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Abstract

On-demand ridesharing might be an effective solution to reduce traffic congestion and, as a
result, reduce emissions to mitigate environmental issues. However, travel times are more
uncertain in ridesharing services compared to non-shared transit services due to their shared
nature. For example, at one moment, the users are informed that the travel time takes five
minutes, a moment later, a request is added to the trip and the users are now confronted with
a travel time of ten minutes instead. This uncertainty in travel time is called unreliability.
Unreliability is perceived as inconvenience by the users and it has a negative impact on the
users’ travel habits regarding ridesharing service.
Therefore, this research provides a novel solution to deal with this problem while mitigating
the negative effects on the other quality-of-service indices, e.g., waiting time, rejection rate,
and delays. This is achieved by providing two indicators to each new user: (1) the possibil-
ity that an additional request will be added to the trip that negatively influences the trip
duration of the user; and (2) a prediction of the magnitude of a possible delay for whenever
the case occurs that a new request will be added to the trip. These indicators are based
on predictions, created by shareability shadows which determine the number of requests
that might be added to the trip, and implementing a simple time-series demand forecast-
ing method named exponential smoothing. The shareability shadow makes predictions by
confining the regions of ridesharing opportunities by analysing the travel constraints of the
involved users. The solution is validated using a state-of-the-art routing and assignment
method and a test case of Manhattan, New York City. With the formulated measure, on
average, 58% of the requests receive a correct prediction about the possibility of a negative
change, 17% receive an indecisive prediction, i.e., a prediction stating that the possibility
of a negative change is “medium”, and 25% of the requests receive an incorrect prediction
about the possibility of a negative change. Moreover, the measure successfully provides a
predicted magnitude of the travel time increase with a 95% confidence interval.

Index Terms – on-demand ridesharing, ridesplitting, uncertainty & minimize/reduce un-
reliability
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1 Introduction

1.1 Problem description

Over the years, an increase in emissions from the transportation sector has contributed
to substantial hazards to the world’s environment and human health. The rapid growth
of motorized private car use has become a dominant factor in the air pollution of urban
areas (National Research Council, 2002). Finite oil supplies, rising gas prices, traffic conges-
tion, and lack of parking spaces are emerging concerns that urban cities have to deal with
nowadays. Furthermore, in Europe, private vehicle occupancy rates (i.e., the number of pas-
sengers per vehicle) are relatively low, with an average of 1.1 passengers for commuter trips
and 1.8 passengers for leisure trips. As a result, the reduced occupancy rate and the high
transportation demand in urban areas contribute to an increase in traffic congestion (Agatz
et al., 2012). In the United States of America in 2005, traffic congestion led to a waste
of 2.9 billion gallons of fuel, 4.2 billion hours of extra travel time, and $78 billion of delay
and fuel costs (Schrank & Lomax, 2007). Moreover, the transport conditions of private car
use obstruct sustainable economic performance, environmental resilience, and social welfare
(Redman et al., 2013). Managing congestion by expanding infrastructure is environmentally
unsustainable and costly. Therefore, to aim for a sustainable environment, it is key to make
more efficient use of the existing transportation infrastructure by minimizing private car use.

Public transit systems are a convenient way to utilize the infrastructure more efficiently,
as they can carry multiple passengers simultaneously. These public transit systems reduce
the vehicle miles traveled (VMT), resulting in a reduction in traffic congestion. However,
these transit services operate on fixed routes and schedules, limiting their spatial and tem-
poral coverage, stimulating users to use private cars instead. Conventional taxi services and
mobility-on-demand taxi services can compensate for this limitation. On the contrary, these
services increase traffic congestion as their occupancy rates are low (Agarwal et al., 2019;
Tirachini & Gomez-Lobo, 2020; Henao & Marshall, 2020). Moreover, these services take
over public transport users as they are more flexible, convenient, and often faster, resulting
in an increase in congestion (Dai et al., 2021).

It can be concluded that fixed-line public transportation services and taxi services con-
tain flaws in solving traffic congestion. Nevertheless, with the rapid development of com-
munication technologies, centrally controlled on-demand ridesharing services, also known
as Shared Mobility On-Demand (SMoD) services, offer a convenient solution. Ridesharing
refers to a mobile transit service in which different users can share the same vehicle simul-
taneously if their paths are compatible. Ridesharing allows users to split travel costs with
others at the expense of convenience due to detours to serve other users of the shared trip.
Moreover, ridesharing effectively uses car seats and delivers an important opportunity to in-
crease occupancy rates, reduce traffic congestion, and reduce environmental issues (Furuhata
et al., 2013). H. Zheng et al. (2019) indicate in a real-world on-demand ridesharing data
investigation of the urban area of Hangzhou, China, that ridesharing positively influences
users’ travel habits. This means that in the short-term, the number of vehicles on the road
will reduce by 3.051 vehicles per day (which is 2.6‰ of the vehicle ownership in Hangzhou).
In the long-term, the willingness to purchase a car will be reduced. Additionally, a real-world
data study on ridesharing services by X. Liu et al. (2021) indicates that ridesharing decreases
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the VMT by 22% on average compared to non-ridesharing services.
Although dynamic on-demand ridesharing services can combine the flexibility and speed

of private cars while demanding the same reduced costs of public transport services, it
provides a reduced convenient service in terms of unreliability. In this research, unreliability
implies that it is hard for users to know what quality-of-service they will experience during
a trip, e.g., unreliable waiting times and unreliable in-vehicle travel times. This means that
users may face discomfort when the realization of their trips differs from what was initially
predicted. Changes in travel time can occur when a new user is added to the trip that
changes the route.

Unreliability is an important feature in ridesharing, as deviations from the planned
travel times will result in the loss of users. This is because users are not only concerned
about trip duration, but also consider trip reliability, i.e., the probability of on-time arrival
(C. Li et al., 2020). Moreover, if a match has been created between a user’s request and
the service, users are only willing to travel with the same service again if the rides take
place as proposed; otherwise, they will leave the service and use traditional mobility options
(Gargiulo et al., 2015). Alonso-González et al. (2020) studied the value of reliability, i.e.,
the willingness to pay to reduce travel time variability/uncertainty, of urban Dutch citizens
in on-demand ridesharing services. They discovered that the value of reliability for the in-
vehicle time appears to be 3.15–5.76 e/h, and the value of reliability regarding the waiting
stage appears to be 2.24-8.58 e/h, depending on the magnitude of the waiting time and
participant’s income. Hence, operators should consider unreliability when designing their
ridesharing strategy, as users value reliability. Moreover, operators should consider unrelia-
bility because travel time unreliability has a significant impact on the users’ decision-making
(Z. Li et al., 2010).

1.2 Thesis objective

Due to the discussed problem of unreliability in SMoD systems, the theoretical background
of unreliability in SMoD systems is explored in Chapter 2. This chapter includes a section
that aims to discover techniques to minimize unreliability. Consequently, it can be concluded
that currently no suitable techniques exist to efficiently resolve the problem of unreliability
without degrading the efficiency of the service drastically. The number of existing solutions
is minor, and they are all unsuitable to implement in real-life applications due to their strong
negative impact on the other quality-of-service indices. Therefore, the objective of research
is to

alter the state-of-the-art assignment procedure to provide more accurate travel times
without increasing the rejection rate, average delays, and average waiting times too much.



1.3 Contribution 12

1.3 Contribution

So far, the amount of research on unreliability in on-demand ridesharing is minor. Research
that sticks out regarding unreliability in ridesharing is the work by Fielbaum and Alonso-
Mora (2020), which measures unreliability over realistic scenarios to gain insights about the
operation of on-demand ridesharing, arguing the relevance of a measure to control unrelia-
bility. The contribution of this research is twofold: Firstly, the background of unreliability
in on-demand ridesharing is theoretically analyzed to gain an improved understanding of
the problem, showing that no suitable solution exists. Secondly, a methodology is proposed
to deal with the problem of unreliability, whereafter, the solution is validated using real-life
test case simulations, illustrating that the solution leads to a reduced unreliable service. The
solution is tested using the state-of-the-art routing and assignment ridesharing method of
Alonso-Mora et al. (2017a) and real-life taxi trip data from Manhattan, New York City.

1.4 Thesis structure

This research continues in Chapter 2 with a discussion of the relevant background topics
regarding unreliability in SMoD systems, including the causes of unreliability, techniques to
assign vehicles to requests, and the available techniques to minimize unreliability. Addition-
ally, the characteristics of the demand of mobility services are explored and mathematical
demand forecasting models are analyzed because the formulated unreliability solution uses
predictions about the demand. Next, Chapter 3 provides an overview of the model imple-
mentation, including the state-of-the-art routing and assignment method, the shareability
shadow concept, and the demand prediction process. After that, the results of the imple-
mented model are presented and discussed in Chapter 4. Finally, Chapter 5 provides a
conclusion regarding the implemented model and the obtained results.
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2 Theoretical background

This chapter provides the reader a theoretical basis regarding unreliability in on-demand
ridesharing services, also known as Shared Mobility-On-Demand (SMoD) services, where
operators centrally control the assignment process of users to vehicles. As stated in the
introduction, unreliability refers to inconvenience faced by the users due to changing travel
times as the result of changes in the trip schedule. Due to unreliability, users cannot know
in advance how their trips will be in an accurate way in terms of waiting time at their
pick-up point and in-vehicle travel time (IVTT). Therefore, the main focus of the theoretical
background is the following question:

Which techniques can be identified to minimize unreliability in on-demand ridesharing?

To answer this question, three sub-questions are stated:

• What are the different causes of unreliability in ridesharing?

• How is unreliability perceived by the users?

• What are the different techniques used to match vehicles to requests?

Sections 2.1 and 2.2 discuss the causes of unreliability and how they are perceived by
the users, respectively. Since the ride-matching technique influences the unreliability, Section
2.3 provides a theoretical background regarding the different techniques to assign vehicles to
requests. Ultimately, Section 2.4 explores the different techniques in the literature that aim
to minimize unreliability in ridesharing. By exploring the different techniques, it has been
decided that a predictive method will be implemented to reduce unreliability. Therefore,
Section 2.5 provides a theoretical background regarding demand prediction processes. Fi-
nally, Section 2.6, summarizes the findings of this chapter, including a conclusion regarding
the discovered techniques of Section 2.4.

2.1 Causes of unreliability in ridesharing

In this section, the causes of unreliability are investigated to obtain an improved under-
standing of the unreliability topic in ridesharing. The objective of analyzing the theoretical
background of unreliability in ridesharing is to discover techniques that minimize unreliabil-
ity caused by the operator’s rules. By investigating the causes of unreliability, it becomes
clear which type of unreliability this research aims to minimize. The causes of unreliability in
on-demand ridesharing can be divided into two main categories: unreliability causes present
in all types of transport, and unreliability causes specific to on-demand ridesharing systems,
meaning that the cause relates to the vehicles’ shared assignments.
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2.1.1 Unreliability causes in all types of transport

Not all causes of unreliability in ridesharing are specific to ridesharing services. A list of
examples of the causes that are not explicitly related to ridesharing services is provided
below.

• Traffic congestion

• Accidents

• Temporary traffic control

• Sudden natural changes

• Traffic signal failures

• Changes in travel demand

• Vehicle breakdowns

• Random factors, e.g., crossing pedestrians

Many of these factors affect the traffic flow and as a result, the trip duration is affected,
making the transit service less reliable. Even if there are no accidents or congestions in
traffic, there are still variations in traffic flow due to normal traffic conditions that affect
the reliability of the trip. X. M. Chen et al. (2017) analyzed Beijing’s network travel time
reliability using real-world data from the largest on-demand taxi and ridesharing service
platform in China (DiDi-Chuxing). Chen et al. indicate that road network reliability depends
on time and region, i.e., the road network is more unreliable in AM/PM peaks and more
reliable in the early morning. Additionally, central city regions have higher unreliability
rates than non-central city regions.

Therefore, it is useful for SMoD services to consider traffic flow since variations in traffic
flow affect the reliability of the service. Z. Liu et al. (2019) executed a study that utilizes
collected travel time information to determine on-time arrival reliability. In this study, real-
time information and historical information are examined to determine the traffic flow. To
ensure the on-time arrival of the users, the authors introduce a path guidance method that
manages the variations in the network conditions. The authors illustrate that the reliable
paths, obtained with the path guidance method, have a significantly higher on-time arrival
ratio than the paths obtained based on the shortest travel distance.

2.1.2 Causes of unreliability specific to on-demand ridesharing

Besides causes of unreliability that are present in all types of transport systems, some causes
of unreliability are related to the specific characteristics of on-demand ridesharing services.
For example, uncertainty regarding the route the vehicle will take is specific to on-demand
ridesharing due to required detours to pick-up and drop-off other users of the trip. Further-
more, the behavior of the users may affect the unreliability of the service of other users in
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SMoD systems. Overall, the causes of unreliability specific to ridesharing can be divided into
two categories: unreliability induced by the users and unreliability induced by the operators
(Fielbaum & Alonso-Mora, 2020).

Unreliability induced by the users
The causes of unreliability induced by the users which affect the trip unreliability of other
shared trip users are described below.

• Users are too late at their pick-up point. When users arrive too late at their
pick-up point, other users by which the trip is shared are also delayed. Additionally,
future users might face longer waiting times. Assigned trips might get rejected by the
system depending on the system’s rules due to the increased vehicle delay. Besides,
waiting users might cancel the trip due to the increasing waiting time, contributing to
extra variation in trip duration of the other users of the trip.

Kucharski et al. (2021) analyzed how users’ non-punctual arrival at their pick-up point
influences the system’s performance. They discovered that when users arrive following
a random distribution, each additional user is likely to increase the delay of other
users of the trip. However, the marginal impact of each additional user decreases.
Furthermore, Kucharski et al. state that even minimal lateness of users at their pick-
up point is likely to shift out other users from high-degree trips. This hinders higher
occupancy rates and negatively affects the efficiency of ridesharing service.

• Users cancel an assigned trip when the vehicle is on its way. When a user
cancels a trip when the vehicle is on its way, other assigned users may get rejected
by the system since the vehicle is no longer shared efficiently. These users will only
be rejected if the system enforces certain rules to maintain efficiency. However, when
the other users are not rejected, the waiting time and drive time of other users may
decrease due to a decreasing detour time. In both situations, the trip unreliability of
other users of the trip is affected.

There are several reasons why users cancel an assigned trip. Bansal et al. (2020)
studied the behavior of users in on-demand services. They state that the decision
of the user to accept or cancel a trip depends on the provided waiting time and the
difference between the provided time and the real pick-up time during previous trips.
An overestimated displayed waiting time will result in increased cancellations by the
users due to long waiting times. Conversely, an underestimated displayed waiting time
increases the acceptance rate of the service. However, when an underestimated waiting
time is displayed, the real pick-up time is delayed. As a result, the likelihood of choosing
the service again is decreased due to unreliable provided waiting times. Furthermore,
they illustrate that on-demand services can increase the user’s trip acceptance rate by
10% if the services provide improved predicted waiting time information.

• Users want to change their destination when they are in the vehicle. Some-
times users spontaneously change their minds when they are in the vehicle and force
the driver to change their destination. If the system accepts their new destination,
the in-vehicle users will most likely face large detours. Furthermore, depending on the
system’s rules, other users may get rejected as they are not on the route anymore.
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• Users forget to sign up their fellow passengers for the trip. Two situations
are possible whenever a user forgets to sing-up fellow passengers:

– Not all users can fit in due to insufficient vehicle capacity. Most probably, the
users will cancel their trip. As stated before, cancellation induces unreliability on
the other users of the shared trip.

– All users can fit in but other waiting users have to be rejected by the system due
to the insufficient amount available seats.

Unreliability induced by the operators
The operators decide how the system behaves whenever a new request is received. The
rules of the system design strongly influence the unreliability of the service. When a new
request is received, the system decides which vehicle is matched to the request and how all
trips are grouped together. Moreover, new requests may result in reassigning a request to
another vehicle, changing the waiting time of the request and influencing the travel time
of other users. Each change in the vehicle’s schedule affects the route. Depending on the
system’s rules, new requests can cause a rejection of previously assigned requests to further
optimize the system’s objective. Therefore, operators make decisions that influence the
service unreliability by optimizing their objective (Fielbaum & Alonso-Mora, 2020). An
example of unreliability induced by the operators is illustrated in Figure 1. Passenger 1 is
on his way from his origin O1 to his destination D. Before completing the trip of passenger
1, a new request emerges by user 2. The operators accept the request of user 2 and force
passenger 1 to face a sudden detour to serve user 2 efficiently. This sudden detour is perceived
as unreliability by passenger 1.

Figure 1: Operators induce unreliability for user 1 by accepting the request of user 2
(Fielbaum & Alonso-Mora, 2020).

Operators could decide to minimize the unreliability of the service. However, improved
reliability may be achieved by implementing additional rules that affect the other quality-
of-service indices (Fielbaum & Alonso-Mora, 2020). For example, the reliability of service
could be improved by only adding new requests to a trip after the last request has been
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served. As a result, the unreliability of the trip is minimized, but fewer vehicles are available
to serve the remaining requests. This strongly increases the waiting time of other users and
the rejection rate significantly since the number of available vehicles is reduced. Hence, a
trade-off exists between unreliability and other quality-of-service indices.

Even marginal changes in the system design greatly impact the matching process and
the unreliability rate. A study that investigates the shareability rate of ridesharing systems,
i.e., the amount of trips that could be shared, by analyzing the impact of service quality
parameters is provided by Bilali et al. (2019). The analyzed service quality parameters in
this study are the detour time, the time a user is willing to wait, and the boarding time. Re-
sults demonstrate that these parameters significantly influence the shareability rate. Hence,
the authors argue that operators should use models that examine the shareability rate since
different parameters result in different shareability rates. A similar study by Tachet et al.
(2017) highlights the importance of different system parameters since the system parameters
affect the fraction of trips that can be shared. As indicated by these studies, inferior changes
in the system’s design strongly affect the behavior of the SMoD service. Therefore, each
operator’s decision affects the service’s unreliability.

This research is interested in minimizing unreliability induced by the operators’ rules.
Since it has been concluded that many causes of unreliability are related to the system design,
it is useful to investigate the available techniques to match vehicles to requests. Investigating
the matching techniques provides an improved understanding of how the system’s behavior
affects the unreliability of the service. An analysis of the different ride-matching techniques
is provided in Section 2.3.
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2.2 Unreliability as perceived by users

It is helpful to obtain an improved understanding of how the users perceive unreliability to
create feasible solutions to solve the problem of unreliability. According to Fielbaum and
Alonso-Mora (2020), two types of unreliability phenomena can be classified that describe
how unreliability affects the user’s perception of the quality of the SMoD service. The first
type occurs within a single trip and is called one-time unreliability. The second type occurs
between different realizations of the same trip and is called daily unreliability. These two
unreliability types are discussed in the following two sections.

2.2.1 One-time unreliability

When a user is assigned to a trip, the real waiting time and in-vehicle travel time (IVTT)
might differ from the first-announced values. The first-announced values are the travel time
values a user receives from the service directly after a match has been made. These values
estimate the waiting time and IVTT of the trip and might differ from the real-time values.
As stated in Section 2.1, changes in waiting time and IVTT can be caused by different
sources specific to or non-specific to SMoD systems. Therefore, within a single trip, changes
can occur that induce unreliability in waiting and in-vehicle travel time of the user. These
changes affect the short-term decisions of the user since there is less certainty that the user
will be on time at the drop-off point (Fielbaum & Alonso-Mora, 2020). This research is
interested in minimizing one-time unreliability.

2.2.2 Daily unreliability

Before a user decides to use a ridesharing service, the user has to consider how the ride’s
quality of service will be. Besides delays due to traffic conditions, the waiting time and delay
time due to detours to share the trip with other users have to be considered before choosing a
ridesharing service. Hence, daily unreliability is about variabilities in the duration of multiple
executions of the same travel request. Therefore, this refers to unreliability between different
realizations of the same trip.

A case study of the urban area of Chengdu, China, that investigated daily unreliability
is executed by W. Li et al. (2019). The study investigates the travel time reliability of
shared and non-shared rides with similar origin-destination pairs during the same time period
(13:00-14:00). Results illustrate that the reliability of shared rides is inferior compared to
non-shared rides due to ridesharing delays and detours. Additionally, Li et al. demonstrate
that ridesharing forces users to plan for 37–61% extra time to ensure on-time arrival.
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2.3 Techniques for assigning vehicles to requests

To understand which techniques can be adopted to minimize unreliability in ridesharing, it
is useful to investigate which techniques can be applied to assign vehicles to requests. This
section explores the different techniques for assigning vehicles to requests. First, the different
algorithm design structures are discussed. Next, various objectives are identified. At last,
different ridesharing constraints are explained.

2.3.1 Algorithm design

Fielbaum and Alonso-Mora (2020) investigate how different fixed fleet compositions and dif-
ferent assignment rules affect trip unreliability and illustrate that service unreliability can
be improved at the cost of degrading other quality-of-service indices. Since it has been
concluded in Section 2.1.2 that unreliability in ridesharing strongly depends on the imple-
mented algorithm design, it is useful to obtain an improved understanding of the different
ridesharing algorithm designs and structures. An overview of the different techniques for
matching vehicles to requests, also known as ride-matching, assignment-matching, or vehicle
dispatching, is provided in Figure 2. This section elaborates on the presented methods in
Figure 2.

Figure 2: Overview of the Ride-matching techniques.
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A. Static ridesharing
It has been observed that ride-matching techniques can be divided into static methods and
dynamic methods. In static ridesharing, it is assumed that the number of user requests
is known in advance prior to the execution of the ride-matching process. The origin and
destination of every user are communicated in advance such that a feasible final route for all
vehicles is decided. All trips are prearranged in static ridesharing. Static ridesharing systems
are less difficult to develop than dynamic systems, however, static systems are not scalable
and are only well suited for small instances. Moreover, static systems do not apply to real-
time on-demand ridesharing systems (Silwal et al., 2019). Because this research is interested
in dynamic ridesharing, no further subdivisions in static ridesharing techniques are provided.

