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Sequential Ensemble Monte
Carlo Sampler for On-Line
Bayesian Inference of
Time-Varying Parameter in
Engineering Applications
Several on-line identification approaches have been proposed to identify parameters and
evolution models of engineering systems and structures when sequential datasets are
available via Bayesian inference. In this work, a robust and “tune-free” sampler is pro-
posed to extend one of the sequential Monte Carlo implementations for the identification
of time-varying parameters which can be assumed constant within each set of data col-
lected but might vary across different sequences of datasets. The proposed approach
involves the implementation of the affine-invariant Ensemble sampler in place of the
Metropolis–Hastings sampler to update the samples. An adaptive-tuning algorithm is
also proposed to automatically tune the step-size of the affine-invariant ensemble sampler
which, in turn, controls the acceptance rate of the samples across iterations. Further-
more, a numerical investigation behind the existence of inherent lower and upper bounds
on the acceptance rate, making the algorithm robust by design, is also conducted. The
proposed method allows for the off-line and on-line identification of the most probable
models under uncertainty. The proposed sampling strategy is first verified against the
existing sequential Monte Carlo sampler in a numerical example. Then, it is validated by
identifying the time-varying parameters and the most probable model of a nonlinear
dynamical system using experimental data. [DOI: 10.1115/1.4056934]

Keywords: sequence Monte Carlo, model updating, affine-invariant ensemble sampler,
time-varying parameter

1 Introduction

In recent years, on-line learning has garnered significant atten-
tion for the purpose of parameter identification of engineering sys-
tems. On-line parameter identification involves the learning and
estimation of the parameter(s) of interest through distinct datasets
which are obtained sequentially, contrary to the batch learning
approach which requires the availability of the entire dataset to
produce estimates [1]. In particular, on-line parameter identifica-
tion is of value in situations when data is obtained over a period
of time. This allows for real-time parameter identification, making
it a practical approach for investigating the performance of engi-
neering systems under operating conditions. For example, on-line
parameter identification has been applied to identify: moveable
mass positions within a 2DoF shear frame [2,3]; mistuning parameters
of rotating blisks [4]; modal parameters of a vehicle motion modes to
investigate its dominant motion-mode [5]; structural parameters of a
nonlinear structural system to update its dynamical response model
[6]; terrain parameters of the Wheel-Terrain model for wheeled
motion control of mobile robots [7]; and structural parameters of
smart building structures for real-time damage detection [8].

The parameters identified through on-line learning are often
time-invariant, see, e.g., Refs. [4,5], and [9]. However, in many
engineering applications, these parameters vary with time [10] to
which examples include: structural modal parameters to study the
dynamic response of structures [11,12]; fatigue cracking parameters

[13]; stress data for performance prediction of steel bridges [14];
localized impact damage in composite panels based on sensor data
[15]; and earthquake ground motion parameters using generalized
Kalman filter and structural absolute accelerations data [16].

Currently, in time-domain applications, system parameters and
system states such as displacements and velocities, are estimated
via sequential Bayesian inference using Kalman filters [17,18],
Gaussian Sum filters [19,20], and particle filters [21,22]. Kalman
filters are computationally less-expensive compared to other filter-
ing techniques. However, they are mostly designed to deal with
problems involving a dynamical system identification with a lin-
ear state-space and Gaussian “noise” [23]. Extended Kalman filter
[24,25] and unscented Kalman filter [6,18] extended the approach to
nonlinear state-space and non-Gaussian noise. For instance, Gaussian
sum filters utilize weighted Gaussian Models to approximate the pre-
dictive and posterior PDFs [19]. Thus, it does not require the analyti-
cal form of the aforementioned PDFs. However, like the Kalman
filter, Gaussian sum filters become ineffective when the state-space
setup becomes highly nonlinear [26]. Particle filters are applicable in
both linear and nonlinear state-space setup and do not assume the
form of noise [27]. However, they are computationally expensive
and perform poorly even with moderately high number of parameters
(i.e., above 18 dimensions) [28,29]. Despite this, particle filters are
more general and robust in their implementation [27], since the error
of the estimates is reducible by obtaining more samples. For more
information pertaining to the above approaches, the reader is referred
to the recent review paper by Ref. [30].

The sequential Monte Carlo (SMC) sampler, whose concept is
based on the particle filter [31,32], is a popular technique when
addressing Bayesian inference problems [33]. Currently, it has
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been implemented under off-line (i.e., batch) and on-line settings
toward the parameter identification for numerous problems
involving: (1) nonlinear time-series model; (2) nonlinear state-
space models; and (3) high-dimensional target distributions
[34,35]. At present, the sequential Monte Carlo sampler has not
yet been implemented to identify model parameters that are con-
sidered constant between observation intervals but might vary
across the different observation sequences. Under such settings,
the posteriors of such parameters are assumed to be constant
between observations while their posteriors (and therefore their
estimates) may vary between the different sequences of observa-
tions. Moreover, there exist the following short-comings in the
SMC algorithm: (1) the choice of proposal distribution can signifi-
cantly affect the sampler results [32]; (2) it is computationally
inefficient because of the number of parameters required to com-
pute and tune [36]; and (3) the moderation of acceptance rates of
its samples has not been investigated in detail.

To address these short-comings, a robust and “tune-free”
sequential ensemble Monte Carlo (SEMC) sampler is proposed
based on the use of the affine-invariant ensemble sampler (AIES)
in place of the Metropolis–Hastings (MH) sampler for the MCMC
step. AIES has been proved robust in recent implementations for
reliability analysis using subset simulation [37] and for model
updating via transitional ensemble Monte Carlo sampler [2]
thanks to its capability of sampling from highly-skewed and ani-
sotropic distributions (see Sec. 3). In addition, an adaptive-tuning
algorithm, inspired from the work by Ref. [38], is developed to
provide a robust mechanism to ensure that the acceptance rate val-
ues have achieved convergence before moving on to the next sam-
pling iteration. Details on the adaptive-tuning algorithm are
provided in Sec. 3.1. Numerical investigation has proven the exis-
tence of inherent bounds in the acceptance rates values and shown
in Sec. 4. To the best of the authors’ knowledge, such investiga-
tion and analysis are yet to be presented in existing literature.

The proposed SEMC sampler is first implemented alongside the
traditional SMC sampler in a numerical example involving a
spring-mass-damper system with two time-varying parameters to
which details are provided in Sec. 5. This allows to compare and
verify the inference results and to highlight the advantages of the
proposed sampler over the traditional SMC sampler.

The proposed sampler is then validated through an experimen-
tal example involving a single-storey structure with a Coulomb
friction contact whose properties are different during each obser-
vation interval under harmonic loading as shown in Sec. 6. Such
application example is specifically chosen due to its importance in
assessing the dynamic performance of structures and avoiding
friction-related failures [39,40]. This example allows: (1) to vali-
date the performance of the SEMC sampler in inferring both time-
varying and time-invariant parameters with experimental data;
and (2) to demonstrate the capabilities and robustness of the algo-
rithm in identifying the most probable Markov kernel under
uncertainty.

2 Review of Sequential Monte Carlo

Sequential Bayesian filtering is a popular technique to address
inverse problems and infer model parameters under uncertainty
thanks to its ability to combine and update prior knowledge with a
sequence of observed data D [41,42]. This yields the posterior
PðhsjD1:s;MÞ from which samples are obtained to provide numeri-
cal estimates of the inferred parameter(s). One such sampling
technique commonly used in literature is the SMC sampler
[43,44].

