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Abstract

This thesis demonstrates, that bathymetric data improves data imaging results of full wave-
field migration using different acquisition designs. The algorithm gets more stable by con-
straining the inversion with the sea bottom information, especially in case of large source
and receiver spacings, without making compromises on image quality. Not using the pro-
posed method will result in uninterpretable images, if the topography of the seafloor gets too
complex.

In this thesis it is proposed to use an autonomous underwater vehicle (AUV) to acquire
the bathymetry. The quality of the bathymetry is highly dependent on the ability to ade-
quately localize the AUV. Therefore a terrain based navigation system was developed based
on Kalman filters. It is shown that using a Kalman filter combined with sparsely sampled sea
bottom information was of advantage to locate the vehicle at its true position. This is not
possible with just using the inertial navigation system of the AUV.
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Chapter 1

Introduction

Towards sparse aquisition with AUVs deals with the question if autonomous underwater
vehicles (AUVs) can be of value for the seismic industry. In this work, we want to explore
if data regarding the sea bottom topography coming from AUVs can be of aid to the newest
state of the art depth imaging algorithm called full wavefield migration (Figure 1-1).

Full wavefield migration [Berkhout and Verschuur, 2011] is a recently developed depth imag-
ing technique. It includes multiple scattering effects into the imaging process by inverting
for a model of reflectivity in depth. Therefore multiples, in conventional imaging techniques
considered as noise, are hereby considered as signal which are accounted for in the model-
ing using propagation and reflection operators. Nevertheless inversion based algorithms are
always of uncertain nature, prone to local minima and the end result is often dependent on
apriori information. The apriori information can be used to constrain the inversion leading
to the desired approximate of the truth. In this work we consider the case of seismic data
acquired in a marine environment with a complex sea bottom topography. We analyze how
this environment will effect the inversion results and how bathymetric data acquired by au-
tonomous underwater vehicles can be beneficial in order to create a clean seismic image of the
subsurface. Furthermore we observe the proposed method for different acquisition settings
with different sampling of sources as well as receivers along the surface.

To make AUVs beneficial for seismic surveys, the bathymetric data has to be of good quality
which is highly dependent on the accuracy of the depth measurement as well as the accuracy of
the positioning of the vehicle. Since underwater the global positioning system (GPS) signal is
not available, it is a big challenge to relate depth measurements to correct spacial coordinates.
Therefore an accurate navigation system is inevitable to create high quality sea bottom maps
for the seismic industry but also for other industries from military to construction. We not
only use the sensor data, but also the measured depth information and thereby create a more
accurate positioning method of the AUV.

This work is structured into a general introduction (Chapter 1), a section concerning the AUV
navigation system (Chapter 2) and a section regarding how to implement AUV data into full
wavefield migration (Chapter 3). Last but not least, a final conclusion is given (Chapter 4).
Chapter 2 and Chapter 8 can be read separately from each other.
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2 Introduction

Water surface

>

S Seafloor (low wavenumber information)

M Seafloor (true)

Figure 1-1: An AUV maps the sea floor during a seismic survey
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Chapter 2

AUV Navigation

2-1 Introduction

AUVs are widely used by various industries, scientific institutions and military organiza-
tions in order to perform tasks from inspecting steel constructions underwater to creating
bathymetric maps. Just recently AUVs started being used for deploying ocean bottom
nodes on the seafloor, for ocean bottom seismic surveys to perform reservoir monitoring
tasks [Tsingas et al., 2017]. Like mentioned in Chapter 1, especially for mapping tasks the
knowledge regarding the position of the vehicle is an essential requirement since it is of high
importance to assign the measurement quantities, in our case the specific depth levels, to the
right coordinates. Unfortunately we cannot rely on GPS measurements as underwater GPS
signals cannot be received [Taraldsen et al., 2011]. This leads to the fact that the AUV has
to frequently be brought back to the sea surface to re-calibrate its actual position. We try to
improve the positioning of the AUV by making advantage of its sonar system used during the
mapping process itself. Therefore we consider the case of already existing sparse sea bottom
data, acquired by surface vessels or seismic surveys.

In this chapter we first give an introduction on the theory of Kalman filter based navigation
(section 2-2). Secondly an explanation of the terrain based navigation algorithm is given
(section 2-3), followed by the results achieved (section 2-5).

2-1-1 AUV sonar sensors

Several sonar systems are available today, applied for various types of applications. One
system is the multi-beam echo sounder (MBES) [Hammerstad et al., 1993] which is mostly
deployed by surface vessels. It transmits a narrow acoustic pulse from the ocean surface to the
sea bottom and makes statements regarding the water depth by listening to the reflections.

Another type of sonar system is the side-scan sonar (SSS) [Glynn and Buffman, 1996] which
has the main purpose of illuminating the seabed to detect objects and is mainly used by
AUVs. This is done by transmitting a beam typically 45° wide, perpendicular to the sailing
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4 AUV Navigation

direction of the vehicle. Conventional side-scan sonars cannot measure absolute water depth
due to single acoustic sensors receiving the reflected signal.

