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Abstract

A novel multiscale method for discrete fracture modeling on unstructured grids (MS-DFM) is
developed. To this end, the DFM fine-scale discrete system is constructed using unstructured con-
forming cells for the matrix with lower-dimensional fracture elements placed at their interfaces. On
this unstructured fine grid, MS-DFM imposes independent unstructured coarse grids for the frac-
ture and matrix domains. While the conservative coarse-scale system is solved over these coarse-
grid cells, overlapping dual-coarse blocks are also formed in order to provide local supports for the
multiscale basis functions. To increase the accuracy, but maintaining the computational efficiency,
fracture-matrix coupling is considered only for the basis functions inside the matrix domain. This
results in additional (enriching) fracture basis functions in the matrix. By construction, basis func-
tions form the partition of unity for both fracture and matrix sub-domains. Furthermore, to enable
error reduction to any desired level, a convergent iterative strategy is developed, where MS-DFM is
employed along with a fine-scale smoother in order to resolve low- and high-frequency modes in
the error. The performance of MS-DFM is assessed for several 2D and 3D test cases. Specially, the
method proves accurate for many test cases without any iterations. MS-DFM is the first of its kind,
and thus extends the application of multiscale methods to unstructured discrete fracture models.
As such, it provides a promising framework for real-field application of unstructured DFM.
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Nomenclature

This list describes several symbols that will be later used within the body of the document.

•̆ Coarse scale value

λ Mobility

bfi Set of basis functions contributing to cell i

ki Permeability of cell i

P Prolongation Operator

R Restriction Operator

Φ Basis function

~n f Normal vector to the face-plane

~n f Unit normal vector to the face

~v Vector from the grid node projection to the grid node itself

~vc f Vector from cell center to face

A f Face area

NC F Number of coarse fracture unknowns

NC M Number of coarse matrix unknowns

p Pressure

p ′ Pressure approximation

q Source terms

Ti f Half-transmissibility from the center of cell i to interface f

Ti j Transmissibility from cell i to cell j
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1
Introduction

Fractures play a crucial role in flow and transport of mass and heat in many subsurface engineering
applications, including (conventional and unconventional) hydrocarbon and enhanced geothermal
reservoirs [21]. As lower-dimensional features with multiple length scales and highly contrasting
flow properties, they impose a significant challenge to numerical simulation of subsurface flow. As
such, development of accurate and efficient methods for fractured porous media is essential for the
next-generation simulators.

A widely studied approach in the reservoir simulation community is discrete fracture modeling,
where fractures are modeled as lower dimensional features within the matrix rock. To allow for in-
dependent matrix and fracture grids, the embedded discrete fracture modeling (EDFM) approach
has been developed [6, 12, 13]. More recently, the projection-based EDFM method enables the sim-
ulation of a wider range of conductivity contrasts including flow barriers [26, 27]. Alternatively, a
different approach uses unstructured grids to place fractures at the interface between matrix cells
[1, 9, 20]. By doing so, unstructured DFM, or more commonly DFM, accurately represents geologi-
cal input data, including fracture geometry, and allows for a convenient and accurate discretization
scheme. For example, impermeable fractures as well as matrix-fracture interactions do not require
special treatment. Furthermore, note that both methods, EDFM and DFM, are compatible with hi-
erarchical fracture modeling where small fractures are upscaled into matrix cell properties [19]. The
flexibility and accuracy of DFM comes at a cost: for real field application, DFM leads to large linear
systems that are beyond the scope of classical solution strategies. Especially for fractured media,
traditional solutions such as excessive upscaling of flow-related quantities can lead to inaccurate
solutions. To resolve this challenge, in this work, a multiscale DFM method is proposed.

Multi-Scale (MS) methods have been developed to reduce the computational complexity of
flow simulation in highly heterogeneous media [3, 7, 8]. The MS strategy consists of solving lo-
cal fine scale problems and a corresponding coarse scale system to accurately approximate the
considerably-sized original fine scale problem. To do so, these methods first divide the global do-
main into small overlapping problems which are then solved to obtain basis functions (or inter-
polators). Next, a coarse system is constructed in which the coarse cell transmissibility values are
computed using these basis functions. The obtained coarse solution is interpolated back to the
fine-scale resolution using the same basis functions. This way, MS methods provide approximate
solutions at the original problem resolution, while preserving the fine-scale information. Such a
procedure naturally allows for systematic error-reduction strategies, namely, iterative multiscale
methods [5, 25, 30, 33]. Extending MS methods for fracture simulation, recent works include the
flexible coupling of matrix-fracture basis functions with the EDFM approach [16]. To allow for re-
construction of the mass conservative fine-scale velocity from the approximate multiscale solution,
note that a finite-volume coarse-scale system is required [2, 4, 8, 11, 34].
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2 1. Introduction

Despite multiple extensions of MS methods, the majority have been applied to structured Carte-
sian grids. Additionally, the limited investigations into unstructured grids have either restricted
coarse grid flexibility or kept the third dimension structured (2.5D) [15, 17, 22]. With the exception
of the latter reference, where an MS-EDFM approach was developed on 2.5D domains, the chal-
lenge of combining unstructured grids and MS methods for 3D fractured porous media has not yet
been tackled nor resolved.

In this work, a multiscale method for the Discrete Fracture Modeling approach on fully unstruc-
tured 3D grids (MS-DFM) is devised. A similar approach to the MS-EDFM method [16] is followed,
where we extend the state-of-the-art MS methods to include complex grids within the DFM for-
mulation. Starting from 2 independent arbitrary partitions, i.e., one for the matrix and one for the
fractures, a 3D wire-basket ordering [29, 32] is constructed based on the dual-coarse grid in each
domain. The matrix and fracture dual-grids have 4 (internal, face, edge, node) and 3 (face, edge,
node) levels of hierarchy, respectively.

The aforementioned basis functions are first solved in the fracture domain, with local supports
provided by the fracture dual grid and no coupling towards the matrix. The two media are coupled
through the basis functions inside the matrix, where the basis functions inside the fracture domain
are imposed as Dirichlet boundary conditions. To confine the basis functions to their intended
local domains, leaked local solutions are redistributed proportionally. Finally, a multiscale finite-
volume (MSFV) coarse system is constructed using the two sets of basis functions and then solved.
The coarse-scale solution is then interpolated to the fine scale resolution. This MS solution can be
used directly as an accurate approximation. Alternatively, the method is paired with a second-stage
smoother in order to allow for a convergent and conservative error reduction strategy.

