy’l — R¢,1y -y Ry;n — /id)’n)%) (I)¢<t) (218)

n=1
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Remembering that the first two differences are equal and the rest of xy,, =
0, we can simplify further to:

@y(t) = (1 + i Bn<0, O, RY,3y -5 /'iy,n>(i;4) (I)d)(t) (219)

n=1

Taking the inverse Fourier Transform of Equation [2.19] of which we know
that the inverse Fourier Transform of ®,(¢) is ¢(y):

(it)"

n!

(1 —+ Z Bn((), 0, Iiy’g, ceey Ky,n)

n=1

FHoy()] = fy)fy(y) =F !

)%(t)]

(2.20)
and with properties of multiplication by (it)" in Fourier space equating to
alternating sign derivatives in real space, we arrive at:

Friv) = (1 £3° B0k u%) o). @21

n=1

This is one way of writing the GC A-series (the B-series refers to the formal
definition of Equation [2.7)), which will now be further simplified for our spe-
cific case application. First the sum will be taken from n = 3 as the first two
terms are 0 when modeling a standardized random variable. Secondly, we
can rewrite the derivative term as Hermite polynomials of the standardized
random variable Y. We can then finally write the complete GC A-series in
terms of cumulants, Bell and Hermite polynomials, and the standard Gaus-
sian kernel:

i) = (1 £3BL0.0, Ry KK”)HZ@,)) ONNCES

n=3

2.3.5 From Moments of a Polynomial to Cumulants

In order to resolve Sections 2.3.1 to 2.3.4, we must remind ourselves that we
are given a polynomial in the form of a PCE with a Hermite basis. These PCE
coefficients of different order Hermite polynomials should first be reordered
into a list of monomials of ascending orders. One may imagine going from
PCE coefficients ¢, (for k = 0,1, ...,n) of the polynomial Z (which models
the voxel dose as a function of the 1D setup error X):

Z(X)=cyHeo(X)+ c1Hey (X) + caHeo(X)..... + ¢, Hen (X)), (2.23)

14



to monomial coefficients d,,:
Z(X)=d X+ do X'..... + d, X", (2.24)

With Gaussian distributed X ~ N(u,0). The kth raw moment of random
variable Z is E[Z(X)*], or:

EZ(X)"] = E[(di X" + do X ... + d, X)), (2.25)

It is possible to find an analytical solution for different order Gaussians (Pa-
poulis & Pillai, 2002)), E[X¥], hence we must first expand Equation into
a list of monomials of X. Once this is done, we can perform a multinomial
expansion (a generalization of the binomial theorem) (Encyclopedia Britan-
nica Contributors, [2025) to arrive at a form we can analytically solve; similar
to Equation but up to a higher order as a result of the expansion. The
expectation operator is linear, and at this stage we can determine the first
two raw moments, through which we normalize the polynomial:

__ZX)-BZX)  _ Z-m _Z-p
VEZ(X)?] -E[Z(X)]*  Vpe—pp 0

As was required in Section 2.3.4, Y is now a standardized variable with
fy = 0 and o, = 1. After this conversion, higher order moments of this
standardized variable can be found. Lastly, we must convert these moments
into cumulants to complete the approximation. This can be done formally
using the definition of the CGF, or through the use of Bell polynomials (Kim
et al., 2021)). Moments can be represented in terms of cumulants relatively
simply with complete Bell polynomials:

(2.26)

tn = By(K1, Koy .oy Kp). (2.27)

This is one application of Faa di Bruno’s formulas, which also has an inverse

relationship variant that will be more useful for our purposes (Chou et al.,
20006)):

" (-1
" ; <€ — 1)' Bn,e(m17m27 <. amnféJrl)- (228)

In Equation [2.28] B, ; indicates the partial Bell polynomial (Kim et al.,
2021)).

We now have access to all the tools necessary to build our GC approx-
imation from PCE coefficients, or any polynomial of Gaussians in the form

of Equation [2.24]
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3 Methodology

3.1 Modeling Approach

3.1.1 Evaluation Metrics

In order to quantify how accurate the GC approximation is, for the purposes
of possibly being able to identify indicators or characteristics that can predict
use cases, we need to assert universal evaluation metrics. Since all histograms
and PDF's will be normalized, comparing them through a set of fixed metrics
will give a good summary of performance.

Relative L2 Norm

The L*norm (commonly referred to as the L2 norm) (Weisstein, 2025) is
a measure of the magnitude of a function, defined in a certain interval, as
follows:

b
12, = / (@) Pdz, (3.1)

where a and b are the bounds for determining the magnitude of a function
f(z). In our case we will use the relative L?-norm between two functions
(which means replacing f(z) with the difference between two functions).
Since all PDFs will be normalized before analysis, no further normalization
is required to make comparisons. For analyzing the relative L? error of
sampled data, we will use the bin height at bin centers of the histograms in
comparison to the PDF function value at the bin centers. For all data and
PDFs, the relative L? error will be defined for the center of our distributions,
between £2 standard deviations (=~ 95% of the data if close to Gaussian).
This measure may give us a good insight how ’close’ our approximations are
within our chosen bounds (Capodaglio et al., 2021)).

Tail Mean Absolute Error

Because of the nature of the context of this study, the tail behavior of these
distributions is equally, if not more important to quantify. This is because
tails correspond to under and over dosage, which are important for voxels
inside and outside the CTV respectively. The chosen metric that was verified
with many visual inspections was the tail mean absolute error per bin. As
mentioned, all distributions are normalized, which means even absolute value
differences between functions and bin heights can be a good universal indica-
tion of how precisely the densities are being represented by the PDF. The GC

16



function is evaluated at each bin center beyond 42 standard deviations, and
if no bins are present, additional "phantom” bins may be introduced with
height 0, of equal width and amount as in the other tail (with a minimum of
5). Then, the difference between the GC approximation and bin heights at
all these bin centers is averaged, this is repeated individually for right (> 20)
and left (< —20) tails and stored separately.

Freedman-Diaconis Binning

In order to standardize the binning method for all histograms used in this
study, we opted to use the Freedman-Diaconis rule. This is important as the
number of bins will affect the height of each bin, and subsequently the error
when compared to the PDF approximation. The rule finds the recommended
bin width through the following formula:
2IQR(Z
Aw = Q—()7 (3.2)
NLD

(Freedman & Diaconis, [1981)) with /QR the inter-quartile range of sampled
variable Z, Aw the bin width, and n the amount of samples. Now, the bin

count can be easily computed by dividing the range of the histogram values
by the bin width.