If one wants to record the water depth using a side-scan, an interferometric side-scan sonar
(ISSS) [Sintes, 2002] has to be applied which works with multiple separated sensors in an
array. The depth can be calculated by determining the direction of the reflection point in
combination with the arrival times at the receivers. In this work we assume to operate an
AUV using ISSS with a beam illumination of 45° which goes perpendicular to the sailing
direction.

2-2 Kalman filter based navigation

2-2-1 States, predictions and measurements

The Kalman filter introduced by [Kalman, 1960], is a recursive algorithm which combines in-
formation to make estimates of a system. The Kalman filter is a valuable tool if measurements
are available from sensors and the system can simultaneously be described by mathematical
models. In this work a Kalman filter was set up as the best possible estimator for underwater
navigation which combines sensor data from the underwater vehicle with data acquired by
the vehicle regarding the underlying topography. This is done while taking into account the
uncertainties of the system which have to be quantified. For the case discussed in this work,
the state Zs, of the to be located AUV would the position (x,y, z), as well as the operating
velocity (vg,vy,vs):

_UZ_
To make a prediction for the position and velocity at ¢ + dt we can make use of the kinematic
equations. To do so, a state prediction matrix F' is set up which converts the state at time
step t to a prediction at time t + dt:

1 00d 0 O
0100 dt 0
p_ |00 1 0 0 df (2:2)
0001 0 0
0000 1 0
000 0 0 1]

By multiplying the state prediction matrix F with the state vector ¥y, a prediction Z,, ,,
can be made of position and velocity at time ¢ 4 dt:
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2-2 Kalman filter based navigation 5

'fthrdt = Ffst (2'3)

This predicted state will later on be compared with the data received from sensors of the
AUV. The data Z;44 is stored in a vector that in our case has the same dimensions as the
predicted state:

Zirdr = (2-4)

The concept of states, predictions and measurements is visualized in Figure 2-1.

£3 state

[0 measurement

Q prediction

5
Zrydt

|

acquire measurement

Figure 2-1: States, measurements and predictions

The question is given the prediction 7, ,, and measurement Z 4, where to position Zs,, .
In order to answer this question, uncertainties in the prediction as well as the accuracies of
the measurements have to be quantified.

2-2-2 State uncertainties, prediction uncertainties and measurement accuracies

To describe uncertainties and accuracies in the system, covariance matrices are used. Thereby
we use the term accuracies related to measurements and uncertainties related to predictions
and the state. Covariance matrices are not only describing the variances of the states but also
how the different states depend on each other. In our three dimensional case, the covariance
matrix can be defined as follows:
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AUV Navigation

Ozx Oxy Ogz Ozv, Oz, Ozv,
Oyz  Oyy Oyz  Oyvy,  Oyvy  Oyov,
Z | 9zz Ozy  Ozz  Ozuy  Ozvy  Ozu; (2_5)

ij Over Ovzy  Owvgz  Owgugy  Ovguy  Owvgou,

Ovyz  Ouvyy Ouvyz Ovyvg  Ovyvy  Ovyu,

|Ov.z Ov.y Ov.z Ovzve Ovzvy  Ovzvg |

In Figure 2-2, a Gaussian blob which describes the covariance o, between the two
variables z and v, is shown. You can think of the blob as a region of likelihood where a
high color intensity stands for a high probability, while a low color intensity stands for a low
probability. In Figure 2-2 it can be seen, that an increase in variable v, usually goes within
an increase in variable x. This is what we would also expect. A positive change in velocity
in a certain direction will also result in a positive change of position in the same direction.

Vx

Figure 2-2: Joint variability of two variables. In this case the position and velocity in x direction

Accuracies of the measured state R as well as the uncertainties in the predicted state P, are
both defined using covariance matrices. Similar as the prediction derived from the previous
state, the uncertainty in the prediction is derived using the uncertainty of the previous state

P, as well as the term BQB'

P, . =FP,F' +BQB' (2-6)

Pt+dt
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2-2 Kalman filter based navigation 7

While Q consists of accelerations which are describing the uncertainties of the environment like
e.g. currents, B is a conversion matrix with information on the timestep. For our navigation
problem, B and @ would have the following shape:

dt? ]
o % o
0 0 <%
B=1u o (2) (2-7)
0 dt 0
i 0 0 dt_
a;
Q= al (2-8)
a?

The values for a;, ay, a. are hereby the maximum accelerations caused by the local environ-
ment that we would expect.