2.1 Advantages and Limitations of Current SMC Sampler
Implementations. One key advantage of the SMC sampler lies in
its ability to sequentially compute the evidence term PðD1:sjMÞ
corresponding to the posterior PðhsjD1:s;MÞ at any given sth time-
step sequence [32,44]. The metric PðD1:sjMÞ also quantifies how
well a given model class M describes the available set of data D1:s

as well as the time-evolution of h. This makes the SMC sampler
well-suited to addressing problems regarding the model class
selection of M (see, e.g., Refs. [44–47], and [48]). PðD1:sjMÞ can
be estimated by the product of the mean of the nominal weights
ws

i at any given time-step sequence s � 1 [32]

P D1:sjM
� �

� 1

N

Ys

m¼1

XN

i¼1

wm
i (1)

Another characteristic of the SMC sampler is the flexibility in
the choice of auxiliary parameters of the algorithm such as the
scaling parameter of the covariance matrix and the Markov kernel
of the time-varying parameter (i.e., see Eq. (A2)) [49,50]. This is
because even if the samples do not follow the true distribution, the
weighting process and the conditional resampling step (i.e., the
Bootstrapping with replacement), with which the algorithm will
correct and move the samples closer to their true distribution. To
illustrate the resampling concept, a numerical example involving
a mixture of two bivariate Gaussian distributions based on work
in Ref. [51] is presented. Here, we shall consider a two-
dimensional uniform prior such that: Pðh1Þ � Uð�2; 2Þ and
Pðh2Þ � Uð�2; 2Þ. The likelihood function is defined as a mixture
of two bivariate Gaussian functions with means centered about
fh1; h2g ¼ f0:5; 0:5g and f�0:5;�0:5g with covariance matrix
0:1 � I, where I is the identity matrix. The standard SMC sampler
is implemented with N¼ 10,000 samples and the prior samples
with their associated normalized weights ŵs

i are presented in
Fig. 1. In the figure, the samples which fall in the regions of the
posterior indicated in yellow and light blue are resampled with a
higher probability than those which fall outside the regions of the
posterior indicated by the darker shaded regions. This allows for
the Markov chains in the MCMC step to initiate within the sup-
port of the posterior and removes the need to consider the burn-in.

However, there are still limits to such flexibility as situations
could arise whereby nearly all the samples could still fall outside
the true distribution even after the conditional resampling step.
This leads to nominal weights being close to 0 and the resampling
step would fail to converge the samples to the true distribution
[52].

One key problem in the SMC sampler is that there exists no
universal choice of proposal distribution qðhs�

i jhs
i Þ to generate can-

didate samples hs�
i [32]. This creates a significant degree of model

uncertainty in deciding an appropriate distribution for qðhs�
i jhs

i Þ.
In practice, a Normal distribution is used to ease the computation
of the acceptance ratio ai due to the symmetric nature of the distri-
bution [53,54]. However, the ideal choice of qðhs�

i jhs
i Þ is one that

is “optimally” scaled to the current posterior PðhsjD1:s;MÞ
[32,54,55]. Practically speaking, this would be difficult for two
reasons: (1) there is a lack of knowledge over the analytical form
of the true posterior itself; and (2) it is difficult to determine that
“optimal” scale, especially in the case where the random-walk
MH algorithm is used as the MCMC kernel, although the problem
can be addressed through the use of the independent MH MCMC
kernel in Ref. [31] which eliminates the need for parameter
tuning.

Another challenge is the computational cost of the SMC sam-
pler. In particular, when the dimensionality of the problem
increases, a higher computation cost is incurred in computing the
covariance matrix of qðhs�

i jhs
i Þ at each sth time-step sequence,

which can be the case for both the independent MH [31] and
random-walk MH algorithms.

2.2 Sequential Monte Carlo Variants. Numerous MCMC
move kernels within the SMC sampler have been considered such
as: (1) particle evolution metropolis (i.e., PEM-SMC) [33,56], (2)
Gibbs sampler, i.e., SMC for vector autoregressions with stochas-
tic volatility (VAR-SV) [57], and (3) target-invariant MCMC
mutation kernel, i.e., SMC for high-dimensional inverse problems
[58].
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The PEM-SMC sampler has demonstrated its strength in gener-
ating samplers more effectively from complex-shaped distribu-
tions, especially those with multiple peaks [33]. The sampler is
also able to sample efficiently from moderate-dimensional posteri-
ors (i.e., up to 30 dimensions) thanks to its effective way to
explore the dimensional sample space and generate more candi-
date samples with a high probability content. This ensures a quick
convergence of the samples toward the posterior distribution [33].
However, the effectiveness of the algorithm is subjected to the
choice of the proposal distribution (i.e., the transfer probability
distribution) which leads to the potential problem of model
uncertainty.

The SMC sampler for VAR-SV has demonstrated its strength in
tackling the problem of degeneracy effectively through the use of
the Gibbs sampler which ensures that there are less repeated sam-
ples generated in the MCMC step. This increases the number of
unique samples, thereby, allowing the sample space defined by
the posterior to be well-explored [57]. In addition, it is highly par-
allelizable which allows for the rapid update of samples from one
posterior to the next across iterations [57]. However, the sampler
is limited by the short-coming of the Gibbs sampler which is the
latter’s dependency on the choice of an appropriate conditional
distribution to represent the posterior [59]. Should the posterior be
functionally complex, choosing such conditional distribution
becomes nontrivial [29].

The target-invariant MCMC mutation kernel is also quite robust
thanks to its ability to address the issue of sample degeneracy
effectively like the SMC for VAR-SV [58]. In addition, the algo-
rithm ensures a relatively quick convergence rate of the samples
to the posterior distribution through the adaptive tempering step
which ensures a smooth transition from one posterior to the next
between successive iterations [58]. This allows for the sampler to
be applicable to cases with highly dimensional and complex-
shaped posteriors. However, the use of such MCMC move kernel
introduces a relatively large number of auxiliary parameters to
compute such as the tempering parameter and the Fourier coeffi-
cients which increases the computational cost of the algorithm
[58].

For the work presented here, the AIES is implemented as the
alternative MCMC kernel to the MH. The reasons behind such
proposal are: (1) the ability to sample from anisotropic and
highly-skewed distributions; (2) can be parallelized; and 3) uses a
reduced number of tuning parameters. This gives rise to the
SEMC sampler to which an additional feature proposed is the
adaptive tuning algorithm which serves to control the acceptance

rate of the sampler by tuning its step-size parameter in an auto-
matic manner.

3 Sequential Ensemble Monte Carlo Sampler

The AIES sampler is an MCMC sampling technique endowed
with the affine-invariance property which was recently developed
by Goodman and Weare [60]. Such property involves an affine-
transformation operation w which is defined by an invertible linear
mapping from a RNd to RNd space [61]

wðhÞ : H ¼ Âhþ b (2)

where H denotes h in the affine-transformed space, Â is the Nd-
by-Nd nonsingular transformation matrix and b is the Nd-by-1
translation vector. Defining P0ðHjDÞ as the posterior distribution
of H where P0 denotes the distribution function in the H-space,
affine-invariance exists between H-space and h-space if the fol-
lowing condition holds [62]:

P0ðHjDÞ ¼ P0ðwðhÞjDÞ / PðhjDÞ (3)

A sampler is affine-invariant if it possesses an MCMC move ker-
nel whose proposal distribution is also affine-invariant such that

q0ðH�jHiÞ ¼ q0ðwðh�ÞjwðhiÞÞ / qðh�jhiÞ (4)

whereby q0 is the proposal distribution function in the H-space.
When this condition is satisfied, the probability of generating a sam-
ple H� given Hi in the transformed H-space now becomes equal to
that of generating a sample h� given hi in the original h-space [60].