The MS-DFM method proves accurate for a wide range of test cases. Furthermore the additional
cost of flexible unstructured grids is expected to be compensated by the efficiency gains from the
multiscale approach. Therefore, MS-DFM provides a promising framework for field-scale simula-
tion of flow in fractured media using a DFM approach.

The thesis is structured as follows. First, the governing equations and fine-scale DFM system
on unstructured grids are presented. The multiscale finite volume method for unstructured grids
is then introduced in Section 3, along with the iterative multiscale solution strategy. The MS-DFM
framework is presented in Section 4. Systematic numerical tests are presented to first validate the
fine-scale model, and then assess the performance of the MS-DFM. Finally, the paper is concluded
in Section 6.



2
Fine-Scale Discretized System

Single-phase incompressible flow in porous media with discrete fractures can be described using
Darcy’s law as

−∇· (λ ·∇p) = q, (2.1)

where λ, p, and q are the mobility, pressure, and source terms, respectively. Equation (2.1) is solved
on an unstructured mesh following the discrete fracture modeling approach, where fractures are
represented as lower dimensional features in Rn−1 space, connected to matrix cells in the Rn space
[9].

The matrix grid is generated such that fracture elements are confined to the matrix cell inter-
faces. Figure 2.1 illustrates an example of such a 3D domain. In this work, the mesh generators
TetGen [24] and Triangle [23] are used for 3-dimensional (3D) and 2-dimensional (2D) domains,
respectively.

Figure 2.1: View of conforming 3D grid cells.

Virtual fracture control volumes, in virtual Rn space, are constructed by applying the aperture
size as the missing dimension of the fracture elements. This allows for a convenient discretization
scheme where the flux interactions between the neighboring cells can be expressed in a generic
form, irrespective to which domain (fracture or matrix) they belong. Applying a finite-volume method,

3



4 2. Fine-Scale Discretized System

Figure 2.2: Half Transmissibility Variables in a 2D cell

Eq. (2.1) is discretized for every control volume, i.e., matrix and fracture. In the classical two-point
flux approximation scheme [28], implemented in this work, the discrete system reads

for every cell i:
nnb∑
j=1

Ti j (p j −pi ) = qi , (2.2)

where nnb is the number of neighboring cells. In addition, Ti j is the transmissibility between cell i
and its neighboring cell j , computed as

Ti j =
Ti f T j f

Ti f +T j f
, (2.3)

with the half transmissibility values Ti f and T j f defined as

Ti f =
A f ∗ (~n f · (ki ·~n f ))

~n f ·~vc f
. (2.4)

Here, “ f ” and “c” subindices indicate face and cell quantities, respectively. Accordingly, A f repre-
sents the face area, ~n f the unit normal vector to the face, ~vc f the vector from the cell center to any
point on the face and ki the permeability tensor of cell i. Figure 2.2 illustrates these variables for a
2D cell (hence, the area is replaced by the interface length L f ). This TPFA expression was opted for
after a comparison between existing formulations. The results of this evaluation are presented in
Appendix A.

To avoid small control volumes at fracture intersections, the star-delta procedure is applied [9].
In this case, the sum of all half-transmissibilities acting on the intersection is the denominator of
Eq. (2.3). For the transmissibility between a cell i and cell j, this results in

Ti j =
Ti f T j f∑
k∈F r Tk f

, (2.5)

where F r is the set of fractures connected to the intersection. Note that, here, the face, f , is now the
virtual interface at the intersection.

Following the described procedure, the linear system corresponding to Eq. (2.2) finally reads

A p ≡
[

Amm Am f

A f m A f f

][
pm

p f

]
=

[
qm

q f

]
≡ q, (2.6)

where subscripts “m” and “ f ” indicate matrix and fracture quantities, respectively. For example,
Am f contains the influence of fractures on the matrix control volumes.
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The linear system (2.6) provides an accurate (fine-scale) solution to Eq. (2.1), the accuracy of
which will also be illustrated via a test case in Section 5.2. However, real-field simulations require
large number of matrix and fracture cells with highly contrasting properties, therefore imposing a
significant challenge to computational methods. To resolve this challenge, in this work, a multiscale
method is developed to provide an accurate and efficient approximation of the discrete fracture
model as presented in Eq. (2.6).





3
MSFV on Unstructured Grids

In this section, the multiscale finite volume method (MSFV) [8] is first extended for the flow (pres-
sure) solution on fully unstructured grids. Such a development has not been addressed in literature.
Then, in the next section, it is extended to include discrete fractures within a DFM framework.

MSFV efficiently approximates the fine scale solution by solving a coarse system constructed us-
ing local basis functions. While these basis functions are solved on a dual-coarse grid, the method
also relies on a primal coarse grid to construct a conservative coarse-scale system. Therefore, an im-
portant step in extending the MSFV to unstructured grids is the appropriate construction of primal
and dual coarse grids. Previous efforts in the unstructured domain have used either a restricting
logic in constructing these grids, or relied on a global iterative procedure for local basis functions
[15, 22]. The unstructured MSFV method, proposed in this paper, allows for flexible coarse grids
while preserving the simplicity of the original structured method and its algebraic description [30].
In the following subsections, the MSFV method and the iterative solving procedure are described.
Then, the primal and dual grid construction are discussed. Finally, the procedure to obtain basis
functions is presented.

3.1. MSFV Formulation
The unstructured multiscale method provides an approximate solution to Eq. (2.6), based on a
superposition expression which can be algebraically stated as

p ≈ p ′ = Pp̆. (3.1)

Here, the fine-scale solution p is approximated by the multiscale solution p ′ which is obtained by
interpolation (prolongation) of the coarse-scale solutions p̆ and the matrix of basis functions P (pro-
longation operator). The coarse-scale pressure p̆ is found by solving the coarse-scale system Ăp̆ = q̆ ,
which is constructed algebraically as

(R A P)︸ ︷︷ ︸
Ă

p̆ = Rq︸︷︷︸
q̆

. (3.2)

Here, R and P are the restriction and prolongation operators, respectively. The restriction operator
R takes the fine-scale solution to the coarse scale, resulting in a reduction of unknowns. For a finite-
volume-based multiscale formulation (MSFV), the restriction operator represents the integration
operator over the coarse-grid cells, i.e., for its entry R(i , j ) one can state

R(i , j ) =
{

d v j if fine-cell j belongs to coarse cell i
0 otherwise,

(3.3)

7



8 3. MSFV on Unstructured Grids

where d v j is the volume of the fine cell j . Therefore, R is a Nc ×N f matrix where Nc and N f are
the number of coarse and fine cells, respectively [25, 30].

