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Governing Equation Identification
of Nonlinear Single Degree-of-
Freedom Oscillators With
Coulomb Friction Using Explicit
Stick and Slip Temporal
Constraints
The friction force at joints of engineering structures is usually unknown and not directly
identifiable. This contribution explores a procedure for obtaining the governing equation of
motion and correctly identifying the unknown Coulomb friction force of a mass-spring-
dashpot system. In particular, a single degree-of-freedom system is investigated both
numerically and experimentally. The proposed procedure extends the state-of-the-art data-
driven sparse identification of nonlinear dynamics (SINDy) algorithm by developing a
methodology that explicitly imposes constraints encoding knowledge of the nonsmooth
dynamics experienced during stick-slip phenomena. The proposed algorithm consists of
three steps: (i) data segregation of mass-motion from mass-sticking during stick-slip
response; (ii) application of SINDy on the mass-motion dataset to obtain the functional form
of the governing equation; and (iii) applying sticking and slipping conditions to identify the
unknown system parameters. It is shown that the proposed approach yields an improved
estimate of the uncertain system parameters such as stiffness, viscous damping, and
magnitude of friction force (all mass normalized) for various signal-to-noise ratios
compared to SINDy. [DOI: 10.1115/1.4063070]

Keywords: stick and slip temporal constraints, nonlinear dynamic system identification,
SINDy, epistemic uncertainty, discontinuous nonlinearity, Coulomb friction

1 Introduction

The dynamics of various engineering structures like wind
turbines, robots, buildings, etc., are greatly influenced by the
friction present in joints. The amplitude of structural response can be
drastically reduced due to the loss of energy resulting from frictional
contact. As a result of heat produced because of friction, repetitive
motion can cause wear and tear of the surfaces in contact with each
other. Hence, it is important to identify the functional form of the
friction force contributing to the dynamic behavior of engineering
systems as it would improve models employed for predicting the
response of structures in operating conditions. Currently, it is not
possible to directly characterize the friction force of structural joints
without affecting the joint behavior itself. Consequently, the friction
force can be regarded as an epistemic uncertainty that is uncertainty
caused by lack of knowledge. To this end, a large body of research
has focused on the use and development of system identification
approaches which use measurements of output and input signals to a
dynamic system. These approaches can be broadly grouped as
follows: (i) approaches based on an equivalent linearization

techniques as well as stochastic linearization methods [1–5]; (ii)
time-domain methods, such as auto-regressive with eXogenous
input model (ARX) for linear systems [1,6,7] and nonlinear auto-
regressive with eXogenous (NARX), nonlinear auto-regressive
moving-average with exogenous inputs model (NARMAX) for
nonlinear system identification [8]. However, theNARXmodel fails
to capture the noise as a separate entity, which is overcome by
NARMAX. NARMAX models the nonlinearity as a polynomial
function, which might limit its applicability. The final approach (iii)
leveragesMachine Learning strategies because of the availability of
measurement of the external excitation and response of nonlinear
systems. The last group has recently gained particular interest in the
research community [9]. The sparse identification of nonlinear
dynamics (SINDy) [10–12] belongs to this group and has recently
been applied to estimate the governing equation of motion (EOM)
based on the data of input and output of a dynamic system. SINDy
has been applied for identifying EOM in the chemical reactor [13],
parameters of the power grid model [14], and delayed differential
equation [15]. In particular, in nonlinear structural dynamics, it has
been used for estimating nonlinear normal modes [16], and
reconstructing governing EOM for geometrical nonlinear systems
[17]. However, in the presence of a discontinuous nonlinearity, e.g.,
frictional joints subject to the stick-slip motion, the error in
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predictions of the SINDy algorithm can be substantial, as shown in
this paper. This leads to errors in the estimates of the epistemic
uncertain system parameters, such as stiffness, viscous damping,
and value of nonlinear force in a dynamic system (all mass
normalized), which are fixed but unknown.
To address this issue for a single degree-of-freedom (SDOF)

system with Coulomb friction subject to a harmonic excitation, the
extended SINDy is proposed by introducing two key modifications
to SINDy [10]. First, in the stick-slip dynamic regime, the data of
response and forcing is segregated into mass-sticking and mass-
motion. Further the data of mass-motion is used as an input for the
existing SINDy algorithm to identify the correct functional form of
EOM. Second, the correct functional form of the EOM is used to
enforce the physics-based constraints to estimate the epistemic
uncertain system parameters. The applicability and accuracy of the
extended SINDy algorithm for obtaining the EOM are explored and
compared to SINDy, also in the presence of varying noise levels.