An ensemble hi is defined as a collection of Nc Markov chains
such that:

hi ¼ fh1;i; h2;i;…; hNc�1;i; hNc ;ig. In practice, Nc should be at
least twice the dimensionality of h (i.e., Nc � 2� Nd) [60].

The AIES algorithm is initialized by Nc distinct Markov chains
where each chain generates only one sample from the prior. This
produces the first ensemble hi for i¼ 1. Next, the samples are
updated one at a time in a sequential manner. To update the kth
chain (for k ¼ 1;…;Nc), a sample from a complementary chain
is chosen randomly from the set h½k	;i � fh1;iþ1;…;
hk�1;iþ1; hkþ1;i;…; hNc ;ig. The affine-invariant stretch-move kernel
is used to generate the candidate sample h�k;i [60,63]

h�k;i ¼ h½k	;i þ k � ðhk;i � h½k	;iÞ (5)

Fig. 1 Scatterplot of the prior samples, along with their associated normalized weights ŵ
s
i , obtained

from the posterior consisting of a mixture of two Gaussian distributions
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whereby k is a real-valued scalar proposal stretch factor which is
also a random variable following a proposal distribution gðkÞ
defined as

g kð Þ ¼

1

2 �
ffiffiffi
u
p
� 1ffiffiffi

u
p

� � � 1ffiffiffi
k
p if k 2 1

u
; u

� �

0 otherwise

8>>><
>>>:

(6)

and u � 1 is the user-defined step-size of the AIES sampler. The
form of gðkÞ in Eq. (6) is chosen such that it has a symmetric
property [60]

g
1

k

� �
¼ k � g kð Þ (7)

The candidate sample h�k;i is accepted with probability ak

ak ¼ min 1; kNd�1 �
P h�k;ijD;M
� �

P hk;ijD;M
� �

" #
(8)

This updating procedure is then repeated for the Nc chains and
then the next sample is processed (i.e., set i ¼ iþ 1 until i¼N).
To summarize the procedure, a pseudo-algorithm is presented in
Algorithm 1.

The AIES sampler presents two key advantages over the MH
sampler: it is able to sample from poorly scaled and highly-
skewed distributions just as effectively and efficiently as it
would from a well-scaled affine-transformed distribution [60,64]
due to the use of the affine-invariant stretch-move kernel; and it
does not require a user-defined proposal distribution qðh�i jhiÞ to
generate candidate samples. It needs to be noted that what is
described in point 2 can be achieved by the preconditioned
Crank–Nicolson (pCN) MCMC algorithm recently implemented
in Ref. [65]. This, in turn, removes the need for the proposed
SEMC sampler to compute the covariance matrix for qðh�i jhiÞ
and the algorithm only needs to iteratively update the scalar
step-size u, whose computational cost is independent of the
dimensionality of h. The procedure to update step-size u will be
presented in Sec. 3.1.

3.1 Adaptive-Tuning Algorithm. The proposed adaptive-
tuning algorithm is based on the work by Ref. [38] which serves
two key purposes: (1) to adaptively tune and update the step-size
u; and (2) to provide a mechanism to control the acceptance rates
of the SEMC sampler such that they converge toward the user-

defined target acceptance rates and fall within the optimal bounds
of ½0:15; 0:50	 suggested by Ref. [66].

The procedure undertaken by the algorithm is as follows: At
s ¼ 1, an initial step-size us¼1 is defined by the user to which the
recommended value is 2 [63,67]. From this initial value, the nomi-
nal step-size unom is computed after the MCMC step

unom ¼ us � exp ½as � atr	 (9)

where as is the acceptance rate for the current time-step sequence
s and atr is the target acceptance rate defined as [66]

atr ¼
0:21

Nd
þ 0:23 (10)

If unom> 1, then usþ1 ¼ unom. Otherwise, the algorithm sets
usþ1 ¼ 1:01 to ensure that the step-size would never be less than
1. This procedure is then repeated at the end of each iteration until
the terminal iteration s ¼ send.

To provide additional robustness to the SEMC sampler and
assuring the acceptance rates converge toward the target accep-
tance value at every iteration, “virtual” iterations are introduced
which involve the updating of the posterior samples with a series
of repeated data Ds. The termination criteria are defined whereby
the acceptance rate values have converged. This is indicated when
the difference in the acceptance rate values Da between successive
“virtual” iterations j falls within, e.g., 10% of the value of atr upon
which the procedure ends. In doing so, it not only allows for the
automatic tuning of the step-size us but also ensures that the
acceptance rate values converge toward atr across all s, independ-
ent of the data provided.

4 Acceptance Rates Analysis

The proposed SEMC sampler bounds the acceptance rate of the
algorithms as defined by Eq. (10). While this is used as a general
reference for the AIES, there exists a lower and upper bound on
the acceptance rate based on the analysis done in the context of
the experimental investigation to which details are presented in
Sec. 6. A numerical investigation into the acceptance rate evolu-
tion by the SEMC sampler, given the Markov kernel T1 is done
for target acceptance rates of atr ¼ f0:100; 0:283; 0:440;
0:800; 0:900; 1:000g with the respective starting step-size values
us¼1 ¼ f40; 40; 8; 2; 2; 2g and presented in Fig. 2. It needs to be
highlighted that the acceptance rate can be controlled by control-
ling the step-size us [60]. However, the numerical experiment
shows that the acceptance rates never fall below 0.300, although
the chosen target acceptance rate values were 0.100 and 0.283.
The reason behind the existence of such lower bound is attributed
to the resampling procedure by the SEMC algorithm which
ensures that samples far from the posterior are eliminated while
samples closer to or within the posterior are repopulated. This
ensures that a proportion of the samples will always be accepted,
resulting in a nonzero acceptance rate.

On the other hand, the upper bound of the acceptance rate is in
practice always less than 1 given that for a nonuniform distribu-
tion a proportion of samples are rejected by the sampling algo-
rithm. In fact, in the cases where the chosen target acceptance rate
values were 0.900 and 1.000, the acceptance rates across the time-
step sequences s never exceeded 0.850 as seen in Fig. 2. Hence,
the existence of such bounds makes the algorithm particularly
robust and generally applicable without the need of guessing a
“good” acceptance rate. Instead, the acceptance rate can be used
as a monitoring parameter of the performance of the algorithm. In
fact, if the acceptance rate is high (e.g., above 0.850), it could
indicate that the samples are stuck in a specific region of the pos-
terior and the resulting sample distribution and its estimates may
not be representative of the true posterior distribution. The accep-
tance rate bounds may depend on the dimension of the posterior

Algorithm 1 AIES sampler algorithm

1: procedure (Generate N samples from PðhjD;MÞ)
2: Define Nc chains: h1 ¼ fh1;1; h2;1;…; hNc�1;1; hNc ;1g � Initiate chains
3: for i ¼ 1 : N � 1 do

4: for k ¼ 1 : Nc do � Update kth chain
5: Sample h½k	;i from the complementary set
6: Sample: k � gðkÞ
7: Generate h�k;i using Eq. (5)
8: Calculate acceptance probability aAIES using Eq. (8)
9: Sample: r � U½0; 1	
10: if ak > r then � Accept/reject step
11: Set hk;iþ1 ¼ h�k;i
12: else

13: Set hk;iþ1 ¼ hk;i

14: end if

15: end for

16: end for

17: end procedure
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distribution and the number of chains Nc used in the sampler
which requires further investigation.