Acceptable Error Sizes

Because we are working with realized random variables in order to test our
distribution’s accuracy, this will always introduce some error, even if we
theoretically have the exact PDF. One can imagine having a small sample
space, of for example 100 data points, with a histogram of 10 bins. This
would introduce high variance every time the distribution is sampled, with
some bins peaking higher or lower than expected. This is a classic example of
the central limit theorem. The more samples we can afford to use, the better
our approximation will be. Therefore, it was necessary to test the previous
evaluation metrics from this section on a sampled normal distribution with
an exact standard Gaussian function as comparison. Since the polynomials of
Section 3.1.3 will be sampled 100.000 times, and the patient data will consist
of histograms of 1.000 samples, both of these sample sizes were tested on the
above metrics. The results are given below in Table and Table [3.2]
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Metric Mean Standard Deviation

Relative L2 Error (Center) 0.10383 0.02183
Left Tail Mean Abs. Error per Bin  0.00627 0.00278
Right Tail Mean Abs. Error per Bin  0.00626 0.00278

Table 3.1: Error statistics from 100,000 standard Gaussians sampled 1,000
times each

Metric Mean Standard Deviation
Relative L2 Error (Center) 0.02379 0.00222
Left Tail Mean Abs. Error per Bin ~ 0.00077 0.00015
Right Tail Mean Abs. Error per Bin 0.00077 0.00015

Table 3.2: Error statistics from 1,000 standard Gaussians sampled 100,000
times each

When evaluating our GC approximations on histograms of size 1,000 we
should refer to Table and when our histograms are of size 100, 000, then
we should refer to Table [3.2] These tables set the standard for the quality of
fit for Gaussian-like distributions.

3.1.2 Probability Density Function Approximation
Accuracy-Indicators

To investigate the convergence behaviour of the GC Series on our sampled
polynomials, the metrics from Section 3.1.1 must be evaluated against differ-
ent properties of the resulting PDF expressions. These properties may work
as universal indicators that can help us identify use cases, to avoid having
to sample altogether. Naturally, if we need to sample for every voxel to
confirm the GC applicability, we are losing almost all of the benefits of our
moment-based approximation methods.

Gram-Charlier Expansion-Coefficient Based Indicators

The PDF expression as determined by Equation from each simulated
polynomial at all orders (3-16), will be organized in terms of z-powers. After
we have done this, we will investigate how properties of the coefficients may
indicate to us when and to what extent the series begins to diverge. Such
coefficient-based indicators that will be discussed in Section 4 are:
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e Absolute sum of coefficients up to expansion order k versus error met-
rics.

e Size of the first coefficient (the constant term) versus error metrics.

e The absolute difference of the sum of coefficients between truncation
orders.

The choice of these properties is based on the fact that the GC series con-
tains monomials up to order k for an expansion of the same order. As high
order polynomials have the tendency to grow very large very quickly, the
coefficients on higher order terms must be small for the perturbations on the
Gaussian kernel to remain small too. This is true within reasonable limits,
as these polynomials will almost always be unstable beyond a certain do-
main. Secondly, it is important to note that the first coefficient term is 1
when the polynomial in question is perfectly Gaussian (Z(X) = X)), and all
other higher-order terms (from the higher-order cumulants) become 0. This
is expected with a Gaussian kernel. However, this also means that for PDF
approximations with good convergence quality we may expect this term to
remain close to 1, as this type of expression would describe a Gaussian PDF
with higher order correction terms. Lastly, because series approximation is
built on (hermite) polynomials, when it starts to diverge, it usually does so
very rapidly. This was the reason for specifically analyzing the change in
coefficient size too.

Relative L2 Norm Based Indicators

Since we have already defined the relative L2 error in Section 3.1.1, we may
use this to monitor changes in the PDF expression shape as indicators of
when it will diverge from the corresponding sampled histogram. As we must
assume that we do not have access to the histogram, we should make our
comparisons with known functions such as the standard Gaussian, or previous
truncations of the PDF in question. Indicators to be tested include:

e Relative L2 error between the PDF expression and standard Gaussian
versus error metrics.

e Relative L2 error between derivatives of the PDF expression and deriva-
tives of the standard Gaussian versus error metrics.

e Relative L2 error between consecutive truncation orders of the PDF
expression versus error metrics.

19



Comparing both the normal L2 error of the PDF expression and the deriva-
tives with that of a standard Gaussian may give a good indication of the
PDF’s proximity to Gaussianity, and consequently the usability of the GC
expression as an accurate approximation. The derivatives were included to
assess the curvature and 'waviness’ of the approximation, which should also
be related to deviations from Gaussianity. We should note that the integral
form of the relative L2 error is being applied in this case, as we are comparing
analytical functions. These will then be plotted against the relative L2 from
the error metrics, which are discrete comparisons of the approximation to
the sampled bin height. Like coefficient-based indicators, these errors may
offer us a specific identification of use cases.

Machine Learning Classification Model

In the event that no single indicator can consistently predict GC Series use
cases for generic non-Gaussians, it may be possible to use a combination of
different indicators (features) to build a classifier model. In theory, given a
certain threshold of acceptable error (such as those given in Table , a
well trained classifier could very rapidly and accurately identify use cases. In
a phantom geometry, this would be used to efficiently identify all the voxels
eligible for analytical GC approximation methods.

3.2 Implementation

With a thorough understanding of the mathematical tools, it is now necessary
to develop the methodology for implementing the theory and realizing the
results.

3.2.1 Software and Tools

The software used in this study consists of Python and MATLAB (The Math-
Works, Inc., 2024). Python (Foundation, 2024) will be used for all of the
following;:

e Simulating of polynomials as discussed in Section 3.2.2.
e Sampling of polynomials (both simulated and PCE).
e Building GC approximations of polynomials and patient samples.

e Error metrics.
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e Processing and graphing results.
e Machine Learning Classification Model of GC use cases.

The full list of Python libraries along with all the required functions are
visible in Appendix [B.I] The Python functions have been built to accept a
wide range of polynomials and expansion orders, and they work in a modular
fashion.

