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Abstract
We explore and develop a Proper Orthogonal Decomposition (POD)-based deflation method for the solution of ill-
conditioned linear systems, appearing in simulations of two-phase flow through highly heterogeneous porous media. We
accelerate the convergence of a Preconditioned Conjugate Gradient (PCG) method achieving speed-ups of factors up to five.
The up-front extra computational cost of the proposed method depends on the number of deflation vectors. The POD-based
deflation method is tested for a particular problem and linear solver; nevertheless, it can be applied to various transient
problems, and combined with multiple solvers, e.g., Krylov subspace and multigrid methods.

Keywords Deflation · Krylov Methods · Porous media · Two-phase reservoir simulation

1 Introduction

Solutions of systems of linear equations are required when
simulating flow through subsurface porous media [27].
These linear systems emerge during the iterative solution
of time- and space-discretized nonlinear partial differential
equations that govern the porous media flow problems.
In the case of multi-phase flow, the equations involve an
elliptic or parabolic pressure equation coupled to one or
more near-hyperbolic saturation equations.

There are several ways to treat this system of equations,
among others, the Implicit Pressure Explicit Saturation
(IMPES), Fully Implicit (FI) and Adaptive Implicit Methods
(AIM) [13, 25]. In this work we use the IMPES scheme
implemented in MRST [30], that decouples the pressure
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from the saturation via the fractional flow formulation, see
Appendix B and [47].

For the IMPES scheme, the saturation is calculated
explicitly, while pressure is kept implicit, and solving the
pressure equation is the most time-consuming part, espe-
cially for large and ill-conditioned systems, which often
occur because of the complex geometry and strongly hetero-
geneous rock properties that constitute the porous medium.
Furthermore, for time-varying problems, it is required to
compute a large number of simulations, which makes the
solution of these problems expensive.

Even larger computational demands occur when subsur-
face flow models are used in workflows for optimization or
uncertainty quantification which typically require the simu-
lation of a vast number of models. Various techniques have,
therefore, been developed to improve the linear solver speed.

Among others, Reduced Order Models (ROM) methods
are used to capture relevant information of a high-
dimensional system and to project it into a lower-dimension
space [3, 10, 28, 41, 50], which is easier to solve. With these
methods, essential system information can be obtained by
computing a small set of basis functions from a collection
of system solutions (also known as ‘snapshots’). Proper
Orthogonal Decomposition (POD) is a ROM method that
has recently been used to accelerate the solution of the linear
pressure equation resulting from reservoir simulation [24,
35, 40, 42, 48], among other applications.

For the computation of the POD basis, two main
approaches are used. In the first one, a training simulation
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is run, and the solutions are stored as snapshots, which
are collected to obtain a POD basis. This methodology is
especially suitable for solving problems with small changes
in the input variables, e.g. the same well configurations but
different flow rates or bottom hole pressures (bhp) [35, 40,
48]. The basis can also be computed on-the-fly, using, e.g.,
the solution of the latest time steps [16, 40, 42]. With this
approach, the basis has to be adapted during the simulation.
Once the basis is obtained, various POD-based strategies
can be used to solve the system. In the future, we will refer
to the first approach as training phase approach, and the
second as moving window approach.

For the solution of a large-scale system, Markovinovic
et al. [42] proposed using POD techniques to compute a
good initial guess that accelerates the iterative method for
simulation of two-phase flow through heterogeneous porous
media. For the same type of problems, solving the problem
in the small-scale domain, and projecting it back to the
large-scale system was implemented by Astrid et al. [40].

For many applications, Krylov subspace iterative meth-
ods are used [19, 46] to accelerate the solution of linear sys-
tems. The speed of convergence of these methods depends
on the condition number and the right-hand side (rhs) of
the system. If the condition number is large, generally, pre-
conditioning techniques are needed to transform the original
system into a better conditioned one. If the system is Sym-
metric Positive (Semi) Definite (SP(S)D), a commonly used
Krylov-subspace method is Conjugate Gradient (CG) [8,
9, 20, 26, 28]. If the system is not SP(S)D, methods like
GMRES are used. These methods can be accelerated further
with preconditioning [32, 45], or recycling strategies like
augmentation and deflation [8].

For some Krylov methods, the computation of an orthog-
onal basis for the entire Krylov subspace is required to
obtain an approximate solution. As the number of itera-
tions increases, the work and the storage requirements grow
dramatically. To reduce the extra work, some methods are
restarted after some number of iterations. For the GMRES
method, system information is obtained from previous solu-
tions or from the Ritz vectors and combined with restarting,
truncation and deflation techniques to accelerate the method
[11, 34, 43, 44].

If the spectrum of the system contains few small eigen-
values, or if the initial error vector has small components
for the lowest eigenvalues modes, the rate of convergence
of the initial sublinear phase is more rapid. Such an ini-
tial error vector can be obtained using preconditioners based
on multilevel meshes working from coarser meshes to finer
ones [38]. In recent years, deflation techniques have been
developed to accelerate the convergence of Krylov sub-
space methods [8, 9, 22, 26, 49]. Especially useful when a
sequence of linear systems with constant or slightly vary-
ing matrices has to be solved [31]. For this technique to

be effective, a deflation subspace needs to be found. This
subspace is such that the smallest eigenvalues of the system
are no longer hampering the convergence of the iterative
method.

The reuse of system information obtained from POD
has been increasingly approached recently. Carlberg et al.
[28] proposed a POD-augmented CG algorithm for Krylov-
subspace recycling applied to solid-mechanics problems.
Another approach was developed by Pasetto et al. [10], who
suggested constructing a preconditioner for the CG method,
based on a POD basis for the solution of groundwater flow
models. The use of the POD basis within a deflation proce-
dure to accelerate the CG method was introduced by Diaz
Cortes et al. [16] for single-phase flow simulation problems.

In this work, we extend the work of Diaz Cortes et al.
[16] to two-phases, and we introduce the capture of infor-
mation via POD methods with a training phase approach
besides the moving window approach proposed in [16].
The acquired information is used for the construction of the
above-mentioned deflation subspace. We explore the appli-
cability of this methodology for the simulation of two-phase
flow in large-scale, highly-heterogeneous porous media.

In Section 2, we give a brief overview of the methods
used to solve linear systems. Section 3 is devoted to
numerical experiments, where we give some examples and
present some results. Finally, we formulate the conclusions.
The governing equations used for the simulation of two-
phase flow problems, together with the discretization
schemes used in this work can be consulted in Appendices A
and C.

2 Solutionmethods for linear systems

Iterative techniques are preferred over direct methods to
approximate the solution of ill-conditioned, large and sparse
linear systems. In this section, we give a brief overview
of the Krylov iterative methods, used to accelerate the
solution of this kind of systems. We also introduce the
most popular acceleration techniques for Krylov subspace
methods: preconditioning, augmentation, and deflation.
Finally, we introduce the POD method that together with
preconditioning and deflation are used for the acceleration
of the CG method throughout this work.

Krylov subspace Given a linear system

Ax = b, (1)

with A ∈ C
N×N, the initial residual r0 := b − Ax0, where

x0 ∈ C
N is an initial guess of x, and k is a positive integer.

We define the k-dimensional Krylov subspace as:

Kk

(
A, r0

)
= span

{
r0,Ar0, . . . ,Ak−1r0

}
. (2)
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For Krylov iterative methods, the solution can be
obtained with the iteration procees presented below, for the
k − th iteration we have:

xk ∈ x0 + Kk

(
M−1A; r0

)
.

Conjugate gradient (CG) method The CG method is a
Krylov subspace method used for Symmetric Positive
(Semi) Definite matrices (SP(S)D). For this method, the
convergence bound is given by:

||x − xk||A ≤ 2||x − x0||A
(√

κ2(A) − 1√
κ2(A) + 1

)k

, (3)

where the condition number κ2(A) is defined as κ2(A) =√
λmax(AT A)√
λmin(AT A)

. As A is SPD, κ2(A) = λmax(A)
λmin(A)

.

Typically, the convergence of the Krylov subspace meth-
ods takes place in three phases with different rates of
convergence. In the first phase, the CG method lacks infor-
mation about the spectrum, and acts mainly on the infor-
mation of the initial iteration error, leading to a short but
rapid initial convergence rate, also known as the sublin-
ear phase. Later, the influence of the spectral condition
number becomes larger and the method enters the linear
phase. Finally, when a sufficient number of extreme eigen-
value components have been damped out, the method enters
the so called superlinear convergence phase [4, 6, 38].