2 Sparse Identification of Nonlinear Dynamics

Algorithm: Review and Applicability

2.1 Review. Let us consider a dynamic system whose govern-
ing equations can be written as [10]

d

dt
x tð Þ ¼ f x tð Þð Þ (1)

where x tð Þ is the state vector with n number of states of the system at
general time instant t (x tð Þ ¼ x1 tð Þ, x2 tð Þ, …, xn tð Þ½ �TÞ and f x tð Þð Þ is
a vector that represents the dynamic system in terms of mass,
stiffness, viscous damping and nonlinear forces present in the
system. By explicitly accounting for an external forcing u tð Þ, Eq. (1)
can be rewritten as [10]

d

dt
x tð Þ ¼ f x tð Þ, u tð Þð Þ (2)

The system’s response (X) to the forcing (U) can be written in a
matrix form to account for the N discrete time steps as [10]

X ¼

xT t1ð Þ
xT t2ð Þ

:
:

:

:

xT tNð Þ

2666666664

3777777775
¼

x1 t1ð Þ x2 t1ð Þ � � � xn t1ð Þ
x1 t2ð Þ x2 t2ð Þ � � � xn t2ð Þ
�

x1 tNð Þ
�

x2 tNð Þ
. .
.

� � �
�

xn tNð Þ

266664
377775 (3)

U ¼

uT t1ð Þ
uT t2ð Þ

:
:

:

:

uT tNð Þ

2666666664

3777777775
¼

u1 t1ð Þ u2 t1ð Þ � � � un t1ð Þ
u1 t2ð Þ u2 t2ð Þ � � � un t2ð Þ
�

u1 tNð Þ
�

u2 tNð Þ
. .
.

� � �
�

un tNð Þ

266664
377775 (4)

_X ¼

_xT t1ð Þ
_xT t2ð Þ
:
:

:

:

_xT tNð Þ

26666666666664

37777777777775
¼

_x1 t1ð Þ _x2 t1ð Þ � � � _xn t1ð Þ
_x1 t2ð Þ _x2 t2ð Þ � � � _xn t2ð Þ
�

_x1 tNð Þ
�

_x2 tNð Þ
. .
.

� � �
�

_xn tNð Þ

26666664

37777775 (5)

Hence, the final formof the governing equation of dynamic system is
written in a standard state-space formulation as [18]

_X ¼ AX þ BU (6)

where A and B are the state and input matrix, respectively. SINDy
[10] identifies the unknown governing EOM from the available data
of external forcing and of the response to external forcing. The
identification is performed using sparsity promoting techniques and
machine learning. Some user-specified set of functions which might
be contributing to describe the governing EOM of the dynamic
system are listed (e.g., see Eq. (7)). A sparse regressionwith low risk
of overfitting is obtained by the combination of sparsity and user-
specified terms, producing a parsimonious model [10]. The user-
specified terms are included in the candidate function libraryH Xð Þ
which might contain polynomial terms, trigonometric terms,
exponential terms and other user-specified functions (e.g., g(X)),
or their combination [10]. For example

H Xð Þ ¼ I X XP2 XP3 … sin Xð Þ cos Xð Þ eXg Xð Þ ::
� �

(7)

where the N � n matrix representing ith order polynomial terms is

XPi ¼

x1
i t1ð Þ x2

i t1ð Þ � � � xn
i t1ð Þ

x1
i t2ð Þ x2

i t2ð Þ � � � xn
i t2ð Þ

�

x1
i tNð Þ

�

x2
i tNð Þ

. .
.

� � �
�

xn
i tNð Þ

266664
377775 (8)

A selectionmatrixN ¼ n1n2 n3 :nn½ � is then introduced, such that the
final equation in the state-space form is written as [10]

_X ¼ H Xð ÞN (9)

The selectionmatrixN selects the terms inEq. (7) thatwill be present
in the governing EOM[10]. This is done by introducing an optimizer
with specific minimization function [10]. For example, if the
Sequential Threshold Least Squares (STLSq) is used, the mini-
mization function is given by [10]

k _X �H Xð ÞNk22 þ akNk22 (10)

where a is a coefficient that is chosen by the user to boost the sparsity
of the terms in the governing EOM. A high value of a leads to a
smaller number of terms in the governing EOM.