2-2-3 Kalman gain
Knowing the uncertainty of the predicted state P, as well as the accuracy of the measured
state R, we can now weigh on the prediction and measurements in order to determine the

new state with its uncertainty. Therefore we first construct a weighting matrix based on the
prediction uncertainties P, and the measurement accuracies R:

P
K= ptx (2-9)

This weighting matrix K is called the Kalman gain and can be used to update the state Zs, , ,,
as well as the state uncertainties P as seen in Figure 2-4:

Forom = By + K(7— &) (2-10)
P,=P,—KP, (2-11)

It can be seen, that if a value of the measurement covariance matrix of R is very large
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8 AUV Navigation

compared to the value of the prediction covariance matrix P, the corresponding term in the
Kalman gain will converge to zero which means the algorithm honors the prediction instead of
the measurement. On the other hand, having a large uncertainty in the prediction compared
to to the accuracy of the measurement will lead to a Kalman gain close to one, which will
result in honoring the values of the measurement 7 instead of the prediction #,. This is shown
in Figure 2-3 and Figure 2-4. The new state s, ,, with its uncertainty P, shown in green is
calculated based on the prediction 7, ,, and the prediction uncertainty P, shown as a blue
Gaussian blob, as well as the measurement Z;, 4 and the accuracy in the measurement R
shown as the yellow blob.

£ state

O measurement

S
& +dt
Q© prediction

Zpar
O

(-

X t

Figure 2-3: Prediction uncertainty (blue), state uncertainty (green), measurement accuracy (yel-
low)

£3 state

=

St+dt
3

&

X xSt

Figure 2-4: Updating state and state-uncertainty
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2-3 Terrain based navigation (TBN) 9

2-3 Terrain based navigation (TBN)

We reintroduce measurement vector z' = (z,y, z,vx,vy,vz)T. Thereby the operating water
depth z is acquired by pressure sensors and the velocities v, vy, v, are acquired by the inertial
navigation system (INS) of the vehicle.

In order to get the (z,y) coordinates of the AUV we make use of seabed topography data from
existing bathymetry. This information about the sea bottom could come from the previously
acquired seismic data which would have a very low lateral resolution in the crossline direction.

2-3-1 Low wave number approach to find x,y

The pre-existing data is assumed to be sparsely sampled with a spatial resolution of several
10ths of meters. This will lead to a low wave number topography (see dashed line in Figure 2-
5) where the vehicle is navigated on. Of course, we would also expect topographic behaviour
containing higher wave numbers (see solid line in Figure 2-5), which we set out to map
correctly).

Figure 2-5: Low wave number approach

We assume that

1. the sparsely sampled data gives correct relations between water depths and coordinates,
2. the vehicle operates in constant height relative to the seabottom, and
3. the measurements coming form the AUV are taken perpendicular to the vehicle.

The depth levels of the interferometric side-scan measurements mes (shown as the triangles

on the orange line in Figure 2-6) are being compared to the topography of Zmap in the
surrounding area of 7, ,. Therefore we set up the following objective function J which

defines the difference between Z,eqs and Zmap for points (x,y) in the area around the point
(Tps Yp)-
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AUV Navigation

J(SL‘, y) = ’)/[(l‘ - ‘TP)Q + (y - yp)2] + Z[Zmap(xvyai) -

We include a weighting factor v which acts on the distance between
point (xp,y,) (green point in Figure 2-6). This is done to let the

—

Zmeas(1)]? (2-12)

the (x,y) point and the
algorithm should honor

values rather close to the prediction if similar depth differences are present.

The z and y values where J is minimal are now being extracted and set as the new positional

values in measurement vector Z (yellow point on Figure 2-6).

It has to be noted that the point to be substltuted is not correct due to the previous explained
high wave number deviations between Zmeas and Zmap This is illustrated in Figure 2-6 where
the yellow dot does not exactly positional itself on top of the true position represented by the
orange dot. However this high wave number effect will average out over multiple measurements

in the Kalman filter.

Z’”ﬂp =

60»“7?

Zmeas 1 |
.

-

@ prediction
true position
position where J(x,y) =

Zmeas n

min

.

Figure 2-6: Terrain based navigation scheme
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2-3 Terrain based navigation (TBN) 11

2-3-2 Quantifying measurement accuracies in TBN

Since the main part of the Kalman filter is to quantify uncertainties, the following approach
was used to quantify the spatial variances and covariances of matrix R acting on the (z,y)
estimates of measurement vector 2.

If positional information would be be acquired by GPS, the uncertainties would be of static
nature and strongly depend on the accuracy of the device itself as well as its calibration. Since
comparability between measured depth and the available sea bottom data is highly dependent
on the topography of the seafloor we propose a dynamic change of accuracy which we set to
be inversely dependent on the gradient of the bathymetry.

If the gradient is not parallel to the (x,y) axis (illustrated in Figure 2-7), it will lead to
dependencies between the spacial variables and the covariances o, and oy, will be non zero.
Therefore a coordinate transformation is applied.

The variances along the (a,b) axes of Figure 2-7 are:

Rap = [J““ 0] (2-13)

Hereby o, is the variance in the direction of the steepest descent and oy, the variance of the
direction perpendicular to the steepest descent. We define these variances as follows:

2 2
(6 (6
dy ox

oy ox

Oaa

We can now back transform the values contained in R, into the spatial variances and co-
variances related to the original orientation of x and y contained in matrix R. For this we
define the conversion matrix M with £ being the direction of the steepest descent:

M — [sin,@’ cosﬂ] (2-15)

cosf3 —sinf

Applying the following matrix multiplication finally leads to the R, values which can than
be substituted back into the measurement accuracy matrix R:

R., = MR, M " (2-16)

R,y can now be substituted into the spacial variance and co-variance parts of R which is
than used to calculate the Kalman gain K after equation 2-9. The updated Kalman gain can
now be used together with the measurement vector Z containing the substituted positional
values to estimate the new state @, .