Acceleration of the Krylov subspace methods can be
achieved for the three stages. By improving the initial guess
so that the error is minimized, by changing the condition
number of the system, or by removing the influence of the
smallest eigenvalues of the system matrix. There are several
methods to achieve acceleration. Next, we present some of
them.

Preconditioning To accelerate the convergence of Krylov
subspace methods, the linear system is multiplied by a matrix
M−1, such that the iteration matrix has a better spectrum
and M−1 is cheap to compute. The resulting preconditioned
system is:

M−1Ax = M−1b. (4)

The convergence bound of the preconditioned iterative
method is given by:

||x − xk||A ≤ 2||x − x0||A

⎛
⎜⎝

√
κ

(
M−1A

) − 1
√

κ
(
M−1A

) + 1

⎞
⎟⎠

k

, (5)

where the condition number of the preconditioned system is
smaller than the one of the original system, i.e.,

κ
(
M−1A

)
< κ(A).

For the CG method, a commonly used preconditioner is
the Incomplete Cholesky (IC) factorization, given by A =
CT C + R, with R the error matrix of the factorization. In
this work, as preconditioner, we use the IC factorization of
order 0, meaning that the non-zero entries of the C matrix
are the same as the non-zero entries of the system matrix A.
We refer to the Conjugate Gradient method preconditioned
with the IC factorization as ICCG.

2.1 Augmentation and deflation techniques
for Krylovmethods

Even after preconditioning, the spectrum of the precondi-
tioned system matrix can contain few small eigenvalues that
tend to slow down the convergence rate of the Krylov sub-
space methods. Therefore, it is required to use techniques
that treat these eigenvalues. Among others, deflation and
augmentation methods are used to remove the influence of
these eigenvalues [12, 37, 39].

As the iteration of a Krylov method proceeds, the
Ritz values converge, i.e., extreme eigenvalues of the
system matrix are approximated by the corresponding Ritz
values. When this happens, the method behaves as if the
corresponding eigenvectors are no longer present [4, 21].
Thus, it is necessary to perform some iterations before the
Ritz values are sufficiently approximated, and the influence
of the corresponding extreme eigenvalues is eliminated.

Augmented Krylov subspacemethods Aim to add informa-
tion about the problem into the search space by including
into the Krylov subspace an augmentation space U that, oth-
erwise, could be obtained only after some Krylov iterations
[39]. With these methods, the usual search space Kk

(
A, r0

)
is replaced by the augmented Krylov subspace, given by:

Kk

(
A, r0

)
+ U . (6)

Hence, the solution is found with the following iterative
process:

xk ∈ x0 + Kk

(
M−1A; r0

)
+ U .

Deflated Krylov methods On the other hand, instead of the
inclusion of the augmentation space U on the search space,
the iterate

xk ∈ x0 + Kk (A, r0) , (7)

is constructed, so that the residual rk satisfies the
orthogonality condition given by:

rk = P
(
b − Axk

)
⊥ Kk (A, r0) , (8)

with P being the deflation operator that usually contains
information of the extreme eigenvalues. This approach is
known as deflation approach. With deflation, the effect of



Comput Geosci

the small eigenvalues can be annihilated by setting them
to zero, such that the condition number of the system is
reduced before the Krylov iterative process. The method is
consequently accelerated, and the superlinear convergence
phase is reached earlier [1, 2, 8, 22, 29]. A formal definition
is presented next.

Definition 1 Let A ∈ R
n×n be an SPD matrix, and Z ∈

R
n×p be a full rank matrix. The invertible Galerkin matrix,

E ∈ R
p×p, the correction matrix, Q ∈ R

n×n and the
deflation matrix P ∈ R

n×n are defined as [26, 29, 49]:

P = I − AQ, Q = ZE−1ZT , E = ZT AZ. (9)

where Z ∈ R
n×p is called the def lation − subspace

matrix, and its columns are the def lation vectors or
projection vectors.

A good selection of the deflation vectors is usually
problem-dependent, and available information of the system
is, in general, used to construct them. Most of the techniques
used to select deflation vectors are based on eigenvectors
or approximated eigenvectors, recycling vectors [16, 33],
subdomain deflation vectors [9] or multigrid and multilevel
based deflation vectors [7, 18, 26]. A description of some of
these choices of deflation vectors is presented next.

Eigenvectors of the system matrix as deflation vectors If
the matrix Z contains eigenvectors corresponding to the
most unfavorable eigenvalues of the system matrix A, the
deflation method set them to zero and convergence of the
iterative method is achieved faster. If the deflation-subspace
matrix, Z is chosen as p eigenvectors, vj , of A, i.e., Z =[
v1, . . . , vp

]
, then PA has the same eigenvectors as A and

the spectrum is given by [14, 49]:

σ(PA) = {
0, . . . , 0, λp+1, . . . , λn

}
.

However, the eigenvalues are usually unknown and it is
costly to obtain them. Thus, approximate eigenvalues are
used instead.

Recycled vectors as deflation vectors Given a linear system
Ax = b with solution x = ∑p

i=1cixi , where the x′
is

are linearly independent (l.i.) solutions such that Axi =
bi , and any other solution can be constructed as a linear
combination of this solutions. These solutions can be used
to construct the deflation subspace matrix

Z = [
x1, . . . , xp

]
.

Using this choice of deflation vectors, the solution of the
linear system is obtained within one iteration of DCG (see
the proof in [14, 16]).

To understand the spectral behavior of the deflation
method when using recycling vectors, we present Lemma
1, where, for a particular case, choosing l.i. solutions

as deflation vectors leads to the same behaviour of the
deflation method as the use of system eigenvectors.

Lemma 1 Let Ax = b, be a linear system with A ∈
R

n×n symmetric with spectrum σ(A) = {λ1, . . . , λn}, and
eigenvectors Σ(A) = {v1, . . . , vn}, such that vT

i vj = δij .
We assume that the solution to this system can be written as
x = ∑p

i=1aixi , where the x′
is are linearly independent (l.i.)

solutions to Axi = bi . Rewriting the x′
i s as:

xi =
n∑

k=1

ckvk, xj =
n∑

m=1

c̃mvm,

and taking cα �= c̃β , and |cα| >> |ck|, with k ∈
[1, . . . , α − 1, α + 1, . . . , n], and |c̃β | >> |c̃m|, m ∈
[1, . . . , β − 1, β + 1, . . . , n], the spectrum of the deflated
system PA is given by:

σ(PA) = {
λ1, . . . , λα−1, 0, λα+1, . . . , λβ−1, 0, λβ+1, . . . , , λn

}
.

Proof The l.i solutions xi and xj are solution to Axi = bi ,

thus, can be expressed as

xi = cαvα +
n−1∑
k=1

ckvk, xj = c̃βvβ +
n−1∑
m=1

c̃mvm. (10)

If |cα| >> |ck|, with k ∈ [1, . . . , α − 1, α + 1, . . . , n],
and

|c̃β | >> |c̃m|, with m ∈ [1, . . . , β − 1, β + 1, . . . , n],
we have

xi � cαvα, xj � c̃βvβ . (11)

If the deflation subspace matrix is chosen as Z =[
xi , xj

]
, i.e., Z = [

cαvα, c̃βvβ

]
, then, the spectrum of the

deflated system becomes:

σ(PA) = {λ1, . . . , λα−1, 0, λα+1, . . . , λβ−1, 0, λβ+1, . . . , , λn},
i.e., the eigenvalues λα and λβ corresponding to the
eigenvectors vα and vβ , respectively, are removed from the
system.

Hence, if the unfavorable eigenvalues are captured in the
l.i. solutions xi and xj , the behavior of the deflated method
is the same as if these eigenvectors are used as deflation
vectors.

2.2 Preconditioned deflated conjugate gradient
method (DPCG)

Deflation techniques are usually combined with a precon-
ditioner M−1 to achieve a larger acceleration of iterative
methods. When using these techniques to accelerate the
CG method, this results in the DPCG method. The pseudo-
code of the DPCG method is given in Algorithm 1. In this
work, we implement the Deflated Preconditioned Conjugate
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Gradient method with the Incomplete Cholesky factoriza-
tion as preconditioner; we refer to this method as DICCG.

