
Augmenting Pareto Corner Search Evolutionary Algorithm for Automatic Test
Case Generation

Emin Alp Guneri1

Supervisor(s): Annibale Panichella 1, Mitchell Olsthoorn1, Dimitri Stallenberg1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Emin Alp Guneri
Final project course: CSE3000 Research Project
Thesis committee: Annibale Panichella, Mitchell Olsthoorn, Dimitri Stallenberg, Sicco Verwer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

ABSTRACT
Software testing is a laborious job, and accounts for a large por-
tion of software development expenses. Search-based automatic
test case generation is an area of research that attempts to rem-
edy this by discovering algorithms suited for generating test cases
automatically. In this field, DynaMOSA is a state-of-the-art evolu-
tionary algorithm, which reduces the problem of test case genera-
tion to a multi-objective optimization problem, and uses domain
knowledge to generate solutions efficiently. In this paper, we adapt
Pareto Corner Search Evolutionary Algorithm (PCSEA) for test case
generation. Furthermore, we integrate DynaMOSA heuristics into
PCSEA, and create a novel algorithm, DynaMOSAPCSEA. We eval-
uate the test case generation efficacy of PCSEA, DynaMOSA, and
DynaMOSAPCSEA by using the JavaScript benchmark provided by
SynTest Framework. The results indicate that PCSEA is a feasible
algorithm for test case generation, however DynaMOSA heuristics
improve its performance only minimally.

1 INTRODUCTION
Software testing is the process of verifying that the software under
development behaves as expected. Alongside verifying that the
product is working properly, software testing also improves the
quality of the product (by enforcing good design practices), and
increases customer trust and satisfaction [16]. For these reasons,
software testing is a crucial component of the development process.

In practice, software testing is usually done by developers. This
involves a lot of manual labor, especially for complicated systems
with a high number of branches. Anand et al. claim that software
testing is a major contributor to development costs, and using auto-
mated tools to generate test cases is a promising solution; automated
tools can improve product quality while reducing development
costs[1].

Automated tools for generating test cases are a popular topic in
research. There are a variety of techniques proposed in literature;
techniques range from symbolic execution to adaptive random
testing[1]. As of today, there are numerous automated testing tools
available in the market. In fact, IT companies are beginning to make
use of these tools to augment their test suites[1].

A prominent approach to the problem of automatic test case
generation is search-based testing. This approach uses a search
algorithm to efficiently navigate the search space and find good
test cases for the system under test. A common search-based ap-
proach is to translate covering a statement/branch to minimizing
a function, which is called an objective. Panichella et al. provide
a formal formulation of automatic test case generation as a multi-
objective optimization problem[13]. In return, generating a good
test suite generally becomes a problem of finding a set of solutions
that minimize a large number of objectives.

Evolutionary algorithms are a natural choice for multi-objective
optimization problems, since they are simple to understand and
implement, and do not require additional information[4]. NSGA-
II has been the most popular evolutionary algorithm for solving
multi-objective optimization problems; it has acted as a benchmark
to assess if new multi-objective algorithms were feasible[8]. Due to

its widespread influence, there have been many variants of NSGA-II
proposed in the literature, such as R-NSGA-II[6] and NSGA-III[10].

There are many more evolutionary algorithms in literature that
provide promising performances, however, all these algorithms are
intended to work with numerical problems with a low number of
objectives. Multi-objective optimization problems that have more
than 3 objectives are called many-objective optimization problems
(MaOP)[14], and they occur commonly in the context of test case
generation. Evolutionary algorithms such as NSGA-II do not scale
well for such high numbers of objectives [9].

The state-of-the-art evolutionary algorithms each have their
own nuances to excel under different circumstances. However, al-
most all of them struggle with MaOPs, because 1- the ratio of
non-dominated solutions in the population increase with number
of objectives, making it difficult to evolve the population towards
optimal solutions, and 2- the Pareto front that the algorithms try to
approximate grows exponentially larger with increasing number
of objectives[14]. In the problem of test case generation, because
each statement or branch presents an objective, using a evolution-
ary multi-objective algorithm to search the entire solution space is
totally unfeasible for complex programs.

Dynamic Multi-Objective Sorting Algorithm (DynaMOSA) is an
algorithm that is specifically suited for solving MaOPs generated
by test case generation problems[13]. DynaMOSA improves upon
NSGA-II using domain knowledge. Instead of approximating the
entire Pareto front, DynaMOSA aims to evolve the population to-
wards the boundaries of the Pareto front, and capture the solutions
that reach these boundaries in an archive. The solutions that lie on
the boundaries of the Pareto front (i.e. solutions that minimize one
or more objectives) are remarkable in context of test case genera-
tion, since they represent test cases that cover one or more testing
targets (branches/statements/etc.). These solutions are also called
Pareto corner solutions. With enough such solutions, it might be
possible to exercise all the testing targets of the system under test.

One thing to note is that, Pareto corners are also quite useful
for other purposes (e.g. dimensionality reduction)[14]. Thus, there
are also algorithms geared towards finding corner solutions in dif-
ferent domains. For example, Pareto Corner Search Evolutionary
Algorithm (PCSEA) is an algorithm that approximates Pareto cor-
ner solutions by using a ranking strategy to rank solutions near
the corners of the Pareto front highly. This makes PCSEA also a
good candidate for automatic test case generation. This raises the
question of whether PCSEA could act as a better baseline algorithm
than NSGA-II for DynaMOSA.