B. Dynamic ridesharing
In dynamic ridesharing, the requests are not known in advance and the requests are received
in real-time. New requests continuously enter the system and served users continuously leave
the system. The incoming requests are handled directly or in short notice, ranging from a
few seconds to a few minutes, depending on the system’s rules. Due to the short response
time, dynamic systems are more complex than static systems.

The implementation of dynamic ridesharing services has strongly increased due to the
increase in mobile smartphones as they enable direct communication between users and
ridesharing services (Agatz et al., 2011). Smartphones allow users to request trips whenever
they want and wherever they are. Therefore, ridesharing services can operate in real-time
and on-demand. In this research, the focus is on dynamic SMoD services.

Dynamic ridesharing systems can be divided into three different sub-methods: cen-
tralized, decentralized, and a hybrid version of centralized and decentralized systems. The
fundamental differentiating features of the methods lie within the level of control (Silwal et
al., 2019).

B.1. Centralized ridesharing
Centralized systems have a single system-wide objective function where all decisions are made
centrally. Centralized systems can provide superior results due to their global optimization
techniques. Conversely, it can be computationally heavy and slow for realistically sized
instances of large metropolitan areas containing thousands of users, making it difficult to
scale (Nourinejad & Roorda, 2016).

In this research, the emphasis lies on centralized systems for two reasons: (i) they pro-
vide more efficient solutions; and (ii) state-of-the-art solutions mainly consist of centralized
systems. Centralized SMoD systems can be divided into Immediate insertion methods and
Receding horizon methods. A detailed explanation of these two methods is provided in this
section later on.

B.2. Decentralized ridesharing
Decentralized ridesharing systems are the opposite of centralized ridesharing systems. In
decentralized systems, the decision-making does not rely on a central entity. It is composed
of autonomous agents/drivers that optimize individual objectives using local information
perceived from the system. Decentralized systems reduce computation time extensively.
However, they are inferior regarding the solution quality compared to centralized systems
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(Kümmel et al., 2017). Since decentralized systems are not the topic of interest, no further
subdivisions in decentralized ridesharing are provided.

B.3. Hybrid ridesharing
Hybrid ridesharing, a combination of centralized and decentralized ridesharing systems, is
introduced to achieve globally optimal real-time systems. The decision-making is distributed
among all participating components, making it more scalable compared to centralized sys-
tems. The design of hybrid ridesharing systems is strongly dependent on the implementation
(Silwal et al., 2019). No further subdivisions in hybrid systems are provided as hybrid sys-
tems are not the topic of interest in this research.

2.3.2 Dynamic centralized algorithm designs

This research is interested in dynamic centralized systems. Therefore, the algorithm designs
for these systems are further investigated in this section. As illustrated in Figure 2, the de-
sign of dynamic centralized systems can be further narrowed down into immediate insertion
methods and receding horizon methods. Thereafter, the assignment procedure can be divided
into decomposed optimization problems and not decomposed optimization problems. At last,
the assignment procedure can be solved with exact searching methods or heuristics. This
section elaborates on these topics. Additionally, this section discusses the implementation
of anticipatory methods. Anticipatory methods are discussed because the solution that will
be implemented to reduce unreliability is based on demand predictions, and anticipatory
methods deal with a similar problem of unknown future demands.

Immediate insertion
Immediate insertion methods are a subclass of centralized systems and handle the request
directly as they arrive by inserting them into the schedule of the vehicles. Immediate inser-
tion methods are event-based approaches since the algorithm initiates directly after receiving
a request. This behavior constitutes a less computationally expensive approach since one
request is handled simultaneously (L. Zheng et al., 2019). The downside of this behavior
is that the system might be unable to keep up with the incoming stream of requests if the
demand is high. Another disadvantage is that sub-optimal solutions might be created if no
global optimization is executed that contains all requests (L. Zheng et al., 2019).

Receding horizon
Receding horizon methods or rolling horizon methods, a subclass of centralized systems,
make plans utilizing all known information within a planning horizon. During each exe-
cution of the ride-matching process, the planning horizon is ’rolled’ forward to include all
currently received requests such that a batch of requests is handled at once. The rolling
horizon method can be seen as a time-based approach. Key decisions of the rolling horizon
approach include how frequently and when the algorithm is executed. Additionally, the du-
ration of the rolling horizon is of huge importance. If the horizon is too short, it is more
likely that sub-optimal solutions will be established. If the horizon is too long, requests
might be served too late due to the increasing waiting time (S. Chen et al., 2020). The in-
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creasing waiting time stimulates users to cancel their requests. The rolling horizon method is
computationally more expensive than the immediate insertion method due to the increasing
number of requests handled at once. Conversely, due to the high amount of requests handled
at once, solutions of higher quality are more likely to be achieved (Agatz et al., 2011).

Decompose problem vs not decomposing the problem
After it has been decided whether an immediate insertion approach or a rolling horizon
approach is implemented, the decision is made whether the optimization problem is solved
by decoupling the problem into smaller subsets or optimizing the requests over all available
vehicles. Decomposing the problem is computationally less cumbersome, making it more
suitable for large instances.

If the problem is not decomposed, it means that any vehicle can serve any group of
requests. Lam et al. (2014) propose a scheduling algorithm that considers all vehicles during
the matching process of a request. The authors formulate the scheduling problem as a mixed
integer program. Modifications are allowed in the assigned trips that have not been served
yet. The system’s performance is studied with an artificial scenario containing 8 requests and
5 vehicles to realize a real-time execution of the scheduling approach. This illustrates that the
optimization problem is hardly scalable when the problem is not decomposed. Therefore,
the literature mainly focuses on algorithms that decompose the assignment problem and
implement constraints on the time windows in which a request can be served.

Decoupling the assignment process into smaller problem sets can be executed by select-
ing a suitable set of vehicles that can satisfy the request(s) . The division of the problem
can be executed based on geographical regions, distance-based information, or time con-
straints, i.e., the feasibility of a match. Alonso-Mora et al. (2017a) decompose the problem
by computing all feasible trips and then assigning the trips to the vehicles. First, they create
a request-vehicle shareability graph (RV-graph), representing which requests and vehicles
might be pairwise-shared. Next, a graph of feasible trips and the vehicles that can serve
the cliques of the RV-graph is computed (RTV-graph). Both graphs are created based on
feasibility, i.e., the graphs have to satisfy a set of constraints (waiting time, delay, and capac-
ity). Thereafter, to compute the best assignment of the vehicles to trips, an integer linear
program (ILP) is solved.

When the problem is not decomposed, a more globally optimal solution might be ob-
tained at the expense of computation time. Therefore, there is a trade-off between compu-
tation speed and the solution performance when deciding to divide the solution into smaller
problem sets.

Heuristics vs exact
At last, the optimization problem of matching the requests to the vehicles is solved either
with heuristics or with exact solving mechanisms. Heuristics are approximate solution tech-
niques widely used in operations research to deal with difficult combinatorial optimization
problems. Many combinatorial problems are NP-hard, making it impossible to solve them
with exact and efficient procedures. As a result, heuristics are used to find a solution in finite
time (Gendreau, 2003). Heuristics do not guarantee finding the optimal solution; however,
most heuristics can sufficiently find an approximation of the optimal solution.
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Exact methods or exhaustive search methods always find the optimal solution. However,
these methods require a large amount of computation time and may not be able to find
a solution in finite time for hard combinatorial problems. An example of an exhaustive
search method is the Linear Programming technique. Linear Programming is a mathematical
modeling technique to optimize a linear objective/cost function subjected to a set of linear
constraints. The constraints represent the requirements that the objective function has to
fulfill. The way that the cost function and the constraints are defined determines the type
of optimization problem. This can either be a Linear Program, Integer Linear Program,
or Mixed Integer Linear Program. If all variables are restricted to be integer values, the
optimization problem is defined as an Integer Linear Program. When the optimization
problem includes variables that are constrained to be integers, while other variables are
allowed to be non-integers, the problem is defined as a Mixed Integer Linear Program.

After defining the cost function and the constraints, the cost function is most commonly
solved with a Branch-and-Bound algorithm. The Branch-and-bound algorithm is used to find
the optimal solution for combinatorial mathematical optimization problems by exploring the
search space of possible solutions. It enumerates stepwise possible candidate solutions while
exploring the search space to find the optimal solution.

Anticipatory methods
Although anticipatory methods are an independent type of method that does not fit in
the ride-matching scheme of Figure 2, they provide valuable insights regarding the topic of
unreliability. Therefore they are discussed in this section. Anticipatory methods are useful
to explore as they try to acquire future demand data to deal with spatial demand imbalances.
The solution this research will implement to deal with unreliability also requires knowledge
about future demand.

A challenge that arises with the introduction of ridesharing services is the emergence of
spatial imbalances in the demand-supply. Spatial demand-supply imbalances induce a mis-
match between the origins of new requests and the position of the vehicle fleet. Therefore,
anticipatory methods that operate at an earlier stage during the assignment and routing pro-
cess can be implemented to prevent the occurrence of demand-supply imbalances. Different
techniques exist that usually require knowledge about historical data or future demands to
create efficient matches. An example of this method is splitting groups of passengers with a
destination in a high-demand area into several different vehicles such that a greater amount
of vehicles is transported to high-demand areas (Barth et al., 2004). Alonso-Mora et al.
(2017b) insert artificial requests to a batch of to-be-served requests based on estimates of
historical demand for different zones to prevent spatial demand imbalances. Fielbaum et
al. (2021b) propose two anticipatory methods that influence how vehicles are assigned to
users and in which order the requests are served to reach a more efficient state for future
requests. These two proposed methods rely on currently received requests as future demand
highly correlates with the current demand. Their first method modifies the objective func-
tion by introducing a reward for each vehicle whose final destination is in a high-demand
area. Their second method adds artificially created future requests to the list of considered
requests during the assignment process. The artificial requests are created by sampling from
a probability distribution that mimics the observed request rate. As a result, the fleet moves
towards high-demanding zones.
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2.3.3 Objectives

The algorithm objective also has a strong influence on service unreliability. Different stake-
holders can be identified for the on-demand ridesharing process, such as users, transporta-
tion network companies (TNCs), drivers, and the urban area of the ridesharing service. Each
stakeholder has its objectives regarding the vehicle-request matching process. The stakehold-
ers’ objectives affect the matching process, and the stakeholder objectives may contradict
other stakeholder objectives (Chakraborty et al., 2020). For example, to increase profit,
the operators may decide to increase the amount users per shared trip. As a result, the
operators’ profit increases, but at the same time, users have to face more and larger detours,
meaning an increase in unreliability.

• User objectives - The users’ objective can be to minimize travel time, to have the
lowest travel unreliability, to have the lowest travel cost in terms of money, or a com-
bination of the three.

• TNC objectives - The main objective of the TNCs is to maximize their profit. Several
methods can be applied to increase profit. This can be achieved by increasing the fleet
utilization rate, i.e., increasing the number of matches by assigning more trips. Another
method to increase profit is to minimize the travel cost or distance traveled by the fleet.
As stated before, the objective of the TNC has a strong influence on the unreliability
of the service.

• Driver objectives - The primary objective of the drivers is to maximize their earnings.
Drivers may get incentives for each fulfilled trip and thus aim to complete as many
trips as possible. This can be achieved by reaching each destination as soon as possible
and by trying to minimize the users’ drop-off time and boarding time. However, the
drivers’ earnings are fixed or the vehicles are automated in the centralized system that
this research is concerned with. Therefore, the driver objectives are not relevant to
this research.

• City objectives - The objective of the entire city is to minimize the negative impact of
the TNC service on the city. This can for example be achieved by minimizing utilized
city resources such as parking spots and traffic space. Vehicle Miles Traveled (VMT)
is an indicator of road space that TNC services consume. Thus, efficient resource
planning should be implemented.

Overall the different objectives for the ride-matching process can be classified into three
groups, i.e., travel time-based, travel cost-based, and travel distance-based objectives (Z. Liu
et al., 2019).

• Travel time-based
An algorithm for computing optimal vehicle-trip combinations by minimizing the sum
of the delays and penalizing ignored requests is provided by Alonso-Mora et al. (2017a).
The concept of the assignment matching process consists of two main parts, i.e., de-
termining the feasible trips and vehicles that can serve the requests, and solving an
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ILP to compute the best assignment of the vehicles to trips. Additionally, Alonso-
Mora et al. implement a rebalancing strategy considering idle vehicles to prevent fleet
imbalances. From the experimental results, the authors quantify a trade-off between
fleet size, capacity, waiting time, travel delay, and operational costs for different fleet
capacities. The authors illustrate in their case study of Manhattan that 98% of the
taxi rides, consisting of a fleet of 13.000 taxis, could be served by 3.000 ridesharing
vehicles with a maximum capacity of four passengers.

Other studies that implemented an objective to minimize travel time are provided
for example by Jung et al. (2016); M. Liu et al. (2015); Herbawi and Weber (2012).

• Travel cost-based
The objective to maximize profit or minimize cost for on-demand ridesharing operators
has been investigated by Jung et al. (2013). The authors implement this objective
into three different algorithms. Their simulations indicate that the objective yielded
higher profits for the ridesharing operators with higher demand for all three algorithms.
Examples of other studies with a similar objective are Nanda et al. (2020); L. Zheng
et al. (2018); Jung et al. (2016).

• Travel distance-basted
Minimizing travel distance is an important objective from a social point of view since
it reduces traffic congestion and pollution. Furthermore, minimizing travel distance is
closely related to minimizing travel costs, as a reduction in travel distance decreases fuel
consumption and vehicle wear. Luo et al. (2019) propose a ridesharing approach that
minimizes the total travel distance while maximizing the service rate. Their large-scale
experimental study indicates that the proposed algorithm has an improved efficiency
and effectiveness compared to a state-of-the-art dynamic ridesharing method. Other
studies that implement a distance-based approach are provided by Linares et al. (2016);
Armant and Brown (2014); Lokhandwala and Cai (2018).

It can be concluded that several objectives exist which can be implemented by the ridesharing
service. The different objectives strongly influence the unreliability of the service. However,
it is unknown how the different objectives relate to each other regarding unreliability as no
research exists that compares this.

2.3.4 Constraints

Several conditions are considered to determine the feasibility of a match between a vehicle and
a request. These conditions are called constraints. These constraints are examined during
the assignment procedure when the objective function is being optimized. Unfortunately, no
constraints have been discovered that explicitly deal with the problem of unreliability. The
three main constraints of a ridesharing system are listed below.

• Vehicle capacity defines the maximum amount of passengers per trip. This constraint
is used to prevent the creation of shared tips that exceed the vehicle’s capacity.

• Maximum waiting time refers to the maximum time a user has to wait before being
picked-up by a vehicle. The waiting time starts counting directly after a request has
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been received. This constraint guarantees that each user has a minimum quality of
service and prevents the users from canceling their trip.

• Maximum delay prevents the system from creating shared trips with unreasonable
long detours which are unacceptable to the users. The delay is equal to the difference
between the drop-off and the earliest possible time at which the destination can be
reached if the vehicle travels directly with the shortest path from the origin to the
destination of the user.

2.3.5 Conclusion ride-matching techniques

This section has discussed the different algorithm designs for the matching process between
vehicles and requests. An overview of the ride-matching design structure is provided in Figure
2. This research is interested in dynamic centralized systems. Table 1 provides an overview
of the advantages and disadvantages of the discussed dynamic centralized design methods.
In conclusion, a trade-off exists between solution quality and computation time. Further-
more, the design structure strongly influences the unreliability of the service. Even without
altering the algorithm design or parameters, different trip realizations can be obtained for
the same request, resulting in different unreliability rates (Fielbaum & Alonso-Mora, 2020).
Additionally, no research has been identified that examines the different algorithm structures
regarding the unreliability rates. Therefore, no specific design structure can be identified as
the optimal method to deal with unreliability.

Furthermore, different stakeholders have been identified, all with their own objectives
regarding the SMoD service. Overall, three types of objectives exist: travel time-based,
travel cost-based, and travel distance-based. An objective to explicitly minimize unrelia-
bility has not been discovered. The three main constraints in SMoD services are vehicle
capacity constraints, maximum waiting time constraints, and maximum delay constraints.
Unfortunately, no constraints have been discovered that explicitly focus on the control of
unreliability.
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Table 1: Advantages and disadvantages of dynamic centralized algorithm designs.

Method Advantage Disadvantage
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2.4 Techniques to minimize unreliability in ridesharing

The main objective of this chapter is to obtain insight into the available techniques that aim
to minimize unreliability in ridesharing, as it provides insight in to how the assignment pro-
cedure can be efficiently controlled to reduce unreliability. Therefore, the existing techniques
to (potentially) reduce unreliability are discussed in this section. The discussed techniques
are: not allowing for any changes in the schedule, Section 2.4.1; only adding users if the drop-
off constraints are satisfied, Section 2.4.2; objective functions which consider delays, Section
2.4.3, constraints that consider unreliability/delays, Section 2.4.4; increasing the demand-
supply, Section 2.4.5; meeting points for pick-up and drop-off, Section 2.4.6; minimizing the
number of stops, Section 2.4.7; and predictive methods, Section 2.4.8. Finally, a conclusion
regarding the techniques to minimize unreliability is provided in Section 2.4.9.

2.4.1 Not allowing for changes in schedule

The user’s discomfort due to unexpected changes in trip routes and trip companions af-
fects the service unreliability. To reduce this unreliability, Y. Wang et al. (2018) propose a
ridesharing framework that relies on a simple scheduling protocol. The scheduling protocol
creates a complete trip plan containing a set of users in a predefined order before assigning
the trip plan to a vehicle. Once a trip plan is created and assigned to a vehicle, no changes
are allowed in the route or schedule during the trip. Consequently, the ridesharing strategy
relieves the users from unreliability, i.e., inconvenience in changes of travel routes. However,
according to the data study results of Y. Wang et al., this strategy results in a slightly longer
waiting time compared to non-shared taxi trips. Unfortunately, the study of Y. Wang et al.
does not compare the rejection rate, which will probably be significantly high. Additionally,
the authors execute no performance comparison of their ridesharing framework to a state-
of-the-art ridesharing framework. But, we can assume that the waiting times and rejection
rate are significantly worse compared to ridesharing frameworks.

2.4.2 Only add users if drop-off constraints are satisfied

Closely related to the previously mentioned method of only adding users to a trip after trip
completion is the proposed solution by Hörl and Zwick (2021). They propose a solution
that does not allow for adjustments in a trip if the vehicle cannot satisfy the onboard users’
drop-off times. Consequently, a vehicle is not allowed to engage in picking up new users until
all users of the current trip are dropped off or until all drop-off times of the onboard users
can be fulfilled again.

Similarly to this solution, Hörl and Zwick propose a less restricted solution by only
adding new requests to a trip if the maximum value between the updated drop-off time and
the original drop-off time is not violated. The currently assigned routes of all vehicles are
examined during each matching process to calculate updated drop-off times for the users to
efficiently add new requests to a trip. A new request is added to a trip if the maximum value
between the updated drop-off time and the original drop-off time is not exceeded. However,
a penalty is added for violating the drop-off constraints to favor the originally predicted
travel times over the updated travel times. The same concept can analogously be applied
to assigned users who are currently waiting at their pick-up point: additional users are only



2.4 Techniques to minimize unreliability in ridesharing 29

added to a trip if the (updated) pick-up times are not violated. However, a reassignment is
applied if another vehicle can pick-up the waiting user at the original pick-up time instead
of the updated pick-up time.

Hörl and Zwick present that their method leads to a trade-off between violating user
constraints and rejecting requests after prior acceptance. If the travel times are underes-
timated, either assigned requests have to be rejected, or violations must be allowed in the
provided pick-up and drop-off times. Therefore, the enforced constraints on on-time arrival
result in increased rejection rates.

2.4.3 Objective function

The variations in travel time faced by the user can be considered as a disturbance to the
user’s travel time. Prorok et al. (2021) state that pre-operative approaches solve problems
where a disturbance affects the system’s performance. Pre-operative approaches determine
the key variables that induce disturbances (in this case unreliability) in advance and pro-
vide resilience by design. For this research, this entails that the objective function could
be optimized with respect to a decision variable related to the key variables of unreliability.
Therefore, one of the approaches to minimize unreliability in ridesharing is to adopt an ob-
jective function that minimizes unreliability. Since no research exists on objective functions
that consider unreliability, the objective functions that consider delays are explored.

Minimizing delays is closely related to minimizing unreliability. If a system aims to
minimize delays, it is less likely that a user will face an increase in delay time and thus users
have less travel unreliability. However, when a user faces a decrease in delay time, there is
still variability in travel time, meaning unreliability. Besides, a user can still face fluctuations
in travel time when delays are minimized. Furthermore, when the system aims to minimize
the total delay time of all users, some users will face an increase in travel time to reduce the
overall delay time of all users. Therefore, minimizing delays and minimizing unreliability are
closely related, but they are not the same. Because no research exists on objective functions
that consider unreliability, the next paragraphs discuss some of the existing methods that
use an objective function that minimizes delays.

A study that implemented an objective that minimizes delays is provided by W. Zheng
et al. (2021). They developed an on-demand ridesharing system that uses a heuristic ap-
proach to match vehicles to requests. They implemented two conflicting objectives which
are minimizing overall cost and minimizing delay time, i.e., time spent waiting for a vehicle
and vehicle detours. Case study results indicate a drastic reduction in delay time with the
implantation of this ride-matching approach.

Manna and Prestwich (2014) modeled a ridesharing optimization planning approach
that aims to maximize the shared trips while minimizing the expected travel delay for each
trip by penalizing each travel delay in the objective function. The authors implement this
approach to tackle the problem of reducing the number of shared trips when the delay time
is optimized. Case study results illustrate that the resulting delay per user is, on average,
negligible.

