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INTRODUCTION

In river engineering morphological predictions have to be made to study the
implications of changes in a river system due to natural causes or human

interference.

It regards here time-depending processes. Characteristic parameters of the
river have to be forecasted both in time and space. The morphological pro-
cesses, however, are extremely complex and therefore a substantial degree

of schematization is required before e.g. mathematical models can be applied
to obtain the predictions wanted. Information about available mathematical

models can e.g. be obtained from Jansen (1979) and Klaassen et al (1982).

The present physical-mathematical formulation of the morphological problems
involved is iﬁcomplete. For instance the variation of the width B(x,t) cannot
yet be predicted. Therefore in this paper the restriction is made that

(relatively) unerodible banks are present.

The description of the problem in two (horizontal) space dimensions has not
yet led to mathematical models that are used on a routine basis. During the
last two decades or so, however, one-dimensional models have been developed
gradually to useful tools for practical problems. In these models average
values across the width of the river are predicted for the waterlevel h(x,t),

the bedlevel z(x,t) and consequently for the water depth a(x,t).

There is concern, however, regarding the accuracy of these predictions. Very
few possibilities exist to calibrate and verify the mathematical models for
a particular river. There are a large number of error sources of which here

basicly two will be discussed.

Sediment transport s(x,t) has to be predicted from the local
hydraulic conditions.
Alluvial roughness, for instance expressed in the Chézy coefficient

C(x,t), also has to be forecast locally.

The available transport predictors and roughness predictors are based on the
presence of steady. uniform flow. Hence there is already a potential source
of errors in applying these predictions in a mathematical model with non-—

steady and non-uniform flow.
The two types of predictions are linked. In many transport predictors

(transport formulae) the alluvial roughness has to be known. As future

conditions are considered, this roughness also has to be predicted.
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Hence the predicted C(x,t) is used twice in the morphological forecasts:

(1) Explicitly in order to incorporate properly the hydraulic friction
term in the basic hydrodynamic equations.

(1i) Implicitly in the transport prediction.

It is the aim of this study to demonstrate the influence of the predictions

of s(x,t) and C(x,t) on the results of the morphological predictions.

Therefore in Chapter 2 some general morphological problems are described
mathematically and solved analytically. Analytical solutions have the
advantage that the sensitivity analysis (Chapter 3) can easier be made
than for numerical solutions. In Chapter 4 the res;lts are discussed and

some conclusions are given.

MORPHOLOGICAL MODELS

General

For the formulation of some morphological time-depending problems it is
necessary in the first place to discuss the basic-equations. This will
here only be done along broad lines (Section'2.2) as a more complete

analysis is readily available (Jansen, 1979).

For this study analytical solutions of the basic equations are attractive
in order to arrive at some general conclusions. The price to be paid,
however, 1is that in most cases the basic equations have to be linearized.

This may reduce the validity of the general conclusions.

Basic Equations

General

Consider a wide alluvial river of which the unit of width is taken. The
independent variables are the x-coordinate in the stream direction and

the time t.

The dependent variables dre

~ flow velocity u(x,t)
= water depth a(x,t)
e N 2 bed level z(X,t)
bsediment transport s(x,t)
TS s Chézy roughness C(x,t)
z
e 4y dotum -

Fig. 1 Definition sketch
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The following equations for the dependent variables are available.

Watermovement
B uZea-o )
Sediment movement
Z.og _ )
s = f{u,C,A,D etc.} - (4)

The grain size D is supposed to be constant (no grain sorting). This is
also assumed for the relative density A = (DS - P)/P of the grains. In
fact one equation is lacking to solve the 5 dependent variables. This is
of course a predictor for the alluvial roughness. For the time being C
is supposed to be known and to make in the following Section analytical

solutions possible C is even assumed to be constant.

Equation (4) is the tranmsport predictor written in a very general way.

Later on this equation will be specified.

It has been shown (de Vries, 1959, 1965) that for rivers with slow
variations of the discharge the terms 3u/3t and da/dt from Egs. (1) and
(2) respectively can be neglected with respect to the other terms in

their equations.

The equations can then be reduced to a system of three differential

equations for the dependent variables u(x,t); a(x,t) and z(x,t).

du da 9z _ u? _ u’
Ukt Bax T83x T T 87Tiz T T 87rg ()
3 3
u§§+a3§=o or q(x,t) =q§t) (6)
3z “ds ] du _ !