The prolongation operator P consists of the basis functions, Φ, which are placed in each of its
columns, i.e.,

P =


...

...
...

Φm
1 · · · Φm

i · · · Φm
Nmc

...
...

...


N f ×Nc

. (3.4)

In brief, basis functions are local interpolators which capture the complex fine-scale solution in
the vicinity of a coarse node. There exists one basis function for each coarse node, and their local
support region is defined based on the dual-coarse grid. These basis functions are explained in
more detail later, once the construction of the primal and dual coarse grids have been described.
Before doing so, next, the iterative MSFV procedure is presented.

3.2. Iterative MSFV procedure
The multiscale solution p ′ can be used directly as an efficient approximation of the reference solu-
tion. However, to obtain a more precise solution, especially for highly heterogeneous problems, the
iterative MSFV method can be applied to converge the multiscale approximation to the fine-scale
reference solution [5, 16]. To this end, the unstructured multiscale method is combined in a multi-
stage iterative procedure, in which a number of fine scale smoother iterations, nsmooth , is applied
to ensure convergence.

At each smoother iteration a smoother operator, M−1, is applied. In this work, this operator is con-
structed via ILU(0) decomposition, approximating the inverse of the fine scale linear operator A.
The procedure is iteratively repeated until the specified residual norm is reached. An overview is
provided in Alg. 1.

Algorithm 1 Iterative multiscale strategy. Here, ε is the desired threshold.

1: ν= 1
2: pν = 0 Initiate
3: r ν = q − Apν Compute residual
4:

5: while (||r ||ν2 > ε) do
6: Multiscale stage:
7: r̆ ν+1/2 = R r ν Compute coarse residual
8: δp̆ν+1/2 = Ă−1 r̆ ν+1/2 Compute coarse pressure correctiom
9: δpν+1/2 = Pδp̆ν+1/2 Prolong to find fine pressure correction

10: pν+1/2 = pν+δpν+1/2 Update pressure
11: r ν+1/2 = q − Apν+1/2 Update residual
12:

13: Smoother stage:
14: pν+1 = pν+1/2 +M−1

I LU (0)r
ν+1/2 Apply Smoother

15: r ν+1 = q − Apν+1 Update residual
16:

17: ν← ν+1
18: end while
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3.3. Primal and Dual Grid
To construct the restriction and prolongation operators, a primal and dual coarse grid need to be
constructed. The primal grid represents the coarse grid, or partitioning, and is constructed using
METIS [10] in this work. To allow for full flexibility, the only input is the fine scale connectivity. Fu-
ture research will address coarse grids which can improve the performance of the MS-DFM method
by using specified partitioning criteria or weights, e.g., permeability.

Based on the primal partitioning, the dual grid construction follows the hierarchy of its compo-
nents: dual-nodes, dual-edges, dual-faces and internal cells. Figures 3.1 and 3.2 depict a primal-
and its corresponding dual-coarse cell for a 2D test case.

Figure 3.1: Coarse grid imposed on a 2D unstructured fine grid obtained by METIS [10].

Figure 3.2: Dual-Grid corresponding to the partitioning of Fig. 3.1.



10 3. MSFV on Unstructured Grids

To construct the dual-grid, first, a fine cell is selected as the coarse node (dual-node) inside each
coarse cell. In this work, the fine cell closest to the volume weighted center is chosen as the coarse
node.

Then, the dual-edge cells are selected such that they connect coarse nodes (dual-nodes) to their
neighboring coarse nodes. Neighbors are defined based on the primal coarse grid connectivity.
Pointing from the initial dual-node to the target dual-node, the target vector facilitates the con-
struction of the dual-edges. Guided by this target-vector, fine cells are added to the dual-edge until
the dual-nodes are connected. By flagging the face of the dual-edge cell which is intersected by the
target vector, the neighboring cell is identified as the next dual-edge cell. This process is summa-
rized in Alg. 2.

Algorithm 2 Construction of Dual-Edges

1: for i = 0 to ndualnodes do
2: for all j = connected dualnodes do
3: CurCell = IniCell . IniCell is the fine cell of dual-node i
4: while CurCell 6= TargetCell do

. TargetCell is the fine cell of dual-node j
5: Assign CurCell to the dual-edge
6: Find intersected interface of CurCell
7: CurCell ← neighbor of intersected interface
8: end while
9: end for

10: end for

Next, dual-faces are naturally constructed between dual-edges. To identify dual-face cells, all
grid nodes are first projected onto the face-plane. This plane is constructed by the (typically 3)
connected dual-nodes which construct the dual-face. Grid nodes projected inside of the virtual
face (i.e. the area between the connected dual-nodes) are then assigned a code of 1 if they are above
the plane or a code of 2 if they are below the plane. Above and below are defined with respect to the
direction of the computed normal vector of the face-plane, i.e.,

Code =
{

1 if (~n f p ·~v) > 0

2 otherwise,
(3.5)

where ~n f p is the normal vector to the face-plane and ~v is the vector from a grid node’s projection
to the grid node itself. The remaining nodes, with projections outside the virtual face, are assigned
the code of 0. Once all grid nodes are coded, dual-face cells can be identified. Fine cells which are
constructed by at least one grid node with code 1 and one grid node with code 2 are assigned to
the dual-face. This implies that a dual-face cell crosses the face-plane. If a cell is already part of
a dual-grid component of higher hierarchy, i.e., a node or edge, it remains unchanged. This pro-
cess is recapitulated in Alg. 3, where Cel l NodeCodes is the set of codes present in the grid nodes
constructing the fine cell.