Since it is crucial to design optimal pick-up and drop-off orders to minimize total pick-up
and drop-off delays in ridesharing, X. Chen et al. (2017) used an objective that minimizes
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the total mileage delay while serving as many requests as possible. Also, they discover a
trade-off between the number of served passengers and the mileage delay. Therefore, an
increase in served requests implies an increased mileage delay.

Y. Li and Chung (2020) proposed a robust optimization approach that considers un-
certain travel time explicitly when matches and route decisions are made. However, in this
study, uncertain travel time implies uncertainty due to traffic conditions, and not uncertainty
due to schedule changes. In this study, a control parameter is implemented that simulates
uncertain travel time in the road network. The authors state that it is requisite to consider
time uncertainty as it significantly impacts the flexibility of time windows and detours, which
are closely related to ride-matching. Therefore, their goal is to provide a robust route for
each user under travel time uncertainty and to increase the matching rate of the requests.
This is achieved by using an objective function that minimizes the travel cost and penalizes
rejected requests while considering the maximum possible delays. By considering the max-
imum possible delays, the arcs of the road network that contain simulated uncertain travel
times are avoided.

Optimizing the maximum expected mean probability of dropping off requests on-time
by considering stochastic travel time information is another objective function that can be
implemented. This method is proposed by C. Li et al. (2020), who study the role of travel
time uncertainty in on-demand ride-sharing services. They consider stochastic travel time
information to increase passengers’ on-time arrival reliabilities. Furthermore, C. Li et al.
incorporate the concept of late arrival compensation to increase profit.

It can be concluded that several studies have implemented an objective function that
minimizes delays. However, they all discovered that minimizing delays is at the expense of
other quality-of-service indices, such as rejection rate and average travel time. As stated in
Section 2.1.2, the same holds for an objective function that penalizes unreliability. Hence,
employing an objective function to minimize delays and unreliability is not the optimal
solution.

2.4.4 Constraints

The objective function of the ridesharing model is subjected to constraints to determine the
feasibility of created matches. Constraints greatly impact the matching procedure. Besides
constraints that for example account for vehicle capacity, constraints that consider unreli-
ability can be implemented. This section discuses constraints that have been implemented
by other studies. The discussed constraints might not reduce unreliability, but they contain
some interesting characteristics. Therefore, they could possibly be converted to constraints
which might reduce unreliability.

Threshold for amount of changes
Several studies implement constraints to bound detours such that the detour times do not
exceed a set threshold value (e.g., Daganzo et al., 2020). This concept can be extended by
allowing users to define their own detour thresholds (e.g., Xia et al., 2019; Bian et al., 2020).
The concept of bounding detours based on user preferences could be further exploited to
reduce unreliability by allowing users to define their threshold for the number of changes
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per trip. Not allowing for any changes during a trip obstructs the efficient development of
vehicle-request combinations, reducing the performance of the provided service. However,
allowing a few changes per user based on user preferences might reduces the performance
slightly while, on the other hand, slightly reducing unreliability.

Threshold for delays
As stated before, minimizing delays is closely related to unreliability. However, a decrease
in delay time does not directly result in a decrease in unreliability. Delays can be restricted
by assigning an upper bound value to the user’s maximum delay time. Such a constraint is
applied for example by C. Li et al. (2020) where each request’s waiting time and travel delay
are restricted to be lower than a set threshold value. Other studies that use such a constraint
to minimize delays imposed on the users are provided by Gurumurthy and Kockelman (2018);
Y. Wang et al. (2018); Ota et al. (2015).

Even though such constraints minimize the delay time of the users, they might not be
sufficient enough to minimize unreliability since fluctuations in travel time are still possible
within a single trip.

2.4.5 Increase demand-supply

The fleet size influences the unreliability of the service. Small fleets provide a higher possibil-
ity to match different users to the same trip, increasing the waiting time and detours. This
is simply due to a fewer amount of available vehicles that can serve the requests, causing
a reduction in the number of idle vehicles. Consequently, when a new request is received,
only vehicles carrying passengers might be in proximity to serve the request, increasing the
occupancy rate. On the contrary, large fleets provide the opposite situation, meaning a de-
crease in the number of shared users per trip (Beojone & Geroliminis, 2021). Therefore, to
decrease unreliability, operators could increase the demand-supply to reduce the number of
shared users per trip, leading to fewer variations in travel time.

The demand-supply can be increased by increasing the fleet size or by utilizing antici-
patory methods. The concept of anticipatory methods is discussed in Section 2.3.1.

A disadvantage of increasing the demand-supply is that this is at the expense of the ser-
vice’s core principle of ridesharing: the shareability rate. Moreover, the operators’ costs will
increase by employing larger fleet sizes. Additionally, when the demand-supply is increased
and all vehicles still operate at maximum capacity, the unreliability is not reduced. On the
contrary, if the demand-supply is increased, it might also be possible that the service shifts
to a non-shared service.

2.4.6 Meeting points for pick-up and drop-off

The introduction of meeting points for the pick-up and drop-off of the users decreases the
detour time of other users (Fielbaum et al., 2021a). In such a system, users are requested
to walk a short distance towards/from a pick-up/drop-off location. The increased flexibility
of the users facilitates an increase in the number of possible matches and improves service
efficiency (Stiglic et al., 2015).

The implementation of meeting points for the users’ pick-up and drop-off might also
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affect the service’s unreliability, as it might result in a reduced number of trip changes. This
occurs for example when two different requests with different destinations are dropped-off
at the same location, whereafter they walk a short distance to their final destination. As a
result, the number of detours and the detour time are reduced. Nevertheless, the reduction
of unreliability might only be minor, since the number of pick-ups and drop-offs that can be
merged into one stop is minor.

2.4.7 Minimizing the number of stops for pick-up and drop-off

Reducing the number of performed stops for the pick-up and drop-off of the users can result
in an unreliability reduction. If the system can pick-up/drop-off an additional user at the
same origin/destination of another user, the unreliability imposed on the already assigned
users is reduced.

Pimenta et al. (2017) analyzed the management of a Dial-a-Ride problem consisting of a
closed industrial site to minimize the number of loading/unloading operations.A static prob-
lem is considered, i.e., all requests are known in advance before executing the optimization
problem. The industrial site consists out of the main track, i.e., a circular circuit, and load-
ing/unloading areas. Overtaking is forbidden on the main track and all vehicles must travel
counterclockwise. The authors state that the steady flow of the vehicles correlates with the
number of performed loading/unloading operations. Therefore, to minimize the number of
stops, the vehicles are forced to stay as much as possible on the main track without deviating
to the loading/unloading areas. Experimental results illustrate that the number of stops and
the waiting time of the users are not convergent criteria. Minimizing the number of stops
increases the number of driven laps while minimizing the waiting time results in an increase
in the number of vehicles.

In conclusion, minimizing the number of stops for the pick-up and drop-off of the users
is a promising concept for reducing unreliability. However, an efficient implementation still
has to be discovered.

2.4.8 Predictive methods

By incorporating demand-side estimates in a simulation-based optimization, Bansal et al.
(2020) discovered the optimal waiting time that mobility-on-demand services should display
to attract more users. This was achieved by computing the travel time based on historical
data and assuming that the travel time between every two locations follows a lognormal
distribution. Their numerical experiments illustrated that mobility-on-demand services can
increase their acceptance rate by around 10% by displaying appropriate wait time informa-
tion.

The concept of providing improved travel time information can be implemented in SMoD
services to provide improved reliable trip information such that the unreliability of the service
is reduced. This can be achieved for example by analyzing historical demand data, the
system’s rules, and the current state of the fleet and the state of the traffic. Using this
information, the SMoD service can provide estimated data on the likelihood that a user will
face additional detours. Additionally, an estimate of the magnitude of these possible detours
could be provided to reduce unreliability.
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To execute stated preference experiments in SMoD systems, Alonso-González et al.
(2020) analyzed different methods to present travel times that include unreliability in their
predictions. These presentations can be in bar diagrams, histograms, circular arrangements,
likelihood percentages of travel times, a verbal description of equally plausible travel times,
and time variability with a single component, e.g., ± X minutes. By executing a stated
preference study about the perception of travel time unreliability, Tseng et al. (2009) rec-
ommend adopting a verbal description to present travel time unreliability. Results indicated
that participants with different educational levels emphasized that a verbal description is the
most intuitive and easy-to-understand method. Figure 3 illustrates such a verbal represen-
tation. Such a representation could be adopted to provide estimated data on the likelihood
and magnitude that a user will face additional detours such that the unreliability of the
service is reduced.

Figure 3: A verbal presentation of travel time unreliability (Tseng et al., 2009).

Altshuler et al. (2019) proposed a dynamic travel network approach to predict the
ridesharing utilization rate ahead of time. The authors demonstrate that the implemented
approach can model the potential utilization rate of the ridesharing service based on the
topological network properties. The utilization prediction is based on the construction of
multiple network snapshots. These network snapshots are derived using a sliding-window-
based aggregation of the ridesharing rides. Next, a correlation between the change in poten-
tial ridesharing utilization and the mean degree of the transportation network is created to
obtain future utilization rates. The authors demonstrate that this method can forecast the
potential utilization rate a few hours ahead.

In conclusion, demand predictions are an interesting concept as they can be used to
reduce unreliability by providing improved travel time information. If the system can tell
in advance that a user will face a detour with a specific duration, the user no longer faces
unreliability as the detour is known in advance. Several studies exist that aim to predict
demand. Therefore, it is interesting to analyze demand prediction methods. Additionally,
anticipatory methods, discussed in Section 2.3.1, are also interesting to analyze, as they make
predictions of the ridesharing utilization rate as well (e.g., X. Li et al., 2020; Al-Abbasi et
al., 2019; Alonso-Mora et al., 2017b). A detailed analysis of demand prediction models is
therefore provided in Section 2.5.
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Table 2: Overview of the methods to minimize unreliability.

Method Advantages Disadvantages Reference

Not allowing for changes in
schedule 2.4.1

- No unreliability induced by
operator rules
- Simple method

- Long waiting times for the users
- Increase in rejection rate
- No changes possible after assignment

(Y. Wang et al., 2018)

Add users if time
constraints are satisfied
2.4.2

- No unreliability induced by
operator rules
- Simple method

- Long wait times for the users
- Increase in rejection rate
- Violate user constraints vs reject requests

(Hörl & Zwick, 2021)

Objective function:
penalize changes in trip
duration 2.4.3

- Degree of unreliability decreased
based on magnitude of penalty
value

- Efficiency of the service might be reduced
- Might result in increased rejection rate

N/A

Objective function:
penalize delays 2.4.3

- Reduction in delay time - Efficiency of the service might be reduced
- Not clear if unreliability is reduced
- Might result in increased rejection rate

(W. Zheng et al., 2021)
(Manna & Prestwich, 2014)
(X. Chen et al., 2017)
(Y. Li & Chung, 2020)
(C. Li et al., 2020)

Constraint: threshold for
number of changes 2.4.4

- Unreliability rate can exactly be
controlled
- Simple method

- Efficiency of the service is reduced
- Might result in increased rejection rate

N/A

Constraint: threshold for
delays 2.4.4

- Reduction in delay time
- Simple method

- Efficiency of the service might be reduced
- Not clear if unreliability is reduced
- Might result in increased rejection rate

(C. Li et al., 2020)
(Gurumurthy & Kockelman, 2018)
(Y. Wang et al., 2018)
(Ota et al., 2015)

Increase demand-supply
2.4.5

- N/A - Transforms system into non-shared service
- Decrease in occupancy rates
- Might result in profit decrease

N/A

Meeting points for pick-up
and drop-off 2.4.6

- Increase efficiency of service
- Decrease in delays

- Not clear if unreliability is reduced (Fielbaum et al., 2021a)
(Stiglic et al., 2015)

Minimizing the number of
stops 2.4.7

- High potential to reduce
unreliability

- No suitable practical solution exists (Pimenta et al., 2017)

Predictive methods to
provide improved travel
time information 2.4.8

- No unreliability if the method
works perfectly

- Hard to implement
- Impossible to predict every single request

N/A

2.4.9 Discussion of the techniques to minimize unreliability

Several techniques have been discovered to (potentially) minimize unreliability in SMoD sys-
tems. An overview of the discovered techniques is provided in Table 2. Additionally, this
table provides the advantages and disadvantages of the techniques. It can be concluded that
no suitable technique exists that effectively reduces unreliability without strongly degrading
other quality-of-service indices. Furthermore, it has been concluded that a trade-off exists
between unreliability and the other quality-of-service indices such as rejection rate and share-
ability rate. The following paragraphs provide a conclusive analysis of the different methods
of Table 2.

In the literature, two methods are discovered that are able to minimize unreliability.
These two methods are: not allowing for changes in the schedule and only adding users if
the drop-off times are satisfied, Sections 2.4.1 and 2.4.2, respectively. Nevertheless, these
methods strongly increase the rejection rate and waiting time while degrading the shareability
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rate, i.e., the number of users per shared trip. Therefore, these methods are not suitable
to implement in real-life applications. The same disadvantages occur for the conceptualized
constraint method of setting a threshold on the number of trip changes a user can face
(Section 2.4.4).

Closely related to minimizing unreliability is the concept of minimizing delays. Several
methods are discovered to minimize delays: an objective function that penalizes delays, a
constraint that restricts the allowable delay time of the users, and meeting points for the
pick-up and drop-off of the users, Sections 2.4.3, 2.4.4, and 2.4.6, respectively. By reducing
delays, the likelihood decreases that the trip duration increases, resulting in a reduction in
unreliability. However, the system can still insert new users into a scheduled trip and apply
changes to the trip which induces unreliability. Therefore, these methods are not able to
effectively reduce unreliability.

Increasing the demand-supply, Section 2.4.5, will result in a reduced number of shared
trips. Therefore, unreliability reduces as fewer users are added to a trip. On the contrary,
this method is unsuitable since it transforms the ridesharing service into a non-shared service.

The remaining three methods are the most promising methods to minimize unreliability
efficiently. However, these three methods have not been examined in the literature since they
are conceptualized methods inspired by the already discussed methods. The first method is
implementing a penalty factor in the objective function that penalizes variations in travel
time during the assignment process (Section 2.4.3). This method can control the degree
of unreliability by altering the magnitude of the penalty, making it a promising method to
reduce unreliability. However, as the magnitude of the penalty value increases, the number
of users per shared trip may decrease since an increase in users per shared trip results in
an increase in unreliability. To counter this behavior, an additional parameter should be
implemented in the objective function that values the efficiency of the service.

The following interesting conceptualized method is to minimize the number of stops
for picking-up and dropping-off users during a trip (Section 2.4.7). In the ultimate case,
this means that all passengers can be picked-up and dropped-off at a similar origin and
destination. Nevertheless, such a method is hard to realize.

The last promising method is a predictive method to provide improved travel time in-
formation (Section 2.4.8). If the method works perfectly by forecasting all future demands,
the system can provide the exact travel time information that includes yet unscheduled fu-
ture detours, meaning that there is no unreliability at all. However, forecasting every single
request appears to be impossible.

The conceptualized method of predicting trip changes to reduce unreliability has the
least drawbacks in combination with its high potential to reduce unreliability. Therefore,
this method will be implemented in this research. Hence, Section 2.5 provides a detailed
analysis about demand prediction models. The concept of using an objective function that
penalizes unreliability also has a high potential to reduce unreliability. However, this concept
will strongly reduce the efficiency of the service, and therefore, it is not selected. The last
conceptualized method of minimizing the number of stops to pick-up and drop-off users
during a trip also has a high potential to reduce unreliability, but how this can be achieved
is unknown.
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2.5 Demand prediction

The method that will be implemented to reduce unreliability is based on the possibility
that new users will be added to the trip. Therefore, it is crucial to make predictions about
the possibility that new requests will appear. Hence, the theoretical background regarding
demand prediction models is provided in this section, starting with an introduction in Section
2.5.1. Next, the mobility characteristics that influence the demand are explored in Section
2.5.2. After that, the mobility prediction dependencies are discussed in Section 2.5.3. Since
most demand prediction methods use spatial clustering methods, different spatial clustering
methods are discussed in Section 2.5.4. Finally, Section 2.5.5 elaborates on forecasting
implementations and mathematical forecasting models.

2.5.1 Introduction

Urban infrastructures become increasingly reliant on network technologies as they enable
the expansion and innovation of urban networks. The increasing availability of portable
technologies stimulates the optimization of the urban transportation sector, pushing urban
designs closer to the concept of “smart cities” (Caragliu et al., 2011). Due to digitalization,
mobility demand behavior can extensively be analyzed as most human transport data can
be traced digitally. These analyses deliver the opportunity to uncover human travel pat-
terns (Froehlich et al., 2009). Several studies employ mobile phone data to analyze mobility
demand patterns (Ahas et al., 2007; Gonzalez et al., 2008; Calabrese et al., 2013). In a
large-scale data analysis, Gonzalez et al. (2008) illustrate that mobility patterns are far from
random and that a single spatial probability distribution can efficiently describe these travel
patterns. However, according to Gardner et al. (2013), travel demand is still inevitably
stochastic in its nature. Since there exists some randomness in the travel demand, (Zhao et
al., 2016) propose a taxi demand prediction approach while including a randomness factor
in the taxi demand. This is achieved by governing the taxi demand by a randomness fac-
tor, e.g., unexpected events, and simultaneously adding a degree of regularity, e.g., weekly
patterns. Although individual travel demand has the characteristics of personalization and
randomness, exploring the spatio-temporal characteristics of the ridesharing demand facil-
itates to an improved understanding of the demand distribution and provides a basis for
travel demand predictions (X. Li et al., 2020). The accurate prediction of the ridesharing
demand entails several benefits:

• For the transpiration companies, the results of the demand predictions can be utilized
to establish a proactive vehicle scheduling strategy that navigates vehicles to high-
demanding zones to improve the fleet’s utilization rate (Ke et al., 2017). Such a
proactive method makes reactive rebalancing methods unnecessary and obsolete.

• For city administrators, information about demand predictions can be employed to reg-
ulate the urban traffic flow and to manage the traffic demand and supply, to contribute
to more sustainable and healthy urban traffic (X. Li et al., 2020).

• For the users of the SMoD service, the unreliability of the service may be alleviated
by obtaining improved travel time information based on demand predictions. In the
ultimate scenario, the ridesharing system can predict every single request, such that
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the system can determine the exact travel times of each new user. As a result, users
face no unreliability as the initially provided travel times portray the real travel times.
However, in reality it is difficult, if not impossible, to precisely predict the demand.
Still, the concept of demand predictions can be leveraged to reduce unreliability.

2.5.2 Mobility characteristics

By employing a predictive demand strategy, the unreliability of the service might be reduced.
Therefore, a predictive strategy will be investigated to improve the unreliability of the SMoD
service. The mobility characteristics of taxi-services and SMoD services are explored to
obtain insights into the demand prediction process.

To obtain a comprehensive understanding of the taxi demand in New York City, Altshuler
et al. (2019) demonstrate the distribution of taxi trips per day of the week and per hour of
the day, Figure 4. It can be observed that the number of taxi-trips exhibits the very least a
uniform time distribution. More specific, the number of trips is greater in the middle of the
week compared to the other weekdays, including the weekend. Furthermore, a daily pattern
exists with a peak in the morning and a peak in the afternoon around 7 PM.

Figure 4: Probability Density Function (PDF) of the number of
taxi-trips per day of the week/hour of the day in New York City,
January 2013. Afternoon peaks are centered on average around 7

pm. Figure obtained from (Altshuler et al., 2019).

By analyzing the distribution of the number of taxi-trips between different squared
regions of New York City, Altshuler et al. (2019) indicate that the taxi demand follows a
power law distribution (Gonzalez et al., 2008), implying that most trips depart from the
same zones and travel to the same zones.

Esṕın Noboa et al. (2016) characterize the taxi travel patterns of Manhattan by clus-
tering the demand behavior based on spatio-temporal dimensions. The authors demonstrate
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that taxi demand is not one-dimensional but rather contains different facets of both time
and space, urging that taxi demand cannot be identified in a collective analysis. For ex-
ample, it has been discovered that on weekend nights, taxi rides are more likely to depart
to locations with a high density of party venues. Figure 5 illustrates a selection of these
discovered spatio-temporal mobility patterns of Manhattan.

Figure 5: Spatio-Temporal travel behavior. (a) Each row represents a behavioral component
with respect to the pick-up time (hour of the week). The maps on the right side show the
areas of low and midtown Manhattan. The colors of each tact present how representative
that location is in that cluster; the darker, the more dominant. (b,e) cluster C1 stands for
taxi rides at 9 AM around the south-east of Manhattan; (c,f) Cluster C2 contains all evening
short taxi rides at 6 PM around the center of Manhattan; and (d,g) Cluster C3 represents all
weekend night taxi rides around the lower and middle part of Manhattan. Figure obtained
from (Esṕın Noboa et al., 2016)

Foell et al. (2014) investigated personal mobility patterns, global mobility patterns, and
geographic distance metrics to predict the mobility patterns of public transport users. Here,
the personal mobility patterns, i.e., the trip history of a user, are leveraged to predict the
destination of the user. It is likely that destinations that have been relevant in the past
will also be equally important during future trips (Foell et al., 2014). The characteristics
of mobility demand behavior can be divided into three aspects. These are global mobility,
geographic mobility, and network mobility.

• Global mobility - Superimposing personal travel patterns give rise to the emergence
of global travel patterns. Global travel patterns contain essential information about
which destinations are most likely to be selected by the users. This results in high-
demand zones and popular destination hot spots as these destinations are particularly
attractive to the transport users. These high-demand zones result in high levels of
transport activity in specific areas. High-demand zones arise due to a manifold of
influences, such as urban centers of social activities (Foell et al., 2014).
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• Geographic mobility - The probability of a user traveling to a destination de-
creases proportionally to the travel distance of the concerning trip (Gonzalez et al.,
2008). Given this knowledge, the degree to which a specific zone is relevant to a user
departing from a given zone can be estimated. A study that uses such an implemen-
tation is provided for example by (Foell et al., 2014).