For this method, the error is bounded by:

||x− xk+1||A ≤ 2||x− x0||A

⎛
⎜⎝

√
κeff

(
M−1PA

) − 1
√

κeff

(
M−1PA

) + 1

⎞
⎟⎠

k+1

,

were κeff = λmax

(
M−1PA

)
λmin(M−1PA)

is the effective condition number.

As mentioned before, deflation sets the smallest eigenvalues
to zero; then, these eigenvalues are not longer taken into
account for the iteration process. Instead, λmin

(
M−1PA

)
,

the smallest non-zero eigenvalue of M−1PA, is used to study
the convergence.

This solution method is studied throughout this work,
using an Incomplete Cholesky factorization as precondi-
tioner. As deflation vectors we use Recycled vectors in two
ways: solutions of previous time steps as deflation vec-
tors, and a Proper Orthogonal Decomposition (POD) basis
as deflation vectors. This basis is obtained from previous
time step solutions. To illustrate how this POD basis is
constructed, next, we introduce the POD method.

2.3 Proper orthogonal decomposition (POD)

The POD method is a Model Order Reduction (MOR)
method, where a high-order model is projected onto a space
spanned by a small set of orthonormal basis vectors Ψ =[
ψ1 ψ2 .. ψp

]
, Ψ ∈ R

n×p. The basis vectors ψi ∈ R
n are

computed from a set of s ‘snapshots’ {xi}si=1, obtained by
simulation or experiments [42]. The vectors

{
ψj

}p

j=1 are
p eigenvectors corresponding to the p largest eigenvalues{
λj

}p

j=1 of the data correlation matrix R ∈ R
n×n,

R := 1

s
XXT ≡ 1

s

s∑
i=1

xixT
i , X := [x1, x2, . . . xs] . (12)

In some cases, the covariance matrix R is used instead of
R, this matrix is defined as

R := 1

s − 1

s∑
i=1

(xi −x) (xi −x)T , X :=[x1, x2, . . . xs],

(13)

where x = 1
s

∑s
i=1xi is the mean of the snapshots. In this

work, we also normalize the snapshots, i.e., we use the
following relation:

R := 1

s − 1

s∑
i=1

xi − x
||xi − x||2

(xi − x)T

|| (xi − x)T ||2
. (14)

If the system is large, the matrix R is also large, and to
compute the eigenvalues can be costly. However, it is not

necessary to compute the eigenvalues of R = XX
T ∈ R

n×n,
but instead, it is possible to compute the eigenvalues of the

much smaller matrix C = X
T
X ∈ R

s×s , s << n. To do
so, we perform the Singular Value Decomposition (SVD) of
C = VDVT . Here V ∈ R

s×s are the eigenvectors of C, and
diag(D) are the corresponding eigenvalues, which are the
same as the eigenvalues of R. The eigenvectors of R can be
obtained from [17]:

U = XV
(
ΛT

) 1
2 ∈ R

n×n.

Once the basis is computed, the high dimensional
variable x ∈ R

n is approximated by a linear combination of
p orthonormal basis vectors [40]:

x ≈
p∑

i=1

ciψi . (15)

The p eigenvectors are chosen such that they contain
almost the whole variability of the snapshots. Usually, they
are the maximal number of eigenvalues satisfying [42]:

∑p

j=1λj∑s
j=1λj

≤ α, 0 < α ≤ 1, (16)

with α close to 1. The eigenvalues λj are ordered from large
to small with λ1 being the largest eigenvalue of R.

Once the basis Ψ is obtained, the linear system from
Eq. 1 is projected onto the subspace spanned by the basis
[40] as follows:

Ψ T AΨ x = Ψ T b,

leading to the reduced model:

Arx = br Ar ∈ R
p×p,br ∈ R

p.
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The reduced model is dense; however, it is much smaller
than the original system and can be solved efficiently with
direct methods.

2.4 POD-based deflationmethod

In this work, we further explore and develop the POD-based
deflation method introduced in [16]. Instead of solving the
reduced model, as in [28, 35], we propose the reuse of a POD
basis, Ψ , as the subspace-deflation matrix, Z, in a deflation
procedure. With this method, the residual is projected into the
deflated space constructed with few elements of the basis Ψ ,
as presented in Eq. 8. The approximate solution is obtained
from the Krylov subspace directly (Kk) for the full system.

The problems we study contain a few small eigenvalues
of the system matrix At that cause slow convergence.
Deflation methods can remove these eigenvalues if the
corresponding eigenvectors are used. As shown in Eq. 3,
for the case of the CG method, the convergence depends
on the ratio of the largest (λmax) to the smallest (λmin)
eigenvalues. Thus, when the smallest system eigenvalue
(λmin) is ‘removed’ from the system, the convergence
depends on the “effective” condition number, given as the
ratio between the largest (λmax) and the second smallest
(λmin−1) system eigenvalues [4, 5].

A POD basis, ideally, can get the main system infor-
mation from a set of snapshots, X. In particular, the basis
should be an approximation of the system eigenvectors. As
an example, we take as snapshot an eigenvector of the sys-
tem matrix Avk = λkvk, X = [vk]. Then, the correlation
matrix is given by

R = XXT = vkvT
k = vkIvT

k ,

which implies that Ψ = [vk], and using this basis in a
deflation procedure, the corresponding eigenvalue λi is
removed from the system. Thus, if the eigenvalues of the
system matrix A hampering the performance of an iterative
method are captured on the POD basis, they can be removed
using this basis as deflation vectors. Taking a snapshot xi as
in Lemma 1, if it contains information about one eigenvalue,
i.e., xi ∼ vi , a basis obtained from it will be the same as
before, i.e., Ψ = [vk]. When used as a deflation vector, this
eigenvalue will be removed from the system.

Methodology In this work, we study the performance of
the Deflated Preconditioned Conjugate Gradient method
preconditioned with Incomplete Cholesky (DICCG) and
a POD basis as deflation vectors. For this method, the
complete solution strategy consists of three stages:

i) Snapshots collection. A set X of snapshots, vectors
bi with different configurations or at various time

steps, is obtained for the computation of the
POD basis. To capture the snapshots, we use two
approaches. The first one is a moving window
approach, and the second one is a training simulation
approach, both of them used for non-invariant
systems,

Atxt = bt .

These approaches are further explained below.

Moving window approach: the window consists of
a set of s snapshots updated for each time step.
The snapshots are captured ‘on the fly,’ i.e., they
are the most recently computed solutions, obtained
during the previous time steps. Given a time step t ,
we collect the previous s snapshots (from t − s −1
to t − 1). These snapshots are given by:

X =
[
xt−s−1, . . . , xt−1

]
.

With this approach, the first t snapshots cannot
be computed for the first time steps with the
DICCG method, as we lack a deflation subspace
matrix Z. Instead, the first s time steps are
computed with the ICCG method. The rest of the
snapshots are obtained with DICCG.
Training phase approach: a full pre-simulation
is run. For a pre-simulation consisting of n time
steps. The set of snapshots is given by:

X =
[
x1, . . . , xn

]
.

During the training phase, the bottom hole
pressures (bhp) of the production wells P is varied
randomly, and it takes values between P1 and
P2, which implies that the right-hand side bt is
constantly changing during the simulation.

The solutions of the pre-simulation are obtained
with the ICCG method.

ii) POD basis computation.The previously obtained
snapshots are used to construct a POD basis (�). The
algorithm of the construction of the basis is presented
below, Algorithm 2.

iii) Solution of the linear system. The POD basis is
used as subspace-deflation matrix (Z) in a deflation
procedure for the solution of the linear system. The
algorithms of the complete procedure are presented
in Algorithm 3 for a moving window approach, and
Algorithm 4 for a training phase approach.

To analyze the method’s performance, we com-
pare the total number of iterations and operations
necessary to run the DICCG simulation with the
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total number of iterations and operations necessary
to solve the same problem using ICCG.

As tolerance or stopping criterion we use the relative
residual, defined as the 2-norm of the residual of the kth

iteration divided by the 2-norm of the right-hand side of the
preconditioned system,

rrk = ||M−1(b − Axk)||2
||M−1b||2 = ||M−1rk||2

||M−1b||2 ≤ ε, (17)

throughout this work, we refer to this term as rrk .
The tolerance of the solvers is presented for each case.

For some experiments, the true relative error is computed as:

ek = ||x − xk||2
||x||2 , (18)

where x is the ‘true’ solution, that in this case is the
solution computed with backslash from Matlab, and xk is
the approximation computed with ICCG or DICCG.