Without the need to decide on a “good” acceptance rate, comple-
mented with the proposed adaptive-tuning algorithm involving the
“virtual” iterations, these features highlight the robustness of the pro-
posed SEMC sampler in that: (1) it is “tune-free” for the users in that
they do not have to define an initial step-size value us¼1; and (2) it is
able to effectively control the acceptance rates across the different
time-step sequence s as illustrated from the results in Fig. 2.

Algorithm 2 presents a summary of the SEMC sampling proce-
dure. The resampling step in line 10 ensures that (1) the Markov
chains initiate with a higher probability from samples hs

i with a

higher ws
i [51]; and (2) the final distribution of samples would be

representative of the analytical distribution of Pðhs
i jD1:s;MÞ.

5 Numerical Example: A Spring-Mass-Damper

System

In this example, a single degree-of-freedom (SDoF) spring-
mass-damper system consisting of a block with mass m¼ 0.30 kg
attached to a spring with stiffness k, and a damper with viscous
damping coefficient c is studied. The values of k and c decrease
with time as described by a random degradation process. The sys-
tem’s equation of motion can be described following:

Fig. 2 Acceptance rates for the SEMC sampler: target acceptance rate values atr 5 f0:100; 0:283; 0:440;0:800; 0:900; 1:000g and
starting step-size values us 5 1 5 f40; 40;8; 2; 2;2g

Algorithm 2 Proposed SEMC sampler algorithm

1: procedure (generate N samples from PðhjjD1:j;MÞ)
2: Set s ¼ 0 � initialize time step counter
3: Draw initial N sample set: hsþ1

i �PðhjMÞ � generate samples from prior
4: Set usþ1 ¼ 2 � set initial value of step-size
5: while s < send do � loop over time steps
6: Set s ¼ sþ 1
7: Set j¼ 1 & aold ¼ atr � initialize parameters
8: Compute ŵs

i using Eq. (A5)
9: while do � initiate “virtual” loop
10: Resample N samples: hs

i � ŵs
i

11: Set hs
i ¼ hi;1 in ensemble h1 � Initiate ensemble

12: Update h1 with 1 iteration of AIES (see Algorithm 1) � MCMC step
13: Compute a using Eq. (8)
14: Compute unom using Eq. (9) � tuning the step-size
15: Set usþ1 ¼ maxðunom; 1:01Þ
16: if j a� aoldj < 0:1 � atr then � check termination criteria
17: Break � exit “virtual” loop
18: end if

19: Set aold ¼ a
20: Set j ¼ jþ 1
21: end while � end “virtual” loop
22: Set updated ensemble h1 as hs

i �PðhsjD1:s;MÞ
23: Compute hsþ1

i using Tðhsþ1jhsÞ � set as new prior samples
24: Compute PDF of Pðhsþ1

i jD1:sÞ using Eq. (A9) � set as new prior PDF
25: Compute PðD1:sjMÞ using Eq. (1)
26: end while

27: end procedure
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m � d
2x

ds2
þ c tð Þ � dx

ds
þ k tð Þ � x ¼ 0 (11)

where x denotes the instantaneous displacement of the mass from
its rest position, s denotes the time variable (in seconds) of the
oscillation, while t denotes the time variable (in months) of the
parameters k and c. Solving the second-order differential equation
in Eq. (11), we obtain its steady-state, underdamped response
solution

x̂ sð Þ ¼ x0 � exp �
c tð Þ
2m
� s

� �
� cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k tð Þ
m
�

c tð Þ
2m

� �2
s

� s

2
4

3
5

(12)

where the oscillation amplitude is x0 ¼ 0:05 m.
To account for the stochastic characteristics of the random deg-

radation process of k(t) and c(t), ten simulation runs have been
made for each quantity using discrete staircase functions. To sim-
ulate the “black-box” nature of the true degradation process, for
each run, six distinct Markov kernels are derived to describe the
evolution of k(t) and c(t) under uncertainty. The most probable
Markov kernel would be identified based on the log-evidence.
Given the most probable Markov kernel, the Bayesian identifica-
tion of k(t) and c(t) is performed for t ¼ 1;…; 6 months and used
for prediction estimates at t ¼ 7; 8; 9 months. These results
obtained using both the SMC and SEMC samplers are then com-
pared on the basis of the estimation results, prediction results,
computational time, and effectiveness in controlling the accep-
tance rates.

The results show that the SEMC sampler is able to yield esti-
mates of k(t) and c(t) for all ten runs which are well-verified
against those obtained by the SMC sampler. The computational
time is significantly lower for the SEMC sampler compared to the
SMC sampler. Furthermore, the SEMC sampler is able to effec-
tively control the acceptance rates of the samples within optimal
bounds compared to the SMC sampler. These observations illus-
trate and highlight the strengths of the SEMC sampler as hypothe-
sized. Full details on the numerical setup and the results can be
found in Ref. [68] and the corresponding MATLAB codes of the
numerical example are freely available via link.2

6 Experimental Investigation: Single-Storey Shear

Frame Structure Subjected to a Coulomb Friction

This experimental example is used to investigate the capability
of the proposed approach to identify the most probable Markov
kernel able to model the evolution of Coulomb friction force on
the response dynamics of a physical structure under uncertainty.
This investigation is conducted using a single-storey shear frame
with a Coulomb friction contact, subjected to a harmonic base-
excitation. The physical setup and schematic diagram of the struc-
ture are presented in Figs. 3 and 4, respectively. A detailed
description of the physical setup can be found in Ref. [39].

The objective of this investigation is to evaluate the robustness
of the proposed SEMC sampler in its ability to infer the values of
Coulomb friction force at each observation, but also the time-
invariant natural frequency of the structure and measurement error
using sets of actual experimental data obtained sequentially.

6.1 Physics-Based Model of the Structure. The building
can be modeled as spring-mass-damped system as shown in Fig. 5
where the mass m and the stiffness k represent the participating
mass and stiffness of the first vibrating mode of the structure
[39,40]. The Coulomb friction force Fl is generated as a result of
contact between the mass m and a fixed wall and is obtained as
the product of a friction coefficient l and the normal contact force
FN.