The derivative ds/du is known from Eq. (4).
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For moderate Froude numbers Fr = uA/ga the term u du/dx in Eq. (5) can be

neglected with respect to the term g 3a/3x as

du da = a_ ( 142 = o Lpr2 ~ , 08
“ox T8 T 3 L au” * ga ] 9% [ ga UFr® + 1) & 5 (8
It has been shown (de Vries, 1959, 1965) that Egs. (5) ... (7) contain

the celerity ¢ of a small disturbance at the river bed with

B ds/du i . ds/du
T4 Ta {I-Frz} " T %)
The last approximation is based on the assumption Fr € 1, made here in

order to make further analytical manipulations with the simplified basic

equations easily possible.

In the following subsections three possible schematizations are used for

the Egs. (5), (6) and (7). The main characteristics for these three cases

are:
Case I: The hyperbolic character of the basic equations is maintained
if neither the backwater effects nor the hydraulic friction
term are neglected.
The differential equations can then, however, only be solved
analytically after linearization and for a constant discharge.
Case II: A parabolic model is obtained by neglecting the backwater

effects in the hydrodynamic equatidns. Problems for time—
depending discharges can be solved. A restriction for analytical
solutions is that Il¢nearization is necessary and only relatively
large values of x (and/or t) can be considered.

Case III: A simple wave model which is suitable for analytical solutions
is obtained when the hydraulic friction term is negligible.
The case considered here regards a constant discharge. However,
no linearisation is necessary. Neglecting the friction implies

that relatively short distances (x) can be considered only.

In the following subsections for each case an analytical solution is given

for a suitable problem.
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Case I’

For a constant discharge the basic equations can be combined into one

equation in the bed level (z) (Vreugdenhil and de Vries, 1973)

dz 3%z K 3%z
3t K3 T oame 0 (10)

in which ¢ has the same meaning as before.

The equation can be used to study changes in an originally uniform flow
with constant bed slope io. The Eq. (10) is obtained after linearization

and for the constant coefficient K holds

{ds/du}o
K= Ta7aT, an

As Eq. (10) is hyperbolic, the originally hyperbolic character of the basic

equations is maintained.

Instead of Eq. (10) it is easier to use two first order partial differential
equations in bed level and water level (z and h).

Taking the z-axis along the initial bed slope (io) positive upstream and
considering water level variations n from the original one (ho) these

equations can be formulated in z and n.

Linearization is then carried out by assuming u(x,t) =~ g and n(x,t) < ho

(for details see de Vries, 1980).

The result is

an _ -2} =
< B{n-z2}=0 (12)
sz, 9z _ 0 _
T R (13
with
. u
= | 4], o
B_J:du] h (14
o 0
and
_ ds . Yo
C_[E—J E—— (15)
Q [s]

Apparently K = ¢/8,
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This hyperbolic model is applied to the following case (Fig. 2)

A river with a constant discharge q
is flowing into a lake. At t = 0 the
lake level is dropped over a

certain distance Ah. Solutions for
n(x,t) and z(x,t) are sought.

For Ah < hO Eqs. (12) and (13) apply

with the initial conditions:

z(x,0) = 0 and n(x,0) =0 (16)
Fig. 2 Case I
The boundary conditions are:
lim z(x,t) = 0 H lim n(x,t) =0 (17)
X = @ X—)‘OO
and
n(0,t) = = Ah. > H(t) (18)

in which H(t) is the Heaviside function (unit-step function).

It is possible to arrive at an analytical solution for the relative variation

of the depth at the river mouth £(0,t) (de Vries, 1980).

_ _ha(0,t) _ -t | ‘9
£Q0,t) = - =" e I (o + 1, (1 (19)
in which
T = 2 fect = dimensionless time
. . th
Iv = modified Bessel function of the first kind and the V order.

Figure 3 gives a dimensionless representation of Eq. (19).
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Fig. 3 Dimensionless depth reduction & = £(0,71)

In Chapter 3 the solution of Eq. (19) will be used to study the sensitivity
of the result to errors in the prediction of s(x,t) and C(x,t).
Case II

The basic equations given in Eq. (5) ... (7) can further be simplified by

assuming the absence of backwater effects. Equation (5) then becomes

3
2. (20)

£

Combining Eqs. (6), (7) and (20) leads to a parabolic model (de Vries, 1973,
1975).