MATLAB is used to visualize voxel locations within the predefined phantom
geometry and to sample the PCE’s of these voxels.

3.2.2 Simulating and Sampling of Test Polynomials

In order to investigate the general behavior of the GC series in approximating
polynomials of Gaussians, 961 different polynomials will be sampled and
fitted. These polynomials are of the form:

Z(X)=X +aX*+8X? (3.3)

With 31 values of a ranging between —0.3 and 0.3, 31 values of § between
—0.1 and 0.1, and X as a standard normal distribution with 100, 000 samples.
The coefficients were chosen due to their relative proximity to a standard
normal distribution (a, 8 = 0), while also deviating substantially. For each
polynomial: the histogram, cumulants, PDF coefficients, order of the expan-
sion, various error measures (discussed in Section 3.1.2), and bin count will
be saved in a Python dictionary. Additionally, the errors will be calculated
for GC series truncation orders 3 through 16, giving us 13.454 data points
(31 x 31 x 14) in total.

3.2.3 Small Machine Learning Classification Model

With all the PDF expansions and error metrics data from Section 3.2.2; a
relatively small classifier model can be built. The model in question will be a
Random Forest Regressor model, commonly used in data science for complex
relationships between input and output variables (IBM Corporation, [2024)
Some key features used in the model include: coefficients of the polynomial,
moments, and truncation order. The model was then tested on a smaller set
of newly defined polynomials, with 20 o and 10 § values between -0.1 and
0.1.

As the exact details of machine learning models and their methods are slightly
beyond the scope of the study, the more intricate details of this classifier has
been omitted. This is because these brief preliminary results primarily act

21



as a proof-of-concept for future research, and is not the main focus of the
study.

3.2.4 Gram-Charlier with Patient Data

Nature of the Patient Data

After the general features and behaviour of the GC approximation on per-
turbed Gaussians has been investigated, its accuracy in modeling general pa-
tient data histograms over entire treatment volumes will be analyzed. This
broadening from voxel specific application to dose volume histogram may
clarify other roles the GC series could play in treatment optimization. The
patient data in question are a collection of 17 dose volume histograms from
each of the following measures: Organs at Risk (OARS) Dyo%, Dmean, and
Dgo3cc- This data was acquired from two neuro-oncological patients treated
at HollandPTC (J. I. de Jong, 2025). The OARs D,y data corresponds
to the radiation dose absorbed by the 40% of the volume of the OARSs re-
ceiving the highest dose. D,eqn represents the mean radiation dose that the
OARs receives, and lastly OARs Dy 3. represents the minimum dose that
is received by the mostly irradiated 0.03cc part of the structure (Lee et al.,
2019).The dose volume histograms were sampled over 1.000 treatment sce-
narios, and each sample indicates the associated dose type received by the
given volume. These metrics may be used to analyze how effective and how
damaging the treatment was.

Reason for Testing

To optimize the treatment plan, we should minimize the radiation exposure
of the OARs while trying to maximize the exposure for the CTV. Testing
the GC approximation on these measures is effectively a check of what these
distributions look like in practice. For Dyyy and Dg 3. it may not yet be
feasible to use moment-based approximations because we need to estimate
optimization gradients of these measures. These gradients tell us how our
dosage is dependent on setup parameters. Specifically, we need the gradients
with respect to the beam weights (the proton intensities), which is crucial
for optimizing the treatment plan. For D,,.., however, we could find gra-
dients, and thus we may be able to apply moment-based approximation for
treatment optimization. Knowing the possible applications to mean dose,
and potential future application to percentiles (if we can accurately estimate
gradients for these), we may be able to broaden the use of PCE in combina-
tion with moment-based methods for treatment planning in proton therapy.
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The benefits of this may be computational speed as well as the precision that
a continuous distribution offers over discrete histogram alternatives. It is for
these reasons that it is relevant to analyze which measures may fall under
GC use cases.

Test Metrics

For all samples of OARs Dygy, Do.o3ce, and D,,eqn, we will use the Python
functions from Appendix [B.1]to determine the bin count, empirical moments,
and lastly the GC approximation of different orders. For each of these trun-
cations, the evaluation metrics from Section 3.1.1 will be recorded, and then
the mean and standard deviation of these metrics will be determined across
all 17 histograms. This way the error of the fits can be compared to Ta-
ble to assert the quality of the approximation for each truncation order.
The results should give us some insight into which of the three data types
may be candidates for moment-based methods with PCE.

3.2.5 From Phantom Geometry to Gram-Charlier Ap-
proximation of Voxel Dose Distribution

As discussed in Section 2.2.2; a phantom geometry is one of the most impor-
tant tools for simulating treatment plans and error scenarios in proton ther-
apy. In combination with PCE (introduced in Section 2.3.2), a model of voxel
dose dependence on setup errors is made. The geometry and treatment plan
used in this study were designed and simulated at TU Delft Medical Physics
and Technology (J. de Jong, 2025). The phantom is set up as follows: a
volume of 45 mm x 45mm x 45mm with 1 mm?® voxels encompasses a cen-
tered spherical CTV of radius 9mm. A treatment plan has been made with
a 6 mm margin around the CTV, optimized to receive 60 Gy, while dosage
to all tissue outside the CTV is minimalized (ideally 0 Gy). This makes the
PTV a centered sphere of radius 15 mm. The PCE was constructed for each
voxel up to the 7th order Hermite polynomial for a systematic setup uncer-
tainty in the x-direction. This setup uncertainty was made to be Gaussian
with 4 = 0 and ¢ = 3 mm. The proton beams were simulated to travel
along the positive z-axis, so the setup shifts occur perpendicular to the beam
direction. Five different voxels will be tested with the GC approximation as
well as sampling to verify the fit quality. Four voxels will be chosen outside
the edge of the PTV and one right on the border (where the steepest dose
gradient is present).
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4 Results