To study the response dynamics of the structure as well as the
parameters to be inferred in this problem, it is possible to write
the governing equation of this SDoF model in a dimensionless
form as [40]

r2 � d2~x

dsb
2
þ ~x þ b tð Þ � sgn

d~x

dsb

� �
¼ cos sbð Þ (13)

where ~x is the dimensionless response of m, r is the frequency
ratio, bðtÞ is the time-varying friction ratio, and sb is the dimen-
sionless time parameter. The dimensionless frequency ratio r is
defined as [40]

r ¼ xb

xn
(14)

where xn ¼
ffiffiffi
k
m

q
is the natural frequency of the structure which

was measured experimentally [39] to be 19.572 rad/s and xb is the
driving frequency of the harmonic base-excitation. Hence, the
dimensionless time sb in Eq. (13) is defined as: sb ¼ xb � s, where
s is the physical time parameter. The dimensionless force ratio
bðtÞ is defined as [40]

b tð Þ ¼ Fl tð Þ
kYb

(15)

where Yb is the driving displacement amplitude by the rotor. Thus,
kYb is the driving force amplitude whose value was measured

Fig. 3 SDoF single-storey shear frame structure subjected to
Coulomb friction

Fig. 4 Schematic diagram of the SDoF single-storey shear
frame structure subjected to Coulomb friction. Image adapted
from Ref. [43].2https://github.com/Adolphus8/Sequential_Ensemble_Monte_Carlo.git
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experimentally to be 2.50 N. Hence, the dimensionless response ~x
is defined as [40]

~x ¼ x

Yb
(16)

where x is the response displacement of m. According to
Den–Hartog’s theory [69], under the assumptions of continuous
and symmetric response, the steady-state solution of Eq. (13) can
be obtained analytically as [40]

~xnumðsbÞ ¼
~xðsbÞ for sb 2 ½0;pÞ
�~xðsb � pÞ for sb 2 ½p; 2pÞ

	
(17)

where ~xðsbÞ can be evaluated as

~x sbð Þ ¼ ~x0 � cos sbð Þ þ b tð ÞU � sin sbð Þ þ b tð Þ

� 1� cos
sb

r

� �
� Ur � sin

sb

r

� �� �
(18)

In Eq. (18), the damping function U is defined as

U ¼ sin p=rð Þ
r � 1þ cos p=rð Þ½ 	 (19)

while the dimensionless response amplitude ~x0 can be evaluated
as

~x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� r2

� �2

� b tð Þ � Uð Þ2
s

(20)

Details on the derivation of the above terms can be found in
Ref. [40].Fig. 5 Spring-mass representation of the SDoF single-storey

shear frame structure subjected to Coulomb friction

Table 1 A spring-mass-damper: numerical results of r and / (deg) obtained for the respective Fl(ts)

Flðt1Þ ¼ 1:435 N Flðt2Þ ¼ 0:980 N Flðt3Þ ¼ 0:662 N Flðt4Þ ¼ 0:217 N

Experiment rnom r / r / r / r /

1 0.65 0.649 46.464 0.637 27.217 0.624 16.622 0.652 6.496
2 0.80 0.791 41.492 0.789 26.269 0.807 16.900 0.796 4.292
3 0.95 0.952 41.864 0.944 29.936 0.941 14.934 0.936 5.839
4 1.10 1.098 132.661 1.099 147.498 1.123 162.318 1.110 174.223
5 1.25 1.278 137.022 1.253 150.104 1.255 160.757 1.262 174.832
6 1.40 1.407 129.795 1.406 152.246 1.409 156.074 1.392 171.955
7 1.55 1.557 136.944 1.549 152.011 1.540 161.960 1.548 173.666
8 1.70 1.706 131.314 1.694 152.008 1.711 157.884 1.715 171.698
9 1.85 1.848 134.294 1.849 153.251 1.833 161.017 1.860 169.833

Fig. 6 Shear frame structure: Plots of r and / for the corresponding values of Fl(ts) for s 5 f1; . . . ; 4g
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6.2 Data Collection. Four different values of Coulomb fric-
tion force FlðtÞ are considered to simulate its time-varying aspect
for t ¼ f1; 2; 3; 4g months. This variation in FlðtÞ can be simu-
lated by varying the configuration of the weights in the counter-
weight system seen in Fig. 4. The values of each FlðtÞ are
f1:435; 0:980; 0:662; 0:217g N, respectively. For each FlðtÞ, 9
sets of phase angle data / are collected across nine chosen values
of frequency ratio r. The phase angle / is chosen as the response
data due to its high-degree of sensitivity to the variation in FlðtÞ
as shown in Ref. [39]. The reference values for the nine chosen
values of r, which can be obtained by adjusting xb (i.e., see
Eq. (14)), are: rnom ¼ f0:65; 0:80; 0:95; 1:10; 1:25; 1:40; 1:55;
1:70; 1:85g. The experimental procedure to obtain the phase
angles / from given values of FlðtÞ and r can be found in
Ref. [39].

The experimental measurements of /, r, and FlðtÞ are shown in
Table 1 and in Fig. 6. In Fig. 6, the Den–Hartog’s boundary
denotes the boundary between the continuous motion and the
stick-slip regime for the dynamic response of the top plate under
Coulomb friction, while the continuous colored lines represent the
true model output of /, given FlðtsÞ, for the different values of r
within the continuous motion regime. In addition, the values of
the driving frequency xb measured from each test are presented in
Table 2.

Based on the experimentally obtained values of FlðtÞ, two
choices of Markov kernels are identified to model the time-based
degradation of FlðtÞ

T1: Flðtsþ1Þ ¼ FlðtsÞ � 0:375þ �1 (21)

T2: Flðtsþ1Þ ¼ exp ½�0:470	 � FlðtsÞ þ �2 (22)

whereby s ¼ 1;…; 4 denotes the time sequence index, and �1 and
�2 are the zero-mean normally distributed process noise terms
with the respective standard deviations: fr1;r2g ¼
f0:040; 0:090g N. The parameters of the Markov kernels are
obtained using a curve-fitting procedure via the least-squares
method on the experimentally obtained values of FlðtÞ. The corre-
sponding nominal models C1 and C2 (i.e., Kernel models without
the noise term, are shown in Fig. 7). It needs to be added that
while in this example the parameters of the Markov kernel are
assumed to be known, this is not always the case in general. In
such cases, the parameters of the Markov kernel can also be
included in the set of inferred parameters through Bayesian
inference [41].

6.3 Bayesian Inference Setup. The sequential Bayesian
inference procedure is done for hðtsÞ ¼ ðFlðtsÞ;xn; r/; rrÞ, where
r/ and rr are the standard deviations of the respective noise asso-
ciated with the experimentally obtained values of / and r. The
parameters xn, r/, and rr are assumed to be time-invariant and it
needs to be noted that r/ and rr are internal parameters of the
likelihood function and are not used in the models to predict
FlðtsÞ and xn. This gives rise to a four-dimensional Bayesian
inference problem for the estimation of the aforementioned
parameters at each time sequence ts.

The initial priors at s¼ 1 for each of the inferred parameters are
set to be noninformative uniform priors whose bounds are listed
in Table 3. For s> 1 the prior is the predictive distribution that is
derived using Eq. (A9) by propagating the samples obtained at
previous time-step s–1 through the Markov kernel. The likelihood
function for each time sequence ts is set to follow a Normal distri-
bution. Assuming independence between individual observations
of / and r as well as between datasets obtained at different time
sequence ts, the likelihood function is defined as

P Dsjh tsð Þ; /̂; r̂

 �

¼
Y9

q¼1

1

2p � rr � r/

exp �
rq

nom � r̂ xq;s
b ;xn

� �� �2

2 � rr
2

�
/q;s � /̂ rq;s;Fl tsð Þð Þ

 �2

2 � r/
2

2
4

3
5
(23)

Table 2 Shear frame structure: numerical values of xb (rad/s)
used for the respective Fl(ts)(N)

Experiment 1.435 0.980 0.662 0.217

FlðtsÞ xb xb xb xb

1 12.696 12.462 12.213 12.751
2 15.487 15.444 15.791 15.576
3 18.639 18.478 18.415 18.318
4 21.480 21.500 21.983 21.729
5 25.015 24.514 24.569 24.694
6 27.540 27.522 27.585 27.239
7 30.468 30.321 30.141 30.296
8 33.390 33.149 33.478 33.558
9 36.165 36.195 35.880 36.398

Fig. 7 Shear frame structure: Nominal evolution models C1 and C2
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where rq
nom; xq

b, and /q denote respectively the qth value/
observation of rnom, xb, and / obtained at time sequence ts for
q ¼ 1;…; 9; r̂ denotes the model used to compute r, /̂ is the
model used to compute /, and Ds ¼ ð/; rÞs denotes the dataset
obtained at ts.