Jz

3%z _
*a—t K(t) EX_Z = (21)

in which the 'diffusion coefficient' has after linearization the same meaning
as in the hyperbolic model of Case I (see Eq. (11)). The simplification ob-—
tained in neglecting the backwater effects that only validity for relative
large distances from the point where backwater effects are induced, can be
considered. This is contrary to the hyperbolic model used for Case I. On the
other hand contrary to the hyperbolic model in the parabolic model K may

vary in time. Both models have in common that they have been linearized.

Case II consists in applying the parabolic model to the same problem as in
Case I (Fig. 4). The x-axis 1s again taken along the initial straight bed
level with a slope (io); X is positive in the upstream direction. This does

not change Eq. (21).




The initial condition is again
z(x,0) = 0 (2:

The boundary conditions read

lim z(x,t) = 0 (2
X > ©

and
z{0,t) = - Ah + H(t) (2¢

in which H(t) is again the Heaviside function.

The solution reads (see for details

de Vries, 1975)

z(x,t) = - Ah erfc X (2!
2 \/Et

in which

erfc y =

J exp {-£2}dg (2
y

S

Fig. 4 Case II

This solution holds as a constant discharge (and hence a constant K value)

is assumed. For a varying discharge the solution is

z(x,t) = - Ah erfc S S— (2?

/t '
{K(t')dt'
[o]

2V
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Case III

The Egs. (5) ... (7) can also be combined by eliminating the dependent

variables u(x,t) and a(x,t) into the simple-wave equation

dz oz _ C
et Cag =R 2 (28)
in which for Fr? <1 again
-4 ds/du (29)
a .
and
"
R=-g _C—TC—I. (30)

For practical computations it is not attractive to apply Eq. (28) in stead
of Eq. (5) ... (6). However, for relatively short distances the friction
term i.e. the right-hand term of Eq. (5) becomes negligible. This means

that in Eq. (31) Rc/g >0 or

dz Jz

= 4+ —_ =

3¢ " Cax 0 (3H)
In this fashion the simple-wave equation is attractive to be used to study
the deformation of a trench dredged across a river (Fig. 5). The case of
bedload transport only is considered. Moreover like in the Cases I and II

the discharge q is assumed to be constant as well as the assumption Fr? <1,

Now it is not necessary to linearize the equation. Hence ¢ = c(x,t).

3 ==

Fig. 5 Case III
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The equation of motion for water reduces here to

da 9z dh (32)

Hence h(x,t) = constant (rigid-lid approximation).

It is attractive now to rewrite Eq. (31) with a(x,t) as the dependent

variable. With Eq. (32), (29) and (6) this leads to

da da _

T " c(a) ol 0 (33)
in which

cla) = - & (34)

As an approximation for the tramsport formula the power law s = mu" can
be taken in which m and n are not dependent on x and t.
Hence

5a | n . ~(a+1) |, 3a _

pr + L—nmq a e 0 (35)

For the purpose of this paper the special attention goes to the behaviour

of the downstream slope of the trench (Fig. 6).

Fig. 6 Downstream slope

Taking the original bedlevel as the x-axis, the downstream slope is for
t = 0 given by:

{—Lo—x
a *+p 0 <x < LO (36)

L
o}

a(x,0)

[
»
b

\2
-

a(x,0) =
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A certain depth a with a < a< a *+p is for t > 0 present at a

location which is a distance c(a) * t more downstream than at ¢t = O.

The question can be raised at what time t a prescribed depth will be
present at a certain location x =1L < LO.
This simply leads to
-1
- + -
L-p L, {ao p -~ al

c(a) (37

t(a,L) =

Hence for selected values of a and L the accuracy by which the time

t(a,L) can be predicted depends on the accuracy of c(a).
SENSITIVITY ANALYSIS

General

In Chapter 2 deterministic forecasts have been discussed for some morpholo-—

gical processes. These forecasts are based on data for s(x,t) and C(x,t).

In Section 3.2 some discussions on the transport predictors and roughness
predictors are given. In Section 3.3 the sensitivity of the results of the
analytical models to the accuracy of the predictions of s(x,t) and C(x,t)

is treated.

Prediction of Roughness and Tramsport

Roughness predictors and transport predictors postulate the presence of

steady uniform flow. The problem can be formulated as follows.