Finally, the internal blocks are defined. All cells not yet assigned to a dual-grid structure are
naturally internal cells. However, to solve strictly local problems when obtaining basis functions
(see 3.4), cells are assigned a unique code per block. To do so, a flood-fill algorithm is implemented
(Alg. 4). First, it finds an unassigned cell and initiates the construction of a new block. The block
is then expanded with all unassigned neighbors of the initial cell. This is repeated for all newly
added cells until all neighbors are already assigned to higher ranked dual-grid components. This
process is then reiterated until all internal blocks are numbered. Small clusters of internal cells,
which are separated from the main block by meandering dual-edges and dual-faces, are added to
the neighboring structure with the lowest level of hierarchy, i.e., dual-face preferred over dual-edge.
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Algorithm 3 Construction of a Dual Face

1: for i = 0 to ng r i dnodes do
2: Project node on Face Plane
3: if Projection inside virtual face (check with barycentric coordinates) then
4: if Node is above face plane (see Eq. (3.5)) then
5: Node assigned code 1
6: else
7: Node assigned code 2
8: end if
9: else if Projection outside virtual face then

10: Node assigned code 0
11: end if
12: end for
13:

14: for all i =Unassi g nedCel l s do
15: if {1,2} ∈Cel l NodeCodes then
16: Cell i assigned to the dual-face
17: end if
18: end for

Algorithm 4 Construction of Internal Blocks

1: for i =Unassi g nedCel l s do
2: Initiate new block
3: Assign cell i to block
4: Initiate list CurrentCells with i
5: while nCur r entCel l s > 0 do
6:

7: for all j =Cur r entCel l s do
8: for all k =Unassi g ned nei g hbor s o f j do
9: Assign cell k to block . cell k removed from Unassi g nedCel l s

10: Add cell k to NewCells
11: end for
12: end for
13:

14: CurrentCells ← NewCells
15:

16: end while
17: end for
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Note that dual-edges and dual-faces may overlap with other dual-edges and dual-faces, respec-
tively. These overlapping features create edge-networks and face-networks which are critical when
solving for basis functions (see 3.4). The edge networks of the previously displayed 2D test case are
shown in Fig. 3.3.

Dual-edges may also cross with other dual-edges or dual-faces. A crossing dual-edge doesn’t
share any common connected dual-nodes with the crossed structure. This differs to when it over-
laps with a dual-edge or neighbors a dual-face. When a crossing dual-edge is identified, the dual-
edge is deleted. As a consequence, dual-faces constructed based on the deleted dual-edge are re-
moved as well. This happens during the construction process and therefore does not influence the
internal block algorithm which takes place afterwards. Note that due to these deletions, edge- and
face-networks may be segmented and therefore will be treated as multiple separate networks when
computing basis functions.

Also note that the described dual grid construction routine does not take into account any non-
geometric information. This allows for broad application. Nevertheless, the addition of rules based
on physical properties may allow for more accurate and robust multiscale solutions as well as im-
proved convergence in iterative solving strategies. This is the subject of ongoing research. Further-
more, the described procedures were found to be efficient and consistent in constructing dual grids
that satisfy the overall MSFV requirements. However efficiency improvements will be investigated
in future work.

Figure 3.3: Edge networks in 2D example of Fig. 3.2.

3.4. Basis Functions
Physics-based basis functions are obtained by solving the governing equation, Eq. (2.1), on local
dual-coarse blocks without right hand side terms. To do so, reduced dimensional boundary condi-
tions are imposed in the way that first the dual-edge domains are solved using Dirichlet values of
0 and 1 at the coarse nodes. The obtained solutions serve as Dirichlet condition for the dual-face
domain. Finally, the internal cells are solved subject to a Dirichlet condition from all higher-ranked
cells. The procedure is summarized in Alg. 5.

Due to overlapping structures, solving basis functions per component (i.e., per dual-edge) as
done in MS on structured grids is not possible. Instead, the algorithm solves per edge network,
i.e., cluster of relevant connected edges. Likewise, basis functions are obtained by solving over face
networks rather than individual dual-faces.
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Algorithm 5 Basis function solving procedure

1: for i = 0 to ned g enet wor ks do
2: for all j = influencing dual-node do
3: Set value Cell j = 1
4: Set value other influencing dual-nodes = 0
5: Solve basis function for edge network
6: end for
7: Rescale solution for edge cells in edge-network i (Eq. (3.6))
8: end for
9:

10: for i = 0 to n f acenet wor ks do
11: for all j = influencing dual-node do
12: Set neighboring dual-edge and dual-node cells to φ j value
13: Solve basis function for face network
14: end for
15: Rescale solution for face cells in face-network i (Eq. (3.6))
16: end for
17:

18: for i = 0 to ni nter nalbl ocks do
19: for all j = influencing dual-node do
20: Set neighboring dual-face, dual-edge and dual-node cells to φ j value
21: Solve basis function for internal block
22: end for
23: Rescale solution for internal cells
24: end for
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As a side-effect of solving over edge- and face-networks, basis function solutions can leak out-
side the area of influence of their dual-node. This area of influence represents the direct region
around the dual-node, and consists of all cells which are part of a child structure of that dual-node.
Here a child structure is a dual-grid component created due to connections of the dual-node. To
confine the basis functions to the area of influence of their dual-node, the solutions are rescaled.
Rescaling entails setting all basis function values that should not contribute to the evaluated cell to
zero, and redistributing the subtracted values proportionally among the remaining basis function
contributions. In this way the partition of unity is preserved. This can be written as

for cell i: Pi j =
{ φi j

Σφi
if basis function j ∈ bfi

0 otherwise,
(3.6)

where bfi is the family of basis functions contributing to cell i, and
∑
φi = ∑bfi

j=0φi j is the sum of
basis function values in bfi for cell i.

Rescaling according to the area of influence in the internal blocks could result in loss of im-
portant information in the basis functions. For example, in the case when elongated primal blocks
result in largely overlapping edges and faces. However, to reduce the amount of non-zeros in P and
more importantly in Ă, the local solutions in the internal blocks are rescaled according to thresh-
olds, e.g., a minimum contribution to a block. It is important to note that although rescaling for
confinement leads to a more robust simulator, it can also lead to slightly increased error if an itera-
tive solving strategy is not employed. However, with iterations, confinement also leads to increased
efficiency.

The presented fully unstructured procedure increases the applicability of MSFV methods sig-
nificantly, and allows them to be employed for the simulation of more complex geological features
compared to their existing scope. Although one can apply the method to DFM directly, i.e., by tak-
ing into account the virtual fracture control volumes, the efficient and accurate simulation of these
highly contrasting features demands a more specialized approach.

(a) (b)

Figure 3.4: Basis functions of dual-node 6 (left) and 8 (right). Basis function 6 is also influenced by 2 well basis functions
[31].