The model r̂ evaluates the analytical solution for r from a given
value of xb and xn according to Eq. (14). The computation proce-
dure by the model /̂ to evaluate the analytical solution of / from
a given value of FlðtsÞ and r consists of three main steps [69].

In the first step, the algorithm computes bðtsÞ with the input
value of FlðtsÞ using Eq. (15). In order to verify the assumption of
continuous response, the value of b corresponding to the boundary
between continuous and stick-slip regimes, shown in Fig. 6, is
also computed as [69]

blim ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

U2 þ 1
r4

� �
� 1� r2ð Þ2

s
(24)

If bðtsÞ > blim, the condition for a continuous motion is not satis-
fied. Therefore, the algorithm proceeds to assign a NaN (i.e., not a
number) value for / and the procedure terminates here. Other-
wise, the algorithm proceeds to the next step. In the second step,
the analytical steady-state response solution ~xnumðsbÞ is computed
for sb 2 ½0; 2pÞ from Eq. (17) and the numerical excitation func-
tion ~ynumðsbÞ, expressed as [69]:

~yðsbÞ ¼ cosðsb þ uÞ (25)

where
u ¼ atan2½�bðtsÞ � U � ð1� r2Þ; ~x0 � ð1� r2Þ	 (26)

is also computed for sb 2 ½0; 2pÞ. In the last step, the algorithm
proceeds to compute the phase angle / between the excitation and
the response functions. This is done by obtaining their respective

dimensionless frequency spectra ~xFFTð~f Þ and ~yFFTð~f Þ using the
FFT algorithm [70,71]. The dimensionless frequency is here

defined as ~f ¼ 2p�f
xb

, where f is the frequency variable in the FFT-

space. From there, the phase angle is computed at ~f ¼ 1 (i.e., res-
onance) following [39]:

/ ¼ argf~xFFTð~f ¼ 1Þg � argf~yFFTð~f ¼ 1Þg (27)

The above procedure is provided as a pseudo-algorithm as shown
in Algorithm 3. In the event /̂ ¼ NaN, the likelihood function
PðDsjhðtsÞ; /̂; r̂Þ returns a 0.

6.4 Results. To account for the statistical variability of the
sampling algorithms, the inference is repeated ten times, and the
means and standard deviation are calculated. For each run, 1000
samples are generated from the posteriors PðhsjD1:s;MÞ and the
log-evidence log ½PðD1:sjMÞ	 is computed at each time-step

sequence s for each Markov kernel for both samplers. The numeri-
cal results are summarized in Tables 4 and 5 while a graphical
plot illustration is provided in Fig. 8. As seen in Tables 4 and 5,
log ½PðD1:sjMÞ	 is consistently higher for the case of T1 which
indicates that T1 is the most probable Markov kernel to represent
the variation of FlðtsÞ across ts.

The results of acceptance rates are illustrated in Fig. 9 showing
a superior convergence of the acceptance rates of the SEMC sam-
pler for both Markov kernels T1 and T2 right from time-step
sequence s¼ 1 while the SMC sampler reached convergence from
s¼ 3 onward. This demonstrates the effectiveness of the SEMC
tuning algorithm in ensuring the convergence of the acceptance
rates. Furthermore, the SEMC variability of the acceptance rate
(shown as one-sigma error bars) is significantly smaller than the
corresponding SMC variability.

The resulting statistics of the estimates for FlðtsÞ across each
time-step sequence s are obtained for each choice of Markov
kernel and summarized in Figs. 10 and 11 and in Tables 6 and 7.
Figure 10 shows the identified value of the parameter FlðtsÞ with
the corresponding error bars in correspond to the one-sigma
bounds. In both cases follow the trend defined by the evolution
model defined within the respective Markov kernels, for both the
SEMC and SMC samplers.

The SEMC estimates for FlðtsÞ given T1 are generally closer to
the true values compared to the estimates using T2 while the
standard deviations of the estimates at each time-step sequence s
are generally the same between the different Markov kernels.
Similar behavior is also observed for the SMC estimates. This is
due to the fact that T1 describes better the change of FlðtsÞ across
the time-step sequences s compared to T2. Hence, this set of
results illustrates the direct influence of the choice of Markov ker-
nel on not just the trajectory of the time-varying estimates of
FlðtsÞ, but also the accuracy of the estimates of FlðtsÞ across the
simulation runs at any given s.

The predictive capabilities of the identified models are shown
in Fig. 11. This is obtained by propagating the 10,000 posterior
samples from the ten repeated runs each with 1000 samples
through the Markov kernels (see Eq. (A2)). In the figure, the red
histogram plots represent the distribution profile of the predicted
values of FlðtsÞ from the posterior distribution at s¼ 1; the green
histogram plots represent the prediction from the posterior distri-
bution at s¼ 2, the blue histogram plots represent the prediction
from the posterior distribution at s¼ 3, and the yellow histogram
plots represent the posterior distribution obtained at s¼ 4.
Although the samples from both models generally include the true
value of FlðtsÞ at any given time-step, the T1 model shows a better
predictive capability compared to T2. Moreover, T2 produces a
significant number of samples with a value of Coulomb friction
equal to zero, in particular for the model calibrated using only the
data from s¼ 1 and s¼ 2.

The resulting statistics of the estimates for the parameters, xn,
r/, and rr, across the time-step sequence s, obtained for each
choice of Markov kernel, are shown in Figs. 12 and 13 while the
corresponding numerical results are summarized in Tables 8–13.
Like in Fig. 10, the error bars correspond to the one-sigma
bounds. For the case of xn, the SEMC and SMC estimates given
either choice of the Markov kernel both converge to the experi-
mentally measured values (see Sec. 6.1). This indicates the effec-
tiveness of the samplers in inferring xn.