To this end, we implement PCSEA in SynTest, so that it can be
used to generate tests for real JavaScript programs. We also make
use of DynaMOSA heuristics to create an improved version of
PCSEA which we call DynaMOSAPCSEA. We run NSGA-II, PCSEA,
DynaMOSA, and DynaMOSAPCSEA on popular npm packages to
assess their test generation efficacy, and conduct statistical analysis
to compare the branch coverages they achieve.

This paper contributes to the current literature as follows.

• We adapt PCSEA to be able to generate test cases.
• We improve PCSEA with DynaMOSA heuristics.

• We measure the branch coverages achieved by our PCSEA
and DynaMOSAPCSEA implementations, and analyze their
performance.

• We provide a replication package1 to allow the readers to
conduct the experiments.

This paper is organized as follows: Section 2 provides a formal
description of the automatic test case generation. Following this,
Section 3 introduces the algorithms that were compared on how
effective they can generate tests for JavaScript programs. Section 4
goes into detail about the experiments that were run to compare
the algorithms. The results of these experiments are provided in
Section 5, and are analyzed in Section 6. The threats to the validity
of these results and findings are addressed in Section 7. Section 8
is dedicated to responsible research, and considers the ethical and
societal implications of the collected results, alongside verifying
that the conducted experiments are reproducible. Finally, Section 9
concludes the paper, summarizing the important results, and lays
out future work suggestions.

2 BACKGROUND
Multi-objective optimization problems occur commonly in multiple
engineering fields, thus there have been countless methods pro-
posed to solve them [11]. These optimization problems usually stem
from physical problems, and thus involve minimizing/maximizing
a set of numerical objective functions that may or may not conflict
with other objectives.

In the context of test case generation, each branch/statement
presents an objective. The objective function returns, for a given test
case, how close the test case is to covering the branch/statement.
An objective function only returns non-negative values, with 0
indicating that the test case covers the branch/statement, and a
large value indicating that the test case must change significantly
to satisfy the predicates necessary to cover the branch/statement. In
real life software, we usually observe that the branches stemming
from the same conditional expression can not be covered at the same
time. The objectives of these branches are completely conflicting
objectives. On the other hand, covering a branch might rely on
following a certain sequence of branches. In this case, the objectives
of the branches in the sequence are redundant, because covering
the dependent branch already requires covering all the previous
branches in the sequence.

For problems that involve conflicting objectives, such as test case
generation, the concept of Pareto dominance is crucial. A solution
𝑋 is said to dominate another solution 𝑌 , if it performs better on at
least one objective, and the same on the other objectives. In short,
it could be thought as 𝑋 being strictly better than 𝑌 .

Pareto dominance relation partitions the population into sets that
are called fronts. First front 𝐹1 contains individuals in the population
that are not dominated by any other individual in the population.
Second front 𝐹2 contains individuals that are only dominated by
individuals in 𝐹1, and so on. It should be noted that individuals in
the same front do not dominate each other, so none of them could
be considered better than the others.

1https://github.com/Alp-Guneri/SynTest-Replication-Package.git

Another crucial concept is Pareto optimality. A solution is Pareto
optimal if there does not exist a single possible solution that domi-
nates it[3]. The set of all Pareto optimal solutions is called a Pareto
front, and the aim of multi-objective optimization problems is to
determine an approximate subset of the Pareto front.

There are numerous ways to approach such multi-objective op-
timization problems. Metaheuristic search algorithms, such as hill
climbing, simulated annealing, and evolutionary algorithms are
intuitive, and easy to implement, making them a common choice
for such problems. In this paper, we only make use of evolutionary
algorithms.

Evolutionary algorithms use encodings; each individual in the
population is a string, binary number, or a scheme of representing
a potential solution to the problem. Once the encoding is decided,
evolutionary algorithms begin with a population of random individ-
uals. In each generation, these individuals generate offsprings (new
individuals). This is done by a selection operator which chooses
parents from the current population, and crossover operator which
describes how the offspring should be created from the informa-
tion of the parents. Then, the population is updated using these
offsprings.

The population size is usually fixed, meaning some of the so-
lutions must be abandoned. This process is called environmental
selection, and the good candidates in the population are selected to
survive to the next generation. The survivors have a probability to
mutate, and these mutations are described by the mutation operator.
Competent evolutionary algorithms aim to promote diversity (so
that a lot of different possible solutions are explored) through mu-
tation and crossover, along with optimality through environmental
and parental selection.

Each population serves as an intermediary approximation of
the Pareto front, that gets more accurate per generation. The final
population serves as the algorithm’s approximation of the Pareto
front.

To make this paper relatively self-contained, this section will
briefly explain the algorithms that will be used in this paper. We
first introduce NSGA-II and PCSEA, two evolutionary algorithms
for solving multi-objective optimization problems. Then, we intro-
duce DynaMOSA, an evolutionary algorithm which uses domain
knowledge to be more efficient at test case generation.