August 9, 2018



12 AUV Navigation

O measurement

_ Rab = Gaa 0
EH"“"'“--E._%_"%_ 0 Opp —

Figure 2-7: Terrain dependent uncertainties: the uncertainty increases if gradient is small

2-4 Model set up

In Figure 2-8 the low wave number sea bottom model can be seen with the true path of the
AUV covering the area. The starting point of 50 m in x direction and 50 m in y direction
was chosen. The seabottom has a wavelength of 150 m in the y direction and a slope in the
x direction which could represent a shelf with a steepness of 10%.

In order to test the algorithms efficiency, an error to the velocity measurements of the INS is
introduced which is set to be randomly distributed between 0 m/s and 0.2 m/s. This velocity
error will result in a growing positional error between estimated state and true position and
therefore the TBN is used in order to restrict this effect from happening. The algorithm
recognizes the fact that Zmeas is not similar to Zmap. It will set the positional values in the
measurement vector closer to the true position and prevent a drastic increase of the error
between the true and the estimated position.

To test the robustness of the algorithm, different high wave number components with different
amplitudes where added to the topography. A wavelength of 40 m was added with amplitudes
of magnitude 1 m and 3 m.
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2-4 Model set up 13

Path of the AUV

500 — 120

O©topography
+ frue

450

400
=100

350

300

y-coordinate {m)
)
5
S
waterdepth [m]

5]
=)

150

100

0 100 200 300 400 500 600
x-coordinate (m)

Figure 2-8: Low wave number model of sea bottom with true path of AUV used for all simulations
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For running the simulation, the parameters in table 2-1 were chosen:

Description Parameter | Value
number of time steps nt 1170

time sampling dt 1s

initial x-position 0 50 m
initial y-value Yo 50 m

true initial x-position 04 re 20 m
true initial y-value Y0, e 50 m
initial velocity Vo 3m/s
maximum x acceleration | a, 0.16 m/s?
maximum y acceleration | a, 0.16 m/s?

Table 2-1: Table of Parameters.

We chose a weaved path to let the AUV cover the whole map, where the propagation direction
of the vehicle is set to be parallel to the axes for simplicity reasons. Also we assume to have
no vertical measurement errors and the vehicle operates with a constant height of 30 m over
the sea bottom. Assuming a side-scan angle of 45°, a coverage of 30 m to each side of the
vehicle is achieved. Therefore driving weaves with a separation of 50 m will give a sufficient
overlap of 10 m, ensuring no void space in the data.
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2-5 Results 15

2-5 Results

We now show the results achieved using TBN. First (section 2-5-1) we compare a situation
where we do not use seabottom information but just the information coming from the INS
of the AUV, with the TBN approach. Secondly (section 2-5-2) different high wave number
maps are tried out to test how stable the algorithm is for cases of big deviations between the
measured and the apriori information. At last (section 2-5-3) the case was observed where
a starting error between the first estimated position and the true position was introduced.
In all the shown simulations every 10th iteration is visualized of a total number of 1170
measurements.

2-5-1 Comparison: INS only and TBN

The following results (Figure 2-9) were achieved using just the velocity data from the INS and
the predicted values using the kinematic equations in the prediction matrix. It can clearly
be seen that the positive INS error introduces the growing positional error between the true
position and the estimated state. The vehicle is not able to prevent the error from growing.

Path of the AUV

> topography
*  true

-] 100

y-coordinate (m)
waterdepth [m]

60

LN NS S S S N S
TR TR T T 50

40

x-coordinate (m)

Figure 2-9: Navigation result: using INS data only is showing an increasing positional error
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16 AUV Navigation

Now observing the result (Figure 2-10) using the proposed terrain based navigation approach,
it is obvious that the positional error does not grow like in result (Figure 2-9). It can nearly

perfectly orientate itself at the terrain data, preventing the INS velocity error to blend into
a positional error.

Path of the AUV

500

450

400

350

300

y-coordinate (m)
)
5
S
waterdepth [m]

5]
=)

150

100

0 100 200 300 400 500
x-coordinate (m)

Figure 2-10: Navigation result: terrain based navigation: TBN prevents positional error from
growing
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2-5 Results 17

2-5-2 High wave number results

Now a more realistic model is shown where the true model does differ from the sea bottom
data used for the orientation. Looking at the result in Figure 2-11 where wavelengths of 40
m and amplitude of 1 m where added, it can be observed that the algorithm is still stable,
and it still prevents a spread from the true position to a position which is far off.

Path of the AUV

y-coordinate (m)
waterdepth [m]

x-coordinate (m)

Figure 2-11: Navigation result: High wave number approach 1 m amplitude and 40 m wave-
length

In the following Figure 2-12 the high wave number result is shown with inducing higher
amplitudes of 3 m. It can be seen that the result is worse than with the 1 m amplitude where
the topography doesn’t differ too much from the expected map. At specific points, positional
errors between estimated and true position of up to 10 m can be observed. However, 3 m
amplitudes on 40 m wavelengths would mean slopes of more than 30% at most of the area
which is far from realistic.

