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II. V ARIATIONAL DISTANCE AND ERROR PROBABILITIES

When testing two simple hypotheses (measures)P and Q the
minimal possible suminff�+�g of both error probabilities satisfies
a simple relation

inff�+ �g = 1�
1

2
kP �Qk = 1�

1

2 X

jdP � dQj: (7)

Relation (7) (and its natural generalization through the convex hull
of measures for composite hypotheses) was proved first by C. Kraft
[4]. Much later (but independently !) it was obtained also in [3],
where (see also [1]) some examples of application of a generalized
version of relation (7) in testing of “very composite” hypotheses are
presented.

A good collection of various estimates forkP �Qk can be found
in [5, Ch. 4] (where the author has learned about the reference [4]
for relation (7)).

Due to relation (7) we can reformulate Corollary 1 in a pure
geometrical form that supplements the collection in [5].

Corollary 2: The following bounds forkP �Qk are valid:

2 1� exp �(s�)�
1

2
�00(s�) � kP �Qk

� 2(1� expf�(s�)g) (8)
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The Real-Complex Normal Distribution

A. van den Bos,Senior Member, IEEE

Abstract—An expression is derived for the distribution of a mixture of
real and complex normal variates.

Index Terms—Complex distributions, complex stochastic variables,
normal distribution.

I. INTRODUCTION

In [1] an expression is derived for the multivariate complex normal
distribution. It generalizes complex normal distributions proposed
earlier and specialized to a limited class of covariance matrices.
However, the distribution in [1] cannot be used if one or more of
the variates are real. An example is the asymptotic distribution of
the estimates of the parameters of the complex-valued exit wave of a
periodic crystal specimen from noise disturbed intensity observations
in transmission electron microscopy [2]. The parameters in this
problem are the Fourier coefficients of the wave and both spatial
periods; their estimates are used to reconstruct the complex-valued
wave. One of the Fourier coefficients is real and so are the periods;
all further Fourier coefficients are complex. In [3] it is shown
how these real and complex parameters are estimateddirectly as
real and complex quantities. As compared with separate estimation
of the real and imaginary parts, this considerably simplifies the
expressions involved, in particular those for the first-order and
second-order partial derivatives used in the numerical maximization
of the likelihood function concerned. As a result, the pertinent code
is simplified correspondingly [4]. The asymptotic distribution of the
resulting real-complex maximum-likelihood estimates is the real-
complex normal distribution derived in this correspondence. The
covariance matrix of this distribution is particularly important. It is the
asymptotic covariance matrix for maximum-likelihood estimates and
the Craḿer–Rao lower bound on the variance of the real-complex
estimates in general. From this covariance matrix, the variance of
the reconstructed complex-valued exit wave then follows using the
pertinent propagation formulas. The resulting expressions show the
dependence of the variance on the free microscope parameters used
for experimental design.

In Section II, the main result, the general expression for the
real-complex normal distribution, is derived. Special cases are also
presented.

II. REAL-COMPLEX NORMAL DISTRIBUTION

Assume that the vector of normally distributed variateswww 2
IR(K+2L)�1 is described by

www = (r1 � � � rK x1 y1 � � � xL yL)
T (1)

where the superscriptT denotes transposition. Then the probability
density function ofwww is

1

(2�)(K+2L)=2(det WWW )1=2
exp �

1

2
www
T
WWW

�1
www (2)
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whereWWW 2 IR(K+2L)�(K+2L) is the covariance matrix ofwww. For
simplicity it will be assumed that the expectationE[www] of www is equal
to the null vector. Next define the vector of real and complex variates
vvv 2 C(K+2L)�1 by

vvv = (r1 � � � rK z1 z�1 � � � zL z�L)
T (3)

wherez` = x` + jy` and z�` is the conjugate ofz` with j2 = �1.
Then

z`
z�`

= J
x`
y`

(4)

where the matrixJJJ 2 C2�2 is defined by

JJJ =
1 j
1 �j : (5)

Therefore,

vvv = BwBwBw (6)

whereBBB 2 C(K+2L)�(K+2L) is defined as the block diagonal matrix

BBB = diag (III AAA) (7)

where III 2 IRK�K is the identity matrix of orderK while AAA 2
C2L�2L is defined as the block diagonal matrix

AAA = diag (JJJ � � � JJJ): (8)