4.1 Gram-Charlier on Simulated Polynomi-
als of Gaussians

This section explores both the visual and quantitative fit quality of GC se-
ries approximations on polynomials defined in Section 3.2.2. First we will
visually inspect two samples of the simulated test polynomials. Next, the fit
quality based on error metrics from Section 3.1.1 is compared with indica-
tors introduced in Section 3.1.2. Lastly, the results of the classifier defined
in Section 3.2.2 are presented.
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(a) a = 0.02, 8 = -0.0133
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Figure 4.1: Sampled histogram of the standardized polynomial versus Gram-
Charlier polynomial PDF fits for two different («, 5) parameter combinations
and truncation orders.
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When discussing L? and tail errors, the reader may refer to Figures
(a) and (b) as a guide for visually understanding ”good” and "bad” fits, as
defined in Table Figure (a) shows a polynomial with a relatively low
valued («, 5) pair, recall that with a, 8 = 0 we model a perfect Gaussian.
One can see that a higher order fit (in yellow) offers better performance
than a low order (in blue). However, for larger (a, ) pairs, such as the
one depicted in Figure (b), the divergence properties of the GC series are
clearly present; with a low order visibly (and statistically) approximating
the sampled polynomial much better than a higher order.
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Figure 4.2: Sum of Gram-Charlier expansion coeflicients of even order trun-
cations between 4 and 16 versus the L? center error of the approximation
and the sampled polynomial.

When analyzing Figure [4.2] we can see that for different truncation or-
ders some clustering occurs at relatively low L? errors. For order 16 (visible
in pink), the data is clustered on the right hand side and has a much more
shallow gradient (on logarithmic scale) than order 4 on the left. This is to
be expected, as with more terms there are more coefficients in the sum, and
thus an order 16 expansion with some sum of coefficients should generally
yield a lower error than that of order 4 at the same sum value, as the average
size of the perturbation terms would be lower. The left and right tail mean
error per bin showed almost identical relationships, and have been omitted
in the entire section since the L? error was chosen as the primary indicator.
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The large clusters shows that the correlation between sum of coefficients size
of a GC expansion and its fit quality is poor.
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Figure 4.3: Relationship between the size of the constant term in the 4th
order Gram-Charlier expansion and the L? center error compared with the
sampled polynomial.

Just like Figure [£.2] the results for the size of the constant term indicator
in Figure coincided with the reason it was chosen in Section 3.1.2. The
first coefficient term is 1 when the polynomial in question is perfectly Gaus-
sian (Z(X) = X), and all higher-order terms become 0. We expected this
first term to remain close to 1 for Gaussian-like distributions, which can be
seen in the figure by the lowest error generally coinciding with data clustered
around 1.0 on the horizontal axis. However, it is clear from the figure that
this is not a perfect indication of L? error found from the sample (and by
extension the tail errors). We can recall Table[3.2] which shows that for a his-
togram of 100.000 samples a perfect fit function should have a mean relative
L? error of close to 0.02379. In Figure there are a non-negligible number
of points with constant term 1 and much higher L? error. The figures for
higher order truncations showed the same relationships, and have therefore
been omitted.
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Figure 4.4: Comparison of the analytical L? center error between the Gram-
Charlier approximation and a standard normal distribution versus the ap-
proximation error relative to the sampled polynomial.

Figures|4.4] (a) and (b) depict the results of comparing our analytical GC
fit function with that of a standard normal, as a test of Gaussian-like shape
and consequently an indication of fit quality. One can see from (a) that at
lower L? errors the data points rise almost vertically. Although we can see
from (b) that a larger analytical error results in a larger sampled data error,
we are really only interested in correctly identifying good fits (= 0.02379).
The shape of figure (a) suggests that in low error scenarios there are possibly
a combination of other characteristics that may be dominant in defining the
fit quality. One can also see that it appears that multiple curves from this
initial rise converge together in the higher error values. These are split into
what looks like distinct lines. This is almost certainly due to the o and
values chosen for our polynomials, and if many more values were sampled
within our range then the space between these curves would likely be filled
up. Just as Figures and the data appear too noisy for any individual
lower order predictions of good fits.
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Figure 4.5: Comparison of the analytical L? center error between consecutive
truncations of the Gram-Charlier expansion and the approximation error
relative to the sampled polynomial.

Figure depicts the use of the L? error between consecutive trunca-
tions of the GC expansions as an indicator of divergence of the fit. As may
be clear from comparing figures (a) and (b) to (c) and (d), as long as the L?
error between truncation orders is stable, so is the error to the sampled PDF.
This relationship does not extend to predicting the starting value of the L2
error of the sampled fit, only how it changes. The first point is always the rel-
ative error to a standard Gaussian, which was already discussed in Figure|4.4
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4.1.1 Brief Machine Learning Classification Model for
Gram-Charlier Use Cases

Class Precision Recall Support
Bad Fit (0) 0.74 0.77 505
Good Fit (1) 0.95 0.94 2311
Accuracy 0.912 (on 2816 samples)
Macro Avg 0.85 0.86 -

Table 4.1: Classification report for identifying good polynomial fits (L? <
0.03) of test data for machine learning model from Section 3.2.2.

Table is the result from applying the classification model on a small test
sample, both defined in Section 3.2.2. The most relevant elements are the
precision and recall of the good fit (class 1). The precision tells us what
proportion of the fits that are classified as ”"good” are actually good fits. For
our test this value was 95%. The recall refers to the proportion of the good
fits in the data that are correctly labeled by the model. This was 94% for
our test. The overall identification accuracy of the model was 91.2% on a
sample of 2.816 different polynomials. The test data clearly had some bias,
with 2.311 class 1 samples versus 505 class 0 (bad fit) samples.

4.2 Gram-Charlier on Patient Data Dose-Statistics

In this section, the realized dose-metrics samples of two oncological patients
from Erasmus MC, Rotterdam were empirically fitted with the GC approx-
imation and evaluated against the error measures from Section 3.1.1. This
was done on a collection of 17 histograms with 1000 samples each, for both
OARS D, pean and OARs Dygy error metrics. The mean error and standard
deviation across all 17 histograms per metric is plotted against the GC trun-
cation orders for each error type.
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Figure 4.6: Three error types for patient 1 and 2 of OARs D, ,cq,, dose metric,
with mean and standard deviation over the patient population plotted across
all relevant truncation orders.

In Figure we see the mean relative L? center error, along with the left
and right tail errors across all 17 histograms for both patients. We should
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refer to Table when evaluating the quality of the fit, which must be in
close proximity to: L? = 0.10383, and left /right tail mean absolute error per
bin of 0.00627/0.00626 respectively.