4
MSFV for Discrete Fracture Modeling on

Unstructured Grids

Fractures demand appropriate treatment within the multiscale framework [16]. To this end, this sec-
tion presents the extension of the unstructured MSFV method to incorporate the discrete fracture
modeling approach (DFM). The proposed MS-DFM method constructs independent primal grids
for the matrix and fractures. As such, it generates independent dual-grids and therefore does not
require additional coarse grid-related computations in the matrix domain. In this section, first the
dual coarse grid construction for fractured media is described. Then, the basis function formulation
and appropriate fracture-matrix coupling is presented.

4.1. Dual Grid in Fracture Domain
As mentioned, the fracture and matrix coarse grids are totally independent. Therefore the same
grid generation strategy as previously described for non-fractured media is employed for the matrix.
For the lower dimensional fractures, the dual grid construction follows a similar procedure. More
precisely, only the fracture dual-edge routine differs from that of the matrix. The fracture dual-
edges are again built cell-by-cell; however, a direction-based criterion is used to determine the next
dual-edge fracture cell. This alters Alg. 2, line 6. The algorithm evaluates the criterion over each of
the fracture cell’s edges (i.e. interfaces, not to be confused with dual-edge) and can be described as
follows. Starting from a coarse node, the projection of the vector extending from the current fine cell
to the target coarse node is named vector B. The vectors from the current cell center to the nodes
of the assessed cell-edge are named A and C. Figure 4.1 illustrates the vectors described. The code
then evaluates the following set of conditions:

if ((A ·B < 0) & (C ·B < 0)) then the edge is in the wrong direction (4.1)

and

if (((A×B) · (A×C ) < 0) & ((C ×B) · (C × A) < 0)) then B intersects the edge. (4.2)

If an edge (i.e., interface in 2D) is in the right direction and is intersected by B, then the new dual-
edge cell is the neighbor of this interface.

Fracture intersections, where two or more fracture plates intersect, present an additional chal-
lenge for the dual-grid construction in the fracture domain. When a dual-edge connects two dual-
nodes on different plates, the dual-edge construction algorithm first targets the to-be-taken fracture
intersections. Once at the intersection, the dual-edge switches plates and the algorithm aims at for

15
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Figure 4.1: Illustration of the vectors used when evaluating an edge.

following target. Moreover, a common intermediate target at a fracture intersection for all con-
nected dual-nodes –crossing the same fracture intersection– can be advantageous. In combination
with enlarged areas of influence(see 4.2), this common target connects all surrounding dual-nodes
to each other, which provides a more accurate and realistic solution when fracture plate properties
are heterogeneous.

4.2. Basis Functions & Matrix-Fracture Coupling
As both fracture and matrix dual-nodes are present, the multiscale superposition expression for
non-fractured media, presented in Eq. (3.1), is extended to include fractures. Here, the basis func-
tions in the fracture domainΦ f are solved independently, i.e., with no consideration of matrix con-
nectivity. Therefore, their formulation is a straightforward localized version of the governing equa-
tion on lower-dimensional manifolds. No-flow conditions are imposed at their connections with
the matrix domain. Consequently, the multiscale superposition expression in the fracture domain
reads

p ′ f =
Nc f∑
i=1

Φ
f
i p̆ f

i , (4.3)

where p̆ f stands for the fracture coarse-scale pressures and Nc f for the coarse-scale fracture un-
knowns (fracture dual-nodes). Additionally, around fracture intersections the area of influence is
enlarged such that Φ f can be influenced by all neighboring fracture dual-nodes, which are con-
nected to the intersection.

While the basis functions inside the fracture domain are solved independently (with respect
to the matrix), the matrix basis functions are influenced by the two media. Therefore, the set of
matrix basis functions includes those basis functions which capture the effect of matrix itself, i.e.,
Φm,m , and those which capture the effects of fractures, i.e., Φm, f . This means that Fracture-Matrix
coupling only occurs from fracture to matrix and not vice-versa (see [16] for more information),
which leads to the

p ′m =
Ncm∑
i=1

Φmm
i p̆m

i +
Nc f∑
i=1

Φ
m f
i p̆ f

i (4.4)

expression. Here, p̆m indicates the coarse-scale matrix pressure, and Ncm is the total count of ma-
trix coarse-scale pressure unknowns. Note that coupling in both directions is possible, i.e., fractures
could also account for the influence of the matrix cells, however, it would lead to a denser prolon-
gation operator and more constrained dual-grid generation.

To account for the fracture basis functions in the matrix domain, fracture basis functionsΦ f act
as Dirichlet boundary conditions for the Φm f basis functions. In these local problems all matrix
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dual-nodes are set to zero. Vice-versa, matrix-matrix basis functions Φmm now have additional
boundary conditions. Namely, Dirichlet values of zero are imposed in connected fracture cells.

Rescaling for confinement (see Eq. (3.6)) still follows the same principles. The area of influence
of the fracture basis functions in the matrix domain is defined by all the matrix structures which
are directly connected to a fracture cell influenced by that basis function. Figure 4.2b shows such
a fracture basis function in the matrix domain. Note that this is the same test case as in Figs. 3.1-
3.4 where now the cell faces indicated by the yellow line are activated as highly conductive fractures.
Figure 4.2a shows the effect on the previously presented matrix basis function and Fig. 4.3 illustrates
the total effect of all fracture basis functions in the matrix domain, i.e.,

∑
Φm f .

(a) (b)

Figure 4.2: (a) Basis function of a dual coarse node 6, i.e. Φmm
6 , with fractures being set to a Dirichlet value of 0. (b) The

basis function of fracture dual-node 0 in the matrix domain, i.e., Φ
m f
0 .

Figure 4.3: Illustration of the effect of
∑
Φm f , i.e., the sum of all fracture basis functions in the matrix domain.
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4.3. Multiscale Operators
The restriction operator R is naturally enlarged with rows containing the fracture primal grid parti-
tioning volumes. The coupling of the fracture and matrix domain leads to an extended prolongation
operator,

P =
[

Pm

P f

]
=

[
Pmm Pm f

0 P f f

]
, (4.5)

where, more precisely,

Pm =


...

...
...

...

Φmm
1 · · · Φmm

Ncm
Φ

m f
1 · · · Φ

m f
Nc f

...
...

...
...