Consider a wide river with constant width. Given is the discharge per unit
width (q); the bed slope (i) and the composition of the bed material (A and
D). The question is now to estimate the alluvial roughness C(x,t) and the

transport s(x,t).

The available predictors have a strong empirical character. Is is therefore
not surprising that new predictors are less inaccurate than the older ones;
it seems simply because the newer ones are based on more experimental

evidence.

It was H.A. Einstein who made the first integrated approach to this problem
(Einstein, 1950 and Einstein and Barbarossa, 1952). Now, three decades later,
more accurate methods are available. However, the accuracy of the predictions

is still limited.
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The writer has the impression that in the literature confusion was raised
by introducing the phrase 'modified Einstein procedure' (Colby and Hembree,
1955). This 'modified Einstein procedure', however, has a completely
different goal vZz. the determination of s for an existing channel, based

on measurements of flow and sediment concentration.

Here it regards the prediction of s(x,t) and C(x,t) from data on g, i, A
and D. However, to be able to separate the influence of s(x,t) and C(x,t)
as far as the accuracy of the morphological predictions is concerned two
types of predictions will be treated:

(i) Determination of C and s from data on q, i, 4 and D

(ii) Determination of s from data on q, i, 4, D and'C.

The following two predictors are used here:

a) The Engelund (1966) method to predict the roughness, combined with the
Engelund-Hansen (1967) transport formula (details are given in Annex I).

b) The Ackers-White (1973) transport formula together with the White et al

(1980) roughness predictors (details are given in Annex II).

There are a number of reasons to select these two groups of predictors. In
the first place these predictors are newer ones and are based on a fair
amount of experimental data. Moreover in the second place in these two cases
both transport— and roughness prediction is covered by the same group of

investigators.

In order to be able to carry out the sensitivity analysis of Section 3.3
some experiments have been used to get some information on the accuracy
in the prediction of the alluvial roughness (C) and the transport (s). In
fact field data should be used. However, then also the measured values of
C and s contain errors. Therefore some flume data are used. The data used
are the "Fort Collins data' (see Guy et al, 1966) and the data of Téble 1.
This regards data obtained in the sand-flume of the Delft Hydraulics
Laboratory. A description of this sand-flume is given by Wijbenga and

Klaassen (1981).

For all flume data it is supposed that measured values (Cm and smirespective—

ly) have negligible errors.

The predicted values are:
(i) The predicted roughness Cp
(ii) The predicted transports

® S when based on the measured roughness Cm

22}

[ ] sz

when based on the predicted roughness Cp
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Discharge Sediment - Flume Depth Slope C-value
transport width (meas.) (fro? meas.)

m’/s X 10-s m%/s m m X 10—3 m /z/s
0.151 1.239 1.50 0.1980 1,571 30.1
0.151 1.242 1.50 0.1978 1.582 29.9
0.225 1.241 1.50 0.2837 1.250 29.5
0.076 1.208 1.50 0.1108 2.400 28.7
0.0755 1.163 1.50 0.1097 2.340 29.4
0.301 1.232 1.50 0.3626 0.960 31.7
0.340 1.268 1.50 0.3974 0.890 32.7
0.4316 1,283 1.50 0.4897 0.740 33.9
0.552 1.309 1.50 0.5915 0.630 36.2
0.175 0.2391 1.50 0.2777 0.587 34.9
0.269 2.354 1.50 0.3007 1.620 28.4
0.0885 2.437 1.50 0.1146 3.297 27.0
0.476 2.437 1.50 0.4875 1.101 30.4
0.062 0.2591 1.50 0.1051 1.091 38.0
0.305 0.2609 1.50 0.4510 0.377 38.8
0.310 11.77 1.50 0.2626 3.980 25.1
0.342 1.328 1.50 0.4052 0.860 32.2
0.635 11.91 1.50 0.4930 2.700 25.1
0.100 12.06 1.50 0.0870 6.900 31.8
0.225 1.229 1.50 0.2908 1.170 29.4
0.075 1,227 1.50 0.1111 2,361 27.8
0.147 1,239 1.50 0.1961 1.622 28.8
0.220 2.379 1.50 0.2620 1.905 26.5
0.265 2,440 1.50 0.3017 1.708 27.1
0.146 1.237 1.50 0.2002 1.595 28.3
0.265 2.342 1.50 0.3012° 1.553 28.5
0.146 1.234 1.50 0.2003 1.654 27.7
0.401 3.351 1.50 0.4051 1.530 28.1
0.146 1.227 1.50 0.2012 1.607 27.9
0.265 2,255 1.50 0.3005 1.677 27.4
0.148 1.205 1.50 0.2002 1.642 28.2
0.116 1.208 1.125 0.2082 1.595 28.5
0.112 1.239 1,125 0.2040 1.641 28.0
0.119 2.322 1.125 0.3060 1.690 27.4
0.048 1.326 0.50 0.2106 1,658 27.0
0.088 1.997 0.50 0.3280 1.693 26.2
0.048 1.419 0.50 0.2090 1.670 27.0
0.025 0.7088 0.50 0.1200 1.616 32.5
0.048 1.305 0.50 0.2090 1.617 27.7
0.133 2.658 0.50 0.4360 1.712 26.7