2.1 NSGA-II
NSGA-II begins with a random population. The parental selection
is done by binary tournament, and the selected parents are crossed
over with a probabaility 𝑝𝑐 to produce an offspring. After offspring
population is obtained, the parent and offspring population are
joined.

The joint population is partitioned into Pareto fronts based on
Pareto dominance, and the individuals in the fronts 𝐹1, 𝐹2 ...𝐹𝑚 are
added to the next generation until 𝐹𝑚+1 contains more individuals
than necessary. The individuals in 𝐹𝑚+1 are sorted on their crowd-
ing distance, which is a density estimator that tells how dense the
individual’s region is. If there are many individuals similar to the
given individual, this individual contributes minimally to the diver-
sity of the population, and has a low crowding distance. Only the
solutions with the highest crowding distances in 𝐹𝑚+1 are chosen

3

for the next population, which acts as a secondary mechanism to
promote diversity in the population.

The population is then mutated, with a mutation probability 𝑝𝑚 .
The authors of NSGA-II propose setting 𝑝𝑚 = 1

#𝑜 𝑓 𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 [5].

2.2 PCSEA
Pareto Corner Search Evolutionary Algorithm (PCSEA) is an evolu-
tionary algorithm that finds corner solutions to eliminate redundant
objectives from the problem[14]. Once the number of objectives is
reduced, an evolutionary algorithm such as NSGA-II could be used
to solve the reduced numerical problem.

Finding Corner Solutions
A set of corner solutions are calculated in the first half of the al-
gorithm. This part of the algorithm is quite similar to NSGA-II.
PCSEA makes use of the same selection, crossover, and mutation
operators as NSGA-II; it only differs in environmental selection. A
procedure called Corner-Sort is used to rank the solutions in the
joint parent-offspring population. Corner sort follows the following
steps[14].

(1) The solutions are sorted based on each objective, in ascend-
ing order. For 𝑖𝑡ℎ objective 𝑓𝑖 , a solution 𝑥 should appear
before solution 𝑦, if and only if 𝑓𝑖 (𝑥) < 𝑓𝑖 (𝑦).

(2) The solutions are sorted based on the all the objectives ex-
cept the current one. For 𝑖𝑡ℎ objective 𝑓𝑖 a solution 𝑥 should
appear before solution 𝑦 if and only if

∑𝑗=𝑀

𝑗=1, 𝑗≠𝑖 𝑓𝑗 (𝑥)
2 <∑𝑗=𝑀

𝑗=1, 𝑗≠𝑖 𝑓𝑗 (𝑦)
2.

This procedure gives a total of 2𝑀 sorted lists. The first solution
in the first sorted list is assigned rank 1. The first solution in the
second list is assigned rank 2. This goes on until the first solution
in each sorted list is assigned a rank. If a solution that was already
ranked gets chosen again, the next element in the list is chosen
instead. The individuals in the joint population with the highest
ranks are chosen, and the individuals with low ranks are abandoned.

Removing Redundant Objectives
In the second half of the algorithm, these corner solutions are
used to determine if an objective is redundant, i.e. the removal
of the objective preserves the dominance relations between solu-
tions. The impact of removing the objective entirely is quantified
by the ratio of non-dominated solutions before and after remov-
ing an objective[14]. If this ratio is above a chosen threshold, the
objective is deemed redundant, and is removed. This process is
repeated sequentially for each objective to remove the redundant
ones. The final result is a smaller set of objectives that serves as a
representative of the initial problem.

2.3 DynaMOSA
DynaMOSA is a multi-objective evolutionary algorithm, geared
towards test case generation[13]. Instead of attempting to approxi-
mate the entire Pareto front like NSGA-II, DynaMOSA attempts to
foster a population that would make a good test suite.

DynaMOSA starts off similar to NSGA-II, however introduces
three new heuristics.

• Dynamic objectives. In test case generation, some testing
targets are directly dependent on others being covered. This
means we should consider satisfying the controlling target
first, and then try covering the dependent target. This allows
us to keep a smaller and dynamic set of objectives while
building a test suite. Initially, the only objective is the root
statement/branch of the method under test. Once a target
gets covered, the objective functions of the dependent test-
ing targets are appended, and the objective function of the
covered target is removed. This can significantly reduce the
number of objectives in a long method with little nesting.

• Preference sorting. This method is quite similar to non-
dominated sorting in NSGA-II, however prioritizes solutions
that minimize at least one objective. Solutions that minimize
at least one objective the most in the current population
are assigned to 𝐹0, and the remaining solutions are sorted
by fast-nondominated-sort. This way, a preference towards
the boundaries of the Pareto front is introduced, and the
population should evolve more individuals that completely
minimize at least one objective.

• Archiving. Archiving is not unique to the field of test case
generation. Archiving is usually done to make sure that the
Pareto optimal solutions that emerge in a population do not
die out in later generations[12]. In DynaMOSA, an archive is
used to preserve test cases that cover a previously uncovered
testing target. An important thing to note is that the saved
test case might be replaced by another test case, if both of
them cover the same target, but the new one is shorter than
the previous one. This attempts to make the final test suite
concise and human-friendly.