For patient 1 in (a), the mean L? center error was stable and within the ac-
ceptable bounds up to order 9. After this truncation, the error and standard
deviations of the histograms spike. This indicates that for the OAR D, can
dose, truncations up to order 9 provided effective models—matching or ex-
ceeding the accuracy of a standard Gaussian fit based on 1.000 samples. For
patient 2 in figure (b) we see that only the first truncation is within the ac-
ceptable error, and the standard deviation grows quickly. This was primarily
due to the approximation on one of the histograms having poor fit quality
and diverging very rapidly in successive orders. However, for fourth-order
truncations of OAR D,,.., the data was accurate for both patients across
the 17 histograms.

Figures (c) and (e) show a relatively stable tail performance of the GC
series up to order 9 for patient 1, with the 9th order coinciding with the
most accurate fit. Beyond the 9th order the tail error diverged too much
to include in the plot. The tail performance was approximately equal and
on average slightly better than that of the ideal case, though the standard
deviation was substantially higher than presented in Table . Figures (d)
and (f) also had good performance, but only for the lowest orders (4/5).
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Figure 4.7: Three error types for patient 1 and 2 of OARs Doy dose metric,
with mean and standard deviation plotted across all relevant truncation or-
ders.

Figure [4.7) which evaluates GC on OARs Dy, has very similar proper-
ties to the OARS D,eqn data from Figure 4.6l The L? and tail error from
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Figure (a), (c), and (e) are all within the expected error up to a trun-
cation order of 11. For Patient 2, we again see a worse overall performance,
but sufficient at low truncation orders. There are many possible reasons for
this difference between patient data: it could be related to CTV size or lo-
cation, patient anatomy, or even the breathing and ’stillness’ of the patient
etc. Despite the limited samples, the overall fit quality was sufficient when
compared to the standard Gaussian ideal scenario.

It should be noted that the OARs D0.03cc metric was omitted due to
very poor fit quality, and other metrics such as CTV D98 and CTV D2 were
tested but omitted because they only contained 1 histogram per patient.

4.3 Gram-Charlier for Voxels in a Phantom
Geometry

The following section explores the GC series applied to the phantom geometry
described in Section 3.2.4. We begin by identifying voxels around the edge of
the CTV, followed by a deeper dive into one of the voxels at the CTV edge.
The results of this voxel include the sampled dose distribution, a standardized
version of the data with a GC fit, a mapping of the PCE of the voxel, and
lastly a return to the original voxel dose distribution with an unstandardized
GC fit. Also, the standardized GC approximations of the remaining voxels
and their fit quality will be shown and summarized.
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Figure 4.8: Slice of the phantom geometry with nominal dose distribution
indicated by the legend on the right (in Gy). Markers A through E indicate
voxels located near the edge of the planning target volume, selected to analyze
the quality of the Gram-Charlier fit to their dose probability distributions.

A slice of the phantom geometry in Figure [4.8|shows the resulting nominal
dose distribution of a treatment plan with a 1D setup error in the x-direction.
It is clear that the simulated proton beams arrive in the positive z-direction,
as can be seen by the higher dosage received in the bottom of the figure com-
pared to the top, where the beam energies quickly drop off past their Bragg
peaks. The voxels depicted in this figure will showcase setup uncertainty
effects on both high dose voxels on the edge of the PTV (voxel A) and lower
dose voxels outside the PTV (voxel E). The slice shown here is at y = 34 mm,
while each voxel is evaluated at equivalent x and y coordinates. For example,
voxel A is evaluated at x,y = 32mm in the phantom. The voxel locations
plotted on their own slice are shown in Appendix
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Figure 4.9: Histogram of dose distribution of voxel C with 10.000 samples.
The Polynomial Chaos Expansion coefficients of this voxel are: [28.1076,
9.7793, -0.1392, -0.3447, -0.0047, 0.0081, 0.0006, -0.0001].

In Figure [4.9| we see a sampling of the PCE of voxel C, and we can imme-
diately identify that the first PCE coefficient term coincides with the mean
dose of the voxel. The sampled histogram looks similar to a normal distribu-
tion, with one important caveat: There were no samples above a little over
50 Gy. This is due to the nature of the phantom of Figure A setup error
in the x direction essentially shifts the entire ’heat map’ of dosage along the
x-axis. A maximum of 50 Gy means that anywhere along the x-axis for the
fixed y and z coordinates of the chosen voxel, the dose does not exceed this
maximum value. What is also clear from Figure is that at 10.000 sam-
ples there is still plenty of noise present, of which some is still visible with
100.000 samples in Figure [£.10] Note that this initial raw sampling from the
phantom was done with less samples to conserve time while analyzing many
individual voxels.
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Figure 4.10: Standardized dose histogram of voxel C with 100.000 samples
and fitted Gram-Charlier approximations.

After standardizing the PCE and fitting the GC approximation from its
analytical moments, we can visually inspect the fit quality between a low and
high order truncation. Figure [4.10| reaffirms that the fit is close to Gaussian,
seen by the similarity between the 4th and 13th order GC approximations.
The fit appears to be close to the sampled histogram, with the 13th order
truncation modeling the left tail marginally better than the lower order. The
cut-off for the right tail from the maximum dose of this voxel is still present,
but now just at a standardized value.

36



Normalized Voxel Dose Response

— Polynomial Chaos Expansion at Voxel x=34mm s~
— = Reference Line y=x -’

_3 T T T T
-3 -2 -1 0 1 2 3
Normalized Setup Uncertainty

Figure 4.11: Standardized Polynomial Chaos Expansion of voxel C with a line
corresponding to a perfectly Gaussian distribution as a reference. The stan-
dardized coefficients are: [0.0118, 1.1148, -0.0086, -0.0444, -0.0014, 0.0010,
0.0001, -0.0000].

Another way to verify Gaussianity of the polynomial random variable
is by graphically examining the standardized PCE around 0. Figure [4.11
shows us that the PCE of voxel C is close to the perfectly linear response in
green. In this standardized formulation, a line Y = X would be the PCE of
a standard Gaussian, which the GC series can exactly reproduce. The PCE
of voxel C is close to Gaussian up to approximately +2.
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Figure 4.12: Histogram of dose distribution of voxel C with 100.000 samples
and fitted Gram-Charlier approximation.