August 9, 2018



18 AUV Navigation

Path of the AUV

y-coordinate (m)
waterdepth [m]

x-coordinate (m)

Figure 2-12: Navigation result: High wave number approach 3 m amplitude and 40 m wave-
length showing increased errors compared to 1 m amplitude model

2-5-3 Starting error

Now we observe how the algorithm behaves if the first state is set to a wrong position. In a
realistic scenario this will often be the case if the AUV transits from one measurement area
to another measurement area. We still use the positive INS velocity error.

To show how the results would look like, not using topography data, we show the results only
using the INS data. This is shown in Figure 2-13.

It can be seen, that the AUV is unable to correct its position to the point where the measured
depth is also the true depth. Furthermore, we can see the same behaviour observed in section
2-5-1. With time the INS velocity error will induce a growing positional error. Running the
simulation using TBN gives the result shown in Figure 2-14. It is clearly visible, that from
the beginning, the assumed position of the state converges against the true position.

In the following Figure 2-15 the result is shown where we combine the high wave number ap-
proach with a false starting positioning. Also in this case, the AUV can successfully minimize
the error between estimated and true position.
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2-5 Results 19
Path of the AUV
500 — 120
> topography
+ true

450 Ji10
400

=1100

350

y-coordinate (m)
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[=] (=3
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150

100

] 100

300
x-coordinate (m)

Figure 2-13: Navigation result including starting error: INS only is not able to find out true

position
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20 AUV Navigation

Path of the AUV
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y-coordinate (m)
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x-coordinate (m)

Figure 2-14: Navigation result including stating error: TBN showing ability to find out true
position of vehicle
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Path of the AUV
500 — 120
450 Ji10
400
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8
5
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=]
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x-coordinate (m)

Figure 2-15: Naviagtion result including starting error: high wave number model (ISSS-TBN)
showing ability to find out true position of vehicle
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22 AUV Navigation

2-6 Conclusion

It was demonstrated, that the by an AUV recorded sea bottom during a mapping task can be
a valuable source of information to improve the positioning of the AUV. By neglecting the x
and y information obtained from depth information, the AUV is unable to correct its position.
If the position of the vehicle is not correct, it is impossible for the AUV to get to know its
true position with just making use of the velocity information of the INS. Furthermore when
there are systematic errors in the data coming from the INS it will induce an error between
the actual position and the estimated one. This can be prevented using the proposed terrain
based navigation approach based on the Kalman filter. Furthermore it could be shown that
high wave number fluctuations which differ from the used low wave number information does
influence the positioning in a negative way if the added fluctuations have high amplitudes.
However, one has to go to unrealistic scenarios (30% slopes) to get deviations larger than 10
m.

2-7 Discussion

The results of Chapter 2 showed clearly that correction regarding position during bathymetric
mapping tasks could successfully be improved.

Nevertheless this method can only be applied if data about the sea bottom topography is
available and of sufficient quality, if this is not the case the method cannot be applied. In
this case a SLAM like approach [Hammond and Rock, 2014] would be recommended where
the AUV detects characteristic points of the seafloor which it aims to recognize again and
subsequently rearranges the measured points. But also this method has its limitations as it
assumes to have recognizable characteristic objects in the water which doesn’t have to be the
case in reality. This makes it also prone to errors if the setting is not the right one. Therefore
we can always recommended to perform an evaluation regarding the topography and available
data, before choosing the navigation approach.
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Chapter 3

Full Wavefield Migration

3-1 Introduction

In Chapter 8 we are going to observe how seismic imaging can be improved by incorporating
multiples into the imaging process. Therefore an imaging algorithm is deployed which uses not
just primary reflections but also multiple reflections to create images of the subsurface. First a
brief introduction into seismic imaging (section 3-1-1) and multiple reflections (section 3-1-2) is
being given, followed by an explanation of the imaging algorithm(section 3-2). Afterwards the
approach (section 3-3) is being explained with which the imaging improvement was achieved
(section 3-4).

3-1-1 Seismic imaging

Seismic imaging is used to create interpretable images of the subsurface for various appli-
cations from oil and gas exploration to COs storage in the subsurface. In marine settings
the conventional way is to acquire data from a ship through injecting acoustic waves into
the subsurface by airguns. The wavefield gets reflected at boundaries of different material
properties in the subsurface and travels up to the surface, where it can be recorded by arrays
of hydrophones. This measured data, does of course not represent the true geometric rela-
tions of the geology and has to be processed. Seismic depth imaging aims to create an image
from the recorded data, which can be interpreted structurally in terms of lithology as well as
quantitatively in terms of elastic properties.