One final thing to note is that DynaMOSA returns the archive
that it repeatedly updates throughout generations, unlike NSGA-II
which returns the final population. This is a more reasonable ap-
proach considering that DynaMOSA relies on certain targets being
covered. If the solutions that cover these targets are not present
in the final solution, the algorithm will have a lower coverage.
Archiving preserves these test cases, and makes sure the test suite
contains at least one test case that covers the testing targets that
were marked as covered.

3 APPROACH
This section describes how PCSEA was adapted to the problem of
test case generation, and how it was improved with DynaMOSA
heuristics.

3.1 PCSEA for Test Case Generation
PCSEA is an algorithm suited for numerical problems. However, it
could work well on test case generation, since the first half of the al-
gorithm, introduced in Section 2.2, attempts to find corner solutions
(i.e. solutions that completely minimize one or more objectives).
The corner solutions in test case generation would be solutions
that achieve a value of 0 (since this is the lowest value an objective
function could return) for one or more objectives, meaning they
would be test cases that cover one or more branches/statements.
Thus, we use only the first half of the algorithm.

4

PCSEA requires an encoding scheme before it is able to generate
test cases. One way to encode test cases is to consider them as
sequences of statements 𝑡 = ⟨𝑠1, 𝑠2, ..., 𝑠𝑙 ⟩[7]. Each statement could
be a (1) Primitive statement, (2) Constructor statement, (3) Field
statement, (4) Method statement, or (5) Assignment statement. This
encoding captures the way humans usually test systems in a unit
testing level, allowing PCSEA to be used for generating unit tests.

DynaMOSAPCSEA
PCSEA appears to be a good candidate for test case generation.
However, we conjecture that its performance can be improved by
integrating DynaMOSA heuristics into PCSEA, to make it more
suited for generating test cases.

We integrate the three DynaMOSA heuristics listed in Section 2.3.
Dynamic objectives heuristic allows DynaMOSAPCSEA to work
on a smaller dynamic set of objectives. Archiving heuristic allows
DynaMOSAPCSEA to save important test cases to its test suite.
Preference sorting heuristic, on the other hand, is something already
done by Corner-Sort procedure. Both sorting methods rank the
individuals in the population that minimize an objective as the
best ones. We integrate preference sorting into PCSEA by running
preference sorting first, and appending the individuals in 𝐹0 to the
next population. Then, we run Corner-Sort to rank the remaining
population.

We end up with an algorithm that resembles DynaMOSA quite
a bit. DynaMOSAPCSEA differs from DynaMOSA in how it han-
dles environmental selection. Instead of the non-dominated sorting
and crowding distance assignment, the environmental selection is
handled by the Corner-Sort method.

4 STUDY DESIGN
This sections aims to explain the details about the experiments that
we carried out. The experiments we conducted can be replicated
with the replication package2.

4.1 Research Questions
The aim of this study is to assess whether DynaMOSA heuristics
apply well to PCSEA. To this end, we have formulated the following
research question.

• RQ1: How do PCSEA and DynaMOSAPCSEA perform com-
pared to each other with regards to branch coverage?

• RQ2: How does DynaMOSAPCSEA perform compared to
DynaMOSA with regards to branch coverage?

With the first research question, we aim to determine if Dy-
naMOSA heuristics improve the performance of PCSEA for test
case generation. With the second research question, we aim to
determine if DynaMOSAPCSEA is a feasible algorithm for test
case generation, or if it is overshadowed by the state-of-the-art
algorithm, DynaMOSA.

4.2 Configurations
The research questions in Section 4.1 involve comparing algorithms.
To make a fair judgement in our comparisons, we will run the
algorithms, and conduct statistical analysis to determine whether
2https://github.com/Alp-Guneri/SynTest-Replication-Package.git

an algorithm achieves a significantly better result than the other.
The results of the following pairs of algorithms will be compared
with statistical analysis.

• DynaMOSAPCSEA vs PCSEA
• DynaMOSAPCSEA vs DynaMOSA

4.3 Implementation
SynTest3 is a tool created for testing JavaScript programs. At the
heart of this tool is the syntest-core4 repository, which provides nu-
merous necessary utility functions, alongside the plugins necessary
to run search algorithms. These utility functions handle the logic
necessary to read through the source code of the system under test,
identify the branches, and reduce the problem to a many-objective
optimization problem.

The implementation of PCSEA and DynaMOSAPCSEA were
done by creating a fork5 of syntest-core repository, implementing
these evolutionary algorithms, and creating a plugin and preset for
each of them. This allows one to use PCSEA and DynaMOSAPCSEA
in SynTest’s command-line interface.

4.4 Benchmark
SynTest also provides a benchmark to evaluate the performances of
the search algorithms. The syntest-javascript-benchmark6 reposi-
tory provides the necessary files and instructions for the evaluation
process. This benchmark contains hand-picked files from the fol-
lowing popular npm packages.

(1) Commander.js
(2) Express
(3) JavaScript Algorithms
(4) Moment.js
(5) Lodash
The benchmark allows one to run a search algorithm on the

benchmark files. The search algorithm generates test cases for the
given files, and once the search budget is consumed, the achieved
branch and statement coverages are displayed.