Complexity Taking p as the number of deflation vectors,
m as the sparcity of the matrix, i.e., the number of
nonzero diagonals, and s as the number of snapshots, the
approximate number of operations to solve a system with n
unknowns is given in Table 1.

Besides the initial work the DICCG if a POD basis
is used, the cost of the computation of the basis Ψ is(
4p2 + s − 1

)
n + (

8s2 − 2s + 1
)
s. More details about the

Table 1 Complexity of the methods

Method Initialization Iteration

ICCG (m2 + 4m + 2)n (4m + 9)n,

DICCG ((m + 2p + 4)m + (4p + 2)p +
2)n + p3/3

(4m + 4p + 9)n
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computation of operations can be found in [14, 15, 17, 23]
and Appendix D.

3 Numerical experiments: results
and discussion

In this work, we focus on the solution of systems of linear
equations resulting from water flooding for immiscible
fluids, oil, and water, flowing through highly heterogeneous
2D and 3D reservoirs. To decouple pressure from saturation,
we use the fractional flow formulation (see Appendix A).
We solve the system with sequential schemes using the
Matlab Reservoir Simulation Toolbox (MRST) [30].

The solution of the resulting transport equation is obtained
with MRST using implicit schemes, and the linear pressure
system is solved with the proposed POD-based DICCG
methodology and compared to the ICCG method. We study
various stopping criteria for the solution methods: ε =
5 · 10−5, ε = 5 · 10−7, and ε = 5 · 10−9.

The models studied in this work are: an ‘academic’
layered reservoir with a contrast in permeability coefficients
up to 106, and the SPE 10 benchmark with a contrast
in permeability coefficients of O(107) [36]. We include
capillary pressure and gravity terms in some of the studied
cases.

3.1 Heterogeneous permeability layers

In this section, we study water injection into an ‘academic’
system consisting of equally-sized layers with a constant
porosity field of 0.2 and different permeability values (see
Fig. 1). A set of layers with permeability σ1 = 1 mD is
followed by layers with permeability σ2 = 106 or 101 mD.

Fig. 1 Rock permeability

Table 2 Fluids properties

Water Oil Units

μ 1 10 cp

ρ 1000 700 kg/m3

kr (Sw)2 (1 − Sw)2

Cp 10 ∗ (1 − S) bars

The contrast between permeability coefficients is given by
cσ = σ1/σ2.

The domain consists of a Cartesian grid of 35 x 35 cells
for a 2D case, and 25 x 25 x 25 cells for a 3D case of length
8 m. The fluid properties are presented in Table 2.

The first set of experiments does not consider gravity
and capillary pressure terms. Later, we include capillary
pressure using the relationship pc = C(1 − S), and the 3D
problem includes gravity terms. The relative permeability
model used is the Corey model, with exponents nw =
nnw = 2 (see Table 2). The studied test cases are:

TC1. cσ = 10−1, no capillary pressure terms included.
TC2. cσ = 10−6, no capillary pressure terms included.
TC3. cσ = 10−1, capillary pressure terms included.
TC4. cσ = 10−6, capillary pressure terms included.

We study water flooding with injection through the
boundary and wells. When using wells, the setup consists of
four producers, Pi , on the corners and one injector, I , in the
center. The wells are controlled by prescribing the bottom
hole pressure bhp values.

3.1.1 Injection through the left boundary

The injection is performed through the left boundary at
a rate of 0.4 m3/day for the 2D case and 4 m3/day

for the 3D case. The pressure is set as zero at the right
boundary and the initial pressure of the reservoir is 100
bars (See Table 3). The simulation is run for 480 days
with time steps of 1 day (see Table 3). We study the
deflation procedure in a moving window approach (MW),
with two different selections of deflation vectors, p. For
the first one, we use the ten previous time step solutions,
p = 10, represented by DICCG10. For the second

Table 3 Boundary conditions and temporal parameters

Temporal parameters Boundary conditions

Tsteps 480 P0,x �=(0,Lx) 100 bars

dT 1 day Px=Lx 0 bars

Ttotal 480 days Qx=0 0.4 (2D), 4 (3D) m3/day
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Fig. 2 Pressure field for the last time step, cases a TC1, b TC2, c TC3, d TC4

one, we choose the eigenvectors corresponding to the five
largest eigenvalues of the correlation matrix of a POD
methodology, p = 5. The latest approach is the proposal of
this work, called POD-based method, and it is represented
by DICCGPOD5 .

The pressure field and oil saturation are presented in
Figs. 2 and 3. We observe that the pressure is higher on the
boundary where water is injected, and it decreases towards
the right boundary. We also observe that the layered pattern
influences the pressure and saturation fields.

In Fig. 4, we present the eigenvalues of a) the system
matrix, b) preconditioned system matrix, deflated and
preconditioned system with c) ten snapshots, and d) five
POD basis vectors as deflation vectors. We observe that for
the cases with a larger contrast in permeability coefficients
(TC2 and TC4) the spectrum of the system is more spread,
which implies that the system is more ill-conditioned. We
note that after preconditioning, the spectrum is clustered,
but there are few eigenvalues smaller than the rest.

For the ill-conditioned systems (TC2 and TC4) these few
eigenvalues are smaller than in the other cases (TC1 and
TC3), slowing down the convergence of the method. After
deflation, these small eigenvalues are set to a value close to
zero (10−16 in machine precision). We can note that using
(c) ten snapshots or (d) five POD-based deflation vectors,
the smallest eigenvalues of the preconditioned system are
set to zero, leading to a similar spectrum (without the
removed eigenvalues). This implies a similar performance
with both selection of deflation vectors.

The number of iterations necessary to achieve conver-
gence is summarized in Table 4, where the first column

shows the test case. In the second column, we present the
number of deflation vectors used, p. The third one shows the
number of iterations necessary to achieve convergence with
the ICCG method only. Note that this number is the same
for each test case, i.e., only the number of DICCG iterations
and work change if a different number of deflation vector is
used.

The number of iterations necessary for convergence of
the deflation method is presented in the sixth column. For
this example, we use the Moving Window (MW) approach.
Therefore, the first p time steps are computed with the
ICCG method (fourth column), and the rest of the time
steps are computed with the DICCG method (fifth column).
Then, we compute the percentage of DICCG iterations with
respect to the total number of ICCG iterations. In the last
column, we present the percentage of ICCG work required
to perform the simulation. The total work of each method is
computed as the number of iterations times the number of
operations per iteration, plus the initial work and the extra
work required to compute the POD basis.

In Table 4, we observe a significant reduction in the
number of iterations and the work required when using
the DICCG method. For the 2D problem, test cases TC1,
TC2, the number of iterations is reduced to 14% and 12%
the number of ICCG iterations when using ten snapshots
as deflation vectors, and to 19% and 16% when using
five POD-based vectors as deflation vectors. For the same
test cases, the work required to perform the simulation is
reduced to around 33% and 28% for ten deflation vectors
and to 61.7% and 47.6% using five, respectively. Thus, the
TC2 case presenting a contrast between permeability layers

Fig. 3 Oil saturation during the last time step, cases a TC1, b TC2, c TC3, d TC4
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Fig. 4 Eigenvalues of a the
system matrix, b preconditioned
system matrix, deflated and
preconditioned system with c
ten snapshots, and d five POD
basis vectors as deflation vectors

of 10−6 and no capillary pressure terms showed a slightly
better performance.

If capillary terms are included (TC3 and TC4), the
percentage of ICCG iterations and the total work increase.

For these cases, the reduction in the number of iterations
is similar for DICCG10 and DICCGPOD5 methods, which
implies that almost the same information that is contained in
the ten snapshots is captured in the five POD basis vectors.