 . (4.6)

As presented, the coarse system for the MS-DFM model is a straightforward extension of the non-
fractured model where the prolongation and restriction operator are extended naturally. Though
only coupled in one direction in the local problems, this method leads to a fully coupled coarse
scale system.



5
Numerical Results

To verify, validate and assess the performance of the MS-DFM model, this chapter presents numeri-
cal results of a series of test cases: (1) an unstructured multiscale verification test case, (2) a 2D DFM
validation test case, and (3) 2D and (4) 3D MS-DFM test cases. Furthermore, appendix B presents
an additional fine scale test case which was designed to verify the recently developed pEDFM [27].

5.1. MS on unstructured grids: verification
First of all, the multiscale finite volume method for non-fractured porous media on unstructured
grids is validated. A 3-dimensional test case is devised on a 1[m]× 1[m]× 0.5[m] matrix domain
which is perforated by 12 wells [18]. The wells are in a line drive pattern with 6 injecting perforations
at x = 0.05 positioned in two rows of 3 at z = 0.05 and z = 0.45. The producing perforations are in
an identical pattern at x = 0.95. The field is assigned a random permeability field with a high perm
channel meandering through the domain, as shown in Fig. 5.1a. The fine scale grid consists of
19882 cells, which is partitioned into 20 coarse cells for the MS coarse grid. The primal and dual
grid are illustrated in Figs. 5.1b and 5.2a, respectively, where the dual grid is illustrated by means
of the internal blocks which are separated by the higher-ranked structures (dual-edges, dual-faces
and dual-nodes).

(a) Permeability map (b) Coarse Grid

Figure 5.1: Illustrations of the problem set-up and primal coarse grid.

The fine scale and multiscale solutions are depicted on a diagonal cross section of the matrix
domain in Figs 5.2c and 5.2d, respectively. Note that the color scale has been adapted to emphasize
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the non-dimensional pressure values between p = 0.2 and p = 0.8. The error between these solu-
tions is indicated in Fig. 5.2b. From the error plot it is clear that the peaks of the discrepancies lie
close to the wells. This is especially the case when dual-edges or dual-faces pass nearby the well but
do not incorporate the perforated cell. These spikes occur because of the well-known localization
error introduced at the boundary of the basis functions. Despite the spikes, the multiscale solution
approximates the fine solution accurately with a maximum discrepancy of 0.07 in the rest of the
domain. Note that by applying iterations of i-MSFV procedure, one can systematically reduce the
error to any desired level.

(a) Internal Blocks of Dual-Grid (b) MS-DFM error

(c) Fine-scale (d) MS-DFM (without iterations)

Figure 5.2: Dual-grid visualization and comparison of the fine-scale reference and MS-DFM solution (without iterations).

5.2. Fine-scale DFM model: validation
Before testing the MS-DFM method for fractured media, the underlying fine-scale DFM model is
validated with respect to a fully-resolved reference model. The test case, presented in Fig. 5.3, con-
sists of a 1[m]×1[m] homogeneous matrix with a set of 3 conductive fractures. The reference model
consists of 810×810 cells such that the grid resolution allows for fully resolving fractures with the
aperture of h ≈ 0.001235. To verify the convergence of DFM to the fully resolved case, 5 levels of
DFM grid refinement have been employed: 2501, 10003, 40006, 160000 and 640000 cells.

The pressure results of the reference solution and DFM model with 10003 cells are presented in
Figs. 5.4a and 5.4b. It is clear that the DFM model accurately captures the real solution. In more
detail, Fig. 5.5 plots the average L2 norm of the error vector (averaged over 100 fixed locations in the
domain, after linear interpolation). It is clear from the graph that the error converges with refine-
ment. Thus, the implemented fine-scale DFM model is validated, and will hereafter be referred to
and applied as the fine-scale reference model for MS-DFM.



5.2. Fine-scale DFM model: validation 21

Figure 5.3: The fracture-configuration used for the validation of the DFM model (fractures are emphasized for clarity).

(a) Fully-resolved solution (b) DFM solution

Figure 5.4: Comparison of fully resolved and DFM solutions. Note that the fully resolved case employs 656100 cells, while
the DFM employs 10003 cells.

Figure 5.5: Grid convergence of DFM (measured in L2 norm at 100 fixed locations in the domain) with respect to the fully
resolved simulation.
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5.3. MS-DFM: 2D test case
A 2D validation test case, in a 1[m]× 1[m] domain, with 3 fractures is considered. The fractures
are highly conductive, i.e., k f = 1000∗km , and their set-up corresponds with the example shown
in Chapter 4. Furthermore, the domain is subject to a line drive of 5 wells on both sides. Injectors,
pw = 1, are placed on the left hand side and producers, pw = 0, on the right [18]. The fine scale grid
has 10001 matrix and 129 fracture cells where the coarse grid has only 10 matrix and 5 fracture cells
respectively. This rough coarsening ratio is a good test for the method’s performance. Figures 5.6
and 5.7a present the primal grids of both the fracture and matrix domains as well as the matrix dual-
grid. Figures 5.7c and 5.7d present the fine and multiscale (with no iterations) results of the test case.

(a) Primal Coarse Grid (b) Dual Coarse Grid

Figure 5.6: Coarse grids for the 2D Test Case including indicative fractures(yellow)

From the multiscale result it is clear that MS-DFM accurately captures the trend of the fine scale
solution. Fig. 5.7b more accurately identifies the locations of the mismatch. The pattern of the error
closely resembles the dual grid, where the largest discrepancies are naturally detected along edges
near boundary conditions and fractures. This is inherent to the multiscale method as the lower
dimensional problem along an edge fails to capture nearby boundary conditions. Nevertheless,
note that in this case the fracture solution is captured quite accurately as the extremities of fractures
intersect dual-edges. As such, the solution with iterations converges to |r |2 = 10−4 after 74 iterations.

5.3.1. MS-DFM: 2D test case, coarse grid refinement
An important aspect of multiscale methods is the coarsening ratio (n f i necel l s/ncoar secel l s). How-
ever, as shown in the previous test case, the location of wells and fractures with respect to the dual-
grid edges has strong influence on the MS-DFM solution without iterations. Therefore, in contrast
to traditional expectations, a lower coarsening ratio is not always a guarantee for a more accurate
solution.