D35 = 0.750 mm

Sediment data D, , = 0.780 mm

Dy, = 0.840 mm
Table 1 Measurements from sand-flume Delft Hydraulics Laboratory
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Moreover the following ratio's have been computed:
Roughness ratio: Y = Cm/cp

Transport ratios: al = sm/spl, thus for measured roughness

o, =s /s » thus for predicted roughness
2 m pp

To give some idea about the values for o, , 4, and ¥ that can be obtained
for natural rivers some data for the Yangtze River (China) have been used.
The writer obtained these data (that only are sufficiently complete to

apply the Engelund-Hansen procedure) in 1980 during his visit to Nanjing.

1.0
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Fig. 15 P{y} for Yangtze River

This information is added as it has not been used so far in the design of

predictors. This is contrary to the CSU-data.

From the series of data probability distributions of o, o, and Y have
been computed. The results are plotted in Figs. 7 ... I5. For %, Q, and Y
a log-scale is used. The cumulative probabilities P{ } are plotted on a
gaussian scale. As will be discussed later on especially the standard

deviations of these distributions are of importance.

Inspection of the Figs. 7 ... 15 seems to allow the following observations:

(i) Considering the standard deviations of o, a, and y the differences
between the Engelund-Hansen and the Ackers-~White method are marginal.
There is an (unexplained) exception for part of P{y} of the Fort

Collins (CSU) data and the sand flume data.
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(ii) The difference between P{a,} and P{a,} is small. According to Annex
I and II this is logical.

(ii1i) It seems fair to assume that a,, ¢, and Y have a log-normal distri-
bution.

(iv) Logically the scatter in o, O, and Yy is larger for a natural river

(the Yangtze River in this case) than for flume data.

Propagation of Errors

For the three cases treated in Chapter 2 the morphological predcitions can be
interpreted as a prediction of the time at which a certain event (depth or

bed level) occurs at a certain location.

It will now be studied how errors present in the prediction of roughness

and sediment transport manifest themselves in the predicted times. Therefore
the information of Section 3.2 is used. Two remarks have to be made in this
respect:

(1) It is assumed for the flume data used in Section 3.2 that the errors
in the measured values (cm and sm) are small compared to the errors
in the predicted values (C_, s and s )

p pl p2
(ii) The aim is to separate the influence from the errors in C and s on

the time predicted.

For the three cases of Chapter 2 the following analysis can be given.

In Eq. (19) the predicted time tI is incorporated in the dimensionless

time Tre The values of C and s determine the relation between TI and -
4/,
T = 26 ct; Vs € C ot (38)
~ . u 2 3 1
_ di . _9 o /3 _ /2 M2
as B = L._E— ] 3 C because g = C a i (39)
3 o o
u 2
and c=[£1—s-:! '—-9"‘5(3/3 with s = m u" (40)
du ao

The proportionality factors contain the known values of q, io’ A, D etc.

Case I1
In Eq. (25) the predicted time try is incorporated in the factor KtII°
This leads to
{ds/du}
o

.~ st (41)

C
Kegp = Tdi/duT_ b1 T B Fr1 I1
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Case III
For this case the predicted time t11T is according to Eq. (37) in the
factor ctIII with
{ds/du} 2
- o ~ /3
¢trr a S frrr % ¢ Y (42)

The influence of the error of C on the error in s can be separated by

considering the definitions and using s ™~ c® (see Annexes I and II)

€
= = . . 4
s o Spl o Y sp2 (43)

The errors in C and s can now be seen as errors in ti (i =1, II or III).