Table 4 Number of iterations
for various methods,
ε = 5 · 10−7

p Total DICCG Total % of ICCG % of ICCG

ICCG ICCG DICCG DICCG Iterations Work

2D Case

TC1 10 23245 406 2830 3236 14 33.2

5POD 3929 4335 19 61.7

TC2 10 33834 194 3789 3983 12 28

5POD 5256 5450 16 47.6

TC3 10 23123 427 5792 6219 27 64

5POD 6296 6723 29 78.9

TC4 10 35507 220 6959 7179 20 48.1

5POD 7291 7511 21 55.2

3D Case

TC1 10 24231 498 3887 4385 18 37.7

5POD 4929 5427 22 56.5

TC2 10 20260 309 3342 3651 18 37.6

5POD 3117 3426 17 52.4

TC3 10 24557 513 8103 8616 35 73.1

5POD 8472 8985 37 78.1

TC4 10 19130 267 4180 4447 23 48.5

5POD 5084 5351 28 70.9

The cases TC1 and TC3 do not contain capillary pressure terms, while the TC2 and TC4 cases contain these
terms. The sub-index POD in the p column means that the deflation vectors are POD basis vectors, if no
sub-index is included, it means that the vectors are snapshots
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Fig. 5 Total work for various methods, ε = 5 · 10−7, Left: 2D cases,
Right: 3D cases. The initial work is negligible in all cases

However, computing the POD basis requires more work.
Using ten snapshots, the number of iterations is reduced to
27 and 20% the number of ICCG iterations, and to 64 and
48% of the ICCG work. If five POD vectors are used, the
reduction is 29 and 21% the number of ICCG iterations, and
to 79 and 55% of the ICCG work.

Fig. 6 Relative residual, time
step 240, a TC1, b TC2, c TC3,
d TC4

a b

c d

We observe similar trends for the 2D and 3D cases, the
last one, including gravity terms. However, the 3D cases are
more expensive in terms of the number of iterations and the
total work than the 2D cases.

In Fig. 5, we show the total number of operations
required to perform the work during the iteration process
and the extra work. In the case of the DICCGPOD5 method
with five POD-based deflation vectors, the extra work is due
to the computation of the deflation vectors. The ICCG and
the DICCG10 methods do not have extra work involved as
the ICCG method does not compute any deflation vectors,
and the DICCG10 method reuses the previously computed
solutions. The initial work is negligible for all cases. Thus,
it is not included in the plots.

Although the work required to perform the iterative
process for the DICCGPOD5 method is less than the
work required by the DICCG10 method (see Fig. 5), the
computation of the POD basis increases the number
of operations considerably for the DICCGPOD5 method,
especially for the 3D case.

Figure 6 shows the relative residual (17), and Fig. 7
presents the true relative error (18) for the 240-th time
step for the studied methods, similar performance is
observed for the rest of the time steps. We note that the
superlinear convergence phase is reached almost imme-
diately for the deflation methods, contrary to the ICCG
method that requires some iterations before reaching this
phase.
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Fig. 7 True relative error, time
step 240, a TC1, b TC2, c TC3,
d TC4

Table 5 Number of iterations
for various methods,
ε = 5 · 10−5

p Total DICCG Total % of ICCG % of ICCG

ICCG ICCG DICCG DICCG Iterations Work

2D Case

TC1 10 16671 118 1310 1428 9 20.5

5POD 1629 1747 10 59

TC2 10 30803 116 2140 2256 7 17.5

5POD 2874 2990 10 38.8

TC3 10 16935 178 2153 2331 14 32.9

5POD 2600 2778 16 68.4

TC4 10 32359 127 4031 4158 13 30.6

5POD 4046 4173 13 43.1

3D Case

TC1 10 15751 221 1351 1572 10 20.9

5POD 1472 1693 11 50.4

TC2 10 5141 63 747 810 16 33.1

5POD 613 676 13 123.9

TC3 10 16311 239 1659 1898 12 24.3

5POD 1907 2146 13 52.4

TC4 10 3998 68 734 802 20 42.2

5POD 790 858 21 166.3

The cases TC1 and TC3 do not contain capillary pressure terms, while the TC2 and TC4 cases contain these
terms. The sub-index POD in the p column means that the deflation vectors are POD basis vectors, if no
sub-index is included, it means that the vectors are snapshots
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We also note that the true relative error is smaller than
the relative residual in most of the cases. Furthermore,
after a few DICCG iterations, an accuracy of O(10−8) is
reached. If the contrast between permeability coefficients is
larger (TC2 and TC4), i.e., more ill-conditioned problems,
the true error is O(10−8), after one, and three iterations,
respectively.

As mentioned before, the first iterations have an accuracy
of O(10−4), thus, we study a case with a less strict tolerance,
ε = 5 · 10−5. Table 5 presents the number of iterations for
the ICCG and DICCG methods together with the percentage
of the ICCG iterations and work required when using the
DICCG method for a tolerance of ε = 5 · 10−5.

We observe that the reduction in the number of iterations
when using the deflated methods ranges from 7-21% of the
ICCG iterations, which is larger than when a more strict
stopping criterion (ε = 5 · 10−7) is required. Similarly,
the reduction of the ICCG work is smaller, ranging from
17.5-68% for the 2D case.

The work required to perform the iteration process and
the extra work for this problem is presented in Fig. 8 for all
methods, the initial work is negligible in all cases, thus, it is
not presented.

We observe that the largest reduction in work is achieved
for the DICCG10 method in all the cases. A reduction of the
ICCG work is achieved when using the DICCGPOD5 for all
the cases in the 2D problem, but only for TC1 and TC3 for
the 3D problem. The ICCG work required for the TC2 and
TC4 is small and therefore, the cost of computing the POD
basis increases the total work of the DICCGPOD5 method.

We observe that for the DICCG10 method, the maximum
number of iterations is reached (150). This implies that the

Fig. 8 Total work for various methods, ε = 5 · 10−5, Left: 2D cases,
Right: 3D cases. The initial work is negligible in all cases

method does not converge. The set of ten deflation vectors
used are the ten previous solutions, and linear independence
is not guaranteed for this set. This implies that computing
the Galerkin matrix E is not possible, and convergence of
the deflation method is not guaranteed.

We also note that for the TC2, 3D case, the reduction
in the number of iterations is larger if we use five POD
deflation vectors. To understand this behavior, we plot the
number of iterations for all time steps in Fig. 9.

On the other hand, the POD basis is linearly independent
by construction. Therefore, using vectors of this basis
as deflation vectors (DICCGPOD5 ) does not present the
same problems as the recycled snapshots (DICCG10). As a
consequence, the linear independence of the POD results in
a more robust deflation method.

Note that, for the methods used in this work we need an
initial guess. When solving the first time step, this initial
guess is not necessarily close to the solution, hence, it needs
a larger number of iterations to converge. For the following
time steps, the initial guess is the solution of the previous
time step, and as the system does not change dramatically
from one step to the next one, the solution is reached faster
than the initial time step.

Discussion We observe a reduction in the work and the
number of iterations required to simulate waterflooding in
a layered reservoir. If the contrast between permeability
layers increases, the reduction is more significant. This
latter observation shows the better performance of the POD-
based deflation method for ill-conditioned systems.

We also observe that using ten snapshots or five POD
basis vectors as deflation vectors gives a similar reduction
in the number of iterations. However, the reduction in
the work is larger if ten snapshots are used as deflation
vectors due to the cost of computing the POD basis.

Fig. 9 Number of iterations TC2, ε = 5 · 10−5
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Nevertheless, using the POD basis (DICCGPOD5 ) avoids
non-convergence problems that the DICCG method might
present when using only snapshots (DICCG10).

Including capillary pressure terms slightly deteriorates
the performance of the methods. This behavior might be due
to the fact that including capillarity pressure terms reflects
on changes on the right-hand side, which is not effectively
treated by the deflation method. However, more studies are
required to confirm this hypothesis.

We note that after a few iterations, the residual is of
order 10−4. Thus, using a less strict stopping criterion (10−5

instead of 10−7) results in less work of the DICCG method
compared to the ICCG method. However, this is only the
case for the DICCG10 method. As a less strict criterion is
used, the ICCG method also requires fewer iterations, and
computing the basis for the DICCGPOD5 method leads to a
more costly method.

3.2 SPE 10 benchmark

The SPE 10 model consists of 60 x 220 x 85 cells. In this
work, we study a 2D case containing the top layer and a 3D
case with the first 36 layers, including gravity terms. For the
problem with one layer, the system matrix has a condition
number of O(107), while for the 36 layers, the condition
number is of O(108). As the convergence of the methods
depends on the condition number, to achieve similar results,
we impose a more strict stopping criterion for the 3D case.
We study cases with and without capillary pressure terms:

TC1. No capillary pressure terms included.
TC2. Capillary pressure terms included.

We consider injection through the boundary and injection
through wells. The wells’ setup consist of one injector and
four producers (see Fig. 10).

Fig. 10 Permeability field SPE 10

We compare the performance of the POD-based deflation
method against the standard ICCG method for the solution
of the pressure equation.