2.2 Applicability of Sparse Identification of Nonlinear
Dynamics to Friction Problems. Although never explicitly
mentioned in the literature, the applicability of the SINDy algorithm
[10] depends on the functional form of the governing EOM. The
dynamic system might contain a nonlinear restoring force term,
which is discontinuous or changes abruptly in the time domain
leading to a nonsmooth response. The nonsmooth response is a
response where the dynamic system changes abruptly from one
motion regime to another in the time domain. For example, when the
restoring force is a function of signum as in the case of the Coulomb
friction model, the response of a SDOF dynamic system with such
friction model can be characterized by a sequence of mass-motion
and mass-sticking regimes. The EOM representing such a dynamic
system is stiff [19]. Without any specified constraints, SINDy
performs a regression poorly on such a sequence of regimes to
estimate an EOM that would fit simultaneously both mass-motion
and mass-sticking. As a major part of the regime consists of mass-
motion, the SINDy algorithm would identify the correct functional
form of the EOM. However, the coefficients of the identified EOM
would be inaccurate.
Let us consider a SDOF dynamic systemwith friction subject to a

harmonic excitation u tð Þ ¼ A sin xtð Þ (where A and x denote the
amplitude and frequency of harmonic base excitation, respectively),
as shown in Fig. 1(a), and described by
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m€x tð Þ þ c _x tð Þ þ kx tð Þ þ Ff sgn _x tð Þ½ � ¼ ku tð Þ þ c _u tð Þ (11)

where k, c, m, Ff , x tð Þ, and u tð Þ are the stiffness, viscous damping,
mass, friction force magnitude, displacement of SDOF, and
harmonic base excitation, respectively, all represented in SI units.
The magnitude of friction force (Ff ) is defined as a product of the

coefficient of friction (l) and the normal force exerted by mass on
the surface. The function sgn[.] represents signum function. The
EOM of such a system can be represented in a state-space form as

x1 tð Þ ¼ x tð Þ
_x1 tð Þ
_x2 tð Þ

" #
¼ 0 1

�k̂ �ĉ

" #
x1 tð Þ
x2 tð Þ

" #
þ 0

�F̂f sgn _x tð Þ½ �

" #

þ 0

k̂u tð Þ þ ĉ _u tð Þ

" #
8 x2 6¼ 0

8>>>>>>>><>>>>>>>>:
(12)

where k̂, ĉ, F̂f , x2 tð Þ are the mass-normalized stiffness, viscous
damping, friction force magnitude, velocity of SDOF, respectively
(see Table 1).
It is worth mentioning that the synthetic data is obtained by

numerically solvingEq. (12)with ode45 function inMATLAB [20] and
explicitly setting the event conditions as explained in Ref. [19] for
dealing with stiff problems. The event conditions are [21]

ĉ _u tð Þ þ k̂u tð Þ � k̂x1 tð Þ
�� �� � bFf I (13)

ĉ _u tð Þ þ k̂u tð Þ � k̂x1 tð Þ � _x2 tð Þ � ĉx2 tð Þ
�� �� � bFf I (14)

where j.j denotes absolute value, t is a vector representing different
time instants t ¼ t1 t2 … tN

� �T
, and I denotes a vector with

all entries as 1, respectively. The physicalmeaning of Eq. (13) is that
the mass will indefinitely remain still until Eq. (13) is satisfied [21].
Further, the mass will remain in motion until Eq. (14) is satisfied.
This can be further interpreted as follows [21]: when the velocity is
zero and the mass is sticking, the friction force is sufficient to resist
the inertial force, spring force, and viscous damping force—as
described by Eq. (13); when the velocity is nonzero, the friction
force is insufficient to resist the restoring forces as described by
Eq. (14). This mass-sticking and mass-motion phenomenon cannot
be accurately represented by solving Eq. (12) numerically. Hence,
the event conditions are explicitly enforced.
Further, x1 tð Þ and x2 tð Þ represent the displacement and velocity of

SDOF dynamic system in continuous time domain. To perform the
analysis in discrete time domain, the displacement and velocity are
represented as vectors x1 tð Þ and x2 tð Þ. _x2 tð Þ is obtained by
numerically differentiating x2 tð Þ. In this paper, the smooth finite

Fig. 1 Schematic representation of SDOFwith friction (a), response of SDOF in continuousmotion (b)
and stick-slip motion (c)