In stead of the 'correct' values S and Cm use is made of spz and C

This creates the error in t._:

1
4 b
o ¢/t =5 e/t Tra g
m m I p2 P
with
S ‘[ C k/s l,/
m m 3
= — . —— = Q. + 44
Ty 5 J c Y € o (48)
p2 . P
Case II
Similarly here
S t = 38 s T *t

with
= » €
Trp =% Y (45)
Case III
For this case
Yy Y
3 - el .
Su Ca frir T Spe T S Trrr otz (46)
with
2
T = ey 3tE (47




Hence the errors in the predicted times can be studied by considering the

distribution of

8. '
I]'_:.ql'[yijl (48)
with

N 2
= + : = =
S /3 e 5 8;;=¢ and 8111 /3 + €
As defined in Annex I the value of £ indicates the influence of the roughness
predictions on the transport predictions according to s ~ ¢c®. For the
Engelund-Hansen predictors in Annex I it is shown for a relatively wide river
e = 1/3. This value is indeed found for the Yangtze River in China. For the

CSU-data this value is not reached as shown in Annex I (Fig. I-1).

The CSU-data regard not very wide flumes, making wall corrections necessary
in the prediction of the roughness. This makes ¢ # /3 possible.

The Value%;f € for the Ackers-White case cannot be deduced so easily in an
analytical way. The deduction in an indirect way for the CSU-data with wall-
corrections (Annexes I and II) shows that on average EAW < SEH'

Considering the cases I, II and III it can be stated that case I is the most
general case. This means that it is realistic to take in Eq. (48) a value

§ = Y, +cord="% to%s.

With such a fixed value of § the probability distribution of T; can be
simulated according to Eq. (48) from the original experimental data. As an
approximation (which seems sufficient for this general consideration) a
simple analysis is possible. It can be assumed that o and Y are log-normally

distributed and 61 is constant.

Define the normal distributions:

I 0= in 91 with mean H and standard deviation al
y, = fn y with mean u and standard deviation o,

Then ¢ = in T, is normally distributed with mean U and standard deviation O.

The following relations apply:

W=+t Su, . (49

o*'=al+ (8ot | (50)




-21=-

From inspection of the figures for the CSU~data the following table (Table

2) has been composed.

Engelund-Hansen 0.85 0.98 0.50 0.26 2,48 0.85

Ackers-White 1.1 1.0 0.67 0.5 3.77 1.49

Table 2 Mean (i) and standard deviation (o) of

¢ = &n 1, CSU-data with 6, = %5 + e = %3

I
The uncertainty of Ty (as expressed by 0) seems then for the Ackers—White
method somewhat larger than for the Engelund-Hansen method. If, however,
from Fig. I.1 it is concluded that for the Ackers—White method an average
value € ® 0 (and hence § = %@ ) is more justified, then in Table 2 the
value ¢ = 1.49 reduces to ¢ = 0.85, The two methods Ackers-White and
Engelund-Hansen thus lead to the same results.

The Engelund-Hansen method has in general some advantages because of its
simplicity. This simplicity is also present apparently when the influence

of the predicted roughness on the predicted transport is considered.
APPLICATION TO MORPHOLOGICAL COMPUTATIONS

General

The interpretation of the results obtained above will be given in this
chapter with respect to morphological computations for practical river-
problems. It is therefore necessary to discuss these computations in
general terms. The river engineer in charge with the one~dimensional compu-
tation has to make a selection for the particular river of the tramnsport
predictor and the roughness predictor to be applied. In the ideal case he
will base his selection on measurements in the particular river. Some
remarks are made in Sections 4.2 and 4.3.

For a good morphological prediction the entire numerical model has to be
calibrated and verified. In general in the calibration phase the model is
tuned by means of measurements until the best agreement between calculated
and measured results is obtained. In the verification phase for another
set of measurements without additional tuning of the model, calculated and

measured results are compared.
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For hydrodynamic computations for which the bed is (supposed to be) fixed
it is already in many cases not easy to find sufficient field data to
carry out a calibration phase and a verification phase independently. For
morphological computations the situation is considerably worse. This is
mainly due to the fact that morphological processes in rivers are much
slower than hydrodynamic ones. Therefore only as an exception calibration
and verification of the entire numerical model for a particular river can

be carried out.