We have excluded the files of Moment.js entirely, because they
caused the tool to crash. We have also excluded a file from Express,
namely application.js, because it causes the tool to get stuck on
post-processing, since the generated test cases start up a web server.

4.5 Parameters
There are numerous parameters in the SynTest tool, however, for
themost part, we used the default parameter values. The parameters
that may affect the result are mainly about crossover, mutation,
and procreation. We proceed with default parameters, because it
has been demonstrated that using default parameters suggested in
the literature for these operators give reasonable performances[2].
Table 1 shows some of these parameters, together with their default
values.

Since we want to evaluate the performances of the algorithms
fairly, we run the algorithms on the same machine. Table 2 shows

3https://github.com/syntest-framework
4https://github.com/syntest-framework/syntest-core
5https://github.com/Alp-Guneri/syntest-core
6https://github.com/syntest-framework/syntest-javascript-benchmark

5

Parameter Value

Population Size 50
Search Time 90 seconds

Crossover Probability 0.7
Multi-point Crossover Probability 0.5

Mutation Rate 1
#𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠

Table 1: Default parameter values used in each experiment.

the hardware specifications of the machine that was used to conduct
the experiments.

Part Name Information

CPU 2x AMD EPYC 7H12
64-Core Processor

3293.082 MHz
128 Cores, 256 Threads

RAM - 512 GB
Table 2: Hardware specifications of the machine used to run

the experiments.

4.6 Experimental Protocol
We treat running one algorithm for one benchmark file as one
experiment. For each experiment, we set the time budget to 120
seconds.

We run PCSEA, DynaMOSA, and DynaMOSAPCSEA on all 36
benchmark files, 10 times each. This is done to account for the
stochasticity of the algorithms. This gives a total of 3 (algorithms)
* 36 (benchmark files) * 10 (repetitions) * 120 (search budget) = 36
hours of sequential run time. To reduce this run time, we used a
Python script to conduct 100 experiments in parallel, resulting in a
final run time of ≈ 22 minutes.

The results of running the algorithms were saved in separate
folders (3 * 36 * 10 = 1080 in total). These folders in return contain
files that measure the coverages and other metrics of each experi-
ment over time. The final values of all the metrics each experiment
achieved were saved in a csv file at the base folder, for convenience.

We made a Python script to process these results and generate
visuals. We used this script to prepare the table of results provided
in Section 5, however the script allows for smaller tables to be
generated.

Following this, we used an R script to handle statistical analysis
of the results. For statistical analysis, we compared the algorithms in
pairs listed in Section 4.2, and used p and A-12 values to detect if the
differences in the branch coverages they achieved were statistically
significant.

5 RESULTS
The algorithms were run, as described in Section 4.6. Listing 1,
shows an example test case generated by DynaMOSAPCSEA for
help.js file from the Commander.js project. Table 3 displays the
branch coverages achieved by each algorithm on the benchmark
files, together with comparison statistics. Please note that Table 3
does not include 10 files from JS Algorithms project, because all
3 algorithms that we consider achieved 0% branch coverage on
them. This section aims to use the coverage data and statistics we
collected to answer the research questions formulated in Section
4.1.

We statistically analyze if DynaMOSAPCSEA provides any ad-
vantages by calculating the p-value of the null hypotheses "Dy-
naMOSAPCSEA performs no different than PCSEA for the given
benchmark file", and "DynaMOSAPCSEA performs no different
than DynaMOSA for the given benchmark file". We consider a
p-value lower than 0.005 as a threshold for rejecting the null hy-
pothesis. Furthermore, we calculate the effect size (𝐴12) for each file,
to determine which algorithm performs better, and how much ad-
vantage it offers over the other. An𝐴12 value of 0.5 means identical
performance. An 𝐴12 value greater than 0.5 means DynaMOSAPC-
SEA performs better, and an 𝐴12 value smaller than 0.5 means the
other algorithm is better. We summarize the results in Table 4.

Listing 1: An example test case generated by DynaMOSAPC-
SEA for help.js file from the Commander.js project.
d e s c r i b e (' he lp ' , () => {

c on s t { Help } = r e q u i r e (" . . / . . / benchmark /
↩→ commanderjs / l i b / he lp . j s ") ;

i t (' t e s t f o r help ' , async () => {
c on s t _He lp_ob j ec t_ tYnC = new Help ()
c on s t _ f l ags_numer ic_nXBp =

↩→ −4 . 3 7 4 4 2 0 0 1 3 1 8 8 5 3 7 ;
c on s t _ op t i on_ob j e c t _ a xhg = {

" f l a g s " : _ f l ags_numer ic_nXBp
}
con s t _opt ionTerm_funct ion_Rxvw = awa i t

↩→ _He lp_ob j ec t_ tYnC . opt ionTerm (
↩→ _op t i on_ob j e c t _ a xhg)

con s t _ d e s c r i p t i o n _ f u n c t i o n _CBd i = () =>
↩→ { } ;

c on s t _cmd_ob jec t_ s tMt = {
" d e s c r i p t i o n " :

