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When testing two simple hypotheses (measurBspand () the
minimal possible surmf{a + 3} of both error probabilities satisfies
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a simple relation

Abstract—An expression is derived for the distribution of a mixture of
real and complex normal variates.

. 1 1 f
infla+8}=1- -||P— =1- 1P —-dQ|. (7
inffa+ 7} 2” @l 2 /X e @ Index Terms—Complex distributions, complex stochastic variables,

normal distribution.

Relation (7) (and its natural generalization through the convex hull
of measures for composite hypotheses) was proved first by C. Kraft I. INTRODUCTION
[4]. Much later (but independently !) it was obtained also in [3], |n [1] an expression is derived for the multivariate complex normal
where (see also [1]) some examples of application of a generalizgidtribution. It generalizes complex normal distributions proposed
version of relation (7) in testing of “very composite” hypotheses argarlier and specialized to a limited class of covariance matrices.
presented. However, the distribution in [1] cannot be used if one or more of
A good collection of various estimates fi§f* — Q|| can be found the variates are real. An example is the asymptotic distribution of
in [5, Ch. 4] (where the author has learned about the reference {Ab estimates of the parameters of the complex-valued exit wave of a

for relation (7)). _ periodic crystal specimen from noise disturbed intensity observations
Due to relation (7) we can reformulate Corollary 1 in & purgy transmission electron microscopy [2]. The parameters in this
geometrical form that supplements the collection in [5]. problem are the Fourier coefficients of the wave and both spatial

Corollary 2: The following bounds fof| P — Q|| are valid:

periods; their estimates are used to reconstruct the complex-valued
wave. One of the Fourier coefficients is real and so are the periods;
all further Fourier coefficients are complex. In [3] it is shown

* 1 - how th | and I it timairedt
2<1 3 exp{#(s -1 #,,(8*)}> <|IP- 0 ow these real and complex parameters are esti y as

real and complex quantities. As compared with separate estimation

<2(1—exp{u(s™)}) (8) of the real and imaginary parts, this considerably simplifies the

expressions involved, in particular those for the first-order and

second-order partial derivatives used in the numerical maximization
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covariance matrix of this distribution is particularly important. Itis the
asymptotic covariance matrix for maximum-likelihood estimates and
the Crangér—Rao lower bound on the variance of the real-complex
L. A. Bassalygo and M. V. Burnashev, “Authentication, identificatiorestimates in general. From this covariance matrix, the variance of
and pairwise separated measure®8bl. Inform. Transm vol. 32, no. the reconstructed complex-valued exit wave then follows using the
1, pp. 41-47, 1996. pertinent propagation formulas. The resulting expressions show the
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Petersbourg, 7 aie,” vol. 1, no. 9, 1859. ependence of the variance on the free microscope parameters use
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the background of white Gaussian nois&fieory Prob. and Its Appl In Section Il, the main result, the general expression for the
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whereW ¢ RUCH27)x(K+27) 5 the covariance matrix ofs. For Because permutation matrices are orthogonal and since the absolute
simplicity it will be assumed that the expectatiétiw] of w is equal value of their determinant is equal to one [5, p. 360 and p. 25], it
to the null vector. Next define the vector of real and complex variatédlows from (15) and (17) that

v e CiR+20)x1 by

. .o det V=detU (18)
v=(r1---TK Z1 2 ‘-* ZL ZT,) 3 and
wherez, = x, + jy, andz} is the conjugate of, with jZ = —1. IV =" U . (19)
Then
<;Z) _ J<“) @ Then substituting (18) and (19) in (14) yields
@) Ye
! exp —luHU_l'u, (20)
where the matrix] € €**? is defined by 2K /2r(K20)/2(det U)172 TP\ 72 '
J= <1 7) (5) This is the expression for the normal probability density function
I —j of the K real variatesr, ---, rx and the2L complex variates

Z1, tts ZLs 21, -+, Z1. Itis the main result of this correspondence.

Therefore, o h ; " ;
For the description of special cases of this probability density, the

v = Bw

(6)

whereB € CE+2L)x(E+2L) g defined as the block diagonal matrix

B = diag (I A) 7

whereI € R**" is the identity matrix of ordetk’” while A €
C**2" s defined as the block diagonal matrix
A= diag(J - ). ®)

From (6) it follows that the covariance matfik € €< +2L0x (K +24)
of v, defined asE[v v"'], is equal to

V = BE[ww"]|B" = BWB" 9)

and hence
W=B 'VB . (10)

In these expressions, the superscriipt denotes complex conju-
gate transposition. Sincd ' = LJY, it follows that B~'
diag (I $A"") andB~"" = diag (I 1A). Then, by (10)

det W = (5 /)" det V(=1 )" = det V /4"

(11)

sincedet J = —2j anddet J = 2. Furthermore, since = B~ v
andw’ = w" = "B~

w'Wlw=v?'B "W B 'y

=v""(BWB") v, (12)
Therefore, by (9)
w W hw = vV, (13)
Substituting (11) and (13) in (2) yields
K33 i) ey O <—%vHV*1v>. (14)
Next, rearrange the elements ofas follows:
u = Pv (15)

where P ¢ R(XT2L)x(£42L) g the permutation matrix such that

w={(ry ---rg z - - 2L zf---zz)T. (16)