In order to guarantee the reliability of the morphological predictions it

is essential to test the components of. the numerical models if an integral
calibration and verification is not possible due to the above given reasoms.
The experimental verification in the particular river of the predictors
applied in the numerical model can be seen as testing components of the

model.

Selection of Predictors

In the ideal case the selection of the transport predictors should be
carried out by means of transport measurements in the river to be studied.
This brings, however, forward another problem. Contrary to what is done
for the flume data of Chapter 3 it can now certainly not be assumed that
the measured transports contain no error, For prototype cases the errors
in transport measurements are substantial components in the total errors

of the morphological predictions.

For the river the ratio al = sm/sp can be calculated for a number of pros-—
pective transport predictors. From the data the cumulative probability
distributors P{a } can be determined. It is advisable to select the trans-
port predictor via the variance of «, rather than with mean of a . When

the mean differs from unity it is quite possible to take this into account.
For the roughness predictor a similar procedure can be followed. There is,
however, a difference between the two predictors. In an alluvial river the
roughness can be much more accurately measured than the sediment transport.

Equation (48) suggests that the influence of &, on T, is much larger than

the influence of ¥ (as & > I).

For flume data this is true as then So and ¢, can be determined with the
same order of accuracy. For prototype measurements as stated above this
is certainly not the case. This brings forward an important question to

practical morphological computations.
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It is wise what Chollet and Cunge (1980) did (see also Cunge et al 1980) to

incorporate predictors for both s and ¢ in the morphological computations?

Both types of predictors have a strong empirical character. With some physi-
cal background they are adjusted with experimental data. Why not use pre-

dictions that ara based only on the river to be studied?

The writer has the impression that for the two types of predictions the

answer has to be different.

(i) Transport predictors require time-consuming measurements usually having
low accuracy. It is recopmended to use a transport predictor that has
been controlled with many data of different rivers. It is "advisable
to carry out some transport measurements in the river involved in order
to select the most promising transport predictor.

(ii) Roughness predictors do not require time-consuming measurements. The
accuracy is higher. Therefore it is not necessary to use a general
roughness predictor which may introduce a large systematic error. It
seems wiser to recommend the use of an empirical roughness predictor

especially designed from data of the river involved.

This line of reasoning leads to the conclusion that the difference in nature
of s(x,t) and C(x,t) to use a generally approved transport predictor.

However for C(x,t) a special-purpose roughness predictor is advisable.
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Main symbols

depth (L]
waterlevel L]
z bedlevel (L]
t time [r]
C Chézy coefficient [L% T
s sediment transport for unit width [1? T—l]
u flow velocity [L T_1 ]
X distance in flow direction (L]
g acceleration of gravity v T—z}
A = (Qs—p)/p = relative density -
D gram diameter Tr 1]
0 density of water ' [ML—S]
Py density of sediment [P’E—a}
Fr = u/ y/ga = Froude number -
c celerity of bed disturbance [LT—l]
K 'diffusion' coefficient [12 T-‘l]
q discharge per unit width [L> 71 ]
i slope -
¥ = Cm/Cp -
o = sm/sp -
P{ } cumulative probability -
u mean -
S standard deviation -

Subscripts

m measured value

p predicted value
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Annex I: THE ENGELUND-HANSEN METHOD

e Determination of C and s

For the unit of width the discharge (q) is given together with the slope (i).
From the bed material the relative density 4 = (ps - p)/p is given together

with the mean sedimentation diameter (D).

For the roughness prediction the following iteration procedure can be applied:
Estimate the depth (a') which would be present without bedforms (Engelund, 1966).

Compute the flow parameter 8' from

y ooa'i -
6 o) (I-1)
Calculate 9 from
8' = 0.06 + 0.4 8?2 (1-2)

Determine the depth (a) from

o = 2L (1-3)

Determine u from u = g/a.

Compute a new estimate for a' from
u a' 1la' T a' 1Y,
=6+ 2.5 tn iy = 2.5 b gy ¥ 9.48 l o DJ (1-4)
vea 1 -

Repeat until a' is sufficiently accurate; compute again a and u and deter-

mine C from the Chézy equatioms.
u = C+ai (I-5)

The transport s (bulk volume per unit of width and time) is determined by

the Engelund-Hansen (1967) formula

5
s _0.05 c*, [ai /2 (1-6)
VglhD3 1 -¢' g AD

in which €' 1is the porosity of the settled sediment (g¢' = 0.4)
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Remarks

i)

ii)

If in addition C or a 1is given, then the a or C can be determined

from the Chézy equation

and Eq. (I-6) can be used directly to determine s.
The influence of C on s can be established in a simple way if q, i, A
and D are given.