Once the GC fit quality is evaluated in a standardized form (for univer-
sal comparison), returning to approximation on the real dose distribution
only requires replacing the standardized variable in the expression with its
non-standard scaling (using the mean and standard deviation from already
computed moments/cumulants). This is illustrated in Figure In this
figure, even with 100.000 samples, the random spread in the data is quite
visible, which highlights the inherent problem with sampling as a PDF ap-
proximation method.
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Figure 4.13: Standardized dose histogram of voxels A and B with 100.000
samples and fitted Gram-Charlier approximations.
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Figure shows the standardized dose distribution with GC overlays
for voxels A and B respectively. Voxels A and B are located inside the PTV,
which is the reason they are skewed left; they are receiving their maximum
dose with a high probability, and smaller doses with a lower probability. The
left tails, representing the under-dose, show visibly promising alignment with
the samples. The L? error (center alignment) breaks down with higher skew-
ness, and the right tails do not approximate the sudden cut-offs accurately.
Both (a) and (b) show a tendency of the GC approximation to become neg-
ative beyond the right cut-off, which is an unwanted property of GC series
in highly non-Gaussian applications.
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Figure 4.14: Standardized dose histogram of voxel D and E with 100.000
samples and fitted Gram-Charlier approximation

For voxels D and E in Figure an opposite skewness is present to that
of Figure [£.13] Voxel D is closer to the PTV edge, and thus yields a higher
nominal dose; while voxel E receives a lower nominal dose and consequently
has a larger right skewness. Similar to voxels A and B, the L? center error
appears lowest for the more Gaussian (less skewed) voxel D, and it had an
overall better fit quality. It is clear that visually the right tails for both
voxel D and E are a good fit, and if these voxels represent those of an OAR,
then the right tails are the most important feature, as they help quantify a
near-maximum dose.
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Voxel (Location) | Closest Order | L? Center Error | Left Tail Error | Right Tail Error
A (x = 32mm) 8 0.1586 0.0013 0.1410
B (x =33mm) 13 0.0499 0.0014 0.0389
C (x = 34mm) 13 0.0258 0.0017 0.0044
D (x =35mm) 11 0.0378 0.0090 0.0033
E (x = 36mm) 9 0.0645 0.0264 0.0018

Table 4.2: Gram-Charlier fit quality for selected voxels: lowest-error trunca-
tion order and associated metrics from Section 3.1.1.

Table shows that the overall fit quality appears to be better for the
more Gaussian-looking voxels B,C, and D. The L? center error is very high for
voxel A, and adequate (but still above the Table ideal error) for voxel B.
Though their left tail errors are also larger than the ideal Gaussian fit errors,
visually they appear to approximate the sampled histogram very closely, and
are almost equally accurate for both voxels. Likewise, the opposite right tail
errors of the further out voxels D and E were smaller than their left errors,
which corroborates the visual inspection from Figure [4.14 Again, the center
error was better for voxel D, closer to the PTV edge. It should be noted that
for each of the voxels, the order plotted and presented in Table was the
truncation with the best fit. The GC approximations on voxels that were
further from a standard Gaussian diverged earlier, resulting in lower order
approximations.
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5 Discussion

5.1 Analysis of Gram-Charlier on Simulated
Polynomials of Gaussians

This section will discuss the results presented in Section 4.1.

5.1.1 Implications

As Figures Figure show, there is quite a large spread in the data,
suggesting our chosen indicators do not have a straightforward predictable
relationship to the L? error of our polynomial fit. Despite this, there are
relevant and important implications to consider. First, of all the chosen in-
dicators that were evaluated, no single one (including tests that were not
presented in the results) could consistently be used to identify and predict
for which polynomials the GC expansion would yield a precise fit. Likewise,
the divergence behaviour of the GC series at higher orders was clear and
apparent, which is a known characteristic of the series (Blinnikov & Moess-
ner, |1998)). Large higher order cumulants (embedded in the coefficients) also
consistently resulted in high error and poor fit quality. These findings were
mostly expected (Brenn & Anfinsen, 2017))(de Kock, 2009))(Capodaglio et al.,
2021)), and the machine learning model shows a promising solution to the first
classification problem. If a classifier can be trained to effectively predict all
good GC use cases of polynomials of Gaussians for a given threshold, then it
has the potential to be a very useful tool in proton therapy treatment plan-
ning. This could eliminate sampling of many of the most relevant voxels in a
phantom geometry, and offer more precise analytical methods for percentile
calculations.

5.1.2 Limitations and Sources of Error

The greatest limitation of this study was time and consequently sample size.
Only 961 different polynomials were tested, and only up to the third order
Gaussian (X?). To achieve a fully comprehensive understanding of the GC
series behaviour with this specific application in the context of PCEs, the
sample size should include higher order terms and many more coefficient val-
ues (a, B, ...). Python’s floating point errors may introduce some uncertainty
too, though this was likely negligible as analytical moments were computed
with precision of approximately 15 decimal places. Finally, the classifier
model should be seen purely as a proof of concept. The model was built on
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fewer than 14.000 samples, and tested on an even smaller data set. The test
data was chosen to be different from the training data, but naturally simi-
larities were present. Lastly, the data was biased, with a majority of samples
falling under one class. This can heavily skew the precision and recall values
of the classifier.

5.1.3 Possible Future Work

Future work should include larger sample sizes, with a complete set of coeffi-
cients representing the range of (almost) all possible combinations that arise
from the PCEs of phantom geometries. It would be both relevant and inter-
esting to realize a machine learning model trained on an extensive amount of
data, and test its performance on general polynomials and PCEs of a treat-
ment plan. Lastly, different expansions such as the Edgeworth series could
be investigated as a substitute for GC. They may have overall better conver-
gence properties, but may sacrifice some simplicity and interpretability.

5.2 Analysis of Gram-Charlier on Patient Data
Dose-Statistics

This section will discuss the results presented in Section 4.2.

5.2.1 Implications

The results of the patient data dose-metrics suggest that some percentiles
may follow Gaussian-like distributions, and can therefore be approximated
with the GC series. In this case, as long as a PCE can be built for a given
metric, it will be possible to implement GC as a substitute for sampling. This
has the possibility of improving both modeling accuracy and computational
efficiency if implemented effectively.