To demonstrate this effect, a new 2D test case is devised with 5 fractures on a 1× 1 domain.
Both media, fractures and matrix, are homogeneous. Furthermore, fractures are assigned highly
conductive properties, i.e., k f = 1000∗km . The domain is gridded with 10026 fine matrix cells and
170 discrete fracture cells. The domain boundary conditions are 10 wells in a line drive formation
with 5 injectors on the left and 5 producers on the right.

Three levels of coarse grid refinement are tested: (a) 5, (b) 12 and (c) 20 coarse matrix cells with
2, 8 and 18 coarse fracture cells, respectively. Figure 5.8 presents the coarse matrix dual-grid for
these cases. Figure 5.9 provides additional insight by presenting the sum of the fracture basis func-
tions in the matrix domain, i.e.,

∑
Φm f . Here, in the case with 12 coarse matrix cells, the dual-edge
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(a) Fracture Primal Coarse Grid (b) MS-DFM error (no iterations)

(c) Fine Reference (d) MS-DFM (no iterations)

Figure 5.7: Subfigure (a) depicts the fracture coarse grid on an extruded view of the fractures. Next, (b)-(d) show the
comparison of the fine reference and MS-DFM solution for the 2D Test Case.
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(a) (b) (c)

Figure 5.8: Matrix coarse dual-grids for 3 levels of coarse grid refinement: (a) 5, (b) 12, and (c) 20 coarse matrix cells.

(a) (b) (c)

Figure 5.9: Comparison of the sum of fracture basis functions in matrix domain, i.e.,
∑
Φm f , for 3 levels of coarse grid

refinement: (a) 5, (b) 12, and (c) 20 coarse matrix cells.

cells between the fractures are not influenced by any matrix dual-nodes (see 5.9b). This naturally
results in a basis fracture sum of 1 in this area. Additionally, the area outside the fracture network is
relatively poorly influenced compared to the other cases. As a result, the multiscale approximation
(without iterations) is notably less accurate. More precisely, the L2 norm of the residual vector for
case (b) is |r |2 = 1.645, while |r |2 = 0.870 and |r |2 = 1.231 for case (a) and (c) respectively.

The pressure results for these cases are illustrated in Figs. 5.10a - 5.10c. The fine scale solution
is presented in Fig. 5.10d for comparison. Again, case (b) displays anomalies, showing a blue streak
along the bottom of the domain and an abrupt pressure jump at the right hand side of the fracture
network. This jump naturally follows from the absence of matrix influence between the fractures.

Note that in this test, we only evaluate the multiscale approximation by assessing the error norm.
However, the efficiency of obtaining the solution as well as the rate of convergence of the iterative
strategy are also important factors for real-field application, and therefore topic of future investiga-
tion.
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(a) (b)

(c) (d)

Figure 5.10: Comparison of fine reference solution and MS-DFM solutions (with no iterations) of different levels of re-
finement: (a) 5, (b) 12 and (c) 20 coarse matrix cells with 2, 8 and 18 coarse fracture cells, respectively .
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5.4. MS-DFM: 3D test case
Unstructured 3-dimensional domains prove notably more challenging than lower dimensional ones.
Therefore, MS-DFM’s performance is assessed on a 3D test case, 1×1×0.4, with 5 heterogeneous
fractures. Two of the fracture plates are sealing, two are highly conductive and the last one has a
slightly increased permeability with respect to the matrix, i.e, k f r ac = 10km . This set-up is illus-
trated in Fig. 5.11a. The matrix is homogeneous and is assigned km = 1. The domain is gridded
with 10025 matrix cells and 884 discrete fracture cells. The coarse grid consists of 15 matrix and
7 fracture cells. The coarse grids of both domains and the corresponding fracture dual-grid are de-
picted in Figures 5.11b, 5.11c and 5.11d respectively. The field is subjected to a line drive of 4 injector
wells spaced equidistantly along the y-axis at [x = 0.05, z = 0.35] and 4 low producer wells placed at
mirrored locations along [x = 0.95, z = 0.05].

(a) Fracture Permeability (b) Matrix Coarse Grid

(c) Fracture Coarse Grid (d) Fracture Coarse Dual-grid

Figure 5.11: 3D test case permeability map, and coarse grids for matrix and fracture domain. Note that the matrix is
homogeneous and is assigned non-dimensional permeability k = 1.

The MS-DFM result without iterations and converged reference solution are depicted in Fig.
5.12. Here, the MS-DFM approximation without iterations fails to correctly capture the effect of the
sealing fractures in first instance. However, applying the iterative solving strategy, MS-DFM rapidly
converges to the fine scale reference. By means of isobar plots, figures 5.13a to 5.13c illustrate the
MS-DFM solution after 0, 2 and 10 iterations, respectively. After only 10 iterations, MS-DFM already
closely approximates the converged reference presented in Fig. 5.13d.
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(a) MS-DFM (no iterations) (b) Reference

Figure 5.12: Comparison between MS DFM approximation with no iterations and the converged reference solution.

(a) MS-DFM 0 iterations
|r |2 = 2.43×10−1

(b) MS-DFM 2 iterations
|r |2 = 5.64×10−3

(c) MS-DFM 10 iterations
|r |2 = 7.12×10−4

(d) Reference

Figure 5.13: Isobar plots illustrating convergence of the MS DFM solution of the 3D test case. Solutions after 0, 2 and 10
iterations are compared with the converged reference solution.





6
Conclusion

In this work, the first multiscale finite volume method for discrete fracture modeling on unstruc-
tured grids was developed and presented for 2D and 3D cases. The novelty of the development is
two-fold: (1) the first MSFV method for fully unstructured 3-dimensional grids and (2) the first for
discrete fracture modeling. Further extension with an iterative solving strategy was also presented,
thus allowing for mass-conservative convergence to the reference solution. The proposed MS-DFM
enables large flexibility in input fracture and matrix grids while at the same time only requiring
geometrical data. Hence, the method allows for a straightforward black box integration within ex-
isting advanced simulators. Moreover, the method follows similar principles to the MSFV method
on Cartesian grids and therefore permits the integration of proven extensions. This is subject of fu-
ture research. Furthermore, the method is proven to be accurate for 2D and 3D test cases, specially
with no iterations. Although currently allowing for any coarse partitioning, we point out the impor-
tance of the coarse grid geometries. As such, optimization of the partitioning and construction of
the dual-grid is topic of future investigation. To conclude, the proposed MS-DFM framework proves
a promising solving strategy for real-field DFM applications.