↩→ _ d e s c r i p t i o n _ f u n c t i o n _CBd i
}
c on s t

↩→ _subcommandDesc r ip t i on_ func t i on_pg Jy
↩→ = awa i t _He lp_ob jec t_ tYnC .
↩→ subcommandDescr ipt ion (
↩→ _cmd_ob jec t_ s tMt)

c on s t _ d e s c r i p t i o n _ f u n c t i o n _ c t P J = () =>
↩→ { } ;

c on s t _cmd_objec t_oSPg = {
" d e s c r i p t i o n " :

↩→ _ d e s c r i p t i o n _ f u n c t i o n _ c t P J
}
c on s t

↩→ _subcommandDescr ipt ion_funct ion_hAHg
↩→ = awa i t _He lp_ob jec t_ tYnC .
↩→ subcommandDescr ipt ion (
↩→ _cmd_objec t_oSPg)

}) ;

6

PCSEA vs DynaMOSAPCSEA DynaMOSA vs DynaMOSAPCSEA
Benchmark File Name PCSEA DynaMOSA DynaMOSAPCSEA 𝑝-value 𝐴̂12 Value 𝑝-value 𝐴̂12 Value
Commander.js help.js 40.91% 50.00% 50.00% 0.000126 1.0(large) 0.077583 0.35(small)

option.js 50.00% 50.00% 47.22% 0.414929 0.4(small) 0.336750 0.375(small)
suggestSimilar.js 71.88% 71.88% 71.88% 0.582778 0.45(negligible) 1.000000 0.5(negligible)

Express query.js 66.67% 66.67% 66.67% N/A 0.5(negligible) N/A 0.5(negligible)
request.js 32.61% 32.61% 32.61% N/A 0.5(negligible) 0.368120 0.55(negligible)
response.js 17.93% 19.57% 19.84% 0.000457 0.965(large) 0.398127 0.615(small)
utils.js 41.30% 42.39% 42.39% 0.005741 0.825(large) 1.000000 0.5(negligible)
view.js 37.50% 37.50% 37.50% 0.167489 0.4(small) 0.368120 0.45(negligible)

JS Algorithms breadthFirstSearch.js 18.75% 18.75% 18.75% 1.000000 0.5(negligible) 1.000000 0.5(negligible)
kruskal.js 20.00% 20.00% 20.00% N/A 0.5(negligible) N/A 0.5(negligible)
prim.js 16.67% 16.67% 16.67% N/A 0.5(negligible) N/A 0.5(negligible)
Knapsack.js 57.50% 57.50% 57.50% N/A 0.5(negligible) N/A 0.5(negligible)
KnapsackItem.js 50.00% 50.00% 50.00% N/A 0.5(negligible) N/A 0.5(negligible)
Matrix.js 7.89% 7.89% 7.89% N/A 0.5(negligible) N/A 0.5(negligible)
CountingSort.js 57.14% 57.14% 57.14% 0.300558 0.4(small) 0.300558 0.4(small)
RedBlackTree.js 29.41% 29.41% 29.41% N/A 0.5(negligible) N/A 0.5(negligible)

Lodash equalArrays.js 83.33% 83.33% 83.33% 0.167489 0.4(small) 0.582778 0.45(negligible)
hasPath.js 100.00% 100.00% 100.00% N/A 0.5(negligible) N/A 0.5(negligible)
random.js 100.00% 100.00% 100.00% 1.000000 0.5(negligible) 0.167489 0.4(small)
result.js 80.00% 80.00% 80.00% 0.167489 0.4(small) 0.167489 0.4(small)
slice.js 100.00% 100.00% 100.00% N/A 0.5(negligible) N/A 0.5(negligible)
split.js 87.50% 87.50% 87.50% N/A 0.5(negligible) N/A 0.5(negligible)
toNumber.js 65.00% 65.00% 65.00% N/A 0.5(negligible) N/A 0.5(negligible)
transform.js 91.67% 91.67% 91.67% 0.034843 0.3(medium) 0.931313 0.485(negligible)
truncate.js 55.88% 55.88% 55.88% 0.368120 0.55(negligible) 0.582778 0.45(negligible)
unzip.js 100.00% 100.00% 66.67% 0.001617 0.15(large) 0.008670 0.2(large)

Table 3: Median branch coverages achieved by PCSEA, DynaMOSA and DynaMOSAPCSEA on the benchmark files, followed by
statistical comparisons of the average branch coverage. 10 files from JS Algorithms are not included in this table, because no

branch coverage was achieved.

Comparisons # Win # No Diff # Lose

Negl Small Medium Large Negl Small Medium Large Negl Small Medium Large

DynaMOSAPCSEA vs PCSEA - - - 2 26 5 1 1 - - - 1

DynaMOSAPCSEA vs DynaMOSA - - - - 29 6 - 1 - - - -
Table 4: Summary of Comparison Statistics for DynaMOSAPCSEA vs PCSEA and DynaMOSAPCSEA vs DynaMOSA.

RQ1: How do PCSEA and DynaMOSAPCSEA
perform compared to each other with regards to
branch coverage?
As shown in Table 4, DynaMOSAPCSEA only achieves a significant
advantage over PCSEA for only 2 files, namely help.js from Com-
mander.js project, and response.js from Express. PCSEA achieves a
significant advantage for only 1 file, namely unzip.js from Lodash.
The remaining files in the benchmark we used yielded p-values
greater than 0.005. This shows that the DynaMOSA heuristics do
not impact the performance of PCSEA, because the improvements
we observed were minimal.