Application of the DICCG method requires the construc-
tion of a deflation matrix based on a POD basis obtained
from a series of snapshots selected in two ways: a moving
window, and a training phase approach (see Section 2).

For the training phase approach, the POD basis and
deflation matrix are obtained off-line in a training run solved
with the ICCG method. Then, a series of simulations are
performed using the DICCG method with diverse values
of bottom hole pressure, bhp, in the producers. The fluid
properties and the capillary function used for this problems
are the same as in Section 3.1.1 (see Table 2).

3.2.1 Injection through the left boundary, moving window
approach

Water is injected through the left boundary at a constant rate
of 600 m3/day to a reservoir initially filled with oil. The
initial reservoir’s pressure is 500 [bars], and the pressure at
the right boundary is set to zero [bars]. We simulate 480
time steps with a step size of 15 days for the 2D case. For
the 3D case, we use 36 layers, and we simulate 240 time
steps with a step size of 1 day and an injection rate of 1000
m3/day (see Table 6).

For the DICCG method we use the moving window
approach (MW), selecting ten snapshots (from previously
computed time steps) and five POD basis vectors as
deflation vectors for the 2D case. The pressure field, the
water saturation and the eigenvalues of the correlation
matrix are presented in Fig. 11 for the 240-th time step.

Regarding the eigenvalues, we observe that when we
include capillary pressure terms (TC2) they are larger,
which indicates that they still contain important system
information, and therefore, more eigenvectors are required
to obtain a better performance of the deflation method.

The number of iterations required to achieve an accuracy
of ε = 5 · 10−7 for the 2D case, and ε = 5 · 10−9 for
the 3D is presented in Table 7 for the ICCG and DICCG
methods. We observe a reduction to 11% of the number of
ICCG iterations and to 24.5% the total ICCG work when
using ten snapshots as deflation vectors DICCG10. If five

Table 6 Boundary conditions and temporal parameters

Temporal parameters Boundary conditions

2D 3D 2D 3D

Tsteps 480 240 P0,x �=(0,Lx) 500 500 bars

dT 15 1 day Px=Lx 0 0 bars

Qx=0 600 1000 m3/day
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Fig. 11 a Pressure field, b Water saturation, and c Normalized eigenvalues of the correlation matrix, 240-th time step

POD-based deflation vectors are used DICCGPOD5 , the
number of ICCG iterations is reduced to 12%, and the total
ICCG work to 30.4%.

If we include capillary terms, we observe an increment
in the number of iterations, and, consequently, in the total
work. The percentage of ICCG iterations increases to ∼19%
and the ICCG work to ∼43% for both cases. As we
mentioned before, more eigenvectors are required for the
TC2 to gather the same information as in TC1, this is
reflected in a better DICCG performance for the TC1.

For the 3D problems, we note that we reduce the number
of iterations and the total work significantly. For the TC1,
we achieve a reduction of ∼27% of the ICCG work when
using 10 snapshots as deflation vectors (DICCG10), and

∼35% when using 5 POD vectors (DICCGPOD5 ). For the
TC2, the reductions in work are ∼72% for DICCG10, and
∼66% for DICCGPOD5 .

In Fig. 12, we show the work required to perform each
part of the simulation for the 2D case. The initial work for
all methods is negligible compared with the rest of the work,
thus, it is not included. The only method that requires a
computation of extra work is the DICCGPOD5 method with
five POD-based deflation vectors. For this method, the extra
work is the computation of the basis (see Appendix D).

We note that the work performed during the iterative pro-
cess is smaller when using five deflation vectors (DICCGPOD5).
However, taking into account all the operations involved,
using five POD vectors or ten solutions as deflation vectors

Table 7 Number of iterations
for various methods, 2D case
ε = 5 · 10−7, 3D case
ε = 5 · 10−9

p Total DICCG Total % of ICCG % of ICCG

ICCG ICCG DICCG DICCG Iterations Work

2D Case

TC1 10 69617 2177 5249 7426 11 25.4

5POD 6341 8518 12 30.4

TC2 10 70386 2217 10345 12562 18 42.5

5POD 11741 13958 20 43.2

3D Case

TC1 10 63185 3456 7592 11048 17 26.9

5POD 9081 12537 20 34.8

TC2 10 55840 3064 16350 19414 35 72.4

5POD 17286 20350 36 65.7

The cases TC1, do not contain capillary pressure terms, while the TC2 cases contain these terms. The sub-
index POD in the p column means that the deflation vectors are POD basis vectors, if no sub-index is
included, it means that the deflation vectors are snapshots
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Fig. 12 Total work for various
methods, ε = 5 · 10−7, SPE
layers, Left: 2D cases, Right: 3D
cases. The initial work is
negligible in all cases

requires a similar number of operations for the TC2, and
slightly more for the DICCGPOD5 method for the TC1.

The relative residual of the studied methods is shown in
Fig. 13 for the 240-th time step for the 2D case, similar
performance is observed for the rest of the time steps. We
note that the first iteration gives a significant reduction for
all methods. However, for the ICCG method, the reduction
rate is small, while for the DICCG method, in both cases,
this rate is larger and the desired accuracy is achieved faster.
This behaviour implies that the superlinear convergence
phase is achieved for the DICCG method after the first
iteration.

The true error is presented in Fig. 14. Here, we observe
that after the first iteration, a good approximation is
achieved for the DICCG method, O(10−5), but the ICCG
method takes longer to achieve the same accuracy. Thus,
the relative residual does not show the behaviour of the true
error for the ICCG method.

These results show that the most important system
information is contained in the deflation vectors and,
therefore, convergence is achieved in a small number of
iterations. If the desired accuracy is small, e.g., 10−5, only
one iteration is required. This results are similar to the
results obtained for the layered problems.

In the next section we compare the approach used here
(MW) with the training phase (TP) approach for a case
where water is injected through a well located in the center
of the reservoir.

3.2.2 Injection through wells, MW and TP approaches

In this section, we perform a series of experiments injecting
water through a well located in the center of the reservoir
with a prescribed rate of injection. The fluids are produced
in the corner wells, where we prescribe the pressure (see
Fig. 10), i.e., we give the bottom hole pressures (bhp) of the
wells.

For the moving window approach (MW) examples, the
pressure is kept constant for all wells during all the time
steps. For the training phase (TP) approach, first, we
perform a complete simulation (training run) with variable
pressures in the wells. The solutions obtained from the
training run are used to obtain the POD-based deflation
vectors. These vectors are the deflation vectors required
to implement the DICCG method. We solve a series of
problems with constant wells pressures.

We solve the first layer (2D case) and the first 36 layers
(3D case) of the SPE 10 benchmark. For the MW approach,
we select the ten previous solutions and five largest POD
basis vectors as deflation vectors. For the TP approach,
we select ten and five of the largest POD basis vectors as
deflation vectors.

Moving window approach (MW) For this case, the pressure
inside the wells is set at 275 [bars] in the producers and
1100 [bars] in the injector. The test cases of this approach
are referred to as TC1MW when it has no capillary pressure

Fig. 13 Relative residual for
various methods, a TC1, b TC2,
injection through the left
boundary
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Fig. 14 True relative error for
various methods, a TC1, b TC2,
injection through the left
boundary

terms included, and TC2MW when we include capillary
pressure terms. The simulation is run for 480 time steps with
a step size of 15 days.

Training phase approach (TP) For this set of experiments,
we run a full simulation changing the pressure randomly
in the wells. The solutions of this simulation are used to
compute the POD basis, used later as deflation vectors. The
bhp in the production wells is varied every two time steps
during the training phase within a range of 137.5 and 275
[bars] (see Fig. 15). The pressure in the injection well is
maintained constant at 1100 [bars].

Once the deflation matrix is obtained from the POD
basis, we solve three cases. For the first two, we select
a bhp in the producers inside the range used during the
training run, one intermediate 200 [bars], (cases TC3T P and
TC4T P ); and one extreme value 275 [bars] (cases TC5T P

and TC6T P ). For the third case, we solve the problem

setting the bhp in the wells outside the training phase range,
400 [bars] (cases TC7T P and TC8T P ). The simulation is run
during 480 steps of 15 days. A summary of the cases studied
in this section is presented below.