• Network mobility - Besides the available mobility-on-demand services, public trans-
port systems also participate in the network mobility infrastructure. Public transport
systems influence the likelihood to which zone a request travels to. If zone a and zone
b are well connected with public transport, it is less likely that a user departing from
zone a will take a taxi to zone b as more convenient alternatives are available for this
trip (F. Wang & Ross, 2019).

The topology of a route network may significantly differ from the geographical relations
in space. Although some zones are geographically close, the travel connections might
not always be convenient or efficient. Therefore, a metric can be implemented to
identify preferred travel destinations that considers the network mobility of a city
(Foell et al., 2014).

2.5.3 Mobility dependencies

According to J. Zhang et al. (2017), the forecasting of the taxi demand flow in each city re-
gion is affected by three factors: spatial dependencies, temporal dependencies, and external
influences. The selection of reasonable factors is the basis for an accurate demand predic-
tion; therefore, (X. Li et al., 2020) mainly consider spatio-temporal, temporal, and spatial
variables. Below, an elaboration of the different mobility dependencies is provided.

• Time dependencies - Passenger demand has a strong periodicity (Altshuler et al.,
2019; Ke et al., 2017). This periodicity can for example be explained by the peak
demands during the morning due to commute travel, and low demands during the
night time. Therefore, the time dependencies include the day of the week and the time
of the day.

• Spatial dependencies - It is well known that the characteristics of a specific zone,
e.g., cultural occasions, work-offices, and residential areas, influence the mobility de-
mand rate of that specific zone. However, the mobility demand of a specific zone does
not solely depend on the characteristics of that zone but on the characteristics of all
zones in the whole network (Yang et al., 2010). Nevertheless, the characteristics of
nearby zones have a more powerful influence on the demand than the more distant
zones (Ke et al., 2017). By analyzing the mobility of different cities, Noulas et al.
(2012) demonstrate that mobility highly correlates with the distribution of the points
of interest in a city.

In an analysis of the ridesharing demand data of Haikou, China, X. Li et al. (2020)
illustrate that there is a high spatial correlation between the demand in a certain zone
and its neighboring zones, and the closer distance to the neighboring zone, the greater
and more significant the correlation is.
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• Spatio-temporal dependencies - The combination of time and space dependencies
strongly influence the demand rate. Spatio-temporal dependencies include the histor-
ical demand rate of the concerning zone and its neighboring zones and the travel time
rate, i.e., the travel time per unit travel distance. Historical demand is an important
factor in demand forecasting (X. Li et al., 2020).

• External dependencies - Different external factors, such as weather conditions,
events that take place, traffic events, and recent transport-related changes, e.g., new
transit lines and urban projects, strongly influence the short-term mobility demand
(Ke et al., 2017; J. Zhang et al., 2017; Fielbaum et al., 2021b).

2.5.4 Spatial clustering

To analyze travel behavior, many studies use a spatial clustering method, also known as city
partitioning, spatial clustering, or city discretization (e.g., Altshuler et al., 2019; X. Li et al.,
2020; Ke et al., 2017; X. Li et al., 2012; Chang et al., 2010; Yuan et al., 2011). By applying
spatial clustering methods, areas with a high density of emerging requests can be identified
(Chang et al., 2010). This section discusses the different methods to cluster zones.

The most widely implemented method to cluster zones is the grid method which uses
square areas to cluster the different zones. Several square area sizes are implemented in the
literature.

To analyze mobility patterns, Esṕın Noboa et al. (2016) implement a clustering method
that does not only rely on spatial dimensions, but also on temporal dimensions. The authors
utilize non-negative tensor factorization (Cichocki et al., 2009; Hao et al., 2014) to identify
the clusters.

Wallar et al. (2018) present a method to optimally cluster Manhattan into regions
with corresponding region centers in order to rebalance idle vehicles. The operating area
(Manhattan) is discretized into regions by considering the maximum travel time between
any two nodes in the graph and the closest region center. The minimum number of region
centers is determined by considering the maximum travel time between any two nodes. All
nodes assigned to the same center form a zone. As a result, every node in the road network
graph is reachable by at least one region center within a predefined maximum travel time.

The Taxi & Limousine Commission (TLC) of New York city has divided the city into 263
taxi zones. As a result, Manhattan has been divided into 64 zones. The geo-spatial dataset
of Manhattan is presented in Figure 6. The zones are divided based on their geographic
characteristics.
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Figure 6: Taxi zones of Manhattan by the Taxi & limousine
commission (TLC).

2.5.5 Forecasting methods & mathematical models

From section 2.5.3 about Mobility dependencies, it can be concluded that multiple factors
influence the demand. Therefore, different factors can be combined to obtain an adequate
demand prediction. Several mathematical models exist that build predictions based on
spatio-temporal demand data. This section gives an overview of the well-known demand
prediction models.

Interesting research regarding taxi demand predictions is provided by (Moreira-Matias
et al., 2013). To create predictions about the spatio-temporal distribution of the taxi demand
using streaming data, the authors employ two well-know time-series forecasting techniques:
the time-varying Poisson model (Ihler et al., 2006), and the and the autoregressive integrated
moving average (ARIMA) (Box et al., 2015). The Poisson model calculates the probability
that n requests emerge during a certain time period. The ARIMA technique is a well-known
methodology to model and forecast univariate time-series data, e.g., traffic-flow data (Min
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& Wynter, 2011) and taxi demand data (Moreira-Matias et al., 2013). As a result, Moreira-
Matias et al. could predict the demand for 30-minute period intervals, with a total of 506873
correctly predicted demands with an aggregated error measurement lower than 26%.

Many researches have studied the development of short-term traffic demand prediction
models in the field of transportation. Overall, these models can be divided into four cate-
gories: linear methods, non-linear methods, soft computing methods, e.g., neural networks,
and hybrid methods (Y. Li et al., 2017). The most popular linear methods are moving aver-
age (MA) models, autoregressive integrated moving average (ARIMA) models, exponential
smoothing, Kalman Filter/Fitters, and Poisson models (Ke et al., 2017; G. P. Zhang, 2003;
Y. Li et al., 2017; Moreira-Matias et al., 2013). The following sections provide an explana-
tion of the working principles of the most popular demand prediction models.

Naive methods
The most simple method to predict the demand is to set the prediction at time t equal to
the demand the day before. Let Z = {z1, z2, . . . , zN} be the set of N zones in the spatial
domain of the city, then the number of predicted requests Ŷ at time t in zone k is as follows:

Ŷk,t = Yk,t−(24/s). (1)

Here, s represents the length of the time segment in hours. For example, if s is set to 1
hour, then the demand prediction of time segment x is equal to the demand at time segment
x − 24. Unfortunately, this prediction is only applicable if the demand of a specific zone k
is highly periodic, meaning a low variance in the daily demand (X. Li et al., 2012).

Instead of solely considering the previous day, several weekdays in the past can be
considered to predict the demand, assuming that there are marginal differences in the demand
rate within the considered days and the predicted demand. Denoting D the set of days in
the considered dataset, and Yk,d,t the number of requests emerging in zone k at time t on

day d, the demand prediction rate Ŷ can be described as follows:

Ŷk,t =
∑
d∈D

Yk,d,t
|D|

. (2)

A similar implementation of equation 2 is provided by (Fielbaum et al., 2021b).
Another simple implementation to define the demand rate of zone k is to consider the

number of requests that just have been received in zone k, assuming that the number of
current incoming requests is equal to the number of recently received requests. Denoting
Rw,t the set of requests that are waiting for a match at time t, and Or denoting the origin
of request r, the predicted demand in zone k is then defined by:

Ŷk,t = |{r ∈ Rw,t : or ∈ k}| (3)

This equation is primarily applicable when the demand is highly random and no periodicity
exists in the demand, insinuating that the demand is highly affected by external factors such
as weather conditions and traffic accidents. Papers that consider the current demand to
estimate future demands are (Sayarshad & Chow, 2017; Fielbaum et al., 2021b).
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Exponential smoothing
Exponential smoothing (Hyndman et al., 2008) is a well-known forecasting method in time
series analysis. Past observations are weighed unequally such that the weights decrease ex-
ponentially over time. Hence, recent observations have a greater influence on the prediction,
while multiple past observations are still considered. The most simple form of exponential
smoothing to predict the demand Y at time t is formulated as

Ŷt = αYt−1 + (1− α)Ŷt−1 (4)

where α represents the smoothing constant, with α ∈ [0, 1], and Yt−1 is the actual demand
at time t− 1. By direct substitution of equation 4 back into itself, the following exponential
smoothing equation is obtained to determine the predicted demand Ŷ at time t given the
actual demands Yt:

Ŷt = αYt−1 + α(1− α)Yt−2 + α(1− α)2Yt−3 + . . .+ α(1− α)nYt−n. (5)

The smoothing factor α determines the smoothing rate of past observations. As the value
of α increases, the level of smoothing is reduced. If α is set to 1, the prediction at time t is
equal to the actual demand at time t−1. Therefore, α values close to one produce a reduced
smoothing effect and prioritize recent data values, while α values close to zero result in an
increased smoothing effect with a less responsive behavior to current data values. No formal
procedure exists to determine the value of α. Since the smoothing factor is a user-defined
parameter, its value can be determined by analyzing the significance of the considered time
stamps, or by applying a statistical technique, e.g., the least squares method (Levenberg,
1944), to optimize α (Hofmann, 2019).

Poisson prediction
As stated in section 2.5.2 about Mobility characteristics, the mobility demand exhibits a
periodic pattern. This daily pattern can be employed in the time-varying Poisson model to
predict the demand. A Poisson distribution counts the number of occurrences of an event in
a given unit of time. The Poisson distribution assumes that events occur independently and
that the probability that an event occurs in a given length of time does not change through
time. Hence, the events occur randomly and independently (Haight, 1967). Considering
that the probability P (n) for n requests to emerge in a specific time period follows a Poisson
distribution, the Poisson probability mass function is formulated as follows:

P (n) =
λne−λ

n!
(6)

where λ represents the rate (the average expected demand) in a fixed time interval. However,
the demand rate of mobility services is not constant but time variant. Therefore, Hyland
et al. (2020); Ihler et al. (2006); Moreira-Matias et al. (2013) transform the variable λ to
a time-dependent variable, i.e., λ(t), such that the Poisson distribution transforms into a
non-homogeneous Poission distribution, in which the degree of heterogeneity depends on the
function λ(t). As a result, λ(t) is decomposed as

λ(t) = λ0δd(t)ηd(t),h(t) (7)
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where λ0 represents the average/expected rate over a full week, and d(t) indicates the day
on which time t falls, such that d(t) takes on the values {1 (Monday), . . . , 7 (Sunday)}. δd(t)

is the relative change for each day of the week, as different days have different demand
rates. Similarly, ηd(t),h(t) represents the relative change for each time period h(t) at day d(t).
Equation 6 requires that

7∑
i=1

δi = 7 and
D∑
i=1

ηd,i = D ∀d (8)

where D represents the number of time intervals in a day. To predict the number of requests
for each zone k in the city, each demand rate λ(t)k is obtained by taking the average of all
previously measured demands during the same day d(t) and time period t. So, for example,
the expected demand λ(t)k on a Monday at 09:00h is equal to the average demand rate of
each previously measured Monday at 09:00h.

However, the demand rate can be seasonal; hence, the more recent data values are in-
creasingly important to determine the expected demand rate λ(t). Therefore, the relevance
of the more recent values should be increased to obtain improved λ(t) values (Moreira-Matias
et al., 2013). This can for example be accomplished by implementing the discussed Expo-
nential smoothing method.

ARIMA based prediction
The autoregressive integrated moving average (ARIMA) model (Box et al., 2015) is a widely-
recognized benchmark model to forecast short-term traffic flow (J. Liu et al., 2017). It is
a time series method that fits a specific statistical model to past data to forecast future
data. The ARIMA model exists out of three parts, i.e., the Auto Regressive (AR) part, the
Integrated (I) part, and the Moving Average (MA) part. To define the order of the ARIMA
model, i.e., the number of evaluated time instances, the following notation is adopted:

ARIMA(p, d, q). (9)

Here, p represents the order of the autoregressive part, d indicates the order of the integrated
part, and q represents the order of the moving average part (Tsay, 2005). The autoregressive
(AR) part indicates that the variable of interest regresses on its own lagged, i.e., prior, values.
To predict the number of demands Y at zone k at time period t, the AR part can be described
with the following function:

Ŷk,t = φ0 + φ1Yk,t−1 + φ2Yk,t−2 + · · ·+ φpYk,t−p. (10)

The variable φl(l = 1, 2, . . . , p) is the AR model parameter, and Yt−1 is the actual number
of demands during the previous time period.

The moving average (MA) part forecasts the variable of interest based solely on past
error values of the forecasted variable of interest. Therefore, the MA part considers the error
between the prediction value of the previous time periods and the real value of these time
periods. This error is formulated as ε. The MA part is defined as follows to determine the
predicted demand Ŷ at zone k at time period t:

Ŷk,t = θ0 + εk,t − θ1εk,t−1 − θ2εk,t−2 − · · · − θqεk,t−q (11)
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Here, θm(m = 0, 1, 2, . . . , q) is the MA model parameter, and {εk,t, εk,t−1, εk,t−2, . . .} are error
terms observed in the past signals.

The AR and MA components can be combined into an autoregressive moving average
(ARMA) model to predict the demand Y at time t in zone k as

Ŷk,t = constant + φ1Yk,t−1 + φ2Yk,t−2 + · · ·+ φpYk,t−p

+ εk,t − θ1εk,t−1 − θ2εk,t−2 − · · · − θqεk,t−q
(12)

The ARMA model can be described in words as

Predicted Yt = Constant + Linear combination Lags of Y (upto p lags)

+ Linear Combination of Lagged forecast errors (upto q lags).
(13)

The ARMA model assumes that the time-series data is stationary, i.e., the mean and variance
of the time-series data are constant for the whole series, no matter what time period is
selected. Hence, the time-series data cannot have an upward or downward trend. However,
this does not hold for the mobility demand since the demand has a clear daily periodicity,
as indicated in section 2.5.2. Therefore, the integrator (I) part is introduced in the ARIMA
model to transform the non-stationary data into stationary data. The trend in the data is
removed by differencing. As formulated in equation 10, the d parameter indicates the order
of the integrated part, i.e., the number of differences needed to achieve stationary. The first
difference can be presented as

d = 1 : ∆Yk,t = Yk,t − Yk,t−1. (14)

Likewise, the second difference is formulated as

d = 2 : ∆Yk,t = (Yk,t − Yk,t−1)− (Yk,t−1 − Yk,t−2) = Yk,t − 2Yk,t−1 + Yk,t−2. (15)
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2.6 Theoretical background summary

The theoretical background of unreliability in on-demand ridesharing systems is explored
in this chapter to ultimately discover techniques to minimize unreliability. In this research,
unreliability indicates that it is hard for the users to know what quality of service they will
receive in terms of time management provided by the service. Users may face discomfort
when the realization of their trip differs from what was initially predicted, affecting the users’
short-term decisions.

From Section 2.1, it can be concluded that the causes of unreliability can be divided
into two categories: causes of unreliability present in all types of transport and causes of
unreliability specific to on-demand ridesharing systems, meaning that the cause is related
to the vehicles’ shared assignments. The second category can be further divided into unre-
liability induced by the users and unreliability induced by the operators. This research is
interested in minimizing unreliability induced by the operators’ rules during the assignment
procedure.

An analysis of the users’ unreliability perception, Section 2.2, illustrates that two types
of unreliability phenomena can be classified to describe how unreliability affects the user’s
perception of the SMoD’s quality-of-service. The first type, one-time unreliability, occurs
within a single trip: when a user is assigned to a trip, the real waiting time and IVTT might
differ from the originally predicted values. These changes affect the short-term decisions
of the user. The second type of unreliability, daily unreliability, occurs between different
realizations of the same trip. Users have to take into consideration how the quality of service
will be before they decide if a SMoD service will be used. Since the travel time is uncertain,
users might want to plan extra time to ensure on-time arrival. The objective of this research
is to discover techniques that aim to minimize one-time unreliability.

Next, Section 2.3 analyzed the different assignment processes to match vehicles to re-
quests. It can be concluded that each technique influences the unreliability of the service.
Even inferior changes in the system parameters affect the unreliability of the service.

Finally, Section 2.4 provides an overview of the discovered techniques that aim to min-
imize unreliability. Table 2 summarises the discovered techniques. The discoveries illustrate
that there are currently no suitable techniques to efficiently resolve the unreliability problem
in SMoD systems without degrading other quality-of-service indices. The few discovered
techniques that aim to minimize unreliability in SMoD systems degrade the efficiency of the
service drastically, making them unsuitable to implement in real-life applications. Based on
the discovered techniques, several conceptualized methods are proposed in Section 2.4 to
reduce unreliability. The method of providing improved travel time information by making
predictions about future changes will be implemented in this research. This method has the
least drawbacks in combination with its high potential to reduce unreliability. Section 2.5
provides an overview of the demand prediction models to facilitate the implementation of
the unreliability measure.

In conclusion, the management of unreliability in SMoD systems has emerged as a novel
key issue. However, empirical research on how operators can efficiently minimize unreliability
is limited. Therefore, a gap in the literature exists of efficiently dealing with the problem
of unreliability. This gives the occasion for the establishment of this research that aims to
solve this knowledge gap.
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3 Methodology

This chapter describes the solution implementation to reduce unreliability in ridesharing.
The implemented solution is tested using a state-of-the-art routing and assignment method.
Therefore, a description of the implementation of the state-of-the-art routing and assignment
method is provided in Section 3.1. Next, the formulated solution is elaborately described in
Section 3.2. At last, the simulation setup is provided in Section 3.3.

3.1 State-of-the-art ridesharing implementation

The state-of-the-art ridesharing routing and assignment method of Alonso-Mora et al. (2017a)
is implemented to assign requests to vehicles. For the assignment process, a request is defined
by its origin, destination, number of passengers, and the emerging time at which the request
has been received. A fleet V of m vehicles with capacity cv is considered. During each iter-
ation, an assignment Σ of the set of n requests R to m vehicles V is optimized to minimize
cost C of the assignment. The cost C of the assignment considers the cost of assigning the re-
quests while simultaneously considering the set of rejected requests by penalizing them. The
assignment process is executed iteratively every minute, such that R contains the requests
received during the last minute and the requests that can be reassigned. A request can be
reassigned if it has been assigned during previous iterations and has not been picked-up yet.
The cost function of Fielbaum and Alonso-Mora (2020), which is based on the cost function
of Alonso-Mora et al. (2017a), is implemented in this research, and is formulated as:

C(Σ) =
∑
v∈V

∑
p∈Pv

cp +
∑
r∈Rok

cr +
∑
r∈Rko

cko +
∑
r∈Rok

co. (16)

In this equation, Pv describes the set of picked-up requests (also known as passengers)
by vehicle v ∈ V which are now traveling to their destination, Rok is the set of requests that
have been assigned to some vehicle, and Rko is the set of unassigned requests. Furthermore,
cp is the cost of serving passenger p, cr is the cost of serving request r, cko is a constant to
penalize each rejected request, and co is the operator cost to serve request r. Equation 16 is
subjected to the following constraints:

• Each request r cannot exceed a maximum waiting time Ω. The waiting time tw(r)
of request r is equal to the difference between the pick-up time tpr and the request’s
emerging time tr.

• Each request r cannot exceed a maximum travel delay ∆. The travel delay D(r) of
request r is equal to the difference between the drop-off time tdr and the earliest possible
time at which the destination can be reached if the vehicle would travel directly with
the shortest path from the origin Or to the destination Dr of request r.

• Each vehicle v cannot exceed its maximum capacity cv.

Since solving this optimization problem is highly computationally expensive, Alonso-Mora
et al. split the optimization problem into four consecutive steps to reduce computation time
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while maintaining high solution quality. These steps are: computing a pairwise request-
vehicle shareability graph (RV-graph); computing a request-trip-vehicle-graph (RTV-graph)
to explore the cliques (complete sub-graphs) of the RV-graph; solving an Integer Linear
Program (ILP) to compute the best assignment of vehicles to trips; and rebalancing idle
vehicles. These steps are also implemented in this research; a detailed explanation of the
steps is provided in the following sections.

After completing these steps, the rejected requests Rko are removed such that they
cannot be assigned during the subsequent iterations. Next, the system starts accumulating
newly received requests such that they can be assigned during the next iteration. Besides,
the already assigned requests which have not been picked-up yet are added to the batch of
requests that will be considered during the successive assignment procedure.

3.1.1 RV-graph

A request-vehicle graph (RV-graph) is created to determine which requests can be pairwise-
shared and which requests and vehicles can be pairwise-shared. Therefore, two requests r1

and r2 are feasible to share a trip if a virtual vehicle starting at the origin of one of them
can serve both requests without violating their constraints. Similarly, a combination of a
request r and a vehicle v is feasible if the vehicle can serve the request without violating the
constraints of the assigned users of the vehicle. All feasible matches create the RV-graph.

3.1.2 RTV-graph

A request-trip-vehicle-graph (RTV-graph) is created to determine which sets of requests can
be served by which vehicle. This is determined by exploring the RV-graph’s cliques, i.e., the
feasible request-vehicle combinations and request-request combinations. The RTV-graph is
created by exploring the feasible trips for each vehicle incrementally in trip size. Here, a
trip is defined as the set of nT requests. A trip is feasible when its subtrips, i.e., RV-graphs,
are also feasible, reducing the number of potential trips. Therefore, a trip is feasible if all
trip requests can be picked-up and dropped-off by a vehicle without violating the constraints
of the trip requests and without exceeding the constraints of the already assigned users of
the vehicle. Each feasible trip T is described by an edge e(T, v), containing the set of nT
requests in trip T that can be served by vehicle v and the associated cost of serving this
trip. It might be possible that a request is part of multiple trips of different sizes. Likewise,
multiple vehicles might be able to serve the same trip.