From (6) it follows that the covariance matrixVVV 2 C(K+2L)�(K+2L)

of vvv, defined asE[vvv vvvH ], is equal to

VVV = BBBE[www wwwT ]BBBH = BWBBWBBWBH (9)

and hence

WWW = BBB�1V BV BV B�H : (10)

In these expressions, the superscriptH denotes complex conju-
gate transposition. SinceJJJ�1 = 1

2JJJ
H , it follows that BBB�1 =

diag (III 1
2AAA

H) andBBB�H = diag (III 1
2AAA). Then, by (10)

det WWW = ( 12 j)
L det VVV (� 1

2 j)
L = det VVV =4L (11)

sincedetJJJ = �2j anddetJJJH = 2j. Furthermore, sincewww = BBB�1vvv

andwwwT = wwwH = vvvHBBB�H

wwwTWWW�1www =vvvHBBB�HWWW�1BBB�1vvv

=vvvH(BWBBWBBWBH)�1vvv: (12)

Therefore, by (9)

wwwTWWW�1www = vvvHVVV �1vvv: (13)

Substituting (11) and (13) in (2) yields

1

2K=2�(K=2+L)(det VVV )1=2
exp �1

2
vvvHVVV �1vvv : (14)

Next, rearrange the elements ofvvv as follows:

uuu = PvPvPv (15)

wherePPP 2 IR(K+2L)�(K+2L) is the permutation matrix such that

uuu = (r1 � � � rK z1 � � � zL z�1 � � � z�L)T : (16)

Next, letUUU 2 C(K+2L)�(K+2L) be the covariance matrix ofuuu. Then
by (15)

UUU = E[uuuuuuH ] = PV PPV PPV PT : (17)

Because permutation matrices are orthogonal and since the absolute
value of their determinant is equal to one [5, p. 360 and p. 25], it
follows from (15) and (17) that

det VVV = det UUU (18)

and

vvvHVVV �1vvv =uuuHUUU�1uuu: (19)

Then substituting (18) and (19) in (14) yields

1

2K=2�(K+2L)=2(det UUU)1=2
exp �1

2
uuuHUUU�1uuu : (20)

This is the expression for the normal probability density function
of the K real variatesr1; � � � ; rK and the2L complex variates
z1; � � � ; zL; z�1 ; � � � ; z�L. It is the main result of this correspondence.

For the description of special cases of this probability density, the
covariance matrixUUU is partitioned as follows:

UUU =
RRR QQQ QQQ�

QQQH ZZZ SSS

QQQT SSSH ZZZ�
(21)

where RRR 2 IRK�K is the covariance matrixE[rrr rrrT ] of rrr =
(r1 � � � rK)T , QQQ 2 CK�2L is the covariance matrixE[rrr zzzH ] of
rrr andzzz = (z1 � � � zL)T , ZZZ 2 CL�L is the covariance matrix ofzzz,
andSSS 2 CL�L is the covariance matrixE[zzz zzzT ] of zzz andzzz�. First,
consider the special case that the elements ofrrr are uncorrelated with
those ofzzz. ThenQQQ is equal to the null matrix and

UUU�1 = diag (RRR�1 NNN�1) (22)

with

NNN =
ZZZ SSS

SSSH ZZZ�
(23)

and the probability density function becomes

1

2K=2�(K+2L)=2(det RRR)1=2(det NNN)1=2

� exp f� 1
2
(rrrTRRR�1rrr + nnnHNNN�1nnn)g (24)

wherennn = (zzzT zzzH)T with covariance matrixNNN 2 C2L�2L. If,
in addition, as is often assumed in the literature [1],E[zp zq] =
E[z�p z

�

q ] = 0, the matrixSSS is equal to the null matrix. Then it may
be shown that [1]

1

�L(det NNN)1=2
exp �1

2
nnnHNNN�1nnn

=
1

�L det ZZZ
exp (�zzzHZZZ�1zzz) (25)

and, therefore, the probability density becomes

1

2K=2�(K=2+L)(det RRR)1=2 det ZZZ

� exp (� 1
2 rrr

TRRR�1rrr � zzzHZZZ�1zzz): (26)

For K = L = 1, rrr andzzz become scalarsr and z with probability
density function

1p
2�3=2�r�2z

exp �1

2
r2=�2r � zz�=�2z : (27)
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Zero-Crossing Rates of Mixtures
and Products of Gaussian Processes