From Eq. (I-6) follows

s~c2.al? (1-7)
The Chézy equation q=2C a3/2 11/2 gives
c~ at (1-8)
Hence
s~c? - { s }5/2 (1-9)
or
s~ 01/3 (1-10)
Thus if it is defined s ™~ c® then according to the Engelund-Hansen predictor
e = 1.

It has also been tried to derive € from measurements for which the CSU-data
have been used. According to the definitions used here it follows (see also
Eq. 43):

fns_ - fins
e=—2PL P2 (I-11)

n v
In Fig. I.1 the cumulative probability P{e} is given as a result of the
application of the Engelund-Hansen predictors to the CSU-data and using
Eq. (I-11).
Figure I.] shows that the median of P{ec} differs somewhat from the theoreti-
cal value € = /3 found above. This is not surprising as Eq. (43) shows that

for vy values close to Y = | the e€-value becomes indeterminate.




(iii)

(iv)
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0,95 / I
e Ackers-White i

0.9 H
..eeeees Engelund-Hansen /

a.1 // K
0.0%
0.02 150 -1.00 -0.50 0.00 0.50

Fig. I.1 P{e} (CSU-data)

Matching the Engelund-Hansen transport formula with the general expression

s =mu" (power law) simply leads to n = 5.

The complete predictors for C amnd s contain 7 experimental constants

in the Engelund-Hansen case.
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nnex II: THE ACKERS-WHITE METHOD

Determination of C and s

or the unit of width the discharge (q) is given together with the slope (i).
rom the bed material the relative density A = (ps - p)/p is given together

ith the grain size D(ss)
or the roughness prediction the following iteration procedure can be applied.

stimate the depth (a).

ompute
u, =vg a i (1I-1)
alculate D from
gr y
/s
D =D [<5é'} (11-2)
gr v

n' = 0.0 .
D 2 60 (11-3)
A' =0.17 &t
n' = 1.0 - 0.56 '%log D
gr
R 1<p _<60  (II-4)
A' = 0.23 D" /24 0,14 gr
gr
alculate F from
fg
Uy
Ff = (1I-5)
& VgD
etermine F from
gr
- A'
& =1.0-0.76 | 1.0 - ! (11-6)

tg Al Lo 1.7
) exp { { log Dgr } }

alculate u from

nl
u 1-n'
* u (I1-7)

3T ebD | /37 log {10 a/D}
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Estimate a new value for the depth via a = q/u and repeat until a is

sufficiently accurate.

Compute C from

c = E—\/g— - ufai}” /2 (II-8
*

The transport s can now be calculated as follows

Calculate m':

. 9.66

m' = + 1,34 for 1.0<Dr<60
gr &
(I1-9
m' = 1.50 for Dr>60
Calculate C' from
10 1 A 2
log C' = 2.8 'Ylog D _ - { 1%10g D } - 3.53 for 1.0<D _ <60
gr | er gr
' (1I-1
c' = 0.025 for D _ 260
er
Compute
F m' ;
= ot gr _ -
G = C' | gF 1 (I1-1
Determine
¥
(b+1)D__ Gy ct :
X = " (II-1
{v
and
s = —=2 % 10 with &' ~0.4 (1I-1
p (1-€7) )
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Remarks

)

i)

ii)

If in addition C or a is given then the computation éf s 1is shorter
and no iteration procedure is necessary (see Ackers et al, 1978).
The influence of C on s (if q, i, A and D are given) cannot be established
for the Ackers—White case in such a simple way as is the case for the
Engelund-Hansen predictors. Trying to establish € from s ™~ c® from the
CSU-data using Eq. (43) or Eq. (1-11) led for the Ackers-White predictors
to results that seem to vary around € = 0. Also here indeterminancy of
€ around Yy = | may have played a role.

n

Matching the Ackers—White transport formula with the power law s = m u

(m and n being constant) gives a result,

F /A
n=1+mn —& (I1-14)
! -
Fgr/A ! }

The complete predictors for € and s contain some 20 experimental

constants in the Ackers—White case!