3.1.3 ILP assignment

The problem is solved with an Integer Linear Program (ILP) to compute the best assignment
of vehicles to trips. The ILP is solved by selecting the edges of the RTV-graph such that
the cost function, Equation 16, is minimized. To solve the ILP, Alonso-Mora et al. introduce
a binary variable εi,j ∈ {0, 1} for each edge e(Ti, vj) of the RTV-graph. εi,j = 1 indicates
that vehicle vj has been assigned to trip Ti. The set of {i, j} indices for which a feasible
edge e(Ti, vj) exists in the RTV-graph is denoted by ETV . Furthermore, a binary variable
χk ∈ {0, 1} is introduced for each request rk ∈ R, defining whether request rk has been
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assigned (χk = 0) or rejected (χk = 1). Edge e(Ti, vj) has a cost ci,j, such that the following
assignment is being optimized:

Σoptim = arg min
X

∑
i,j∈ETV

ci,jεi,j +
∑

k∈{1,...,n}

ckoχk. (17)

Equation 17 is obtained from Alonso-Mora et al. (2017a). To solve this optimization, two
constraints are added to ensure that each request is assigned to at most one vehicle and each
vehicle is assigned to at most one trip.

Edge e(Ti, vj) has a cost ci,j. In this research, the cost of an edge is equal to the
formulated edge cost function by Fielbaum and Alonso-Mora (2020), where the cost ci,j
depends on the waiting and in-vehicle time of each request of trip Ti, on the extra time
induced to the current requests of vehicle vj, and on the extra travel distance that vj has to
travel (called operators’ cost). The cost ci,j of serving trip Ti with vehicle vj is expressed as:

c(i, j) =
∑
r∈Ti

[pwtw(r, i, j) + pvtv(r, i, j)]

+
∑
r∈vj

[pw∆tw(r, i, j) + pv∆tv(r, i, j)]

+ c0∆L(i, j).

(18)

The first term describes the cost of the users of trip Ti, the second term represents the cost of
the requests that were already being served by vj, and the third term describes the operators’
cost. The unitary cost of waiting and in-vehicle travel time for the requests is denoted by pw
and pv, respectively, and the waiting time and in-vehicle travel time of a request are denoted
by tw and tv, respectively. The operators’ cost is described by the extra length ∆L vehicle
vj has to travel to serve the requests of trip Ti and the respective unitary operator cost c0.

Such a cost function is implemented as operators are interested in providing high-quality
service to the users and minimizing their own costs (Fielbaum & Alonso-Mora, 2020). The
numeric values of the implemented parameters are similar to those of Alonso-Mora et al.
(2017a) and Fielbaum and Alonso-Mora (2020) and are provided in table 3.

Table 3: Parameters used for the assignment process. The maximum waiting time and delay
are equal to the values of Alonso-Mora et al. (2017a). The remaining parameter values are
equal to the values of Fielbaum and Alonso-Mora (2020).

Parameter Value

Max. admissible waiting time Ω 5 [min]

Max. admissible delay ∆ 10 [min]

Weight of one in-vehicle minute for users pv 1

Weight of one minute waiting for users pw 2

Weight of rejecting a request cko 40

Weight of one minute with a vehicle in-motion for operators c0 1.5
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3.1.4 Rebalancing

A rebalancing step is performed to move idle vehicles, i.e., vehicles with no requests assigned,
to regions of higher demand. Rebalancing is achieved by matching the idle vehicles to the
rejected requests Rko. First, the travel time of each individual vehicle to each individual
rejected request’s origin is computed. Next, the optimization problem is solved with an
ILP to reduce the total travel time. If there are more vehicles than rejected requests, some
vehicles remain idle. If there are more rejected requests than idle vehicles, each vehicle is
assigned to exactly one request. The rejected requests are not actually picked-up. They are
only used to move idle vehicles to regions where the demand cannot be satisfied.

3.1.5 Not allowing for reassignments

This research aims to minimize unreliability by providing information about the possibility
and magnitude that a request will face extra travel time. This information is obtained by pre-
dicting the possibility that a new request will be added to the trip, which is determined with
the shareability shadow concept, discussed in Section 3.2.1. An advantage of the shareability
shadow is that it is able to obtain an adequate prediction without being computationally
expensive and without knowing the exact origins and destinations of new requests. However,
a disadvantage of this method is that it cannot consider rescheduled requests, i.e., requests
that were first assigned to a specific vehicle and the next iteration are reassigned to another
vehicle. This results in a reduced performance of the unreliability predictions.

Therefore, simulations are also performed for which rescheduling requests is not allowed.
When rescheduling is not allowed, the set of n requests R considered during the optimization
process does not contain the set of requests which are already assigned to a vehicle during
previous iterations. The same cost function of Equation 16 can be used for the assignment
problem, except that the set of already assigned requests to vehicle v, denoted by Av, is
considered for the first term instead of Pv, and the cost of serving the already assigned
requests, denoted by ca, is introduced. This gives the following equation for the cost of the
assignment:

C(Σ) =
∑
v∈V

∑
r∈Av

ca +
∑
r∈Rok

cr +
∑
r∈Rko

cko +
∑
r∈Rok

co. (19)
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3.2 Reliability model implementation

A description of the measure to reduce unreliability is provided in this section. The measure
provides each user the prediction of the possibility and magnitude of a possible negative
change in trip duration. These indices are determined using the shareability shadow concept,
described in Section 3.2.1, and a demand forecasting method, discussed in Section 3.2.2.
Finally, the construction of the unreliability measure is provided in Section 3.2.3.

The measure aims to reduce the unreliability of each user. Therefore, we consider a user
who poses a request r. The following definitions are formulated for this request:

• Waiting time tw(r), which is equal to the difference between the pick-up time tpr and
the request’s emerging time tr.

• In-vehicle time tv(r), which is the difference between the drop-off time tdr and the
pick-up time tpr.

• Detour time td(r), which is equal to the in-vehicle time minus the travel time of the
shortest origin-destination path of the request.

• Travel delay D(r), which is equal to the difference between the drop-off time tdr and the
earliest possible time at which the destination can be reached if the vehicle would travel
directly with the shortest path from the origin Or to the destination Dr of request r.

3.2.1 Shareability shadow

A well-known notion in the world of ridesharing is shareability. Shareability defines the
number or fraction of individual trips that can be shared. Tachet et al. (2017); Bilali et
al. (2019) examine the shareability by specifying different quality-of-service indices, such as
delay time and waiting time, by implementing a shareability shadow model that does not
require computationally expensive simulations or expensive real-life pilots. Their presented
model can accurately determine the shareability rate. Hence, the shareability shadow model
is relevant for operators and city planners to explore ridesharing characteristics. The share-
ability shadow approach is implemented in this research because it requires less computation
time, while still providing an accurate prediction of the shareability rate.

Shareability shadow theoretical background
The shareability shadow is an existing concept in the world of ridesharing. As stated by
Tachet et al. (2017); Bilali et al. (2019), shareability is modeled by considering a trip T and
estimates the probability that there exists at least one request r′ that can be added to T .
The notion of the shareability shadow confines the region of ridesharing opportunities and
is created by geometric shapes representing different constraints. The shareability shadow,
illustrated in Figure 7, is based on the shareability shadows by Tachet et al. (2017); Bilali et
al. (2019), and is defined by the tolerable ridesharing delay of the in-vehicle users, denoted
by ∆v, the admissible waiting time Ω of r′, and the average speed ν of the vehicle v. A
new request r′ is shareable with T if their trajectories (partially) overlap in space and time,
and the deviation is not larger than the tolerable ridesharing delay of the in-vehicle users
∆v. The ridesharing delay ∆v depends on the accumulated delay of the vehicle’s assigned
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requests. Note that ∆v is different from the implemented maximum delay time ∆, which is
equal to ten minutes for all requests (See Table 3). The red line in Figure 7 presents the
trajectory of trip T which has an origin OT and destination DT . The trajectory is presented
as a horizontal straight line and forms the trajectory in space and time of trip T . At time t,
the vehicle of the trip is positioned at its current position cpv(t). The tolerable ridesharing
delay time ∆v of the in-vehicle users cannot be exceeded when adding request r′ to trip
T . Hence, the deviation from the trajectory of T (red line) cannot exceed ν∆v. Here, ν∆v

presents the maximum distance a vehicle can deviate, considering the tolerable ridesharing
delay time ∆v of the in-vehicle users and vehicle speed ν. Therefore, the delay constraint is
presented in the shareability shadow as the green area with height 2ν∆v.

Besides analyzing the constraints of the in-vehicle users, the constraints of the new
request r′ have to be analyzed as well to determine whether request r′ can be shared with
Trip T . Hence, the origin Or′ of request r′ should be within the blue area surrounding
cpv(t) such that the maximum waiting time Ω is not exceeded. Note that the implemented
maximum waiting time Ω is equal to five minutes for all requests (See Table 3), while the
maximum ridesharing delay ∆v can take different values, depending on the accumulated
delay of the in-vehicle users. This results in two different shareability shadows:

• If the maximum waiting time Ω is smaller than the maximum ridesharing delay time
∆v of vehicle v’s assigned users, the shareability shadow in Figure 7a is established.

• On the other hand, if the maximum waiting time Ω is larger than the maximum
ridesharing delay time ∆v of vehicle v’s assigned users, the shareability shadow in
Figure 7b is established.

This research aims to reduce unreliability for each request r that has been added to trip T
by providing improved travel time information. Thus, the shareability of T is analyzed when
r has been added to T . Hence, when analyzing the shareability of request r, with r ∈ T , the
destination Dr′ of the new request r′ should either be before the drop-off Dr of requests r,
i.e., the light green area, or after Dr, i.e., the dark green area. Additionally, this fulfills the
constraint that T and r′ should have (partially) overlapping trajectories.
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(a) Shareability shadow for Ω < ∆v.

(b) Shareability shadow for Ω > ∆v.

Figure 7: Shareability shadows representing the different constraints on sharing trip T ,
traveling in a straight trajectory (red line) from origin OT to destination DT , with a new
request r′ which has a maximum waiting time Ω. The vehicle of trip T travels with speed
ν, and users assigned to vehicle v of trip T have a tolerable ridesharing delay time ∆v. At
time t, the vehicle of trip T is positioned at its current position cpv(t). Trip T can be shared
with a new request r′, if the origin of r′ is in the blue region while the destination of r′ is in
the green region. This shareability shadow is based on the shareability shadows of Tachet
et al. (2017); Bilali et al. (2019)

The discussed shareability shadow can be described mathematically. Equations 20 up
to 24 provide a mathematical description of the discussed shareability shadow. Nevertheless,
these equations are not implemented in the final solution to reduce unreliability. They are
discussed to provide a basis for establishing the final equation (Equation 35), which will be
used to reduce unreliability.

The discussed equations are based on the mathematical models of Tachet et al. (2017);
Bilali et al. (2019). However, Bilali et al. (2019) also consider the vehicle boarding and
disembarking time, which is neglected for simplicity in this research. According to Tachet et
al. (2017), the shareability S of a trip is defined by the dimensionless quantity L, describing
the ratio of the tolerable ridesharing delay time ∆v to the expected duration until a request
appears, denoted by tra, such that

L =
∆v

tra
. (20)

The expected duration until a request appears tra describes how long it takes until a new
request is generated in the trip’s vicinity. To determine tra, Tachet et al. (2017) define two
parameters; the operating area of the city, denoted in this research by C, and the average
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number of trips per hour with both endpoints in C, denoted by λ. The characteristic linear
scale of a vicinity is defined by ν∆v, describing the distance a vehicle can travel with velocity
ν when the vehicle’s assigned users have a maximum tolerable ridesharing delay time ∆v.
The total amount of vicinities is

# vicinities =
C

(ν∆v)2
, (21)

where each vicinity has an area of (ν∆v)
2. By assuming that the generated requests follow

a uniform distribution in space, the expected duration time until a request is generated in
the trip’s vicinity is defined as:

tra =
1

λ
× C

(ν∆v)2
. (22)

Substituting Eq. 22 into Eq. 20 gives

L =
λ∆3

vν
2

C
. (23)

Finally, Tachet et al. (2017) state that the overall shareability S of a trip can be determined
by considering the probability that a trip can be shared and considering the probability that
requests will emerge at a specific point in time and space. Next, the authors integrate these
probabilities over the corresponding time and space. By executing complex integrations
and performing some simplifications, Tachet et al. (2017) define the final equation for the
shareability of a trip as:

S = 1− 1

2L3

(
1− e−L

) (
1− (1 + 2L)e−2L

)
. (24)

As stated before, Equations 20 up to 24 are discussed as they provide a basis for the es-
tablishment of the final equation (Equation 35) that will be used in this research to reduce
unreliability.

Shareability shadow as function of the node travel times
The previously discussed shareability model determines the shareability of a trip by analyzing
the geographical regions a vehicle can travel through without violating the constraints of the
considered users. Tachet et al. (2017); Bilali et al. (2019) determine these regions by adopting
a constant vehicle speed ν. However, in this research, the vehicle speed is not assumed to be
constant, but it can take different speeds between different nodes. Therefore, the shareability
shadow regions will be a function of the node travel times instead of a constant vehicle speed.

As a result, a new shareability shadow is presented in Figure 8 which depends on the
node travel times. Again, the figure illustrates the shareability shadow of trip T at time t
when request r has been assigned to T . Each dot in the figure represents a node, and the
travel time between the nodes does not scale linearly with the distance between the nodes.
The trajectory of T is represented by a red line in space in time. The trajectory is no longer
represented as a straight line but as the path T follows by traveling through the different
nodes of the trip. Some of these red nodes are the scheduled stops, others are nodes the
vehicle has to travel through to reach its stops. The current position of vehicle v of trip T
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is at cpv(t) (node 1). The final destination of T is at DT (node 14) while the drop-off node
of r is at Dr (node 8). The green area defines the set of nodes that can be reached without
exceeding the tolerable ridesharing waiting time Ωv and delay time ∆v of the users assigned
to vehicle v.

As stated before, the objective of this research is to reduce unreliability for each request
r that has been assigned to trip T by providing improved travel time information to r.
Thus, the shareability is analyzed when r has been assigned to T . This shareability provides
information about the possibility that the travel time of r will increase. Therefore, the green
area of Figure 8 is divided into a dark green and light green area. The dark green area
presents the set of nodes that can be reached posterior to the drop-off node of r, and the
light green area presents the set of nodes that can be reached prior to the drop-off node of
r.

The blue area presents the set of nodes that satisfy the maximum waiting time Ω of a
new request r′ and simultaneously satisfy the constraints of the users assigned to vehicle v.
Each node in this blue area can be reached within a travel time smaller than the maximum
waiting time Ω. Hence, a new request r′ can be added to T if its origin is located in the blue
area while its destination is in the green area.

Figure 8: Shareability shadow of the pick-up and drop-off constraints to share trip T of
request r with another request r′. Each dot represents a node. The red line defines the
trajectory of T in space and time. The current position of the vehicle of the trip is at cpv(t)
(Node 1). The final destination of T is at node 14 and the drop-off node of r is at Dr, node
8. The blue area represents the set of nodes that satisfy the maximum waiting time Ω of
a new request r′ and simultaneously satisfy the constraints of the users assigned to vehicle
v. The green area defines the drop-off region of r′, as these nodes can be reached without
exceeding the tolerable ridesharing waiting time Ωv and delay time ∆v of the users assigned
to vehicle v. Light green indicates a drop-off of r′ prior to Dr, dark green indicates a drop-off
of r′ posterior to Dr.

The new equation for the expected duration tra until a request r′ appears that satisfies
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the trip constraints, which is a function of node travel times instead of a constant vehicle
speed, can be described mathematically in a similar manner as Equation 22. It is assumed
that the origins and destinations of the ridesharing demand are uniformly distributed in
space, such that the demand rate can be rescaled to obtain the expected duration tra until
a new request r′ is received that can be added to trip T . Let NC = {n1, n2, . . . , nN} be the
complete set of M nodes in the spatial domain of the city. The duration tra until a single
request r′ has been received that can be added to trip T is defined as:

tra =
1

λ
× #NC

#NΩ(t)︸ ︷︷ ︸
ratio reachable
pick-up nodes

× #NC
#N tot

∆ (t, T )︸ ︷︷ ︸
ratio reachable
drop-off nodes

, (25)

with
#N tot

∆ (t, T ) =
∑

nD∈N (t,T )

#N∆(nD), (26)

and
∀n1, n2 ∈ N tot

∆ (t, T )→ n1 6= n2. (27)

λ presents the average number of emerging requests per hour with both endpoints in the
spatial domain of the city. To obtain the duration tra until a request r′ appears that satisfies
the trip constraints, 1/λ is multiplied by the ratio of nodes that satisfy the constraints to
pick-up any request r′ and the ratio of nodes that satisfy the constraints to drop-off r′.
Hence, NΩ(t) describes the set of distinct nodes that can be reached without exceeding the
maximum waiting time Ω of a new request r′ and simultaneously satisfy the constraints of
the users assigned to vehicle v. Similarly, N tot

∆ (t, T ) describes the complete set of distinct
nodes that can be reached without exceeding the tolerable ridesharing waiting time Ωv and
delay time ∆v of the users assigned to vehicle v. Thus, #NΩ(t) is the number of nodes in
NΩ(t), #N tot

∆ (t, T ) is the number of nodes in N tot
∆ (t, T ), and #NC is the total number of

distinct nodes in the spatial domain of the city where the service operates.
The equation of #N tot

∆ (t, T ) is presented in Equation 26. In this equation, N (t, T )
presents the set of remaining nodes that are part of the trip itinerary at time t. For each
node nD ∈ N (t, T ), the set of reachable nodes is determined that satisfy the constraints of
the users assigned to vehicle v, denoted by N∆(nD). This gives the total number of distinct
nodes that satisfy the constraints of the vehicle’s assigned users, denoted by #N tot

∆ (t, T ).
Note that N tot

∆ (t, T ) only contains distinct nodes, which is illustrated by Equation 27. Thus,
when for example N∆(nD1) and N∆(nD2) have a non-empty intersection, every node in this
intersection is counted once in #N tot

∆ (t, T ).
In summary, the duration tra until a request r′ appears that satisfies all constraints is

computed by multiplying the time required until one request has been received 1
λ(t)

with the

fraction of reachable nodes that satisfy the maximum waiting time Ω of a new request r′

and simultaneously satisfy the constraints of the users assigned to the vehicle #NC

#NΩ(t)
and

multiplying with the fraction of reachable nodes that satisfy the constraints of the vehicle’s
assigned users #NC

#N tot
∆ (t,T )

.
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Parameter to reduce unreliability
A new parameter is introduced, denoted by λr(t), to reduce the unreliability of request r.
Section 3.2.3 describes how λr(t) is utilized to reduce unreliability. The parameter λr(t)
defines the number of possible emerging requests that individually satisfy the shareability
constraints of the trip of request r. Moreover, these requests must have a negative influence
on the travel time of request r; else, they are not included in λr(t). Furthermore, for
simplicity, λr(t) assumes that at most one request will be added to the trip to determine
whether the emerging requests individually satisfy the trip constraints. At time t the value
of λr(t) is calculated.

Additionally, the parameter λ is refined to λ(t) to improve the accuracy of the share-
ability equations. The parameter λ(t) describes the number of emerging requests during
time period t. As stated in Section 2.5.3, the number of emerging requests is highly time-
dependent; therefore, taking the average number of requests per hour λ is highly inaccurate.

The parameter λr(t), considers the value of λ(t). The mathematical description of λr(t)
is derived from Equation 25 and is defined as:

λr(t) = λ(t)× #NΩ(t)

#NC︸ ︷︷ ︸
ratio reachable
pick-up nodes

× #N tot
∆ (t, T )

#NC︸ ︷︷ ︸
ratio reachable
drop-off nodes

, (28)

with
#N tot

∆ (t, T ) =
∑

nD∈N (t,T )

#N∆(nD), (29)

and
∀n1, n2 ∈ N tot

∆ (t, T )→ n1 6= n2. (30)

In words this can be described as:

λr(t) = number of emerging requests at time t

× ratio of the reachable pick-up nodes

× ratio of the reachable drop-off nodes.

(31)

Period shareability shadow
Equation 28 determines for a specific time t the number of emerging requests that individ-
ually satisfy the trip constraints. However, this research needs to determine the number of
emerging requests that satisfy the trip constraints over a time period, as this provides insight
into the probability that new requests will be added during the whole trip of request r. This
new quantity is called period shareability. Therefore, the notion shareability is different
from the notion period shareability.

The period shareability of request r is determined when request r is assigned to the trip
because this research is interested in reducing the unreliability of request r. The unreliability
measures consider the possibility that new requests will be added during the trip of request
r. Therefore, the period shareability for request r is determined over a time period, starting
at t = tassign(r), with tassign(r) presenting the time at which r has been assigned, and ending
at t = tdr(r), with tdr(r) presenting the drop-off time of r according to the current itinerary.
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The drop-off time tdr is determined given the original travel times of the itinerary at the
moment that r has been assigned and assumes that the vehicle does not change its itinerary.
An end time of tdr(r) is considered as adding new requests to trip T after the drop-off time
of request r will not influence the trip duration of r. In this section, the period shareability
shadow model is presented, and subsequently, the mathematical description of the period
shareability shadow is provided.

The period shareability is modeled by considering trip T to which request r has been
assigned and estimates the number of possible emerging requests r′ that can individually be
added to T during the evaluated time period. The period shareability shadow presents the
region of nodes that can be reached without violating the shareability constraints of the trip
and the waiting time constraint of any new request r′.