5.2.2 Limitations and Sources of Error

The patient data that was accessible in this research was lacking in both
sample size and variety. Though error metrics were consistent with that of
a Gaussian of 1,000 samples, this is insufficient for reliably building PDFs.
This is because the GC approximations were built from empirical moments,
and 1,000 samples is a very limited sample space to model tail behaviour
and higher order deviations from Gaussianity. Likewise, 17 histograms is
a relatively small data pool, and half of the metrics had to be omitted as
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they only included 1 histogram per patient. The visible performance differ-
ence between fits on patient 1 versus patient 2 could have many different
origins, and the limited access to treatment plan specifics limits our ability
to pinpoint the error sources; whether that be patient related or GC related.

5.2.3 Possible Future Work

It would be valuable to extend the tests on patient dose-metrics to include
both larger sample sizes and PCE based methods. Building a larger database
of GC use cases (or possibly other PDF approximation methods) in proton
therapy can only serve to better our understanding of modeling uncertainties
in treatment planning.

5.3 Analysis of Gram-Charlier for Voxels in
a Phantom Geometry

This section will discuss the results presented in Section 4.3.

5.3.1 Implications

Visually and statistically strong GC fits of voxel dose distributions around the
PTV edge of a phantom geometry could imply real value for moment-based
methods in this context. Despite the relevant tail error metrics being not
quite as strong as an ideal case, the error was still small in terms of standard
probability density units. The cause for the figures having such sharp cut-
offs, rather than gradual changes, is because of the setup uncertainty chosen.
o was £3 mm, which means a significant percentage of the data will lie close
to the maximum dose along the x-coordinates of the chosen voxel. Though
this study was done on a simplified example of a phantom geometry with 1D
uncertainty, good fit quality of the standardized PDF's implies applicability
to real voxel dose distributions that may extend to 3D errors. All results in
Section 4.3 show that even for voxels with a heavily skewed distribution, it
is possible to approximate and extract relevant PDF features such as a tail
or center mass.

5.3.2 Limitations and Sources of Error

The limitations of this study include: simplified setup uncertainty, a per-
fectly spherical CTV, and sub-optimal error metric for tail behaviour. For
the sake of simplicity, a 1D setup error was chosen which acted only along
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the x-axis of the phantom. In combination with a perfectly spherical CTV,
this limits the scope of our conclusions to similar setups, and warrants more
investigation for GC applied to the intricate 3D uncertainties of asymmetric
CTVs. Lastly, this study focused on being able to predict GC use cases, and
the tail mean absolute error per bin was a good indicator for low sample
histograms that corroborated with visual verification methods. It was also
chosen because it did not put too much weight on outliers, but for larger sam-
ple sizes it may be more effective and relevant to analyze tail mass error. Tail
mass error of the standardized histograms could directly be converted into to-
tal dose error for analyzing how much dosage is missed by the approximation.

The main source of uncertainty in the analysis of voxel PCEs was the
decimal place precision. The coefficients were precise up to only 4 decimal
places, which for 7th order Gaussian terms is likely not enough to avoid early
divergence in higher order cumulants.

5.3.3 Possible Future Work

In order to improve on the results, the application of the GC series should
be expanded to a larger variety of more complex phantom geometries and a
wider range of voxels. The PCEs should be developed to an optimal preci-
sion while taking into account computational cost, and the tail mass error
should be introduced and tested for very large sampled histograms (>> 10°).
For this extension it will be important define a cutoff for the GC expression
(since it is unbounded), and program built-in safeties for when the expression
becomes negative. Finally, the computational speed of the moment-based
method should be tested against traditional sampling. If moment-based
methods turn out to be more computationally intensive even when opti-
mized, it will be necessary to evaluate the difference in dose error between
traditional and novel techniques, and weigh their benefits.
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6 Conclusion

The aim of this study was to better understand the applicability of the GC
series in proton therapy, as accurate estimation of voxel-level dose PDFs is
essential for uncertainty quantification. We evaluated the GC series using
generated polynomials, dose metrics from patient data, and voxel-level dose
PDF's in a phantom geometry. The study focused on identifying use cases for
the GC series and to explore predictors of fit quality and divergence, based
on both simulated and real-world data. The results of individual indicators
across a range of simulated polynomials of Gaussians showed that no sin-
gle metric (e.g., expansion coefficient sums, constant term values, or relative
truncation errors) consistently predicted the quality of GC fits. However, a
machine learning classifier that combined multiple metrics showed promise:
the proof-of-concept model achieved high precision (95%) and recall (94%)
in identifying good GC fits, highlighting its potential for aiding use case pre-
diction in proton therapy treatment planning. Patient data shows selective
GC applicability: the GC approximations remained within ideal bounds for
certain metrics (e.g., OAR D,ean and Dygy) at low truncation orders, par-
ticularly in one of the two patients. The voxel analysis in the phantom ge-
ometry with a 1D setup error supported visual and statistical validity. Even
for skewed voxel-level dose PDF's near the edge of the PTV, the relevant tail
approximation was close to the sampled histogram. When solving GC ap-
proximations directly from PCE coefficients for voxel-level dose PDFs, lower
orders were typically more accurate for modeling tail behaviour of highly
non-Gaussian PDFs. Optimal truncation order was between 8 — 13 for the
chosen voxels, after which the series approximation would quickly diverge.

Naturally, the GC approximation did not always converge to the desired
PDF, and sample sizes constrained the generalizability of the results. Diver-
gence at higher truncation orders was frequent and expected, especially for
PDF's with large higher-order cumulants. Furthermore, small sample sizes,
limited patient data, simplified 1D setup uncertainties, and limited coefficient
precision reduced the scope and reliability of the conclusions. The chosen tail
error metrics and fit quality remained application-dependent, with the tail
mean absolute error per bin a suitable metric for low sample sizes, but future
work should consider tail mass error for high-fidelity PDF modeling of voxel
dose. Other future work necessary to expand the results to clinical feasibility
may include: expanding data sets, improving moment precision, testing 3D
uncertainties, optimizing classifier features, and evaluating computational
performance. These critical next steps may aid in establishing whether the
GC series PDF approximation has real practical utility in proton therapy.
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A Additional Figures
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Figure A.1: The four remaining voxels from Figure plotted on their own

slice in the phantom geometry.
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Figure A.2: Standardized Dgygy, Patient Data from Patient 1, with GC ap-
proximation fitted on the only Dggy histogram of 1.000 samples.