RQ2: How does DynaMOSAPCSEA perform
compared to DynaMOSA with regards to branch
coverage?
As shown in Table 4, there were no benchmark files where Dy-
naMOSAPCSEA and DynaMOSA obtained a statistically significant
advantage over the other. This shows that DynaMOSAPCSEA is
just as performant as DynaMOSA, and thus is a feasible algorithm
for test case generation.

6 RESPONSIBLE RESEARCH
The algorithms studied in this paper do not raise significant ethical
concerns, neither do they handle sensitive or personal data. The
algorithms that we propose are intended for test case generation,
and rely on domain knowledge to be efficient. It is not likely for

7

these algorithms to be used in different contexts (potentially mali-
cious ones) without modifications. We believe that the algorithms
studied in this paper can help software developers augment their
test suites and publish more reliable software.

The reader can reproduce the experiments conducted, and use the
algorithms for different files if they would like to do so. The SynTest
framework, the algorithms that were studied, and the benchmark
files that were used conduct our experiments are all open source.
This makes our algorithms and experiments transparent and re-
producible. We also provide a replication package we provide in
Section 4, so that the reader can run the same code we used to
obtain our results and plots.

7 THREATS TO VALIDITY
In this section, we consider potential factors that might affect the
validity of our results and our analysis.

7.1 Threats to Construct Validity
In our analysis, we relied on branch coverage to compare the algo-
rithms. Branch coverage is a well-established metric, and provides
a reasonable assessment of the test case generation efficacy of the
algorithms.

7.2 Threats to Internal Validity
The algorithms proposed in this paper were implemented and evalu-
ated within the SynTest Framework. The proposed algorithms were
unit tested by a synthesized population, and an example population
provided in the original PCSEA paper. The framework also contains
unit tests for utility functions, genetic operators, and so on. These
unit tests give some confidence that the proposed algorithms and
the framework behave as intended, however provide no guarantees.

Another factor to consider is the stochasticity of the algorithms.
Each algorithm begins with a somewhat random initial population,
which usually impacts the final result of the algorithm. To account
for this, we ran the algorithms 10 times per benchmark file, and
conducted statistical analysis to determine if the results showed
statistical significance.

Finally, it must be noted that genetic operators also have an
impact on the performance of evolutionary algorithms. In this
paper, the same genetic operators from the SynTest framework
were used with default parameter values.

7.3 Threats to External Validity
We used an existing benchmark to assess the performances of algo-
rithms. This benchmark is reliable, because it is relatively diverse
in terms of the programming constructs used and coding styles[15].
In the future, extending this benchmark with more JavaScript files
might provide more evidence to the generalisation of our results.

8 CONCLUSION AND FUTUREWORK
In this paper, we studied the problem of test case generation as
a multi-objective optimization problem, and measured the perfor-
mances of different evolutionary algorithms.We adapted PCSEA for
test case generation, and integrated DynaMOSA heuristics into it to
create a novel algorithm, DynaMOSAPCSEA. PCSEA required min-
imal adaptation for test case generation; the Corner-Sort method

proposed by Singh et. al was already very suitable for test case gen-
eration. DynaMOSAPCSEA introduced three DynaMOSA features
on top of our PCSEA implementation: (i) Dynamic Objectives, (ii)
Preference Sorting, and (iii) Archiving.

For our empirical study, we used the JavaScript benchmark avail-
able on SynTest. This benchmark contains a diverse set of files from
popular npm packages. We have observed that PCSEA, DynaMOSA,
and DynaMOSAPCSEA obtain very similar results. From this, we
conclude that DynaMOSA heuristics do not create a significant
improvement on PCSEA’s performance. Furthermore, from these
results, we claim that PCSEA and DynaMOSAPCSEA are feasible
algorithms for test case generation, since their performances match
the performance of state-of-the-art algorithm, DynaMOSA.

There is still much future work to do to automate the process of
test case generation completely. Here, we include a few research
directions that might be interesting to pursue.

First of all, all the algorithms described in this paper made use
of default parameter values for NSGA-II. These parameters give
reasonable performances, and thus we believe the comparisons
were fair. However, tuning the parameter values could definitely
increase the branch coverages each algorithm achieves.

Another factor that impacted the performance of the algorithms
stems from functional coverage. Even though the functional cover-
age each algorithm achieves is not included in results, the Python
script included in the replication package generates this data as
well. A common problem that we noted from inspecting the data we
obtained was that the branch coverage was hindered significantly
due to private functions in the JavaScript classes. These functions
do not start out in the objective set, and are only added if they are
called. Thus, the algorithms do not optimize to cover the branches
of these functions, and if they never end up calling it, all of the
branches from these functions will go uncovered.

Finally, the test cases generated by the algorithms were some-
what difficult to understand. A potential improvement would be
to come up with methods to promote shorter and more readable
test cases. The preference sorting method in DynaMOSA, also inte-
grated in DynaMOSAPCSEA attempt to minimize the test case
length as a secondary objective. This means, if two cases that
achieve the same coverage are found, the shortest test case is kept
in the archive. However, as we can see from the example test case
generated by DynaMOSAPCSEA shown in Section 5, there is still
room for improvement. This would not impact the performances of
the algorithms, however, it would be valuable for developers using
test case generation tools to create or augment test suites for their
software.