TC1MW . MW approach, 2D, producers bhp: 275 [bars],
no capillary pressure terms included.
TC2MW . MW approach, 2D, producers bhp: 275 [bars],
capillary pressure terms included.
TC3T P . TP approach, 2D, producers bhp: 200 [bars], no
capillary pressure terms included.
TC4T P . TP approach, 2D, producers bhp: 200 [bars],
capillary pressure terms included.
TC5T P . TP approach, 2D, producers bhp: 275 [bars], no
capillary pressure terms included.
TC6T P . TP approach, 2D, producers bhp: 275 [bars],
capillary pressure terms included.
TC7T P . TP approach, 2D, producers bhp: 400 [bars], no
capillary pressure terms included.

Fig. 15 Well pressures for the
first time steps of the training
phase
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Fig. 16 a Pressure field, b Water saturation (TC1MW ), and c Water
saturation (TC2MW ), last time step

TC8T P . TP approach, 2D, producers bhp: 400 [bars],
capillary pressure terms included.

The pressure field and the water saturation are presented
in Fig. 16. The eigenvalues of the correlation matrix for the
240-th time step of the MW approach, and for the training
phase run are presented in Fig. 17.

For the MW approach, we observe that the eigenvalues
are similar for the two studied cases (TC1MW and TC2MW ).
This indicates that their corresponding eigenvectors contain
comparable information, and we expect a similar behaviour.
For the TP approach, we note that the eigenvalues of the
TC4T P (including capillary pressure terms) are smaller,
hence, they contain less information. Therefore, we require
more eigenvectors to get similar performance as in the
TC3T P (no capillary terms included).

The number of iterations required to obtain an approx-
imate solution with an accuracy of ε = 5 · 10−7 for the
ICCG and DICCG methods is presented in Table 8 for the
MW and TP approaches for the 2D case. Note that (see
Section 2.4), for the MW approach we use ten deflation
vectors and five POD deflation vectors computed during
the simulation. However, a single POD basis is obtained

Fig. 17 Normalized eigenvalues
of the correlation matrix, 240-th
time step a MW: TC1 and TC2,
b TP: TC3 and TC4

Table 8 Number of iterations for various methods, ε = 5 · 10−7 for
the 2D case

p Total DICCG Total % of % of

ICCG ICCG

ICCG ICCG DICCG DICCG Iterations Work

TC1MW 10 80764 2241 5691 7932 10 23.4

5POD 6667 8908 11 27.1

TC2MW 10 78950 2256 5334 7590 10 22.9

5POD 6018 8274 10 26.3

TC3T P 10POD 80764 12044 15 35.5

5POD 20281 25 42.5

TC4T P 10POD 78950 11746 15 35.4

5POD 17659 22 37.8

TC5T P 10POD 83972 12935 15 37

5POD 21439 26 38.3

TC6T P 10POD 83279 13078 16 37

5POD 19045 23 38.3

TC7T P 10POD 72158 10279 14 33.9

5POD 17858 25 41.8

TC8T P 10POD 70819 9824 14 33

5POD 15353 22 36.7

The cases TC1, TC3, TC5 and TC7 do not contain capillary pressure
terms, while the rest of the cases contain these terms. The sub-index
POD in the p column means that the deflation vectors are POD basis
vectors, if no sub-index is included, it means that the deflation vectors
are snapshots

off-line, and this basis is used for all the test cases of the TP
approach (TC3T P -TC8T P ).

In Fig. 18 we present in a) the total work required for
each part of the methods. Note that, there is extra work only
for the MW approach with five POD vectors, for the TP run
the deflation vectors are computed offline in a training run.
In b), the percentage of total ICCG work is presented for the
DICCG method with five and ten deflation vectors.
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Fig. 18 a Total work required
for each part of the methods, b
Percentage of total ICCG work

We note that the MW approach gives a larger reduction in
the number of ICCG iterations, around 10% for the 2D cases
(TC1MW and TC2MW ). As a consequence, the reduction of
the total work is also larger for this case. We also note that,
using five POD-based deflation vectors for the MW case
requires more work than using ten, due to the extra work
required to compute the basis (see Fig. 18).

For the TP approach, we note that the results are similar
for the three cases. This result implies that the basis
computed from the training phase where the bhp of the
production wells is varied in a range can be used to solve
problems with different bhp of the production wells inside
the range TC3T P and TC4T P (275 [bars]), in the limits
TC5T P and TC6T P (200 [bars]), and outside the range
TC7T P and TC8T P (400 [bars]). Furthermore, we note that
the reduction of the work is slightly larger when using ten
deflation vectors.

The relative residuals and true relative errors of the
studied methods are presented in Figs. 19 and 20. As in the
previous cases, we observe a good approximation O(10−4)

after the first DICCG iteration for the relative residual, similar

to the true relative error in all the studied cases. Regarding
the ICCG method, even if the relative residual appears
to be O(10−6) the error is 10−4 for the MW approach
(TC1MW and TC2MW ) and 10−6 for the TP approach
(TC3T P and TC4T P ). Thus, they do not reach the
desired accuracy (10−7), however, the error of the TP
approach it is closer to the desired accuracy than the MW
approach.

We also note a faster convergence rate for DICCG meth-
ods compared to the ICCG method during the first itera-
tions, i.e., the superlinear convergence phase is achieved
during the first iterations for the DICCG method.

The 3D cases are presented below:

TC9MW . MW approach, 3D, producers bhp: 275 [bars],
no capillary pressure terms included.
TC10MW . MW approach, 3D, producers bhp: 275 [bars],
capillary pressure terms included.
TC11T P . TP approach, 3D, producers bhp: 275 [bars], no
capillary pressure terms included.
TC12T P . TP approach, 3D, producers bhp: 275 [bars],
capillary pressure terms included.
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Fig. 19 Relative residual for
various methods, a TC1MW ,
b TC2MW , c TC3T P d TC4T P ,
injection through wells

For these cases (see Table 9), the reduction on the number
of ICCG iterations and ICCG work is smaller than for the
2D cases. Implementing the MW approach (TC9MW and
TC10MW ), the reduction on the ICCG work is ∼37% when

using ten snapshots as deflation vectors (DICCG10), and
∼44% using 5 POD-based deflation vectors (DICCGPOD5 ).
When implementing the TP approach (TC11T P and
TC12T P ), the reduction on the ICCG work is ∼45% when

Fig. 20 True relative error for
various methods, a TC1MW , b
TC2MW , c TC3T P d TC4T P ,
injection through wells
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Table 9 Number of iterations for various methods, ε = 5 · 10−9 for the 3D case

p Total DICCG Total % of ICCG % of ICCG

ICCG ICCG DICCG DICCG Iterations Work

3D case

TC9MW 10 87789 5280 14798 20078 23 35.2

5POD 17084 22364 25 42.3

TC10MW 10 76878 5323 14285 19608 26 39.3

5POD 15945 21268 28 46.1

TC11T P 10POD 87789 25410 29 44.6

5POD 40959 47 71.9

TC12T P 10POD 76878 22740 30 45.6

5POD 35617 46 71.4

The cases TC9 and TC11 do not contain capillary pressure terms, while the TC10 and TC12 cases contain these terms. The sub-index POD in the
p column means that the deflation vectors are POD basis vectors, if no sub-index is included, it means that the deflation vectors are snapshots

using ten POD-based deflation vectors (DICCGPOD10 ), and
∼72% using 5 POD-based deflation vectors (DICCGPOD5 ),
making this approach more expensive, specially when using
5 POD based deflation vectors.

Discussion As in the previous section, we observe an
important reduction on the the number of ICCG iterations
when using a deflated version of this method, during the
simulation of waterflooding for the SPE 10 benchmark,
for the 2D case. Furthermore, the first iteration leads
to a reduction of ∼O(10−4). A similar performance is
observed for cases with and without capillary pressure
terms. However, less work is required for the cases without
capillary pressure terms. The MW approach results in a
better performance of the DICCG method. However, it
does not reach the desired accuracy for some test cases,
but it gives a better approximation than the ICCG method.
Regarding the TP approach, a single basis computed offline
is used to solve diverse problems, resulting in similar
performance for all of them.

For the 3D case, the reduction on the % of ICCG iter-
ations is smaller, and as consequence the reduction on the
total work is also smaller.

For the TP cases, the best performance is observed using
ten POD basis vectors as deflation vectors.

4 Conclusions

In this work, we study the POD-deflation method for two-
phase reservoir simulation problems. We test this method-
ology for several cases presenting a contrast in permeability
coefficients up to O(108) and including capillary pressure

and gravity terms. We study two different approaches: Mov-
ing Window (MW) and Training Phase (TP), that differ in
they way the snapshots are collected.