Table 1 Properties of synthetic aswell as experimental dynamic
system

Quantity Description Value Units

k̂ Mass normalized stiffness 358.706
N

m � kg
ĉ Mass normalized viscous damping 0.0658

Ns

m � kgbFf Mass normalized magnitude of friction force 0.0856
N

kg
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differentiation available in Python package for SINDy (PySINDy)
package is used for performing the numerical differentiation. In
particular, the Savitzky–Golay filter is used in smooth finite
differentiation. The window length specified in smooth finite
differentiation governs the accuracy of the differentiation. The
base is excited at different excitation frequencies (see Table 2) to
investigate the response of the mass in continuous, two-stop stick-
slip, and four-stop stick-slip regime. The continuous and the stick-
slip motion of the SDOF system shown in Figs. 1(b) and 1(c) are
obtained for the values of system parameters specified in Table 1.
From external excitation and response data, the SINDy [10] is

applied to estimate the governing EOM in state-space form. The
nonlinear system identification is done in the PySINDy [11].
PySINDy includes a candidate library and an optimizer for
performing regression analysis on the collected data. The custom
library chosen for the problem at hand includes linear polynomial
and signum functions. For the regression analysis, the sequential
threshold least squares (STLSq) and sparse relaxed regularized
regression (SR3) [22] optimizer are selected for continuous and
stick–slip motion, respectively. The threshold values of 0.01 and
0.05 are used for STLSq and SR3, respectively. SR3 optimizer is

used with the constraint dx1 tð Þ
dt ¼ x2 tð Þ. Further, the SINDy is used to

obtain the governing EOM as shown in Table 3.
As anticipated, it is observed fromFig. 2 that the SINDyalgorithm

estimates the governing EOM with good accuracy in the case of
continuous motion. However, from Table 3, it is observed that
SINDy [10] fails to identify the coefficients of the EOM correctly in
the case of two-stop and four-stop stick-slip motion. Based on this
physics understanding of the problem, it is clear that there is a need
to incorporate explicitly the stick and slip temporal constraints
stated in Eqs. (13) and (14).

3 Extended Sparse Identification of Nonlinear

Dynamics

The extended SINDy is an approach proposed to address the
identification of the governing equation of the SDOF system with
Coulomb friction, and it is generally applicable to the dynamic
system with discontinuous restoring force when the physics
constraints in the time domain are known along with the
measurements of the input and output of such system. The main
idea behind the extended SINDy is to augment the pre-existing

SINDy algorithm by explicitly enforcing the physics constraints in
the time domain by means of a three-step procedure. The detailed
step-by-step procedure is described in Secs. 3.1–3.3.

3.1 Step 1: Data Segregation. Consider a SDOF system with
Coulomb friction system subject to a harmonic excitation described
by Eq. (12). In the stick–slip regime, the motion is a combination of
mass-motion andmass-sticking. To obtain a correct functional form
of the EOM, the data points of mass-motion and mass-sticking are
stored separately. The segregation is done based on the condition
applied to the velocity at each time instant as

x2 tð Þ
�� �� � vstop ! t�tstop ! xstop ¼ x tstopð Þ
x2 tð Þ
�� �� > vslip ! t�tslip ! xslip ¼ x tslipð Þ

(
(15)

where vstop and vslip denote the cutoff velocity for mass-stop and
mass-motion, respectively. These values are specified by the user
and are based on the available measurements of the velocity. The
vstop will strongly depend on the noise level in themeasurements and
will be chosen such that vstop � 0. As a rule of thumb, vslip is chosen

such that vslip 	 vstop and vslip 
 max
x2 tð Þj j
20

� �
.

3.2 Step 2: Using Python Package for Sparse Identification
of Nonlinear Dynamics. The data points of mass-motion are used
as an input to the SINDy [10] algorithm implemented in PySINDy
[11], and the functional form of the EOM is identified. The steps
within SINDy have been already described in Sec. 2.1. The
computational cost of this step is equivalent to that of using SINDy.
By implementing the STLSq and SR3, the number of iterations
needed to converge to a sparse solution is drastically reduced when
compared to the LASSO [10].

3.3 Step 3: Adding Constraints onMass-Sticking andMass-
Motion Datasets. In this step, both mass-sticking data and mass-
motion data are used. The optimization constraint in Eq. (13) is
applied to the former, while the Eq. (14) is applied to the latter. As
the physics-based constraints are added in the time domain, this
approach is different from the pre-existing approach of applying
constraints using an SR3 optimizer [22]. SR3 optimizer requires the

Table 2 Base excitation frequencies for synthetic and experimental case study

Base excitation frequencies (Hz)

Continuous motion Two-stop stick-slip motion Four-stop stick-slip motion

Synthetic case study 2.013, 2.583, 4.611 0.95, 1.034, 1.11 0.47, 0.51, 0.54
Experimental case study 2.013, 2.583, 4.611 1.023, 1.07, 1.10 0.61, 0.62, 0.64

Table 3 Results of system identification using synthetically generated data

Regime Algorithm Identified equation RMSE (10�4m)