Next, letl € CE+T2LX(K+2L) he the covariance matrix of. Then
by (15)

U = E[uu"] = PVP". 17)

covariance matridXU is partitioned as follows:

R Q @
vr=(Q" z s (21)
QT SH Z*

where B € IR¥*¥ is the covariance matrip&[r r'] of r =
(r1---1)T, Q € CE*2L is the covariance matri&[r 2] of
randz = (2 --+ 21)", Z € C"*" is the covariance matrix of,
andS € C“** is the covariance matri€[z z*] of z andz*. First,
consider the special case that the elementsare uncorrelated with
those ofz. Then@ is equal to the null matrix and

Ul =diag(RT"NY) (22)
with
(zZ S
v-(& 7) 23

and the probability density function becomes

1
ij/zﬁ(zwru)/z(det R)l/z(det N)1/2
TR 'r+02'N"'n)} (24)

1
cexp{=}

wheren = (27 z#)T with covariance matrix € C*L*2L |f,
in addition, as is often assumed in the literature [E]z, z,] =
Elz, z;] =0, the matrixS§' is equal to the null matrix. Then it may

be shown that [1]

1 1 ma-1

1 B L H =1,
= T aa 7 dctzexp( z'Z z) (25)

and, therefore, the probability density becomes

1
OR/2 7 (K/2+D) (det R)1/2 det Z

exp(—1 'R 'r—2"Z 2.

(26)

For K = L = 1, r andz become scalarg and z with probability
density function

1 1., . o
Forire s exp <—§ ol — 2z /(Tf) (27)
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of the form £./—p"”(0) wherex < 1 or x > 1, andp(t) is the
autocorrelation function of the process in question.
Our approach is to first derive the expected zero-crossing rate in
discrete time (to obtain a cosine formula) and by an appropriate

Zero-Crossing Rates of Mixtures limiting argument arrive at the zero-crossing rate in continuous
and Products of Gaussian Processes time. In particular, we derive analogs of the “cosine formula” and
“Rice’s formula” for a scaled-time mixture of a Gaussian process, for
John T. Barnett and Benjamin Kedem general mixtures of Gaussian processes, and for products of Gaussian
processes.

Mixtures and products of Gaussian processes are used, in both
Abstract—Formulas for the expected zero-crossing rate of non-Gaussian engineering and physics, as models in such diverse areas as: rainfall,

mixtures and products of Gaussian processes are obtained. The approach body weights, crushing processes, diffusive transport in random
we take is to first derive the expected zero-crossing rate in discrete time ’ )

and then obtain the rate in continuous time by an appropriate limiing Media, and multifractal processes (see [10], [7], and [16]). Hence,
argument. The processes considered, which are non-Gaussian but derivedknowing the zero-crossing rates for such processes is of practical
from Gaussian processes, serve to illustrate the variability of the zero- value.

crossing rate in terms of the normalized autocorrelation functionp(t) of To motivate our investigation, we first discuss a formal “orthant

the process. For Gaussian processes, Rice’s formula gives the expected robability formula” for random processes satisfying mild stationarit
zero-crossing rate in continuous time as% v/—p"'(0). We show processes P Yy P 9 Yy

exist with expected zero-crossing rates given by \/—p''(0) with either reqUIrementS. USI?Q a for.mal COSlne.formuIa, a formelll orthant
x> 10r x < 1. Consequently, such processes can have an arbitrarily probability formula” is obtained from which we argue that, in general,
large or small zero-crossing rate as compared to a Gaussian process with P
the same autocorrelation function. E[D.] = —+/—p"(0) 3)
i

T

Index Terms—Autocorrelation, cosine formula, expected zero-crossing .
rate, non-Gaussian processes, Rice’s formula. for sufficiently smooth processes. Moreover, the fact thamay be

quite different than one in (3) serves as a warning that Rice’s formula,
(1), may not be indiscriminately applied in the non-Gaussian case
I. INTRODUCTION (e.g. [3, p. 149], [8, p. 236], and [15, p. 1398]).
Consider a zero-mean, stricly stationary Gaussian procgéss },
—oo < t < oo, with autocovariance?(t) and autocorrelation func- A. A Formal Orthant Probability Formula
tion p(t). We assume throughout that the variance of the underlyingl_et {Z(t)}, —c0 < t < oo, be a stochastic process consisting

_Gau35|an proceqs_Z(t)} IS ON€ S0 tha_lf?(_o) - ’)(0.) =1L If :{Z(.t).} of continuous random variables with mean zero and satisfying the
is mean-square-differentiable, that is,df (0) exists and is finite, “stationarity” requirement

then the expected number of zero crossings per unit time is given by

Rice’s formula ([17], [19]) PriZ(t) > 0] =
1 - -

E[Dc]= —v=p"(0) € Pr[Z(t) > 0, Z(s) > 0] = g(|t — 5])

where D. (c for continuous) is the number of zero crossings ofor some functiony(-). Fort € [0, 1] and for a positive integeN > 2
{Z(t)} for ¢ in the unit interval[0,1], and p"(0) is the second we define the discrete time process

derivative of the autocorrelation function qfZ(¢)} at 0. In the

sequel we shall continue to ug2. to denote the zero-crossing rate Zy = Z((k—1)A), k=12,---,N

in continuous time regardless of the process.

DO =

such that
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