We compare the DICCG (Deflated Conjugate Gradient
preconditioned with Incomplete Cholesky) method with
the ICCG (Conjugate Gradient preconditioned with the
Incomplete Cholesky factorization) method, and we found
that:

– The performance of the DICCG method depends on the
information contained in the POD basis. It is mainly
related to the eigenvalues of the correlation matrix.
If only a few eigenvalues are noticeably larger than
the rest, they contain most of the system information
leading to better DICCG performance.

– Using the POD basis as deflation vectors requires some
extra work, however, this ensures linear independence
of the vectors, making the deflation method more
robust.

– The total work is reduced up to 23% the ICCG work
when using the DICCG method, for the 2D case, and up
to 35% for the 3D case.

– The MW approach showed a better performance than
the TP approach for the studied cases.

– A slightly better performance is observed if no capillary
pressure terms are included.

– For the TP approach, if a single basis, computed offline
is reused for alike problems, a similar performance of
the DICCG method is observed. Hence, once a basis is
computed, it can be used to solve several problems.

– In some cases, the required accuracy is not achieved for
both methods. However, the DICCG method is slightly
more accurate. Thus, the DICCG method is more robust
than the ICCG method for the studied problems.
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We introduce this methodology for reservoir simulation
examples, but it can be adapted to any time-varying prob-
lem. Moreover, we test it using the Preconditioned Conju-
gate Gradient method, but it is independent of the method,
and it can also be implemented in combination with other
iterative methods or preconditioners like multigrid.

Appendix A: Two-phase flow through
porousmedia

For the simulation of two-phase (oil-water) flow through a
porous medium, we can consider the phases as separated,
i.e., they are immiscible and there is no mass transfer
between them. We usually consider one of the fluids as the
wetting phase (w), which is more attracted to the mineral
particles than the other phase, known as the non-wetting
phase (nw). In the case of a water-oil system, water is
considered the wetting phase.

The saturation of a phase (Sα) is the fraction of void
space filled with that phase in the medium. When modeling
two-phase flow, the permeability of each phase, α, will be
affected by the presence of the other phase. Therefore, an
effective permeability, Kα , has to be used instead of the
absolute permeability K , and relative permeability values
are taken into account.

krα (Sα) = Ke
α/K, (19)

As in the single-phase case, the governing equations
for two-phase flow in a porous medium are the mass
conservation principle and Darcy’s law. The mass balance
equation for a phase α is given by:

∂(φραSα)

∂t
+ ∇ · (ραvα) = ραqα, (20)

and the Darcy’s law reads:

vα = −krα

μα

K (∇pα − ραgΔd) , (21)

where ρα , μα , qα and pα are the density, viscosity, sources
and pressure of each phase, g is the gravity constant, and d

is the depth of the reservoir.
Combining Darcy’s law (21), the mass balance (20) and

using the phase mobilities, the system reads:

∂(φραSα)

∂t
− ∇ · (ραλα(∇pα − ραgΔd)) = ραqα, (22)

which is a parabolic equation for pressures and saturations,
and where

λα (Sα) = Kkrα (Sα)

μα

. (23)

The previously-mentioned equations can be separated
into a pressure equation and a saturation or transport
equation via the fractional flow formulation [27], approach

used in this work. For an immiscible, incompressible flow,
the pressure equation becomes elliptic and the transport
equation becomes hyperbolic. With this formulation, the
pressure and transport equations are solved in separate steps
in a sequential procedure, for more details see [14]. This
approach is used throughout this work, therefore, we present
a brief description of the method in Appendix B.

Appendix B: Fractional flow formulation

In the case of incompressible flow, the porosity φ and the
densities ρα do not depend on the pressure. Considering
a two-phase system with a wetting (w) and a non wetting
phase (nw). Therefore, (20) for each phase reduces to:

φ
∂Sw

∂t
+∇·(vw) = qw, φ

∂Snw

∂t
+∇·(vnw) = qnw. (24)

To solve them, the fractional flow formulation takes the
total Darcy’s velocity as the sum of the velocity in both
phases:

v = vw + vnw = −(λnw + λw)∇pnw + λw∇pc

+(λnwρnw + λwρw)gΔd . (25)

Summing up the continuity equations for the two phases
we obtain:

φ
∂(Sw+Snw)

∂t
+ ∇ · (vw + vnw) = ∇ · v = q, (26)

where q = qnw + qw is the total source term. Defining the
total mobility as λ = λnw + λw (see Eq. 23), and using
Darcy’s law, (26) becomes:

−∇·(λ∇pnw)=q−∇ [λw∇pc + (λnwρnw + λwρw)gΔd] ,

(27)

which is an equation for the pressure of the non wetting
phase. This equation depends on the saturation via the
capillary pressure pc and the total mobility λ.

Multiplying each phase velocity by the relative mobility
of the other phase and subtracting the result we get:

λnwvw − λwvnw = λwλnw[∇pc + (ρw − ρnw)gΔd]. (28)

Therefore, for the wetting phase velocity, vw, we have:

vw = λw

λ
v + λwλnw

λ
[∇pc + (ρw − ρnw)gΔd]. (29)

We introduce the fractional flow function,

fw(Sw) = λw(Sw)

λw(Sw) + λnw(Snw)
, (30)
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which, together with the previously computed velocity vw,
transforms the transport Eq. (20), idem for the rest of the
referenced equations in Appendix A to:

φ
∂Sw

∂t
+∇·[fw(vw+λnwΔρgΔd)]+∇·(fwλnw∇pc) = qw,

(31)

where Δρ = ρw − ρnw.
With this approach, the system is expressed in terms of

the non wetting phase pressure, (27), and the saturation
of the wetting phase, (31). In the pressure equation, the
coupling to saturation is present via the phase mobilities,
and the derivative of the capillary function. For the
saturation, we have an indirect coupling with the pressure
through the total Darcy velocity, (25). With this scheme, the
equations are solved for the pressure using the previously
computed saturation, and the saturation is updated by
substituting the computed pressure.

Appendix C: Discretizationmethods

In this work, we use the sequential scheme to simulate two-
phase flow. With this approach, an unknown is fixed, e.g.,
the saturation of the wetting phase (Sw), and the resulting
elliptic equation is solved for the pressure of the non-wetting
phase (pnw). Once pnw is computed, we update the total
velocity, v, and we solve the parabolic transport equation for
Sw (more details in [14]).

The resulting system depends on space and time. The
space derivatives are discretized using finite differences
scheme; for the temporal discretization, we use the
backward Euler method, details can be found in [14]. In
the examples presented in Section 3, the discretization is
performed with the Matlab Reservoir Simulation Toolbox,
MRST [30].

Table 10 Comparison of flops required with the ICCG and the DICCG
methods

Solving Ax = b; A ∈ R
n×n, b, x ∈ R

n.

Initial work

ICCG
(
m2 + 4m + 2

)
n

DICCG
(
m2 + 4m + 2

)
n + (

4p2 + 2mp + 2p
)
n + p3

3 − p2 − p

DICCG
ICCG 1 + 4p+2m+2

m2+4m+2
+ (

p2

3 −p−1)p

(m2+4m+2)n

POD
basis

[(8s − 1)n + 10s2 − 2s + 1]s, s is the number of snapshots

Work per iteration

ICCG (4m + 9)n

DICCG (4p + 4m + 9)n − p
DICCG
ICCG ∼ 1 + 4p

4m+9

Appendix D: Complexity

This appendix is devoted to the computation of the number
of operations necessary to implement the methods studied
throughout this work. For the implementation of the POD-
based deflation method, first, we need to compute the
snapshots with the ICCG method. Once the snapshots are
computed, we obtain the eigenvalues (�) and eigenvectors
(V) of the covariance matrix R ∈ R

n×n by computing the

SVD of R
T = XX

T ∈ R
p×p. The eigenvalues of both

matrices are the same and the eigenvectors of R can be
computed from:

U = XV
(
ΛT

) 1
2
,

where V are the eigenvectors of R
T

(see [17, 40]). The
eigenvectors corresponding to the largest eigenvalues are
selected as the POD basis.

The operational cost of the ICCG method, the DICCG
method, and the SVD process is presented in Table 10
(see [17]). For the computation of the number of flops
of the DICCG method, we assume that the matrix Z is
already given, i.e. it does not change during the iteration
process. The flops are computed for sparse matrices with
m the number of non-zero diagonals, and p the number of
deflation vectors.
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