Continuous motion
SINDy

_x1 ¼ x2
0:014_x2 ¼ �358:706x1 � 0:08x2 þ 358:432uþ 0:08 _u� 0:085sgn x2ð Þ

Extended SINDy Converges to SINDy —

Two-stop stick-slip motion
SINDy

_x1 ¼ 0:97x2
1:06_x2 ¼ �336:48x1 � 0:47x2 þ 332:5uþ 1:2 _u� 0:015sgn x2ð Þ

Extended SINDy

_x1 ¼ 0:97x2
0:01_x2 ¼ �355:69x1 � 0:05x2 þ 355:69uþ 0:05 _u� 0:08sgn x2ð Þ

Four-stop stick-slip motion
SINDy

_x1 ¼ 0:97x2
5:4_x2 ¼ �323:482x1 � 0:41x2 þ 369:92uþ 1:5 _u� 0:025sgn x2ð Þ

Extended SINDy
_x1 ¼ 0:97x2

0.05_x2 ¼ �354:56x1 � 0:04x2 þ 354:56uþ 0:04 _u� 0:083sgn x2ð Þ
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user to specify the dependency of each coefficient appearing in the
governing EOM.
While Eq. (13) yields the lower bound limit of k̂, ĉ, F̂f ; hence, the

region above the lower bound surface is the solution, Eq. (14)
provides the upper bound limit and thus the region below the upper
bound surface is the solution. The lower bound and the upper bound
surfaces are calculated as follows. By indicating with tstopð Þj and
tslipð Þl the jth and lth time instants for mass-sticking and mass-
motion, respectively, the lower boundU1 k̂, ĉ

� �
is obtained by using

the mass-sticking condition in

ĉ _u tstopð Þj þ k̂u tstopð Þj � k̂x1 tstopð Þj
��� ��� ¼ bFf j

/j k̂, ĉ
� �

¼ bFf j k̂, ĉ
� �

U1 k̂, ĉ
� �

¼ max /j k̂, ĉ
� ���� ���

8>>><>>>: (16)

and the upper bound U2 k̂, ĉ
� �

surfaces are obtained by using the
mass-motion condition

ĉ _u tslipð Þl þ k̂u tslipð Þl � k̂x1 tslipð Þl � _x2 tslipð Þl � ĉx2 tslipð Þl
��� ��� ¼ bFf l

/l k̂, ĉ
� �

¼ bFf l k̂, ĉ
� �

U2 k̂, ĉ
� �

¼ min /l k̂, ĉ
� ���� ���

8>>><>>>:
(17)

where bFf j and
bFf l are the lower bound and upper bound values of

friction at jth and Ith time instant, respectively. As a result, the terms
k̂, ĉ, F̂f , which uniquely identify the system in Eqs. (16) and (17), are
not known. As both the lower bound and an upper bound represent
the same dynamic system, intuitively, there should be only one
triplet of k̂, ĉ, F̂f , that satisfies both surfaces. However, the

Fig. 2 Comparison between the response of the SDOF nonlinear system in the case of
synthetically generated data: (a) continuous motion, (b) two-stop stick-slip motion, and (c)
four-stop stick-slip motion
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generation of both surfaces is affected by numerical errors due to
numerical differentiation of the measurements of position and
velocity of the mass and of the input. Hence, rather than estimating
the k̂, ĉ optimum point, it is proposed to evaluate the distance D
between two surfaces perpendicular to the k̂ĉ� plane defined as

D k̂, ĉ
� �

¼ U2 k̂, ĉ
� �

� U1 k̂, ĉ
� ��� �� (18)

where the distance (D) is the function of mass normalized stiffness
and mass normalized viscous damping. Furthermore, the optimum

triplet k̂�, ĉ�, F̂f �
� �

is chosenwhereD k̂, ĉ
� �

is minimum, and hence,

the problem is defined as

k̂�, ĉ�
� �

¼ argmin
k̂,ĉ

D k̂, ĉ
� �� �

(19)

F̂f � ¼ U1 k̂�, ĉ�
� �

(20)

Table 4 Values of hyperparameters used in extended SINDy

Description of hyperparameters Synthetic data Experimental data

Threshold value for STLSq 0.03 0.03

Threshold value for SR3 0.05 0.05

Cutoff velocity for mass-sticking vstop
m

s

	 

10�7 10�7

Cutoff velocity for mass-motion vslip
m

s

	 

10�3 10�3

Number of datapoints considered during application
of window length for smooth finite difference

35 41

Fig. 3 Lower bound and upper bound surfaces for two-stop stick-slip synthetic model (a), four-stop
stick-slip synthetic model (b), two-stop stick-slip experimental model (c), and four-stop stick-slip
experimental model (d)
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Table 5 Relative percentage error in parameter estimation using SINDy and extended SINDy for synthetic data

Regime Algorithm

Relative percentage error in identification of stiffness,
viscous damping, friction force magnitude (all mass-normalized)

%
Dk̂

k̂
, %

Dĉ
ĉ
, %

D bFfbFf

 !