REFERENCES
[1] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen,

Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn, Antonia
Bertolino, J. Jenny Li, and Hong Zhu. 2013. An orchestrated survey of methodolo-
gies for automated software test case generation. Journal of Systems and Software
86, 8 (2013), 1978–2001. https://doi.org/10.1016/j.jss.2013.02.061

[2] Andrea Arcuri and Gordon Fraser. 2013. Parameter tuning or default values? An
empirical investigation in search-based software engineering. Empirical Software
Engineering 18 (2013), 594–623. https://doi.org/10.1007/s10664-013-9249-9

[3] S. Brisset and F. Gillon. 2015. 4- Approaches for multi-objective optimization in
the ecodesign of electric systems. In Eco-Friendly Innovation in Electricity Trans-
mission and Distribution Networks, Jean-Luc Bessède (Ed.). Woodhead Publishing,
Oxford, 83–97. https://doi.org/10.1016/B978-1-78242-010-1.00004-5

8

https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/10.1016/B978-1-78242-010-1.00004-5

[4] Kalyanmoy Deb. 2011. Multi-objective Optimisation Using Evolutionary Algo-
rithms: An Introduction. Springer London, 4–5. https://doi.org/10.1007/978-0-
85729-652-8_1

[5] K. Deb, A. Pratap, S. Agarwal, and T.Meyarivan. 2002. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6, 2 (2002), 182–197. https://doi.org/10.1109/4235.996017

[6] Kalyanmoy Deb and J. Sundar. 2006. Reference Point Based Multi-Objective
Optimization Using Evolutionary Algorithms. In Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation (Seattle, Washington, USA)
(GECCO ’06). Association for ComputingMachinery, New York, NY, USA, 635–642.
https://doi.org/10.1145/1143997.1144112

[7] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276–291. https://doi.org/10.
1109/TSE.2012.14

[8] Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima. 2016. Performance
comparison of NSGA-II and NSGA-III on various many-objective test problems.
In 2016 IEEE Congress on Evolutionary Computation (CEC). 3045–3052. https:
//doi.org/10.1109/CEC.2016.7744174

[9] V. Khare, X. Yao, and K. Deb. 2003. Performance Scaling of Multi-objective
Evolutionary Algorithms. In Evolutionary Multi-Criterion Optimization, Carlos M.
Fonseca, Peter J. Fleming, Eckart Zitzler, Lothar Thiele, and Kalyanmoy Deb (Eds.).
Springer Berlin Heidelberg, 376–390. https://doi.org/10.1007/3-540-36970-8_27

[10] Ke Li, Kalyanmoy Deb, Qingfu Zhang, and Sam Kwong. 2015. An Evolutionary
Many-Objective Optimization Algorithm Based on Dominance and Decomposi-
tion. Trans. Evol. Comp 19, 5 (oct 2015), 694–716. https://doi.org/10.1109/TEVC.

2014.2373386
[11] R TimothyMarler and Jasbir S Arora. 2004. Survey ofmulti-objective optimization

methods for engineering. Structural and multidisciplinary optimization 26 (2004),
369–395. https://doi.org/10.1007/s00158-003-0368-6

[12] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
Testing, Verification and Reliability 14, 2 (2004), 105–156. https://doi.org/10.1002/
stvr.294 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.294

[13] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Auto-
mated Test Case Generation as a Many-Objective Optimisation Problem with
Dynamic Selection of the Targets. IEEE Transactions on Software Engineering 44,
2 (2018), 122–158. https://doi.org/10.1109/TSE.2017.2663435

[14] Hemant Kumar Singh, Amitay Isaacs, and Tapabrata Ray. 2011. A Pareto Corner
Search Evolutionary Algorithm and Dimensionality Reduction inMany-Objective
Optimization Problems. IEEE Transactions on Evolutionary Computation 15, 4
(2011), 539–556. https://doi.org/10.1109/TEVC.2010.2093579

[15] Dimitri Stallenberg, Mitchell Olsthoorn, and Annibale Panichella. 2022. Guess
What: Test Case Generation for Javascript with Unsupervised Probabilistic
Type Inference. In Search-Based Software Engineering, Mike Papadakis and Sil-
via Regina" Vergilio (Eds.). Springer International Publishing, Cham, 67–82.
https://doi.org/10.1007/978-3-031-21251-2_5

[16] Kinza Yasar. August 2022. What is Software Testing? https://www.techtarget.
com/whatis/definition/software-testing

9

https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/1143997.1144112
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/CEC.2016.7744174
https://doi.org/10.1109/CEC.2016.7744174
https://doi.org/10.1007/3-540-36970-8_27
https://doi.org/10.1109/TEVC.2014.2373386
https://doi.org/10.1109/TEVC.2014.2373386
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1002/stvr.294
https://doi.org/10.1002/stvr.294
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.294
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1109/TEVC.2010.2093579
https://doi.org/10.1007/978-3-031-21251-2_5
https://www.techtarget.com/whatis/definition/software-testing
https://www.techtarget.com/whatis/definition/software-testing