Figure 9 illustrates three subfigures of the period shareability shadow of trip T. The
three subfigures represent the different constraints on sharing trip T , traveling in a straight
trajectory (red line) from origin OT to destination DT , with a new request r′. The red line
defines the trajectory of T in space and time. The subfigures of the period shareability are
presented for request r which has its drop-off at Dr, i.e., node 15. The presented subfigures
represent the shareability shadows when the vehicle reaches node 4, node 7, and node 13,
respectively. To obtain the complete period shareability shadow for this specific trip, the
shareability shadows of node 4 up to node 15 must be combined.

For simplicity and clarity, the nodes in Figure 9 are uniformly distributed in space, and
the travel time between all adjacent nodes is set to be equal. At time t, the vehicle of trip T
is positioned at its current position cpv(t). Trip T can be shared with a new request r′, if the
origin of r′ is in the blue region while the destination of r′ is in the green region. The blue
region presents the nodes that satisfy the maximum waiting time Ω of a new request r′ and
simultaneously satisfy the tolerable ridesharing waiting time Ωv and delay time ∆v of the
users assigned to vehicle v. The green region presents the nodes that satisfy the tolerable
ridesharing waiting time Ωv and delay time ∆v of the users assigned to vehicle v. Light
green indicates that the drop-off of r′ is prior to the drop-off of r, and the dark green region
indicates that the drop-off of r′ is posterior to the drop-off of r. Combining all shareability
shadows of node 4 up to node 15 yields the period shareability for request r traveling with
trip T . This complete period shareability shadow is provided in Figure 10.
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(a) Shareability shadow when the vehicle is positioned at node 4, i.e., the node at which the vehicle
is positioned at time t.

(b) Shareability shadow when the vehicle is positioned at node 7.

(c) Shareability shadow when the vehicle is positioned at node 13.

Figure 9: Subfigures of the period shareability shadow representing the different constraints
to share trip T , traveling in a straight trajectory (red line) from origin OT to destination
DT , with a new request r′. The red line defines the trajectory of T in space and time. The
subfigures of the period shareability are presented for request r, which has its drop-off at Dr,
i.e., node 15. The presented subfigures represent the shareability shadows when the vehicle
is positioned at node 4, node 7, and node 13, respectively. At time t, the vehicle of trip T
is positioned at its current position cpv(t). Trip T can be shared with a new request r′, if
the origin of r′ is in the blue region, while the destination of r′ is in the green region. The
blue region presents the nodes that satisfy the maximum waiting time Ω of a new request
r′ and simultaneously satisfy the constraints of the users assigned to vehicle v. The green
region presents the nodes that satisfy the constraints of the users assigned to vehicle v. Light
green indicates that the drop-off of r′ is prior to the drop-off of r, and the dark green region
indicates that the drop-off of r′ is posterior to the drop-off of r.
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As stated in the previous paragraph, the complete period shareability shadow for the
discussed request r of Figure 9 can be obtained by combining all shareability shadows of all
relevant nodes. Therefore, the complete period shareability shadow of request r is presented
in Figure 10. The period shareability shadow presents the shareability constraints of the trip
of request r in space and time. This implies that Figure 10 represents where and when a new
request r′ can appear such that it could be assigned to the trip of request r. Specifically, the
blue region presents the region where a new request r′ can be picked-up, which negatively
influences the trip duration of request r. Similarly, the green region presents the region where
a new request r′ can be dropped-off. The mixed blue-and-green region presents the region
where request r′ can both be picked-up and dropped-off such that it negatively influences
the trip duration of request r.

Figure 10: Period shareability shadow of the pick-up and drop-off constraints to share trip
T of request r with another request r′. The red line defines the trajectory of T in space and
time. The period shareability shadow in this figure is obtained by combining the shareability
shadows, i.a. Figure 9, for each node in the trip into one figure. The blue region presents
the region where a new request r′ can be picked-up, which negatively influences the trip
duration of request r. Similarly, the green region presents the region where a new request r′

can be dropped-off. The mixed blue-and-green region presents the region where request r′

can both be picked-up and dropped-off such that it negatively influences the trip duration
of request r.

For clarification, the tolerable ridesharing waiting time Ωv and delay time ∆v of the users
assigned to vehicle v take on different values depending on the vehicle’s location. Therefore,
the period shareability shadow of Figure 10 may not correctly represent the values of Ωv and
∆v. Hence, a more realistic representation of the period shareability shadow is presented in
Figure 11. In this Figure, the vehicle has to make a stop at nodes 7, 12, 15, and 23 to serve
the users of the trip.
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Figure 11: A more realistic presentation of the period shareability shadow presented in
Figure 10. The vehicle has to make a stop at nodes 7, 12, 15, and 23 to serve the users of
the trip. Therefore, the values Ωv and ∆v take different values depending on the location of
the vehicle.

The period shareability shadow is used to compute the total number of possible emerging
requests that individually satisfy the trip’s shareability constraints and which negatively
influence the travel time of request r. Hence, Equation 28 is extended by taking the sum over
all nodes n that T travels through up to drop-off node Dr. Let N (T,Dr) = {n1, n2, . . . , nL}
be the set of L nodes that trip T travels through up to drop-off node Dr, and time tn
describes the time at which the vehicle reaches node n ∈ N (T,Dr), then the number of
possible emerging requests that individually satisfy the constraints of the trip of request r,
denoted by λr(t), calculated at time t, is described as:

λr(t) =
∑

n∈N (T,Dr)

λ(tn)× #NΩ(n)

#NC︸ ︷︷ ︸
ratio reachable
pick-up nodes

× #N tot
∆ (n, T )

#NC︸ ︷︷ ︸
ratio reachable
drop-off nodes

, (32)

with
#N tot

∆ (n, T ) =
∑

nD∈N (n,T )

#N∆(nD), (33)

and
∀n1, n2 ∈ N tot

∆ (t, T )→ n1 6= n2. (34)

Note that λr(t) only considers the number of possible emerging requests that have an influ-
ence on the travel time of r because Equation 32 considers the sub-shareability shadows for
all nodes n in the trip up to the drop-off node Dr of request r. Furthermore, λ(tn) describes
the total number of emerging requests in the spatial domain of the city at time tn, where tn
represents the time at which the vehicle will reach node n given its current itinerary.

Equation 32 assumes that the emerging requests are uniformly distributed over the
spatial domain of the city. However, as stated in section 2.5.2, this distribution is far from
uniform. Therefore, demand predictions should be performed over each zone instead of the
entire geographical space of the city to improve the value of λr(t). This impacts Equation
32, which can be rewritten by considering the zones trip T travels through and assuming
that the distribution of requests over each zone is uniform. As a result, the final equation
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for the number of possible requests that individually satisfy the trip shareability constraints
and negatively influence the trip duration of request r, determined at time t, is formulated
as:

λr(t) =
∑

n∈N (T,Dr)

∑
zO∈ZΩ(n)

∑
zD∈Z∆(n,T )

λzO,zD(tn)× #NΩ(zO, n)

#NzO︸ ︷︷ ︸
ratio reachable
pick-up nodes

× #N tot
∆ (zD, T )

#NzD︸ ︷︷ ︸
ratio reachable
drop-off nodes

, (35)

with
#N tot

∆ (zD, T ) =
∑

nD∈N (T,zD)

#N∆(nD), (36)

and
∀n1, n2 ∈ N tot

∆ (zD, T )→ n1 6= n2. (37)

Equation 35 is the outcome of a fairly complex path. This path is formed by the previously
discussed shareability shadow equations and started by reformulating Equation 22, obtained
from Tachet et al. (2017). Equation 35 contains many parameters; therefore, the description
of the different parameters is provided in Table 4. Furthermore, for simplicity, Equation 35
assumes that at most one request will be added to the trip to determine whether an emerg-
ing request r′ individually satisfies the trip constraints. Otherwise, the period shareability
shadow will become narrower each time a new request r′ is added to the trip. This assump-
tion prevents the equation from becoming too complex. Equation 35 can be presented in
words in a simplified manner as:

λr(t) = Shareability score = predicted demand between every two zones of the trip

× ratio of reachable pick-up nodes zone1 × ratio of reachable drop-off nodes zone2.
(38)
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Table 4: Parameter definitions of the period shareability equation. Equation 35.

Symbol Meaning

λr(t) Number of possible emerging requests that satisfy the trip constraints
of request r and which influence the travel time of r, according to the
established period shareability shadow at time t

r Request for which the period shareability is analyzed, which is part of
trip T

Dr Destination node of r

r′ Additional request that can be added to trip T

N (T,Dr) All nodes in the itinerary of trip T until node Dr

ZΩ(n) Set of reachable zones from node n that satisfy the maximum waiting
time Ω of a new request r′ and simultaneously satisfy the constraints of
the users assigned to vehicle v

Z∆(n, T ) Set of reachable zones from any of the remaining nodes in trip T starting
from node n that satisfy the tolerable ridesharing waiting time Ωv and
delay time ∆v of the users assigned to vehicle v

λzO,zD(tn) Number of requests at time tn with their origin in zone zO and their
destination in zone zD

tn Time at which node n will be reached given the vehicle’s current itinerary

NΩ(zO, n) Set of nodes in zone zO that can be reached from node n that satisfy the
maximum waiting time Ω of a new request r′ and simultaneously satisfy
the constraints of the users assigned to vehicle v

N∆(zD, nD) Set of nodes in zone zD that can be reached from node nD that satisfy
the tolerable ridesharing waiting time Ωv and delay time ∆v of the users
assigned to vehicle v

N tot
∆ (zD, T ) Set of nodes in zone zD that can be reached from any of the remaining

nodes of the trip’s itinerary that satisfy the tolerable ridesharing waiting
time Ωv and delay time ∆v of the users assigned to vehicle v

#NΩ(zO, n) Number of nodes in zone zO that can be reached from node n that satisfy
the maximum waiting time Ω of a new request r′ and simultaneously
satisfy the constraints of the users assigned to vehicle v

#N∆(zD, nD) Number of nodes in zone zD that can be reached from node nD that
satisfy the tolerable ridesharing waiting time Ωv and delay time ∆v of
the users assigned to vehicle v

#N tot
∆ (zD, T ) Number of nodes in zone zD that can be reached from any of the re-

maining nodes the in trip itinerary that satisfy the tolerable ridesharing
waiting time Ωv and delay time ∆v of the users assigned to vehicle v

#NzO Number of distinct nodes in zone zO

#NzD Number of distinct nodes in zone zD

N (T, zD) All nodes in the itinerary of trip T located in zone zD
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The number of possible emerging requests that satisfy the trip constraints and which
negatively influence the travel time of r, denoted by λr(t), will be used to reduce the un-
reliability of request r. This is achieved by providing predictions about possible changes
in waiting time and in-vehicle time (which will be explained in Section 3.2.3). Therefore,
λr(t) is divided into two parameters: (1) the number of possible emerging requests which
have a negative influence on the waiting time of r, denoted by λwr (t); and (2) the number of
possible emerging requests which have a negative influence on the in-vehicle time of request
r, denoted by λivr (t). These two parameters are determined by dividing the set of nodes NΩ

into two different groups: (1) the set of nodes that can be reached prior to pick-up node Or,
denoted by N priorOr

Ω ; (2) and the set of nodes that can be reached posterior to pick-up node
Or, denoted by N postOr

Ω . Figure 12 provides an illustration of which nodes will be assigned
to N priorOr

Ω and N postOr

Ω for a request r with an origin Or at node 7 and a destination Dr

at node 15. All nodes in the light blue region are assigned to N priorOr

Ω because they can
be reached prior to Or. Likewise, all nodes in the dark blue region are assigned to N postOr

Ω

because they will be reached posterior to Or.
The following two equations are formulated to determine the number of possible emerg-

ing requests which have a negative influence on the waiting time and in-vehicle time of
request r, respectively:

λwr (t) =
∑

n∈N (T,Dr)

∑
zO∈ZΩ(n)

∑
zD∈Z∆(n,T )

λzO,zD(tn)× #N priorOr

Ω (zO, n)

#NzO︸ ︷︷ ︸
ratio reachable
pick-up nodes

× #N tot
∆ (zD, T )

#NzD︸ ︷︷ ︸
ratio reachable
drop-off nodes

, (39)

and

λivr (t) =
∑

n∈N (T,Dr)

∑
zO∈ZΩ(n)

∑
zD∈Z∆(n,T )

λzO,zD(tn)× #N postOr

Ω (zO, n)

#NzO︸ ︷︷ ︸
ratio reachable
pick-up nodes

× #N tot
∆ (zD, T )

#NzD︸ ︷︷ ︸
ratio reachable
drop-off nodes

, (40)

with
#N tot

∆ (zD, T ) =
∑

nD∈N (T,zD)

#N∆(nD), (41)

and
∀n1, n2 ∈ N tot

∆ (zD, T )→ n1 6= n2. (42)

Here, #N priorOr

Ω (zO, n) presents the number of nodes in zone zO that satisfy the pick-up
constraints of the trip and which can be reached prior to pick-up node Or from node n.
Similarly, #N postOr

Ω (zO, n) presents the number of nodes in zone zO that satisfy the pick-up
constraints of the trip and which can be reached posterior to pick-up node Or from node n.
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Figure 12: Distribution of the reachable origin nodes of a new request r′. All nodes in the
blue region of Figure 10, are divided into two different groups to determine N priorOr

Ω and
N postOr

Ω for request r which has its origin Or at node 7. All nodes in the light blue area can
be reached prior to Or and are assigned to N priorOr

Ω . All nodes in the dark blue area can be
reached posterior to Or and are assigned to N postOr

Ω .
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3.2.2 Demand prediction

A prediction about the ridesharing demand is used to provide a more reliable service. There-
fore, the exponential smoothing (ES) model is implemented in this research to predict the
demand. Exponential smoothing is a well-known forecasting method in time-series analysis,
and a detailed description of exponential smoothing is provided in Section 2.5.5 about Fore-
casting methods & mathematical models. The exponential smoothing forecasting method is
selected because of its simplicity while being able to provide sufficient predictions. A simple
algorithm is selected because demand forecasting is not the main objective of this research.
Thus, it is not necessary to implement complex/superior forecasting methods. As stated in
Section 2.5.5, the most simple form of exponential smoothing to predict the demand Y at
time t is formulated as

Ŷt = αYt−1 + (1− α)Ŷt−1, (43)

where α represents the smoothing constant, with α ∈ [0, 1], and Yt−1 represents the actual
demand at time t− 1.

The implemented measure to reduce unreliability uses the number of emerging requests
at time t with their origin in zone zO and their destination in zone zD, denoted by λzO,zD(t).
The value of λzO,zD(t) is predicted using the exponential smoothing method. Hence, param-

eter ŶzO,zD(t) is introduced, defining the predicted demand at time t with their origin in zone
zO and their destination in zone zD, which is formulated as:

ŶzO,zD(t) = αYzO,zD(t− 1) + (1− α)ŶzO,zD(t− 1). (44)

The demand highly fluctuates per minute; therefore, the system predicts the demand
at time t over a time span of ten minutes. Furthermore, ES considers N timestamps for its
predictions; hence, the same day of the week for the past ten weeks at time t are analyzed,
such that t−1 is equal to the same time period a week before, t−2 is equal to the time period
two weeks before, and so on. Thus, when for example the demand is predicted between 09:00
AM and 09:10 AM on Wednesday the 14th, then t−1 is equal to the time period from 09:00
AM to 09:10 AM on Wednesday the 7th.

As stated in Section 2.5.5, the smoothing factor α determines the smoothing rate of
past observations. Values of α close to one produce a reduced smoothing effect and prioritize
recent data values, while α values close to zero result in an increased smoothing effect with a
less responsive behavior to current data values. No formal procedure exists to determine the
value of α. Therefore, α is determined by trial-and-error while evaluating the mean squared
error (MSE) of the predicted demand. As a result, an α value of 0.8 is obtained. Table 5
provides an overview of the implemented values of the exponential smoothing forecasting
process.

Table 5: Implemented parameters for the exponential smoothing forecasting process.

Parameter Value

Number of evaluated timestamps N 10

Exponential smoothing constant α 0.8

Analyzed time span [minutes] 10
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3.2.3 Reduce unreliability

The demand prediction and the period shareability shadow are utilized to provide two pa-
rameters to each new user to reduce unreliability. These two parameters are the possibility
of a negative change and the size of a negative change.

Possibility of a negative change
A request r receives travel time information directly after a match has been created between
a vehicle and the request. This information is based on the current status of the trip and
is called the first announced travel times. The first announced travel times are achieved if
the vehicle does not change its itinerary from the moment request r has been assigned until
the drop-off of request r. However, both waiting time and in-vehicle time of request r can
change due to the addition of a new request r′ into the trip, resulting in unreliability faced
by request r. Hence, the possibility is provided whether a new request r′ will be added to the
trip that negatively influences the waiting time and in-vehicle time of request r. For both
the waiting time and in-vehicle time, either one of the three following indication words: “low
possibility”, “medium possibility”, or “high possibility” is provided to indicate the possibility
that a new request r′ will be added that negatively influences the waiting time and in-vehicle
time. These indication words are provided instead of a percentage of the possibility as the
theoretical background of unreliability in ridesharing, Section 2.4.8, illustrates that this is
the most intelligible method for users to interpret. Moreover, these indication words are easy
to analyze, which is useful.

The possibility of a negative change in waiting time and in-vehicle time is deter-
mined by comparing the shareability score to certain threshold values. The shareability
score, denoted by λr(t), defines the number of possible emerging requests that individually
satisfy the PUDO constraints of the trip of request r. This shareability score λr(t) is divided
into two different parameters: (1) the shareability score of the trip during the waiting time
of request r, denoted by λwr (t) (see Equation 39); and (2) the shareability score of the trip
during the in-vehicle time of request r, denoted by λivr (t) (see Equation 40). By comparing
λwr (t) and λivr (t) to set threshold values, the possibility of a negative change is determined.
For example, if λivr (t) is less than 1, the system informs the request that there is a low
possibility that the in-vehicle time will increase.

The set threshold values are configured every 10 minutes to maintain an adequate
prediction of the possibility of a negative change. This is done since the shareability score
λr(t) depends on the number of emerging requests, which strongly fluctuates over time.
Therefore, every 10 minutes, the shareability scores of the completed requests over the last
10 minutes are analyzed to configure new threshold values.

The threshold values Th are obtained by maximizing the score S(R10, Th) of the
threshold values Th. The score function S(R10, Th) considers the set of completed requests
over the last ten minutes, denoted by R10, and the score of the threshold values Th. The
completed requests of the last ten minutes R10 are divided into three groups: the set of
requests with a correct prediction Rcp(Th) given the threshold values Th, the set of requests
with an incorrect prediction Rip(Th) given the threshold values Th, and the set of requests
with an indecisive prediction Rmp(Th) given the threshold values Th. For clarification, the
set of requests with an indecisive prediction present the requests that received a medium
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possibility that the travel time will increase given the threshold values Th. Given the set
of completed requests over the last ten minutes R10 and the threshold values Th, the score
function is formulated as:

S(R10, Th) =
∑

r∈Rcp(Th)

scp +
∑

r∈Rip(Th)

sip +
∑

r∈Rmp(Th)

smp. (45)

In this equation, scp, sip, and smp represent the score values of having a threshold value
that resulted in a correct prediction, an incorrect prediction, and an indecisive (medium)
prediction, respectively. The implemented score values are presented in Table 6.

Table 6: Implemented score values to compute the threshold values for the predicted possi-
bility of a negative change.

Parameter Value

Score of having a correct prediction scp 1

Score of having an incorrect prediction sip -1

Score of having an indecisive prediction smp 0.1

Magnitude of a possible negative change
For each new request r, the magnitude of the extra waiting time and in-vehicle time is
provided for whenever the case occurs that a new request r′ will be added to the trip. Al-
though the predicted possibility of a negative change might states that this possibility is
low or medium, the system still provides each new request r a prediction of the possible
waiting time and in-vehicle time increase. The provided prediction of the travel time in-
crease contains an average, minimum, and maximum value. Moreover, the minimum and
maximum values are set to follow a 95% confidence interval. To obtain a full range for all
possible magnitudes of the waiting time increase, the assumption is made that the in-vehicle
time will not increase. Similarly, to obtain the full range for all possible magnitudes of
the in-vehicle time increase, the assumption is made that the waiting time will not increase.
As a result, a 95% confidence interval for the waiting time and in-vehicle increase is obtained.

The travel time increase is determined by analyzing two scenarios: (1) only the pick-up
of request r′ is prior to the drop-off of request r; (2) both pick-up and drop-off of request
r′ are prior to the drop-off of request r. Both cases are assumed to be equally probable.
For case 1, the travel time increase is determined by calculating the detour time for every
reachable pick-up detour node of the period shareability shadow (i.e., all nodes in the blue
regions of the period shareability shadow). For case 2, the travel time increase is determined
by calculating the detour time between every two pairs of pick-up and drop-off detour nodes
which are prior to the drop-off of r (i.e., all nodes in the blue and green regions, except the
dark green region, of the period shareability shadow).

As a result, a batch of multiple detour times is obtained. From the batch of detour
times, an average value and a standard deviation are obtained. Next, the minimum value
and maximum value, which follow a 95% confidence interval, are calculated as follows:

[min,max] = [µ− 2σ, µ+ 2σ], (46)
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where µ presents the population mean, and σ describes the standard deviation.

For each detour node of the period shareability graph is checked whether it will be
reached prior to or posterior to the pick-up of request r. This check is made since a minimum,
maximum, and average value of the travel time increase has to be determined for both the
waiting time and the in-vehicle. If the detour node is reached prior to the pick-up node Or

of request r, the detour time is added to the array of the waiting time increase. If the detour
node is reached posterior to the pick-up node Or of request r, the detour time is added to
the array of the in-vehicle time increase.