Table 3 Shear frame structure: bounds of the noninformative
uniform prior for the respective inferred parameters

Parameter Bounds Units

FlðtsÞ ½0:01; 100	 N
xn ½0:01; 100	 rad/s
r/ ½0:001; 10	 deg
rr ½0:001; 1	 —

Algorithm 3 Pseudo-algorithm of model /̂

1: procedure (compute / from FlðtsÞ and r)
2: Compute bðtsÞ with FlðtsÞ using Eq. (15)
3: Compute blim with r using Eq. (24)
4: if b > blim then � steady, continuous motion condition not satisfied
5: Set / ¼ NaN
6: else

7: Compute ~xnumðsbÞ using Eq. (17)
8: Compute ~ynumðsbÞ using Eq. (25)
9: Execute FFT on ~xnumðsbÞ to generate ~xFFTð~f Þ
10: Execute FFT on ~ynumðsbÞ to generate ~yFFTð~f Þ
11: Set ~f ¼ 1
12: Compute / using Eq. (27)
13: end if

14: end procedure
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The average over the time-step s of the sampled standard devia-
tions for the measured parameters are used as reference values
denoted as rref

/ and rref
r , respectively,

rref
/ ¼

1

4

X4

s¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8

X9

q¼1

/q;s � /̂ Fl tsð Þ; rq;sð Þ
h i2

vuut (28)

rref
r ¼

1

4

X4

s¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8

X9

q¼1

rq;s � rnomð Þ2
vuut (29)

The SEMC sampler provides an estimate of r/ close to the refer-
ence values given either choice of the Markov kernel. However,
the one-sigma bounds of the estimates given T2 is significantly
larger than that for T1 (see Figs. 12 and 13). A similar observation

Table 4 Shear frame structure: model identification using
SEMC—mean of the log-evidence (log ½P(D1:s jM)	), and its
standard deviation (Stdev)

T1 T2

s E (log-evidence) Stdev. E (log-evidence) Stdev.

1 –23.614 5.210 –23.574 5.212
2 –37.486 9.020 –38.913 13.052
3 –51.988 13.738 –53.311 19.356
4 –65.276 18.829 –67.125 25.783

Table 5 Shear frame structure: model identification using
SMC—mean of the log-evidence (log ½P(D1:s jM)	), and its stand-
ard deviation (Stdev)

T1 T2

s E (log-evidence) Stdev. E (log-evidence) Stdev.

1 –23.493 5.212 –23.543 5.209
2 –44.599 8.399 –45.435 10.501
3 –61.712 15.436 –64.471 18.207
4 –75.096 30.674 –82.697 26.252

Fig. 8 Shear frame structure: model identification results using SEMC and SMC—mean of the log-
evidence (log ½P(D1:s jM)	), and its one-sigma bounds

Fig. 9 Shear frame structure: acceptance rates result using SEMC and SMC—mean of the accep-
tance rates and its one-sigma bounds. Target acceptance rate: 0.283 (i.e., see Eq. (10)).
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Fig. 10 Shear frame structure: parameter identification of Fl(ts) ½N 	 using SEMC and SMC—mean of
Fl(ts), and its one-sigma bounds

Fig. 11 Shear frame structure: posterior sample histogram profiles of the predicted values of Fl(ts) ½N 	 using SEMC.
The black dotted vertical line denotes the true value of Fl(ts) at a given s.

Table 6 Shear frame structure: parameter identification of
Fl(ts) (N) using SEMC—mean of Fl(ts), and its standard devia-
tion (Stdev)

T1 T2

s True value E½FlðtsÞ	 Stdev. E½FlðtsÞ	 Stdev.

1 1.435 1.409 0.019 1.387 0.024
2 0.980 0.975 0.012 0.929 0.007
3 0.662 0.622 0.007 0.624 0.003
4 0.217 0.233 0.004 0.250 0.003

Table 7 Shear frame structure: parameter identification of
Fl(ts) ½N 	 using SMC—mean of Fl(ts), and its standard deviation
(Stdev)

T1 T2

s True value E½FlðtsÞ	 Stdev. E½FlðtsÞ	 Stdev.

1 1.435 1.421 0.070 1.382 0.108
2 0.980 1.027 0.094 0.929 0.026
3 0.662 0.667 0.108 0.659 0.056
4 0.217 0.274 0.095 0.322 0.083
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Table 9 Shear frame structure: parameter identification of xn

(rad/s) using SMC—mean of xn, and its standard deviation
(Stdev)

T1 T2

s True value E½xn	 Stdev. E½xn	 Stdev.

1 19.572 65.762 1.844 46.800 1.908
2 19.572 23.725 1.750 24.748 1.741
3 19.572 21.450 1.540 21.735 1.237
4 19.572 21.045 1.025 21.668 1.978

Table 10 Shear frame structure: parameter identification of r/

(deg) using SEMC—mean of r/, and its standard deviation
(Stdev)

T1 T2

s Reference value E½r/	 Stdev. E½r/	 Stdev.

1 2.512 3.492 0.199 3.559 0.275
2 2.512 3.471 0.183 3.440 0.296
3 2.512 3.495 0.190 3.466 0.295
4 2.512 3.482 0.196 3.456 0.294

Table 11 Shear frame structure: parameter identification of r/

(deg) using SMC—mean of r/, and its standard deviation
(Stdev).

T1 T2

s Reference value E½r/	 Stdev. E½r/	 Stdev.

1 2.512 6.600 0.686 6.584 0.683
2 2.512 6.921 0.686 5.646 0.658
3 2.512 6.934 0.638 6.030 0.665
4 2.512 6.479 0.660 5.949 0.682

Table 12 Shear frame structure: parameter identification of rr

using SEMC—mean of rr, and its standard deviation (Stdev)

T1 T2

s Reference value E½rr 	 Stdev. E½rr 	 Stdev.

1 0.010 0.383 0.053 0.383 0.108
2 0.010 0.378 0.052 0.357 0.111
3 0.010 0.366 0.054 0.357 0.119
4 0.010 0.366 0.052 0.356 0.118

Table 8 Shear frame structure: parameter identification of xn

(rad/s) using SEMC—mean of xn, and its standard deviation
(Stdev)

T1 T2

s True value E½xn	 Stdev. E½xn	 Stdev.

1 19.572 20.943 1.198 21.056 1.590
2 19.572 20.737 1.220 21.252 1.583
3 19.572 20.791 1.202 21.145 1.504
4 19.572 20.771 1.198 21.155 1.531

Fig. 12 Shear frame structure: parameter identification of xn (rad/s); r/ (deg), and rr using SEMC and SMC
has given T1—their corresponding means, and one-sigma bounds. The reference values for the respective
parameters are: fxn;r/; rrg5 f19:572 rad/s; 2:664 deg;0:011g.

Table 13 Shear frame structure: parameter identification of rr

using SMC–mean of rr, and its standard deviation (Stdev)

T1 T2

s Reference value E½rr 	 Stdev. E½rr	 Stdev.

1 0.010 0.393 0.144 0.408 0.252
2 0.010 0.248 0.140 0.311 0.246
3 0.010 0.170 0.149 0.203 0.267
4 0.010 0.156 0.140 0.161 0.226
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is made for the SMC estimates of r/ although its estimates are
approximately twice of that the SEMC sampler with nearly thrice
the 1-sigma bounds. In estimating rr, neither the results obtained
by the SEMC nor SMC samplers come close to the reference
value of rref

r ¼ 0:010. Finally, for FlðtsÞ, xn, r/, and rr, the
SEMC sampler generally has a smaller standard deviation on its
estimates compared to the SMC sampler.

7 Conclusions

A “tune-free” and robust sampler named sequential ensemble
Monte Carlo has been proposed for the on-line Bayesian inference
of time-varying parameters. The proposed sampler is character-
ized by the implementation of the affine-invariant ensemble sam-
pler and automatic control of acceptance rates. Thanks to the
introduction of the “virtual” iteration mechanism the sampler has
not only automatized the tuning of the step-size parameter but
also ensured that the acceptance rate converges toward the pre-
scribed value defined within the admissible bounds. This, in turn,
removes the need of tuning parameters thanks to the adaptive
approach implemented in the algorithm. By doing so, the pro-
posed sampler is robust, “tune-free” and generally applicable. All
features required for the use of such tool in solving real engineer-
ing problems.