John T. Barnett and Benjamin Kedem

Abstract—Formulas for the expected zero-crossing rate of non-Gaussian
mixtures and products of Gaussian processes are obtained. The approach
we take is to first derive the expected zero-crossing rate in discrete time
and then obtain the rate in continuous time by an appropriate limiting
argument. The processes considered, which are non-Gaussian but derived
from Gaussian processes, serve to illustrate the variability of the zero-
crossing rate in terms of the normalized autocorrelation function�(t) of
the process. For Gaussian processes, Rice’s formula gives the expected
zero-crossing rate in continuous time as1

�
��00(0). We show processes

exist with expected zero-crossing rates given by�
�
��00(0) with either

� � 1 or � � 1. Consequently, such processes can have an arbitrarily
large or small zero-crossing rate as compared to a Gaussian process with
the same autocorrelation function.

Index Terms—Autocorrelation, cosine formula, expected zero-crossing
rate, non-Gaussian processes, Rice’s formula.

I. INTRODUCTION

Consider a zero-mean, stricly stationary Gaussian processfZ(t)g,
�1 < t < 1, with autocovarianceR(t) and autocorrelation func-
tion �(t). We assume throughout that the variance of the underlying
Gaussian processfZ(t)g is one so thatR(0) = �(0) = 1. If fZ(t)g
is mean-square-differentiable, that is, if�00(0) exists and is finite,
then the expected number of zero crossings per unit time is given by
Rice’s formula ([17], [19])

E[Dc] =
1

�
��00(0) (1)

where Dc (c for continuous) is the number of zero crossings of
fZ(t)g for t in the unit interval [0; 1], and �00(0) is the second
derivative of the autocorrelation function offZ(t)g at 0. In the
sequel we shall continue to useDc to denote the zero-crossing rate
in continuous time regardless of the process.
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The analogous formula for a discrete-time, zero-mean, unit vari-
ance, stationary Gaussian sequencefZ(k)g, k = 0;�1;�2 � � � is
given by ([14], [19], [9])

�1 = cos
�E[D1]

N � 1
(2)

where D1 is the number of sign changes or zero crossings in
fZ(1); � � � ; Z(N)g, �k = E[Z(k + j)Z(j)] is the correlation
sequence offZ(k)g, and E[D1]=(N � 1) is the expected zero-
crossing rate in discrete time. We refer to (2) as the “cosine formula.”

In this correspondence we present extensions of Rice’s formula
of the form �

�
��00(0) where� � 1 or � � 1, and �(t) is the

autocorrelation function of the process in question.
Our approach is to first derive the expected zero-crossing rate in

discrete time (to obtain a cosine formula) and by an appropriate
limiting argument arrive at the zero-crossing rate in continuous
time. In particular, we derive analogs of the “cosine formula” and
“Rice’s formula” for a scaled-time mixture of a Gaussian process, for
general mixtures of Gaussian processes, and for products of Gaussian
processes.

Mixtures and products of Gaussian processes are used, in both
engineering and physics, as models in such diverse areas as: rainfall,
body weights, crushing processes, diffusive transport in random
media, and multifractal processes (see [10], [7], and [16]). Hence,
knowing the zero-crossing rates for such processes is of practical
value.

To motivate our investigation, we first discuss a formal “orthant
probability formula” for random processes satisfying mild stationarity
requirements. Using a formal “cosine formula,” a formal “orthant
probability formula” is obtained from which we argue that, in general,

E[Dc] =
�

�
��00(0) (3)

for sufficiently smooth processes. Moreover, the fact that� may be
quite different than one in (3) serves as a warning that Rice’s formula,
(1), may not be indiscriminately applied in the non-Gaussian case
(e.g. [3, p. 149], [8, p. 236], and [15, p. 1398]).

A. A Formal Orthant Probability Formula

Let fZ(t)g, �1 < t < 1, be a stochastic process consisting
of continuous random variables with mean zero and satisfying the
“stationarity” requirement

Pr [Z(t) � 0] =
1

2
Pr [Z(t) � 0; Z(s) � 0] = g(jt� sj)

for some functiong(�). Fort 2 [0; 1] and for a positive integerN > 2
we define the discrete time process

Zk � Z((k � 1)�); k = 1; 2; � � � ; N

such that

(N � 1)� = 1: (4)

The interval(0; 1] is now partitioned intoN �1 subintervals each of
length� so thatfZkg is simply fZ(t)g evaluated at the endpoints
of the subintervals. Define the indicator

dk = I[Sign change in Z ;Z ] = I[Z �0;Z <0[Z �0;Z <0]:
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