Continuous motion SINDy 0, 23.07, 0
Extended SINDy Converges to SINDy

Two-stop stick-slip motion SINDy 6:19, 623:07, 82:35
Extended SINDy 0:84, 23:07, 5:88

Four-stop stick-slip motion SINDy 9:82, 530:7, 70:58
Extended SINDy 1:15, 38:46, 2:35

Fig. 4 Error in estimation of mass normalized stiffness, damping, and magnitude of friction force using
extended SINDy for two-stop stick-slip motion (a) and four-stop stick-slip motion and (b) in presence of
different levels of noise
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The optimum system parameters are then updated in the EOM found
in step 2 of the extended SINDy. The accuracy of the identification
of the optimum parameters is dependent on the noise levels in the
measurement, and the window length selected to carry out
the numerical differentiation of the input and output measurements.
The accuracy of the numerical differentiation is also dependent on
the presence of abrupt changes in the time domain caused by the
nonsmooth response due to stick-slip phenomena. In particular, it is
expected to observe an accuracy reduction as the number of stops per
cycle in the stick–slip motion increases. All of the above will affect
the generation of the upper bound and lower bound surfaces and
consequently the identification error on each term of the EOM. The
computational cost of this step is negligible, since it requires
evaluating over a grid of k,c parameters the values of friction force
according to Eqs. (13) and (14), rather than carrying out the full
nonlinear analyses for each grid point. This means that the
optimization in Eq. (19) is carried out explicitly having evaluated
the objective function at every point of the grid. This proposed
methodology is applied to the stick–slip motion with two-stops as
well as four-stops.

4 Synthetic Model Case Study

Consider a SDOFoscillatorwithCoulomb friction contact subject
to a harmonic excitation as represented in Eq. (11) and Fig. 1. The
physical properties of the system are stated in Table 1. The base is
excited at different frequencies to obtain continuous as well as stick-
slip motion. These frequencies are mentioned in Table 2. The
amplitude of base excitation is 0.0015m. The synthetic data is
generated by solving Eq. (11) with ode45 in MATLAB [20] with
explicit event conditions. Both input and output datasets are then
used to investigate the identification of the system parameters

(k̂�, ĉ�, F̂f �) and the governing EOM with the extended SINDy. The
hyperparameters used for the extended SINDy are specified in
Table 4. The results obtained by using extended SINDy for various
noise levels are then compared in terms of root-mean-square error
(RMSE) and in terms of the relative percentage error in the estimate
of the coefficients of the governing EOM to those yielded by SINDy
and to their true values (as specified inTable 1). Indicatingwith x1 tð Þ
the synthetic data, with x1 tð Þ½ �� the solution of the governing EOM
obtained with SINDy, and with x1 tð Þ½ ��� the response obtained with
the extended SINDy, two RMSEs can be considered

RMSE� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi¼N

i¼1

x1 tið Þ � x1 tið Þ½ ��
� 2

N

vuut (21)

RMSE�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi¼N

i¼1

x1 tið Þ � x1 tið Þ½ ���
� 2

N

vuut (22)

4.1 Results of System Identification of Synthetic Model
With No Noise Contamination. The extended SINDy algorithm
converges to the SINDy [10] algorithm in the case of continuous
motion as the stick–slip time constraints for the stops are not
activated. From Table 3, it is possible to observe that the system
identification is accurate with a very low value of RMSE��. The
displacement response obtainedwith the extended SINDy algorithm
and with SINDY is compared to the synthetic data in Fig. 2. It is
possible to observe a very good agreement between the extended
SINDy and the synthetic data, while the accuracy of SINDy is
affected by the number of stops per cycle during stick–slip. It is also
important to discuss the upper bound and lower bound surfaces (see
Eqs. (16) and (17))). FromFig. 3, it is possible to observe that they do
not intersect each other at one unique point due to the errors arising
from numerical differentiation of x1(t) and x2(t). The relative
percentage error in estimation of stiffness, viscous damping, and
friction forcemagnitude (allmass-normalized) is reported inTable 5
. It is possible to observe that as the number of stops increases, the
extended SINDy displays a much lower relative percentage error
compared to SINDy.