During conventional imaging, we make use of back-propagation of receiver wavefields,
forward modeling of source wavefield and subsequently applying an imaging condition
[Claerbout, 1971]. This imaging condition is most commonly a spatial cross correlation be-
tween receiver and source wavefield at every step in time. Furthermore another class of
imaging algorithms has to be mentioned called inversion based imaging, where the acoustic
response acquired in the field is being simulated by a model which is aimed to represent the
true relations of reflectivity in the earth.
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3-1-2 Multiples

In conventional seismic migration all signal is considered to come from primary reflections.
Primary reflections are signals which reflected just once in the subsurface and getting trans-
mitted back to the surface. However, the acquired data contains a lot of energy that reflected
multiple times in the subsurface. These signals are called multiples. Particularly in marine
seismic acquisition, multiples have a strong impact on the data since the water air interface
leads to a nearly perfect reflection. Another important interface in creating multiples is the
water sediment interface at the sea bottom. A lot of the energy gets reflected due to the big
contrast in seismic velocity and density between sediments and seawater.

Multiple reflections can be classified as surface related multiples and internal multiples. While
surface related multiples are reinjected into the earth at the surface, internal multiples expe-
rienced multiple scattering at interfaces below the surface level.

In conventional seismic imaging multiples are considered as coherent noise which have to be
removed from the data. Recently, new methods have been developed to include multiples into
the imaging process [Berkhout and Verschuur, 2011].

3-1-3 Sea bottom effect on seismic data

To observe how a wavefield in the subsurface is effected by a complex sea bottom topography
we created two velocity models and let a wavefield from the surface propagate downwards by
using a finite difference scheme. To simulate the air water contact a free surface boundary
condition was implemented to create surface related multiples. We than recorded the down-
going wavefield below the sea bottom over a certain time interval. This was done in order
to get an idea how the transmitted wavefield through the sea bottom with its surface related
multiples will differ between flat (model B - Figure 3-1) and complex sea bottom (model A
- Figure 3-1). The velocity models used to create the simulations are shown in Figure 3-1.
Virtual receivers were then created at a depth level of 150 m. Since no reflectors are present
under the sea bottom and an absorbing boundary condition was implemented on the lower
boundary of the model, the wavefield that gets recorded at the receivers is solely of downgoing
nature.

The created data is shown in Figure 3-2. It is clearly visible that a complex sea bottom
will create complex wavefield propagation effects resulting in complex shaped wavefronts and
diffractions (model A - Figure 3-2). This has to be accounted for in the imaging process,
which is the objective of Chapter 3 of this thesis.
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Figure 3-1: Velocity models to create downgoing wavefield under sea bottom
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Figure 3-2: Comparison downgoing wavefield under sea bottom
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3-2 Full wavefield migration

Full wavefield migration [Berkhout and Verschuur, 2011] is a depth imaging technique that
makes use of multiple scattering effects in the subsurface. It uses an inversion based approach
where measured data in the field is compared with a built model which should approximate
the true model in depth, including all surface as well as internal multiples. It can be com-
pared to full waveform inversion (FWI) [Tarantola, 1985]. However, where the inversion in
FWI is done for seismic velocities in depth, full wavefield migration inverts for reflectivities
in depth. The inversion in FWM is done by using one-way phase-shift operators based on
a velocity model as well as reflectivity operators based on a model of reflection coefficients
at each depth level. Each iteration of a propagation in the downward direction followed
by a propagation in the upward direction will generate one additional order of scattering.
Thereby an arbitrary amount of scattering can be introduced in the modeling process. Dur-
ing the modeling a smooth velocity model can be used. Different to reverse time migration
[Baysal and Sherwood, 1983], the velocity model in FWM will just describe propagation ef-
fects, and is not responsible for generating scattering effects, as these are described separately.

3-2-1 Full wavefield modeling

In the following section the modeling process being the kernel of the inversion is being ex-
plained.

We make use of the matrix notation after [Berkhout, 1982]. Outgoing wavefields are hereby
defined as @@ wavefields and incoming wavefields are described as P wavefields. Thereby the
monochromatic component of a wavefield can be described as a scalar, Pji(2m, 2,) where j
is defining the current grid point and k is defining the shot number. The depth level where
the wavefield is observed is defined as z,. The depth level where the wavefield got emitted
is defined as z,. One shot record can be described as ﬁk(zm,zn,w) and seismic data set
containing multiple shots can be described as a matrix P (2, 2, w)

A superscript + will hereby refer to the downgoing part of the wavefield while the superscript
— refers to the upgoing part of the wavefield. Qﬁ would than describe the outgoing downgoing
wavefield at depth level m, which can be described as the superposition of the transmitted
upgoing wavefield and the reflected downgoing wavefield. Similarly, Q}‘n would describe the
outgoing upgoing wavefield at depth level m which would then consist of the transmitted
upgoing and reflected downgoing wavefield at depth level m.

Q+(zm) = T+(Zm)]3+(zm) + Rm( Zm)
- U o)

_ (3-1)
Q (zm) = T (2m) P~ (2m) + R (

2m) P (
Zm) PH(
The outgoing wavefields will than be transformed into incoming wavefields at the next depth
level after the propagating operator W acts on the wavefield.
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3-2 Full wavefield migration 27

At every depth level z,,, a reflectivity operator R(z,,) acts on the incident wavefield P.
Thereby the notation R"(z,,) stands for the reflectivity acting on the upgoing incoming
wavefield ]3,; (zm), and RY(2,,) the reflectivity acting on the downgoing incoming wavefield
]3,;" (2m). This is illustrated in Figure 3-3.