6.1. Future Work
Proven to be a promising method for field-scale fractured reservoir simulation, the MS-DFM frame-
work opens the door to a whole new domain of research. In this subsection, topics for further
research are pointed out in the direction of method optimization, efficiency and the extension to
complex physics beyond the field of reservoir simulation.

6.1.1. Optimization
With the main objective of this work being method development, MS-DFM can still be further op-
timized to increase efficiency and accuracy. First of all, the algorithm to construct dual-faces was
found to be relatively computationally expensive. Investigation into alternative strategies could no-
tably decrease CPU time. On the accuracy side, optimization of the coarse grid geometry with re-
spect to wells and fractures is of importance. Following the motivation mentioned in section 5.3.1,
gridding strategies proved inevitably linked to the accuracy of the multiscale approximation with-
out iterations. Another important topic related to gridding is the optimization of coarsening ratios,
n f i necel l s/ncoar secel l s . Combined with a consistent coarse grid strategy, an optimal coarsening ratio
would enhance the black-box applicability of the method. Finally, accuracy of the multiscale ap-
proximation can be improved through a two-way coupling strategy between matrix and fractures
when solving for basisfunctions. Although this imposes additional strain on the dual-grid construc-
tion, further research is necessary to perform a reasoned trade-off.
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6.1.2. Efficiency
As an important incentive for the implementation of multiscale, further investigation into efficiency
enhancing strategies is naturally of interest. Current multiscale extensions on Cartesian grids, such
as parallel processing and multi-level multiscale, could prove equally beneficial for unstructured
grids. However implementation of both strategies becomes notably more complex in the unstruc-
tured domain due to overlapping edges and complicated coarse grids. Ultimately, a CPU time com-
parison with industry standard linear solvers is necessary to appropriately benchmark MS-DFM.

6.1.3. Complex Physics & Beyond Reservoir Engineering
A logical next step in the development of MS-DFM is the extension to complex physics. Most notably
physics benefiting from, or requiring, unstructured grids can now successfully be implemented in
a conservative multiscale framework. The extension to incorporate geomechanics, for example, is
of significant interest. Naturally, extensions to flow-related physics as well as proven extensions for
multiscale methods on Cartesian grids are also subject of future research.

The presented method is of course not restricted to the described problem but could be ex-
tended to different physics. To this end, unstructured MS and MS-DFM could be generalized to the
form of algebraic solvers based on connectivities.



A
TPFA formulation comparison

Although a widely implemented method, general consensus about the formulation of the classi-
cal two-point flux approximation (TPFA) is still non-existent. As the various formulations provide
notably differing flux solutions on unstructured grids, a study is conducted into the most accurate
approximation for this work’s purpose.

The two most applied TPFA formulations are assessed. Written for half-transmissibility values,
the equations are described as follows:

(TPFA 1) Ti f =
A f ∗ki

|~vc f |2
~n f ·~vc f [9][14], (A.1)

and

(TPFA 2) Ti f =
A f ∗ki

~n f ·~vc f
[28]. (A.2)

Here, A f is the face area, ki is the scalar value of the cell permeability, ~n f is the unit normal vector
to the face, and ~vc f is the vector from cell center to face center.

To quantify the performance of the two methods, a simple homogeneous test case in a [1×1×0.5]
domain is devised. The grid contains 19882 cells and is subject to a non-dimensional Dirichlet
boundary condition of p = 1 at x = 0 and p = 0 at x = 1. The results are displayed in Fig. A.1.

The solutions do not show any discernible differences when examining the plots. However when
computing the outgoing flux over the domain face at x = 1, the accuracy of the methods varies
greatly. Following Darcy’s law, the analytical flux over the face is expected to be

q = Aλ
∆p

L
= 0.5∗1∗ 1

1
= 0.5, (A.3)

where A is the face area, λ the mobility, ∆p the pressure drop and L the domain length. To find
the outgoing flux in the numerical solutions, the flux over all the cell faces at the specified domain
boundary are summed. This results in a value of q = 0.3670 for TPFA 1 and q = 0.5299 for TPFA 2. As
such we can conclude that TPFA 2 is significantly more accurate for our purpose and, thus, will be
applied throughout this research.

Note that in the case that ki is a tensor, it can be projected on either ~n f or on the unit vector
of ~vc f . As only scalar values for permeability are used in this work, further investigation into the
different projections is not relevant and therefore subject of future research. However, preference is
given to projection on ~n f . This due to the fact that Gauss’ theorem defines flux direction as normal
to the cell boundary. Additionally, matrix cell interaction is not forced through a common interface
because flow through an intermediate cell is physically not restricted in the targeted applications.
Therefore, we obtain the formulation as presented in Eq. (2.4).
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32 A. TPFA formulation comparison

(a) TPFA 1 (b) TPFA 2

Figure A.1: Top view of 3D test case for comparison of TPFA methods



B
Verification pEDFM: Complex 3D Test Case

The fine scale DFM simulator was also implemented to verify the newly developed Projection-based
Embedded Discrete Fracture Model [27]. pEDFM provides a significantly improved alternative to
the classical EDFM approach where the new model accurately captures the effects of both highly
permeable fractures and flow barriers. The method is described and extensively proven in [27].
By adapting the fracture-matrix connectivity through the projection of fractures onto matrix cell
faces, pEDFM adds additional connections to fractured matrix cells, their neighbors and fracture
cells. Through this projection strategy, the method also reduces to the traditional discrete fracture
model when fractures are at matrix interfaces. In the cited work, to show pEDFM’s general validity, a
complex 3D test case with 3 heterogeneous fracture sets is devised. The permeability and geometry
of the fracture sets are depicted in Fig. B.1. Non-dimensional Dirichlet boundary conditions of
p = 1 and p = 0 are imposed on the left- and right-hand side, respectively. The structured grid with
pEDFM consisted of 106 matrix cells and 23381 fracture cells. The unstructured grid for DFM has
999933 matrix cells and 32978 fracture cells. Note that these dimensions are matched as accurately
as possible considering the unstructured gridding restrictions.

The pressure results are depicted by means of isobar plots in Fig. B.2 and the solutions are in
good agreement.

Figure B.1: Illustration of the complex fracture networks and their permeability in log scale.
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(a) p-EDFM (b) DFM

Figure B.2: Comparison of DFM and pEDFM with isobar plots of complex 3D test case.
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