4.2 Effect of Noise on Synthetic Model Case Study. The
synthetic data are contaminated with different signal-to-noise ratio
(SNR) levels to evaluate the extent of applicability of extended
SINDy algorithm. This is done by using the random.normal function

Table 6 Conversion between standard deviation and signal-to-
noise ratio

Standard deviation (r) mm Signal-to-noise ratio (dB)

1.4� 10�2 20
1.4� 10�3 30
1.4� 10�6 60
1.4� 10�7 70
1.4� 10�9 90
1.4� 10�10 105
1.4� 10�12 120

Fig. 5 Effect of noise onRMSEusing extendedSINDyalgorithm for two-stop stick-slipmotion (a) and four-
stop stick-slip motion (b)
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from the NumPy library of Python with zero mean. The standard
deviation of noise and the corresponding SNR levels are reported in
Table 6. The effect of noise on dynamic system parameter
estimation and RMSE is reported in Figs. 4 and 5. It is observed
that below the SNR of 20 dB, the SINDy algorithm fails to identify
the functional form of the EOM, therefore affecting the step 2 of the
extended SINDy. Nonetheless, it is observed that the extended
SINDy yields a lower RMSE. Above the SNR of 20 dB, the effect of
noise on parameter estimation and RMSE is found within an
acceptable range.

5 Experimental Model Case Study

The performance of the extended SINDy is further evaluated by
considering an experimental case study, which involves a single
storey frame structure with a Coulomb friction contact excited via
base excitation.

5.1 Test Rig andMechanical Model. The single-storey frame
is shown in Fig. 6, and it has been used in Ref. [19]. This structure
consists of an aluminum base plate connected to an electric motor
via a scotch-yoke mechanism. Four thin steel bars are used to
connect via bolts this base plate to a steel top plate that represents the
mass of the equivalent SDOF. The base plate is excited by using an

approximately harmonic excitations generated by the electricmotor.
A brass diskmounted on a bar pinned to the external frame is used to
produce a friction contact on the top plate. The friction force is
proportional to the weight of the brass disk, and it can be adjusted by
using a counterweight system. The EOMof the experimental system
corresponds to Eq. (12) with parameters as specified in Table 1—
these were calculated by using free vibration tests on the
experimental system with and without friction (as described in
Ref. [19]). More details about the experimental system can be found
in Ref. [19]. The parameter space investigated is such that the
Coulomb friction model provides a good approximation of the
friction force as shown in Ref. [23]. For the experimental data, the
base excitation frequencies are given in Table 2, and the amplitude
of base excitation is 0.0015m.

5.2 Identification of the Governing Equation and Results.
The hyperparameters used in extended SINDy are illustrated in
Table 4. FromTable 7 it can be observed that the estimated values of
k̂�, ĉ�, F̂f � obtained with the extended SINDy provide a good
approximation of terms specified in Table 1, improving the accuracy
of SINDy. However, compared to the numerical simulations, these
results are overall less accurate. This is because the data of x2 tð Þ and
_x2 tð Þ are affected by the nonideal harmonic excitation, other sources
of the dissipation in the experimental setup not accounted for in the

Table 7 Results of system identification using experimental data

Regime Algorithm Equation identified RMSE (10�4m)

Continuous motion SINDy _x1 ¼ 0:95x2 10.1
_x2 ¼ �397:66x1 � 0:15x2 þ 392:56u� 0:69 _u� 0:031sgn x2ð Þ

Extended SINDy Converges to SINDy —

Two-stop stick-slip
motion

SINDy _x1 ¼ 0:97x2 2.8
_x2 ¼ �362:56x1 � 0:731x2 þ 352:1uþ 1:2 _u� 0:015sgn x2ð Þ

Extended SINDy _x1 ¼ 0:97x2 1.35
_x2 ¼ �365:48x1 � 0:04x2 þ 365:48uþ 0:04 _u� 0:08sgn x2ð Þ

Four-stop stick-slip
motion

SINDy _x1 ¼ 0:97x2 5.4
_x2 ¼ �371:48x1 � 1:02x2 þ 369:7uþ 1:5 _u� 0:002sgn x2ð Þ

Extended SINDy _x1 ¼ 0:97x2 1.52
_x2 ¼ �364:56x1 � 0:08x2 þ 364:56uþ 0:08 _u� 0:065sgn x2ð Þ

Fig. 6 SDOFdynamicsystemwith frictionasnonlinearity: (a) experimental setupof aSDoFwith a
friction contact obtained with a counter-weight system mounted on a fixed wall subject to a
harmonic-base excitation and (b) schematic representation of SDoF with friction contact
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Table 8 Relative percentage error in parameter estimation using SINDy and extended SINDy for experimental data