Figure 23 illustrates two examples of how the detour time is determined in the case that
a request r′ has its origin at Or′ and its destination at Dr′ . For Subfigure 13a, the detour
time is equal to

detour time = travelTime(N10, Or′) + travelTime(Or′ , Dr′)

+ travelTime(Dr′ , N15)− travelTime(N10, N15).
(47)

For Subfigure 13b, the detour time is equal to

detour time = travelTime(N7, Or′) + travelTime(Or′ , N10)

− travelTime(N7, N10)

+ travelTime(N10, Dr′) + travelTime(Dr′ , N15)

− travelTime(N10, N15).

(48)
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(a) Predicted detour time when the detour pick-up node and detour drop-off node are in between
the same stopping nodes.

(b) Predicted detour time when the detour pick-up node and detour drop-off node are not in
between the same stopping nodes.

Figure 13: Illustrations of the detour for a trip traveling in a straight line from its origin OT

to its final destination DT , which has its stopping nodes (nodes at which the trip has a PU
or DO) at N7, N10, N15, N19, and N23. At time t the vehicle’s current position is at cpv(t).
For both subfigures, the detour is illustrated in the case that a request r′ has its origin at
Or′ and its destination at Dr′ .
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Example of unreliability measure
To clarify how the discussed unreliability reduction measures are provided to the users, Figure
14 provides an example of how this is communicated to a user. The first square presents
the waiting time and the possibility and magnitude of a negative change in waiting time.
The second square presents the in-vehicle travel time and the possibility and magnitude of a
possible detour. The travel times are communicated with a verbal presentation because this
is the most intuitive and easy-to-understand method to communicate travel times (Tseng et
al., 2009).

Figure 14: Example of the provided unreliability measures.
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3.2.4 Reliability baseline method

A simple baseline method is implemented to test the validity of the unreliability measures.
Currently, no measures exist to reduce unreliability by predicting the possibility and mag-
nitude of a possible change. Therefore, the implementation of a straightforward baseline
method is provided in this section.

Each user is informed about the possibility of a negative change by randomly generating
a “low”, “medium”, or “high” possibility for the indication of a possible waiting time and
in-vehicle time increase. Additionally, the users are informed about the magnitude of a
possible change. This is achieved in two steps. First, a range between zero and a maximum
value is randomly generated. For the magnitude of the waiting time increase, this maximum
value is equal to the maximum waiting time Ω of five minutes. For the magnitude of the
in-vehicle time increase, this maximum value equals the maximum delay time ∆ of ten
minutes. Second, a mean is randomly generated such that the range falls within zero and
the maximum value. As a result, a minimum, a maximum, and an average value of how
much the waiting time and in-vehicle time will increase are obtained.
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3.3 Experimental setup

The discussed models of Sections 3.1 and 3.2 are tested on a real dataset of requests using
the public dataset of taxi trips of Manhattan, New York City, obtained from the TLC Trip
Record Data (n.d.). Manhattan is one of the most densely populated areas in the world and
there is a huge amount of governmental and private travel data publicly available on the
Web, making it an interesting region to investigate. The assignment problem is solved over
a subset of Manhattan, consisting of 4091 nodes and 9453 edges. Some of the requests might
not start from a node in real-life but somewhere within an edge. For simplicity, it is assumed
that each request starts from the closest node. This assumption is made as it is not worth
it for this research to increase the level of detail regarding the implemented set of nodes.
The same subset of nodes is also implemented by Alonso-Mora et al. (2017a); Fielbaum
and Alonso-Mora (2020) because this dataset provides enough detail to run simulations
(Fielbaum & Alonso-Mora, 2020). An edge defines whether a vehicle can travel from one
node to the other; thus, it tells if one node is connected to the other. For each edge, it is
assumed that each vehicle takes a specific time to travel over this edge. The edge travel times
used by Alonso-Mora et al. (2017a); Fielbaum and Alonso-Mora (2020) are also implemented
here. Using the Dijkstra Algorithm (an algorithm that finds the shortest path between a
given node and all other nodes in a graph using the weights of the edges) the travel time
between any pair of nodes is obtained.

The implemented method is analyzed over a time period from 8 AM to 11 AM on
31/05/2016. This time period is selected as the demand over this period is nonstationary,
i.e., the mean and variance of the dataset depend on time, resulting in a trend in demand.
Given a trend in demand, the implemented method is tested on its boundaries. When the
method achieves sufficient performance, it is likely that a sufficient performance will also be
achieved for a stationary demand period.

Four different scenarios are considered for testing the performance of the implemented
method and for analyzing whether the results are not specific to one particular instance. The
basic scenario consists of 2000 vehicles with a maximum capacity of four passengers, with the
constraint that rescheduling requests is not allowed. As stated in Section 3.1.5, this constraint
is implemented since allowing for reassignments of requests results to reduced performance
of the unreliability predictions. The four alternative scenarios are: fewer vehicles (FV, 1000
vehicles of capacity 4 and no rescheduling allowed), smaller vehicles (SV, 2000 vehicles of
capacity 3 and no rescheduling allowed), and vehicles for which rescheduling is allowed (RA,
2000 vehicles of capacity 4). The SV and FV scenarios are analyzed to validate the robustness
of the basic scenario, while the RA scenario is analyzed for benchmark testing. Additionally,
a baseline method with the same configurations of the basic scenario, i.e., 2000 vehicles of
capacity 4 and no rescheduling, is considered to test the validity of the unreliability measure.

Given a vehicle capacity of four passengers, removing all requests with more than four
users results in a total of 47482 requests over the three-hour period. Every request r contains
an origin node Or, a destination node Dr, an emerging time tr, and the number of passengers.
An overview of the implemented user parameter values is provided in Table 3 of Section 3.1.3.
Furthermore, the start positions of all vehicles are generated randomly over Manhattan.
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3.3.1 Zones

The implemented period shareability shadow and demand prediction model divide the city
area into zones to make computations. Therefore, the clustered zones provided by the Taxi
& Limousine Commission (TLC) of New York city are implemented, see Figure 6 of Sec-
tion 2.5.4. An advantage of implementing the provided zones by the TLC is that the used
dataset of taxi trips, which the TLC also provides, already contains information about the
TLC-zones, meaning that each request contains an origin zone and a destination zone. Fur-
thermore, the provided zones by the TLC are clustered based on geographic characteristics,
which is useful for the implemented methods. Moreover, utilizing TLC zones does reduce
computation time because the geographical coordinates do not have to be converted to zones.
This is handy since the exponential smoothing forecasting method uses ten days of the past
ten weeks of historical data to make predictions. For February, March, April, and May of
2016, over 48 million different requests exist. Converting all of the geographic coordinates
to nodes takes the program several days.
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4 Results & discussion

The results of the measurements proposed in Chapter 3 are provided and discussed in this
chapter. As stated in Section 3.3, the four analyzed scenarios are: a basic scenario, a fewer
vehicles (FV) scenario, a smaller vehicles (SV) scenario, and a scenario for which rescheduling
is allowed (RA). For clarification, rescheduling means that requests can be reassigned to other
vehicles after being assigned to a vehicle.

First, the quality-of-service indices not related to unreliability are analyzed in Section
4.1. Next, the quality-of-service indices related to unreliability are measured and discussed in
Section 4.2. Finally, Section 4.3 discusses the results of the implemented solution to reduce
unreliability, whereafter, an extensive analysis of the basic scenario is provided.

4.1 Quality-of-service indices not related to unreliability

Before analyzing the performance of the implemented method, the performance of the
quality-of-service indices not related to unreliability are analyzed to understand how the
different scenarios behave. Table 7 presents the performance of the quality-of-service indices
not related to unreliability for the four different scenarios. The basic scenario has a rejection
rate of 16.4%. As expected, the scenario with fewer vehicles (FV) has a significantly higher
rejection rate than the basic scenario since fewer vehicles are available to serve the requests.
Likewise, the smaller vehicles (SV) scenario has a slightly higher rejection rate than the basic
scenario, as fewer vehicles can serve the requests due to their reduced capacity. The scenario
for which rescheduling is allowed has a slightly lower rejection rate. This is also as expected
since rescheduling requests enables the system to create more matches between vehicles and
requests.

In terms of travel times perform the different scenarios also as expected. Compared
to the basic scenario, the fewer vehicles (FV) and the smaller vehicles (SV) scenarios have
fewer available vehicles in vicinity of a new request, resulting in longer average waiting times.
Furthermore, the fewer vehicles (FV) scenario has slightly longer average in-vehicle times,
average detours, and average delays as fewer vehicles are available, resulting in less efficient
matches between vehicles and requests. Contrarily, the smaller vehicle (SV) scenario has
slightly shorter average in-vehicle times, average detours, and average delays since fewer
requests can be added to a trip, resulting in fewer detours. When rescheduling is allowed
(RA), the average in-vehicle times, average detours, and average delays slightly improve as
rescheduling enables the system to create more efficient matches.

In conclusion, the different scenarios behave as expected regarding rejection rates and
travel times. Increasing the vehicle fleet size results in fewer rejections and shorter average
trip durations, and the opposite happens when decreasing the vehicle fleet size. When
rescheduling is not allowed, the same behavior occurs when the fleet size is increased. The
quality-of-service indices only slightly deteriorate when reassignments are not allowed, which
justifies the prohibition of allowing for reassignments. Furthermore, increasing the vehicle
capacity reduces the rejection rate and average waiting time while it increases the average
in-vehicle time, detour size, and delay time.
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Table 7: Quality-of-service indices not related to unreliability for the different scenarios.

Measure Basic scenario FV SV RA

Rejection rate 16.4% 35.2% 19.2% 13.8%

Avg. Waiting time [min] 3.16 3.26 3.31 3.14

Avg. In-vehicle time [min] 13.1 13.2 12.7 13.0

Avg. Detour [min] 2.88 3.06 2.55 2.83

Avg. Delay [min] 6.04 6.32 5.86 5.97

The average travel times are longer compared to the provided values by Fielbaum and
Alonso-Mora (2020) because the average number of requests per hour in this simulation
(15827 requests/hour) is significantly higher than the average number of requests per hour
(9805 requests/hour) used in the simulations of Fielbaum and Alonso-Mora. Consequently,
more matches are feasible between vehicles and requests, resulting in longer travel times per
trip.



4.2 Quality-of-service indices related to unreliability 77

4.2 Quality-of-service indices related to unreliability

Fielbaum and Alonso-Mora (2020) introduce several quantitative indices to measure unreli-
ability in on-demand ridesharing systems. These quantitative indices are also used in this
research to analyze unreliability, and an overview of these indices, formulated by Fielbaum
and Alonso-Mora, is provided in Table 8.

Table 8: Notations used in this research to analyze quality-of-service indices related to
unreliability. Obtained from the work by Fielbaum and Alonso-Mora (2020).

Symbol Meaning

tr Time when request r is received/posed

Or Origin of request r

Dr Destination of request r

tw(r) Real waiting time faced by request r

t1w(r) First-announced waiting time for request

tv(r) Real in-vehicle time faced by request r

t1v(r) First-announced in-vehicle time for request r

td(r) Real detour faced by request r

t1d(r) First-announced detour for request r

D(r) Real delay faced by request r

D1
w(r) First-announced delay for request r

∆tw(r) Increase in waiting time for request r since its first announcement

∆tv(r) Increase in in-vehicle time for request r since its first announcement

∆td(r) Increase in detour time for request r since its first announcement

∆D(r) Increase in delay for request r since its first announcement

Table 9 provides an overview of the behavior of the different scenarios related to un-
reliability. The first row presents the possibility of facing any change during the trip. In
the basic scenario, 44.6% of the completed requests face a change in their trip duration.
Accordingly, almost half of the users face unreliability during their trip, strengthening the
urgency of a method to reduce unreliability. As expected, the possibility of facing a change
is even higher for the fewer vehicles (FV) scenario and the scenario for which rescheduling
is not allowed (RA). By contrast, the requests of the smaller vehicles (SV) scenario have, as
expected, a slightly lower possibility of facing a change.

Furthermore, every next four rows of Table 9 provide the same four measures to an-
alyze unreliability in waiting time, detours, and delays, respectively. The first row of the
measures about the waiting time presents the possibility of facing an increased waiting time
(P (∆tw > 0)). The second row illustrates the average extra waiting time of the whole sys-
tem if a user faced a waiting time increase with respect to their first announced waiting time
(E(∆tw|∆tw > 0)). Next, the average number of changes in waiting time is presented (Avg.
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NCtw). At last, the maximum number of changes in waiting time faced by a single user is
provided (Max. NCtw).

When analyzing Table 9, a remarkable conclusion emerges: the possibility of a negative
change in waiting time is extremely small when rescheduling is not allowed. This is because
of three reasons: (1) users spend a longer time in the vehicle than waiting for it, resulting
in more detour changes than waiting time changes (Fielbaum & Alonso-Mora, 2020); (2) it
is harder to insert a request before the pick-up of another request. Inserting a stop prior to
the pick-up/drop-off of already assigned users has a higher negative influence on the score
function that computes the optimal assignment than inserting a stop posterior to the pick-
up/drop-off of already assigned users. Thus, new users have a higher likelihood of being
inserted at the end of the trip schedule, resulting in fewer changes in waiting time; (3) when
rescheduling is allowed, requests can be swapped between trips, affecting the waiting times
of already assigned requests. This phenomenon does not occur when rescheduling is not
allowed, resulting in fewer changes in waiting time.

When the possibility of a negative change in waiting time is minimal, the possibility
and magnitude of facing an increased delay is nearly equal to the possibility of facing an
increased detour. This can be observed in the scenarios when rescheduling is not allowed.

As stated by Fielbaum and Alonso-Mora (2020), increasing the number of vehicles re-
sults in more reliability, and the opposite happens with respect to the capacity of the vehicles.
Hence, fleet size and unreliability are related because increasing the vehicle fleet increases
the chance of assigning idle vehicles to new requests, keeping the same conditions for pre-
viously assigned requests of other vehicles. Furthermore, vehicle capacity and unreliability
are related since the passengers of vehicles that reach their maximum capacity will face no
new changes, which is more likely the happen with small vehicles (Fielbaum & Alonso-Mora,
2020). This behavior can also be observed in Table 9.

At last, it can be observed in Table 9 that the system becomes more unreliable when
rescheduling is allowed. This is logical because reassigning requests results in more changes
and, consequently, more significant variations in trip durations.
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Table 9: Quality-of-service indices related to unreliability for the different scenarios.

Measure Basic scenario FV SV RA

Completed requests that face changes 44.6% 45.7% 40.2% 61.6%

P (∆tw > 0) 0.58% 0.54% 0.41% 12.9%

E(∆tw|∆tw > 0) [min] 0.74 0.70 0.70 1.02

Avg. NCtw 0.0058 0.0055 0.0041 0.33

Max. NCtw 2 2 1 4

P (∆td > 0) 44.4% 45.5% 40.0% 45.9%

E(∆td|∆tw > 0) [min] 2.25 2.14 2.30 2.43

Avg. NCtd 0.60 0.62 0.51 1.10

Max. NCtd 6 5 4 11

P (∆D > 0) 44.6% 45.7% 40.2% 48.2%

E(∆D|∆D > 0) [min] 2.25 2.13 2.29 2.35

Avg. NCD 0.60 0.62 0.51 1.18

Max. NCD 6 5 4 11
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4.3 Performance implemented method

This section provides and discusses the results of the implemented method to reduce unre-
liability. First, the performance of the four different scenarios is compared. After that, a
detailed analysis of the basic scenario is provided.

4.3.1 Comparison different scenarios

Each user receives two indices to reduce unreliability. These indices are:

1. The predicted possibility that the waiting time and in-vehicle time will increase. This is
achieved by providing each user a “high”, “medium”, or “low” possibility for a waiting
time and in-vehicle time increase.

2. The magnitude of the travel time increase in the case that a new request will be added
to the trip. This is indicated by providing a minimum, maximum, and average value of
how much the waiting time and in-vehicle time increase. Furthermore, the minimum
and maximum values are set to follow a 95% confidence interval.

The performance of the provided indices to reduce unreliability for the different scenarios is
displayed in Table 10.

Table 10: Performance of the unreliability reduction measures for the different scenarios.
The first three rows present the percentage of requests that received a correct, indecisive,
and incorrect prediction for the possibility of a negative change in waiting time, respectively.
Note that “indecisive” means that a request received a “medium” possibility for a negative
change. Similarly, the following three rows present the percentage of requests that received
a correct, indecisive, and incorrect prediction for the possibility of a negative change in in-
vehicle time, respectively. The last row illustrates the percentage of requests that have their
real travel time increase in range of the provided 95% confidence interval.

Measure Basic scenario FV SV RA

Possibility neg. change waiting time correct 97.8% 97.7% 97.8% 85.7%

Possibility neg. change waiting time indecisive 0.39% 0.47% 0.36% 0.35%

Possibility neg. change waiting time incorrect 1.80% 1.87% 1.81% 14.0%

Possibility neg. change in-vehicle time correct 60.4% 63.2% 53.4% 54.7%

Possibility neg. change in-vehicle time indecisive 15.4% 13.1% 21.8% 20.3%

Possibility neg. change in-vehicle time incorrect 24.2% 23.7% 24.8% 25.0%

Actual extra travel time in range of 95% CI 94.9% 95.2% 94.6% 69.2%

What directly stands out in Table 10 is that for the scenarios for which rescheduling is
not allowed, nearly 100% of the requests receive a correctly predicted possibility for a negative
change in waiting time. This is because the number of requests that face a longer waiting
time (their real waiting time is longer than their first-announced value) is insignificant, see
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Table 7. As a result, the method for optimizing the threshold values (Equation 45), used to
determine the possibility of a negative change, raises the threshold values to such an extent
that nearly all requests receive a low possibility for a negative change in waiting time.

Besides, it can be observed in Table 10 that the “smaller vehicles” (SV) scenario has
an inferior performance in the predicted possibility of a negative change in in-vehicle time
compared to the basic scenario. This is because fewer requests can be added to the trip in
the SV scenario. Consequently, shorter trips are created, resulting in smaller differences in
shareability score values λivr (t) between the requests that face no change and the requests
that face a negative change in in-vehicle time. This smaller difference in λivr (t) is because of
how λivr (t) is formulated: it computes the number of possible emerging requests that could
be added individually to the trip by considering trip duration, among other things. Due
to the shorter average trip durations in the SV scenario, there is a higher overlap in the
shareability score values λivr (t) between the different groups of requests. A detailed analysis
of the shareability score values is provided in Section 4.3.2. Moreover, Section 4.3.2 provides
a detailed description of how this prediction can be improved.

Furthermore, it can be observed that the scenario for which rescheduling is allowed
(RA) has an inferior performance in all measures compared to the basic scenario. This is as
expected because the shareability shadow cannot include rescheduled requests. As a result,
trips are created that deviate in route and duration compared to what has been forecasted
with the period shareability shadow, resulting in less accurate predictions.

The last row of Table 10 presents the performance of the predicted travel time increase.
Analyzing the scenarios for which rescheduling is not allowed, when aiming to provide a 95%
confidence interval of the travel time increase, also roughly 95% of the requests have their real
travel time increase in range of the provided interval. Therefore, the implemented method
can sufficiently predict the travel time increase by providing a 95% confidence interval.
On the other hand, this method cannot provide a 95% confidence interval of the travel time
increase for the scenario when rescheduling is allowed (RA). For the RA scenario, only 69.2%
of the requests have their real travel time increase in the range of the predicted interval. As
expected, the method has an inferior performance in the RA scenario as the shareability
shadow cannot include rescheduled requests. Consequently, the travel time increase might
differ from the predicted values, resulting in a worse performance of the predicted travel time
increase.

Because the quality-of-service indices not related to unreliability only slightly reduce
when rescheduling is not allowed, it is worth not allowing for rescheduling if the operators
aim to improve unreliability, as not allowing for reschedules achieves a higher performance
in terms of unreliability predictions.
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4.3.2 Detailed results and discussion of the basic scenario

The different scenarios for which rescheduling is not allowed obtained very similar results
in terms of unreliability predictions (see Table 10). Therefore, a detailed analysis of the
performance of the basic scenario is provided in this section. Figure 15 illustrates the different
groups of requests for this scenario. The first bar presents the number of rejected requests,
and the second bar presents the number of requests that face no change during their trip,
meaning that their real travel time was equal to their first-announced values. Additionally,
16443 requests face a worse travel time, meaning that their real travel time is longer than
their first-announced values. At last, a bar is included to present the assigned requests that
are not yet completed when the simulation ended. These uncompleted requests exist since
the simulation ended exactly after three ours in simulation time and not any moment later
when all assigned requests would be completed. An end time of three hours is maintained
as ending the simulation at any moment later would prevent the concerning requests from
being exposed to the unreliability characteristics of the service because no new requests are
added to the trips. This could affect the performance analysis; therefore, these requests are
excluded from further analysis. As illustrated in Tables 7 and 9, 44.6% of the completed
requests faced a negative change in travel time, and 16.4% of the requests got rejected.

Figure 15: Distribution of the requests. No change: real travel time is the same as the first
announced travel time. Better: real travel time is better than the first announced travel
time. Worse: real travel time is worse than the first announced travel time.

This research is interested in requests that face a negative change in travel time compared
to their first-announced travel times to reduce their unreliability. Therefore, Figure 16
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illustrates the distribution of requests with such a negative change. The completed requests
can be divided into four different groups:

• requests that face no change in travel time, called NC;

• requests that both face a worse waiting time and in-vehicle time compared to their
first-announced values, called W;

• requests that only face a worse waiting time compared to their first-announced values,
called WW;

• requests that only face a worse in-vehicle time compared to their first-announced values,
called WIV.

As discussed in Section 4.2, it is most likely when rescheduling is not allowed that a request
faces a negative change in in-vehicle time if it faces any change. Now that it is clear how the
different groups of requests are distributed during this simulation, an analysis is provided in
the following sections of the performance of the implemented unreliability measures.