The proposed sampler has been verified and validated by identi-
fying the time-variant parameters. The examples provided showed
that the Sequential Ensemble Monte Carlo outperforms the
traditional sampler yielding estimates with tighter bounds across
independent simulation runs and with acceptance rates well-
moderated within optimum bounds. Moreover, the experimental
investigation has also shown that capability of the method to iden-
tify the most probable Markov kernel under model uncertainty.

The implemented algorithm and all the associated files and
examples are freely accessible on the following repository.2 This
allows for the easy replication and independent check of the
approach as well as the possibility of replicating the results
presented.

Data Availability Statement

The data and information that support the findings of this article
are freely available at following link.2

Appendix

A.1 Sequential Bayesian Filtering

The mathematical formulation of sequential Bayesian filtering
to infer the time-varying parameter(s) is based on the well-known
Bayes’ theorem [72]

P hjD;Mð Þ ¼ P Djh;Mð Þ � P hjMð Þ
P DjMð Þ (A1)

whereby h represents the vector of inferred model parameters (can
be either time-invariant or time-varying), D represents the vector
of measurements (or observations) used to update our knowledge
of h, and M denotes the model class which refers to a collection of
mathematical models (i.e., as functions of h) which are believed
to best represent the observations D and the dynamics of the time-
varying h. The terms in Eq. (A1) are defined as [29]:


 PðhjMÞ is the prior distribution which describes our knowl-
edge of h before observing D,


 PðDjh;MÞ is the likelihood function which accounts for the
degree of error between D and the output from M,


 PðhjD;MÞ is the posterior distribution which describes our
updated knowledge of h after observing D,


 PðDjMÞ is the evidence that serves as the normalizing con-
stant of the posterior.

A standard approach to sample from a target distribution would
be Monte Carlo sampling which requires that the target distribu-
tions be normalized and have defined cumulative distribution
functions (CDF) [29,73]. However, due to PðhjD;MÞ not being
known until its evaluation, Markov Chain Monte Carlo (MCMC)
techniques are adopted to generate samples from it [29].

The interest here is in the use of the Bayesian inference frame-
work toward inferring the time-varying h, whose posterior is con-
sequently varying over time. To reflect such aspects, we define
hðtsÞ as the parameter value at the sth time-step sequence whose
instantaneous posterior can be expressed as PðhðtsÞjD1:s;MÞ,
while D1:s ¼ fD1;…;Dsg denotes the stream of dataset D
obtained sequentially up to the sth time-step sequence in an on-

Fig. 13 Shear frame structure: parameter identification of xn (rad/s); r/ (deg), and rr using SEMC and SMC
was given T2—their corresponding means, and one-sigma bounds. The reference values for the respective
parameters are: fxn; r/;rrg5 f19:572rad/s; 2:664 deg;0:011g.
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line manner. An essential requirement in the inference of hðtsÞ is
the underlying Markov kernel Tðhðtsþ1ÞjhðtsÞÞ that describes the
evolution from hðtsÞ to hðtsþ1Þ and can be expressed as

Tðhðtsþ1ÞjhðtsÞÞ : hðtsþ1Þ ¼ CðhðtsÞÞ þ �h (A2)

where Cð•Þ is the nominal evolution model and �h is the process
noise. In this paper, we shall assume that �h follows a zero-mean
Normal distribution with fixed standard deviation r� (see, e.g.,
Refs. [74], and [75]).

The sequential Bayesian filtering procedure can be summarized
as follows [10]: At time-step sequence s¼ 1, the posterior
PðhðtsÞjD1:s;MÞ is defined (see Eq. (A1)). Following which, the
predictive distribution Pðhðtsþ1ÞjD1:s;MÞ is computed [27]:

Pðhðtsþ1ÞjD1:s;MÞ ¼
ð

Tðhðtsþ1ÞjhðtsÞÞ � PðhðtsÞjD1:s;MÞ � dhðtsÞ

(A3)

The predictive distribution Pðhðtsþ1ÞjD1:s;MÞ describes our pre-
diction of hðtsþ1Þ before observing the data Dsþ1 to be obtained in
time-step sequence number sþ 1. In this regard,
Pðhðtsþ1ÞjD1:s;MÞ is set as the new before be updated and the pro-
cess is repeated for time-step sequence number sþ 1 until the ter-
minal sequence send.

To sample sequentially from the time-varying PðhðtsÞjD1:s;MÞ,
the SMC sampler can be implemented to which details can be
found in the literature [43,68].

A.2 Sequential Monte Carlo Sampler

The SMC sampler is based on the sequential importance-
resampling (SIR) algorithm in SMC methods (or Particle filters)
to generate samples sequentially from a time-evolving posterior
[43]. The sampling procedure is as follows [31]: At iteration
s ¼ 0, sampling algorithm is initialized by generating N samples
generated from the prior Pðhsþ1Þ via standard Monte Carlo sam-
pling. Next, the nominal weights are computed using the current
likelihood function [76]

ws
i ¼ PðDsjhs

i ;MÞ (A4)

and normalized [32]

ŵs
i ¼

ws
iPN

i¼1

ws
i

(A5)

where i is the index over the sample.
In the updating step, N single-step Markov chains are initiated,

each starting from sample hs
i obtained using weighted resampling

(with replacement) according to ws
i . The Metropolis–Hastings

(MH) approach is then adopted to generate one sample from each
Markov chains [53]. The candidate samples are generated from a
normal proposal distribution qðhs�

i jhs
i Þ with mean �h

s
and covari-

ance matrix Rs defined as [31]

�h
s ¼

XN

i¼1

hs
i � ŵs

i (A6)

and

Rs ¼ c2 �
XN

i¼1

ŵs
i � ½fhs

i � �h
sg � fhs

i � �h
sgT 	 (A7)

where c is the scaling parameter which will be set here as 1 [31].
The candidate sample is accepted with probability ai:

ai ¼ min 1;
P hs�

i jD1:s;M
� �

P hs
i jD1:s;M

� �
" #

(A8)

Then, the updated samples hs
i are then passed through the Markov

kernel Tðhsþ1jhsÞ to generate hsþ1
i (i.e., the predictive samples).

Finally, the predictive PDF is estimated using a kernel density
estimate (KDE) in the form of

P hsþ1jDs;M
� �

� 1

N

XN

i¼1

K
h� hsþ1

i

h

� �
(A9)

where h is a random variable, Kð•Þ is the Kernel smoothing func-
tion which is set as the standard Normal distribution, and h is the
Nd-by-Nd diagonal bandwidth matrix where Nd is the number of
an inferred parameter(s). Each diagonal element of the bandwidth
matrix hd, for d ¼ 1;…;Nd is computed using Silverman’s rule of
thumb [77]

hd ¼ ~rd �
4

N � d þ 2ð Þ

� � 1
dþ4ð Þ

(A10)

where r̂d is the standard deviation of the dth component of hsþ1.
The algorithm proceeds to the next time-step s ¼ sþ 1 if data

are available by setting hsþ1
i as the new prior samples and

Pðhsþ1jD1:s;MÞ as the new prior PDF. When no further data is
obtained beyond that point, the algorithm terminates at time-step
s ¼ send. A pseudo-algorithm of the sampling procedure by the
SMC sampler is presented in Algorithm 4.
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