Regime Algorithm Relative percentage error in identification of stiffness, viscous

damping, friction force magnitude (all mass-normalized) %
Dk̂

k̂
, %

Dĉ
ĉ
, %

D bFfbFf

 !
Continuous motion SINDy 10.86, 130.76, 63.52

Extended SINDy Converges to SINDy

Two-stop stick-slip motion SINDy 1.074, 1024.6, 82.35
Extended SINDy 1.88, 38.46, 5.88

Four-stop stick-slip motion SINDy 3.56, 1469.23, 97.64
Extended SINDy 1.63, 23.07, 23.52

Fig. 7 Comparison between the response of the SDOF nonlinear system in the case
of experimentally generated data: (a) continuous motion, (b) two-stop stick-slip motion, and
(c) four-stop stick-slip motion
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mathematical model and because of additional numerical errors
caused by the numerical differentiation. The difference between the
results yielded by the SINDy and the extended SINDy is not obvious
in the case of two-stop stick-slipmotion reported in Fig. 7. However,
a difference can be observed in terms of RMSE from Table 7.
Further, from Fig. 7, it is possible to observe a notable
difference between the results yielded by SINDy and extended
SINDy for four-stop stick-slip motion. The improvement in
parameter identification when using the extended SINDy can be
further observed in Table 8.

6 Conclusion

An extended SINDy algorithm has been proposed for identifying
the governing EOM of a SDOF system with friction contact subject
to a harmonic excitation. It is shown that the existing SINDy
approach is unable to accurately identify the epistemic uncertainty
of the system parameters such as the stiffness, viscous damping, and
friction force (all mass normalized) of the dynamic system. The
extended SINDy overcomes these limitations by using the SINDy
algorithm on part of the data to evaluate the functional form of the
governing EOM and by incorporating physics knowledge by using
stick and slip temporal constraints. The last step is implemented by
employing a constrained optimization strategy. The proposed
extended SINDy algorithm is applied to the data obtained from
two dynamic systems, namely, a synthetic SDOF oscillator with
friction contact subject to a harmonic excitation and an experimental
setup representing a SDOF dynamic system with steel to brass
contact subject to an approximately harmonic base input. A good
agreement was found between the estimated system parameters and
the actual system parameters of both the above-stated systems.
The main advantage of the extended SINDy algorithm over

existing data-driven algorithms is that it can explicitly incorporate
the physics constraints in the time domain. The output is in the form
of an EOM and hence can be used to interpret the uncertain system
parameters like stiffness, viscous damping and nonlinear friction
force, all normalizedwithmass. Leveraging on the SINDy algorithm,
the extended SINDy algorithm can accurately estimate the system
parameters for various noise levels. It has been observed that an
improved parameter estimate is obtained when using a dataset which
includes the transient response (measured from zero initial con-
ditions) and the steady-state response caused by a sinusoidal load.
Although the current investigations have been limited to a

nonsmooth nonlinearity caused by a friction contact, the proposed
approach can be generally applied to SDOF dynamic systems with
discontinuous nonlinearity causing the system to show different
motion behavior which can be explicitly identified with physics
constraints. Current investigations are exploring the applicability of
the extended SINDy algorithm to the multi-degrees-of-freedom
(MDOF) dynamic system with single and multiple friction contacts
and to a random external excitation.
The proposed methodology can be used in identifying the model

parameters and identifying the governing EOM of a SDOF dynamic
system in laboratory conditions. Using the obtained EOM, a
representative virtual model of the dynamic system is identified. This
enables the virtual investigations of the behavior of such systemunder a
broad range of loading conditions that might not be possible to
reproduce in laboratory conditions because of cost or time constraints.
The proposed approach is a first step toward the real-time identification
of nonlinearity of structural joints in operating conditions. It is worth
mentioning that the implementation of more advanced numerical
differentiation schemes might improve the accuracy in estimating the
lower bound and upper bound surfaces. This will further improve in
accurately estimating the system parameters k̂�, ĉ�, F̂f �.
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Nomenclature

ARX ¼ auto-regressive with eXogenous input
EOM ¼ equation of motion
ML ¼ machine learning

MDOF ¼ multi-degrees-of-freedom
NARMAX ¼ nonlinear auto-regressive moving-average with

eXogenous inputs model
NARX ¼ nonlinear auto-regressive with eXogenous
RMSE ¼ root-mean-square error
SDOF ¼ single degree-of-freedom
SINDy ¼ sparse identification of nonlinear dynamics
SNR ¼ signal-to-noise ratio
SR3 ¼ sparse relaxed regularized regression
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