49



[

M

w

IS

ot

=]

©

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

B Code Snippets

import numpy as np

from sympy import *

import math

from sympy import symbols, expand, Poly, Symbol
from sympy import symbols ,bell,simplify

import sympy.polys.orthopolys

from math import comb

def expanded_polynomial_as_list(coeffs, k): #This
expands the polynomial and returns an ordered list
# of increasing power in the form: [(power,
coefficient), (next power, coefficent)]
X symbols (’X?)
Y sum(a * X **%x i for i, a in enumerate (coeffs))
Yk = expand (Y *x* k)
poly = Poly(Yk, X)
terms = [(exp[0], coeff) for exp, coeff in poly.
terms ()]
return sorted(terms)
#Thts exzpands the polynomial and returns an ordered list
# of tincreasing power in the form: [(power,
coefficient), (next power, coefficent)]

def moment_of_polynomial (polynomial, mu, sigma):
exp_Yk = 0
for p in range(len(polynomial)):
n = polynomial[p][0]
coeff = polynomial [p][1]

expected_value = 0
for r in range(n + 1):
if r % 2 == 0: # only even moments are non-

zero for Gaussian
expected_value += (
math.factorial(n) * (sigma ** r) * (
mu ** (n - r))
/ ((2 xx (r / 2)) * math.factorial(n
- r) * math.factorial(r // 2))
)
exp_Yk += expected_value * coeff
return exp_Yk
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#the moment of a polynomial of different order gaussians
with mean mu and std sigma

def standardize_Z(Z,mu,sigma):
Z_squared= expanded_polynomial_as_list(Z,2)
Z_one= expanded_polynomial_as_1list(Z,1)

Var_Z = moment_of_polynomial (Z_squared ,mu,sigma)-
moment_of_polynomial (Z_one ,mu,sigma) *x*2
Mu_Z = moment_of_polynomial(Z_one,mu,sigma)

if np.isclose(Var_Z, 0):
print ("Warning: Variance of the polynomial is
effectively =zero standardization may fail
D!
Y=Z.copy O
Y[0]=Y[0]-Mu_Z
Y = np.array(Y)/(np.sqrt(float(Var_Z))) #divide all
elements by std of Z
return Y
#standardize the polynomial response (which ts just a
list of coefficients of ascending orders of gaussians

)

def n_cumulants_from_moments (moments_of_Y): #function to

make list of n cumulants from all moments of Y[]

t, n = symbols(’t n’) #inttiate symbols

My Function(’My’) #moment generating function

Ky In(My(t)) #cumulant generating function, In of
MGF as a function of t

all_cumulants = [] #initiate empty list to store all

the cumulants

moments_dictionary = {Derivative(My(t), (t, k)):

moments_of_Y[k] for k in range(len(moments_of_Y))

} #a dictionary to convert the derivatives from
Sympy into the equivalent moments of YV
for i in range(len(moments_of_Y)):
kn = Ky.diff(t, i) #nth cumulant
all_cumulants += [kn.subs(moments_dictionary)] #
add nth cumulant to list of all cumulants
return all_cumulants
#function to make list of n cumulants from all moments
of Y[]

import math
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def cumulants_from_moments_fast(standardized_moments):
nimnn

Compute cumulants from central moments for a
standardized wvariable (mean=0, wvar=1).

Input:
central_moments: list or array of central
moments [mul=0, mu2=1, mu3, ..., mu_n]
length n
Output:
cumulants: list of cumulants [k1=0, k2=1, k3,
., k_n]
n = len(standardized_moments)
cumulants = [0, 1] # first cumulant = mean=0,
second cumulant = wvartance=1

for i in range(3, n + 1):
k = standardized_moments[i - 1] # 4i-th central
moment (index 1-1)
for m in range(1l, i):
k -= math.comb(i - 1, m - 1) * cumulants[m
1] * standardized_moments[i - m - 1]
cumulants.append (k)
return cumulants

def full_bell_polynomial(n,ku): #up to order n of
cumulant list ku = ()
bell_polynomial = sum(bell(n,k,kul1:]) for k in
range(1,n+1)) #Computes the complete Bell
polynomial B_n from cumulants ku. Takes ku[0] =
(ignored) .
return bell_polynomial
#full bell polynomial up to order n of cumulant list ku
= () each order n corresponds to calculating until
the nth cumulant

def nth_hermite_polynomial(n,x): #nth order bell
polynomzal with wvartiable = s output
Hen=sympy.polys.orthopolys.hermite_prob_poly(n,x)
return Hen
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def

def

def

def

momentslist(Y,k,mu,sigma):
moment_list = []
for r in range(k+1):
Y_k=expanded_polynomial_as_list(Y,r)
moment_list += [moment_of_polynomial(Y_k,mu,
sigma)l
return (moment_list)

empirical_moments (samples, k):
return [np.mean(samples ** i) for i in range(k + 1)]

standardize_moments (raw_moments) :
mu = raw_moments [1]

var = raw_moments [2] - mu**2
standardized = []

for n in range(len(raw_moments)):
moment = 0
for j in range(n + 1):
coeff = math.comb(n, j)
moment += coeff * ((-mu) ** (n - j)) *
raw_moments [j]
moment /= var *x*x (n / 2)
standardized. append (moment)
return standardized

pdfgenerator (cumulants ,order):

X = symbols("x"

sums = 0

fy=0

adjusted_cumulants = cumulants.copy()
adjusted_cumulants [2] = adjusted_cumulants[2]-1 #

these are the lists of cumulant differences from
the ezpansion
for i in range(3,order+1):
sums += full_bell_polynomial (i,
adjusted_cumulants)*nth_hermite_polynomial (i,
x)/(math.factorial (i))
fy=(1+sums) *sympy.exp (-(x**2) /2) /(math.sqrt (2*xmath.
pi))
return (fy)
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138

139

def pdf_components(cumulants, max_order):

X = symbols("x"
adjusted = cumulants.copy()
adjusted [2] = adjusted[2] - 1 # adjust variance

hermite_terms = []
for i in range (3, max_order + 1):
coeff = full_bell_polynomial(i, adjusted) / math
.factorial (i)
hermite = nth_hermite_polynomial (i, x)
hermite_terms.append(coeff * hermite)

return hermite_terms # List of correction terms

Listing B.1: Python functions for GC approximations
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