Figure 16: Distribution of the requests which face a worse travel time, meaning their real
travel time is longer than the first announced value. W: set of requests that both face a
worse waiting time and in-vehicle time compared to their first announced values. WW: set
of requests that only face a worse waiting time compared to their first announced values.
WIV: set of requests that only face a worse in-vehicle time compared to their first announced
values.
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Possibility of a negative change
The first provided parameter to each new user to reduce unreliability is the predicted pos-
sibility of a negative change in waiting time and in-vehicle time. These possibilities are
determined by comparing the shareability score λr(t) to the threshold values. Before analyz-
ing the performance of the predictions, the values of λr(t) are analyzed. Figure 17 presents
the box-plots of the shareability scores of the waiting time and in-vehicle time for the dif-
ferent groups of completed requests. Additionally, the box-plots of the shareability scores
of the waiting time and in-vehicle time are grouped in Figure 18 such that the shareability
scores of the requests that face a negative change (orange) can be compared to the requests
that do not face a negative change (blue).

The box-plots of the shareability wait scores λwr (t) are presented in the left figures,
Figures 17a and 18a. The predicted possibility of a negative change in waiting time is
perfect if the λwr (t) values of the NC and WIV groups do not overlap with the values of
the W and WW groups. This is because the NC and WIV groups do not face a change in
waiting time, while the W and WW groups do face a change in waiting time. Furthermore,
it can be observed that the average values of the requests that face a negative change in
waiting time (orange) are higher than the average values of the requests that do not face a
change (blue). However, the lower quartiles of the W and WW groups (orange) overlap with
the box-plots of the NC and WIV groups (blue). This overlap will result in false-negatives
and false-positives of the predicted waiting time changes. An explanation for this overlap is
provided later on.

The box-plots of the shareability in-vehicle scores λivr (t) are presented in Figures 17b and
18b. The predicted possibility of a negative change in in-vehicle time is perfect if the λivr (t)
values of the NC and WW groups do not overlap with the values of the W and WIV groups,
as the NC and WW groups do not face a change in in-vehicle time, while the W and WIV
groups do face a change in in-vehicle time. As desired, the average values of the requests that
face a negative change in in-vehicle time (orange) are higher than the average values of the
requests that do not face a change (blue). However, there is an undesired overlap between
the two. Unfortunately, this overlap is even more significant than the undesired overlap in
the box-plots about the waiting time. Luckily, an adequate prediction of the possibility of a
negative change in in-vehicle time can still be obtained, which will be illustrated in the next
sections.
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(a) Shareability wait scores λwr (t). (b) Shareability in-vehicle scores λivr (t).

Figure 17: Box-plots of the shareability wait scores λwr (t) (left) and shareability in-vehicle
scores λivr (t) (right) for the different groups of completed requests. In the ultimate scenario,
the box-plots of the shareability wait scores (left figure) of the NC and WIV groups do not
overlap with the box-plots of the W and WW groups. For the shareability in vehicle scores
(right figure), in the ultimate scenario, the box-plots of the NC and WW groups do not
overlap with the box-plots of the W and WIV groups.

(a) Shareability wait scores λwr (t). (b) Shareability in-vehicle scores λivr (t).

Figure 18: Box-plots of the shareability wait scores λwr (t) (left) and shareability in-vehicle
scores λivr (t) (right) for the completed requests. In the ultimate scenario, there is no overlap
between the orange and blue box-plots.
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An undesired overlap in the λwr (t) and λivr (t) values exists between the requests that
face no change and the requests that do face a change because the mathematical equation
to compute these values is not perfect for making this distinction between facing a change
and not facing a change. This can be explained by several reasons:

1. At the moment, the shareability score λr(t) predicts the number of possible emerging
requests r′ that individually satisfy the trip constraints and negatively influence the
trip duration of r. However, an improved measure is to predict the number of requests
that will be added to the trip and which simultaneously negatively influence on the
trip duration of request r. To predict the number of requests that will be added to
the trip, several indices have to be included, for example, the number of vehicles in
vicinity of the trip should be included because when more vehicles are in vicinity, it is
less likely that a new request r′ will be added. Additionally, the vehicle’s maximum
capacity could be included because a higher capacity results in a higher possibility of
adding new requests.

2. The shareability score λr(t) considers the prediction of the number of emerging requests
per zone the trip travels through. The implemented zones may not have the optimal
shapes and sizes to cluster the requests of each zone. This has an impact on the
prediction.

3. The predicted demand in each zone assumes that the demand is distributed uniformly
over the space in the zone, which is not the case in reality. Hence, the characteristics
of each zone should be evaluated to obtain improved predictions about the demand.

4. The demand in each zone is predicted with a simple time-series forecasting method
named exponential smoothing. Improved forecasting methods such as ARIMA models
or deep learning approaches could be implemented to improve demand predictions.
Moreover, the characteristics of the city should be considered because they strongly
influence the demand, as stated in Section 2.5.2.

5. Unavoidable randomness exists in the ridesharing process. Even when all previously
motioned measures are implemented, the predictions will still not be perfect because
of the involved randomness, e.g., randomness in demand and randomness in the as-
signments when multiple assignments exist with the same cost.

In conclusion, several measures can be applied to improve the prediction of whether a new
request r′ will be added to the trip, leaving room for future research.

The performance of the predicted possibility of a negative change in waiting and in-
vehicle time for the different groups of completed requests is presented in Figures 19 and 21,
respectively. In these figures, three colors are utilized to present the predicted possibility
of a negative change. Green implies that a low predicted possibility of a negative change
in travel time is provided to the requests, yellow implies a medium possibility, and orange
implies that a high possibility of a negative change in travel time is provided.

The predicted possibility of a negative change in waiting time, Figure 19, is perfect if
the NC and WIV groups are completely green, since these groups do not face a negative
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change in waiting time. Likewise, in the perfect scenario, the W and WW groups are
completely orange, as these groups do face a negative change in waiting time. The function
that optimizes the threshold values, Equation 45, sets the thresholds for a negative change
in waiting time significantly high because the groups that face no change in waiting time
(NC and WIV) are significantly larger than the groups that do face a negative change in
waiting time (W and WW). Consequently, nearly all requests are informed that there is a
low possibility of a negative change in waiting time, which is displayed by a green color,
resulting in the best the overall performance of the predictions.

Figure 19: The predicted possibility of a negative change in waiting time for the different
groups of completed requests. NC: set of requests that face no change. W: set of requests
that both face a worse waiting time and in-vehicle time. WW: set of requests that face a
worse waiting time. WIV: set of requests that face a worse in-vehicle time. Green implies
that a low predicted possibility of a negative change in waiting time is provided to the
requests, yellow implies that a medium possibility is provided, and orange implies that a
high predicted possibility of a negative in waiting time is provided to the requests. If the
method works perfectly, the NC and WIV groups are completely green, while the W and
WW groups are completely orange.

Although the W and WW groups are insignificantly small and have an insignificant
impact on the computation of the threshold values used to determine the possibilities of a
negative change, Figure 20 presents the predicted possibilities of a negative change in waiting
time for the W and WW groups. It can be observed that nearly all requests in these groups
are informed that there is a low possibility of a negative change in waiting time (green area).
By contrast, they should be informed that there is a high possibility of a negative change in
waiting time as they will face a negative change in waiting time. As stated before, this is
because the system optimizes the overall performance of the threshold values. Since these
two groups are insignificantly small, they have a small influence on these computations.



4.3 Performance implemented method 88

Figure 20: Predicted possibility of a negative change in waiting time for the W and WW
groups. W: set of requests that both face a worse waiting time and in-vehicle time. WW: set
of requests that only face a worse waiting time. Green implies that a low predicted possibility
of a negative change in waiting time is provided to the requests, yellow implies that a medium
possibility is provided, and orange implies that a high predicted possibility of a negative in
waiting time is provided to the requests. The W and WW groups are completely orange if
the method works perfectly.

The solution also informs the users about the possibility of a negative change in in-
vehicle time. The predicted possibilities of a negative change in in-vehicle time are presented
in Figure 21. The predicted possibility of a negative change in in-vehicle time is perfect when
the NC and WW groups are completely green while the W and WIV groups are completely
orange. As indicated in Table 10, 60.4% of the requests receive a correct prediction about
the possibility of a negative change in in-vehicle time, 15.4 % receive an indecisive prediction
(yellow areas in Figure 21), and 24.2% receive an incorrect prediction. Because there is an
undesired partial overlap in the shareability in-vehicle score values λivr (t) between the NC
and WIV groups, illustrated in Figure 17b, the performance of the predicted possibility of a
negative change in in-vehicle time is suboptimal. This undesired overlap is even larger than
the undesired overlap in the shareability wait score values, Figure 17a, resulting in inferior
predictions of a change in in-vehicle time compared to predictions of a change in waiting
time. Still, the method obtains respectable predictions to reduce unreliability as less than
a fourth of the requests receive an incorrect prediction about the possibility of a negative
change in in-vehicle time.
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Figure 21: Predicted possibility of a negative change in in-vehicle time for the different
groups of completed requests. NC: set of requests that face no change. W: set of requests
that both face a worse waiting time and in-vehicle time. WW: set of requests that face a
worse waiting time. WIV: set of requests that face a worse in-vehicle time. Green implies
that a low predicted possibility of a negative change in in-vehicle time is provided to the
requests, yellow implies that a medium possibility is provided, and orange implies that a
high predicted possibility of a negative in in-vehicle time is provided to the requests. If the
method works perfectly, the NC and WW groups should be completely green, while the W
and WIV groups should be completely orange.

The sizes of the W and WW groups are insignificant compared to the NC and WIV
groups. Still, an enlarged graph of the predictions of a negative change in in-vehicle time is
presented in Figure 22 for the W and WW groups. The W group faces a negative change
in in-vehicle time, and the WW group does not. Therefore, in the ultimate scenario, the W
group is completely orange, and the WW group is completely green. It can be observed in
Figure 22 that the predictions for these groups perform quite well. Only 16.1% of the requests
of the W group receive an incorrect prediction (green area), and 28.1% of the requests of the
WW group receive an incorrect prediction (orange area).
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Figure 22: Predicted possibility of a negative change in in-vehicle time for the W and WW
groups. W: set of requests that both face a worse waiting time and in-vehicle time. WW:
set of requests that only face a worse waiting time. Green implies that a low predicted
possibility of a negative change in waiting time is provided to the requests, yellow implies
that a medium possibility is provided, and orange implies that a high predicted possibility
of a negative in waiting time is provided to the requests. If the method works perfectly, the
W group is completely orange and the WW group is completely green.

Overall, it can be concluded that the method obtains respectable predictions regarding
the possibility of a negative change in travel time. Therefore, the users obtain an improved
understanding of what they can expect from their trip, resulting in a reduced unreliability
experience.
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Predicted size of a negative change
The second provided parameter to each new user to reduce unreliability is the predicted
magnitude of a negative change for whenever the case occurs that a new request will be
added to the trip. Hence, a prediction of the magnitude of a possible waiting time increase
and in-vehicle time increase is provided to each new user. The increase is indicated by
providing a minimum value, a maximum value, and an average value of the travel time
increase. Moreover, the minimum and maximum values are set to follow a 95% confidence
interval. As indicated in Table 10, 94.9% of the requests of the basic scenario face a real
travel time increase with its magnitude in range of the provided interval. Therefore, the
method behaves as desired and is very well capable of predicting the magnitude of the travel
time increase within a 95% confidence interval.

Figure 23 illustrates the average values of the real waiting and in-vehicle time increase
for the different groups of requests that faced a negative change and compares it to the
average values of the respective predicted magnitudes. It can be observed that when only
a negative change in waiting time (WW) or in-vehicle time (WIV) occurs that the average
values of the predicted magnitudes are nearly equal to the average values of the real increase.
Besides, for the group of requests that faced a negative change in both waiting and in-vehicle
time (W) it can be observed that the predicted magnitudes of a negative change in in-vehicle
time overestimate, on average, the real magnitudes. This overestimation occurs because the
implemented method assumes that the waiting time increase will be zero to obtain a full
range for the minimum and maximum value of the magnitude of the in-vehicle time increase.
Because these requests also face a negative change in waiting time due to a detour, their
in-vehicle time increase will be less since there is less space for extra delays, resulting in an
overestimation of the extra in-vehicle time. Additionally, the overestimation of the waiting
time for the W group is significantly smaller than the in-vehicle time overestimation. This
is because the ridesharing tolerance in the waiting time is considerably smaller, resulting in
smaller overestimations.
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Figure 23: Average values of the predicted magnitudes of a negative change VS average
values of the real magnitudes of a negative change.

It is clear that the method obtains correct predictions (it provides a 95% confidence
interval of the travel time increase). However, it is crucial to analyze whether the method
provides a reasonable width of the provided ranges. For clarification, the width of a range
presents the difference between the minimum and maximum value of the predicted magnitude
of the travel time increase. Furthermore, the minimum value of the provided range might not
be zero. To obtain an improved understanding of the widths of the ranges, Figure 24 presents
the widths of the ranges of the predicted waiting time increase for the requests that face
a negative change in waiting time. By examining the predicted ranges of the waiting time
increase, it is most likely that the requests receive a width of less than a minute. Receiving a
width of one minute between the minimum and maximum value of the waiting time increase
is a respectable indication for the users to reduce their unreliability regarding their waiting
time. The widths of the provided ranges of the waiting time increase have a mean of 43
seconds and a standard deviation of 41 seconds.
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Figure 24: Widths of the provided ranges of the predicted magnitude for a negative change
in waiting time for the requests which face a worse waiting time. The provided ranges follow
a 95% confidence interval. Range = [µ− 2σ, µ+ 2σ].

The widths of the provided ranges for the predicted in-vehicle time increase for the
requests that faced a negative change in in-vehicle time are presented in Figure 25. Note
that the predicted in-vehicle time increase assumes that there will be no increase in waiting
time to obtain a full range of the predicted in-vehicle time increase. In Figure 25, it can
be observed that 74.2% of the requests receive a width of less than five minutes for the in-
vehicle time increase. Furthermore, 4.6% of the requests receive a width of more than seven
minutes. The widths of the provided ranges of the in-vehicle time increase have a mean
of 3.7 minutes and a standard deviation of 1.9 minutes. Unfortunately, a small number of
requests (0.11%) receive a width of more than nine minutes. Providing such a long width
leaves the concerning requests still in uncertainty as they do not know precisely how much
their travel time will increase. Luckily, the number of requests that receive such a long width
is inferior. Most requests receive such long widths because they are individual requests in a
trip or because they have a short travel time from origin to destination. As a result, their
trip can face large detours without violating their delay constraints. Therefore, some of these
requests do also face a real detour of nine minutes.



4.3 Performance implemented method 94

Figure 25: Widths of the provided ranges of the predicted size of a negative change in in-
vehicle travel time for the requests which face a worse in-vehicle travel time. The provided
ranges follow a 95% confidence interval. Range = [µ− 2σ, µ+ 2σ].

Because 4.6% of the requests receive a width of more than seven minutes for a possible
detour, it is interesting to compare the widths to the total travel times of the requests.
Note that “width” implies the difference between the minimum and maximum value of the
provided range. Figure 26 compares the trip durations to the width of the ranges for the
in-vehicle time increase. Because there are too many requests (16347) to display individually,
the requests are grouped by trip durations with a range of one minute. The x-axis presents
the trip durations with a range of one minute, and the y-axis presents the ratio between the
trip duration and the average value of the widths of the ranges for the predicted in-vehicle
time increase. The ratio of the width of the ranges to the trip durations has a mean value
of 0.21 and a standard deviation of 0.16. A ratio of 0.21 implies that a request with a trip
duration of 10 minutes receives a range with a width of 2.1 minutes for the predicted detour
time.

It can be observed that passengers of shorter trips receive, on average, slightly longer
ranges for the predicted in-vehicle time increase than longer trips. This seems counter-
intuitive as longer trips are expected to have a higher possibility of receiving new users.
This is also true, but that does not imply that users of longer trips are more likely to receive
longer ranges for the predicted travel time increase. On average, users of shorter trips receive
a longer range for the predicted travel time increase because shorter trips contain, on average,
less requests. Users of trips with less requests face smaller delays because less detours are
made to serve other requests. Consequently, shorter trips have more room to make detours.
Therefore, the system is allowed to make long detours without violating the maximum delay
of these users.

Additionally, shorter trips are more likely to occur in the center of the network. From



4.3 Performance implemented method 95

the network center, the proportion of far-away nodes that are reachable is larger than on the
boundaries of the network. As a result, the unreliability solution provides a prediction for
the magnitude of the in-vehicle time increase with a large deviation between the minimum
value and the maximum value as detours of various durations are possible. Therefore, it can
be concluded that the implemented method behaves properly.

Furthermore, the total number of completed requests with a trip duration of less than
six minutes is minor (5.1%), which can be observed in Figure 27. Moreover, the number of
requests that receive long ranges of more than seven minutes is only 4.6%. Thus, receiving
such a long range has a very low possibility.

In conclusion, the method obtains respectable predictions regarding the possibility of a
negative change and successfully provides a 95% confidence interval for the magnitude of a
possible delay. Regarding the magnitude of a possible delay, 74.2% of the requests receive a
range of less than five minutes between the minimum and maximum value. Therefore, the
users obtain an improved understanding of what they can expect from their trip, resulting
in a reduced unreliability experience.

Figure 26: Comparison of the predicted ranges of the in-vehicle time increase to the total
trip durations. Range = [min. value, max. value].
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Figure 27: Distribution of the trip durations of the completed requests. Trip duration =
waiting time + in-vehicle time.
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4.3.3 Comparison basic scenario to baseline method

A baseline method has been implemented to test the validity of the unreliability measure.
An overview of the performance of the formulated unreliability measure and the baseline
method for the basic scenario is provided in Table 11. As expected, a third of the requests
receive a correct prediction about the possibility of a negative change with the implemented
baseline method. The same number of requests receive an incorrect and indecisive prediction
for the possibility of a negative change. This is because the baseline method informs each
request randomly about the possibility of a negative change. Furthermore, with the baseline
method, it can be observed that less than half of the requests (44.7%) have a real travel time
increase that falls in range of the provided interval. Therefore, the formulated unreliability
measure does clearly outperform the simple baseline method.

Table 11: Performance of the formulated unreliability measure and the baseline method for
the basic scenario. The first three rows present the percentage of requests that received
a correct, indecisive, and incorrect prediction for the possibility of a negative change in
waiting time, respectively. Note that “indecisive” means that a request received a “medium”
possibility for a negative change. Similarly, the following three rows present the percentage
of requests that received a correct, indecisive, and incorrect prediction for the possibility of
a negative change in in-vehicle time, respectively. The last row illustrates the percentage of
requests that have their real travel time increase in range of the provided interval.

Measure Formulated method Baseline method

Possibility neg. change waiting time correct 97.8% 33.3%

Possibility neg. change waiting time indecisive 0.39% 33.3%

Possibility neg. change waiting time incorrect 1.80% 33.3%

Possibility neg. change in-vehicle time correct 60.4% 33.3%

Possibility neg. change in-vehicle time indecisive 15.4% 33.3%

Possibility neg. change in-vehicle time incorrect 24.2% 33.3%

Actual extra travel time in range of provided interval 94.9% 44.7%
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5 Conclusion

From theoretical research regarding unreliability in on-demand ridesharing systems, it has
been concluded that a gap in the literature exists of efficiently dealing with the problem
of unreliability. Users are confronted with unreliability when their real travel times deviate
from the first-announced values, i.e., the received travel time information directly when the
users are assigned. Moreover, case study results show that almost half of the served users
face unreliability when rescheduling requests is not allowed, and nearly two-thirds of the
served users face unreliability when rescheduling is allowed, strengthening the urgency of a
method to reduce unreliability (rescheduling requests implies that already assigned requests
can be reassigned to other vehicles). Therefore, this research formulates a novel measure
to reduce unreliability in on-demand ridesharing systems. This measure aims to reduce
“one-time unreliability” (Fielbaum & Alonso-Mora, 2020) induced by the operators’ rules.
One-time unreliability appears when new users are added to the trip, increasing the waiting
time and/or detour time of the already assigned users.

The proposed measure reduces unreliability by providing two indicators to each new
user: (1) the possibility that an additional request r′ will be added to the trip of user r,
which negatively affects the trip duration of user r; and (2) a prediction of the magnitude
of the change for whenever the case occurs that a new request r′ is added to the trip of user
r. The first measure indicates for both the waiting time and in-vehicle time of user r the
possibility of a negative change by providing a “low”, “medium”, or “high” possibility. The
second measure provides a minimum, maximum, and average value of how much the waiting
and in-vehicle time will increase. The values are determined using a simple time-series
forecasting method, named exponential smoothing, and the shareability shadow concept,
confining the region of ridesharing opportunities.

The measure is analyzed by simulating a state-of-the-art routing and assignment rideshar-
ing method over a time period of three hours using a real dataset of taxi requests in Man-
hattan and implementing the proposed unreliability measures. Four different scenarios are
analyzed to test the validity of the measure. From the simulations, it can be concluded that
the method has a respectable performance to minimize unreliability. Additionally, it has
the highest performance when reassignments (also known as rescheduling) of requests are
not allowed. On average, for the scenarios where rescheduling is not allowed, 58% of the re-
quests receive a correct prediction about the possibility of any negative change, 17% receive
an indecisive prediction, i.e., a prediction stating that the possibility of any negative change
is “medium”, and 25% of the requests receive an incorrect prediction about the possibility
of any negative change. Furthermore, the measure provides a 95% confidence interval of the
magnitude of the travel time increase when rescheduling requests is not allowed. Not allow-
ing for reassignments of requests only slightly reduces the system’s performance in terms of
rejection rate, average waiting times, and average delays. Therefore, it is worth not allowing
for reassignments when implementing this measure when operators aim to minimize their
service unreliability.

Still, the method is suboptimal as, on average, 25% of the requests receive an incorrect
prediction about the possibility of a negative change during their trip. Several measures
have been proposed to improve the performance. Hence, there is room for future research.
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