Zm—1 ===~ -==-
Q+(Zm—1)
RU
Zm Rﬁ
@_ (Zm+1) P (zmy1)
Zmtl mm—m el === =R ama -

Figure 3-3: Forward modeling scheme used in the full wavefield migration scheme
[Davydenko, 2016]

With these two sets of models we can simulate the upgoing wavefield with an arbitrary order
of scattering included. This recursive wavefield modeling process is extensively described in
[Berkhout, 2012].

3-2-2 Inversion

By making use of the described full wavefield modeling, a synthetic data set can now be
generated which can then be compared to the measured data. This procedure is applied
using a multi-frequency approach where first the lower frequency parts of the spectrum are
inverted for and later on the higher frequencies are added until the inversion is completed for
the full bandwidth of the data.

The minimization process can be described with the following cost function 3-3.
JRY,RY) =3 || Prcas(20, 20) = Py 04(20, 20) |13 (3-3)

This cost function is being minimized in a conjugate-gradient scheme.
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3-3 Approach

To test if sea bottom information has a positive effect on seismic imaging by full wavefield
migration we create a synthetic data set.

Therefore a true model of reflectivity was created based on the velocity and density models
(shown in Figures 3-4 and 3-5). The models were created containing several geological layers
and some high velocity anomalies beneath the sea bottom. We introduce a free surface
boundary at the top of the model by inducing a perfect reflector in the reflectivity model at
zp. This reflector should represent the water air interface at the sea surface. Thereby the
downgoing wavefield at the surface can be described as:

Q% (20) = St (20) + R™(20) P (20) (3-4)

The outgoing downgoing wavefield Q“"(z@ at the surface is represented by the injected source
wavefield ST and the reflected upgoing wavefield at the depth level of the surface zg.

true velocity
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Figure 3-4: True velocity [m/s] model used with the density model to create true reflectivity
model
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true density
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Figure 3-5: True density [%] model used with the velocity model to create true reflectivity
model

Assuming normal incident conditions we can now calculate the reflectivities R depth which
represents the true model we want to invert for. Thereby the reflection coefficient describes
the portion of the energy that gets reflected at the interface from one to another medium and
can be described as shown in equation 3-5:

_ P11 — P22

3-5
P1U1 + P22 (3-5)

Applying this condition for every depth level of our density and velocity models results in the
following model of reflectivity R in depth 3-6.

true reflectivity

0 500 1000 1500 2000 2500 3000 3500
lateral location [m]

Figure 3-6: True reflectivity model used to create synthetic data
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Making use of the velocity and reflectivity models combined with the full wavefield modeling
algorithm, a synthetic data set P, ., (%0, 20) was created which we assume to be the measured
data in the field. In the following Figure 3-7 a shot gather of a source position in the middle
of the receiver line is shown. To create the shot gather a ricker wavelet was used with a
dominant frequency of 25 Hz and a bandwith of 5 Hz to 40 Hz. The four frequency bands
inverted for in the multi frequency approach where 5 Hz - 10 Hz, 5 Hz - 20 Hz, 5 Hz - 30 Hz,
5 Hz - 40 Hz.

Modeled data for middle shotrecord

time [s]

-1500 -1000 -500 0 500 1000 1500
offset [m]

Figure 3-7: Shotrecord of synthetic data

Since inversion results are known to be highly uncertain, constraints can be added, based on
apriori information from different data sources like well data. Therefore the initial models
from which we start the inversion are an essential part in the inversions success. The approach
taken in this work was to include a sharp version of the sea bottom into the smooth initial
velocity model. Furthermore the reflection coefficient at the sea bottom is being calculated
and included into the initial reflectivity model. We assume the impedance contrast between
seawater and first layer is constant over the whole model.

In this work, for each acquisition setting, we ran two types of simulations.
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3-3-1 Normal approach

In the normal approach the full wavefield migration was run with a smooth velocity model.
As an initial reflectivity model, a blank model was chosen containing a perfect reflector on
the surface simulating the water air interface at the sea surface.

In the the Figures 3-8 and 3-9 the initial models for running the inversions using the normal
approach are shown:

velocity model - no seabottom
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Figure 3-8: Initial velocity model for inversion not using sea bottom information
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Figure 3-9: Initial reflectivity model for inversion not using sea bottom information
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3-3-2 Sea bottom approach

To include the sea bottom into the full wavefield migration, the sea bottom topography was
included into the initial models and the inversion was constrained to just update the area be-
low the sea bottom. The sea bottom constrain was achieved by placing the exact sea bottom
reflectivity into the estimated reflectivity model (Figure 3-11) after each iteration. Further-
more the upper part of the true velocity model, containing the sea bottom was substituted
into the initial velocity model (Figure 3-10). This will result in a sharp velocity model in the
area of the sea bottom. Below the sea bottom the velocity model is kept smooth as in the
normal approach (section 3-3-1). Assuming the impedance contrast as well as topography
contrast was assumed right, all the multiples created at this interface as well as the water sea
bottom reflections can be described, and the updating will be focused on the events below.

The following initial models (Figures 3-10 and 3-11) were used to run the information making
use of the sea bottom approach:
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Figure 3-11: Initial reflectivity model used for inversion using sea bottom information
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3-4 Results

3-4-1 Results with varying shot spacing

Figure 3-12 shows the inversion results at 20 m shot spacing. By looking at the result without
including sea bottom information into the initial models we can see that the underlying
structure could be represented correctly. The sea bottom could be imaged correctly but the
image seems to be noisy in lower sections. Furthermore the part at a lateral location between
1500 m and 2000 m at a depth level of 400 m to 500 m is wrongly imaged after 22 iterations.
This is due to the model that converged to a local minimum instead of the global minimum.

Comparing this result to the result obtained using the proposed sea bottom constraint, an
improvement could be observed. It can clearly be seen that it has a positive effect on the
signal to noise ratio. Furthermore the part at a lateral location between 1500 m and 2000 m
at a depth level of 400 m to 500 m is being imaged correctly. Note that the part of the model
including the sea bottom and the overlying grid cells didn’t get updated in the inversion
process and contains the true values of reflectivity.

modeled reflectivity - no seabottom

depth [m]

0 500 1000 1500 2000 2500 3000 3500

lateral location [m]
modeled reflectivity - seabottom

depth [m]

0 500 1000 1500 2000 2500 3000 3500
lateral location [m]

Figure 3-12: FWM comparison with sourcespacing of 20 m
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Observing now the results for shot spacing of 100 m it can be seen, that the conditions of the
image without the sea bottom constraint worsens significantly. The wrongly imaged structure
from the simulations with smaller shot spacing is still not improved and even the first order
sea bottom multiple is getting falsely imaged as a primary. It is also observable that in the
area from 2500 m to 3600 m the inversion result represents the true reflectivity a lot better
than in the area with complex sea bottom as well as complex geology in the area of 500 m
to 2500 m. By looking at the result of the 100 m shot spacing with using the sea bottom
constraint, it can be seen that the image didn’t loose as much quality as the one with using
a blank initial model. The reduction of image quality with increasing shot spacing seems not
as intense with using sea bottom constraints.

modeled reflectivity - no seabottom

0 800 1000 1500 2000 2500 3000 3500

lateral location [m]
modeled reflectivity - seabottom

0 500 1000 1500 2000 2500 3000 3500
lateral location [m]

Figure 3-13: FWM comparison with source spacing of 100 m
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We chose to run the simulation for shot a spacing of 400 m using 60 iterations. This is done
in order to see if there will still be improvements after a very large amount of iterations. If
this would be the case it would just show that constraining the inversion with the sea bottom
would help the algorithm to get a quicker result, but not improve the image quality after all.

Looking at the results for a shot spacing of 400 m we can observe that the inversion gives
an unreliable image. Neither the sea bottom is imaged correctly nor the sections at greater
depths. Strong semi-spherical artifacts can be observed as well as overall blurriness. The blur-
riness of the image is the greatest in the area under the near surface anomaly. The inversion
results in the section between 3000 m and 3600 m with flat sea bottom topography shows an
acceptable image quality, but multiples are still falsely imaged as primaries. Observing the
reflectivity image using the sea bottom constraint we can see that the image still represents
the true model of reflectivity correctly. Even in the area of complex geology and complex sea
bottom the image is clear and has a high signal to noise ratio.

The inversion result in Figure 3-14 is showing that even with a large amount of iterations,
the image quality of the model without sea bottom constraint is still much worse than the
one with the sea bottom constraint applied. Again semi-spherical artifacts around the near
surface anomaly can be seen. Nevertheless a slight improvement in inverting for the sea
bottom reflectivity can be observed. Especially in the area with complex geology, the signal
to noise ratio appears to be much lower using no sea bottom information.

modeled reflectivity - no seabottom

0 500 1000 1500 2000 2500 3000 3500
lateral location [m]

modeled reflectivity - seabottom

0 500 1000 1500 2000 2500 3000 3500
lateral location [m]

Figure 3-14: FWM comparison with source spacing of 400 m at 60 iterations

August 9, 2018



36 Full Wavefield Migration

By observing the objective function (equation 3-3) of the inversions in Figure 3-17, it can be
seen that the difference between total observed data and total measured data is lower during
the inversion using the sea bottom information.

08

07

06

05

[Pmeas - Pmad]

03 I

02

01

number of iterations
Figure 3-15: Objective functions: 400 m source spacing

Looking at the residuals at iteration 60, it is clearly visible that especially the earlier arrivals
are described way better in the model using the sea bottom approach (Figure 3-16). This
makes sense, because there is a lot more energy in the upper reflectors which could be described
better due to correct wavefield extrapolation to the surface.
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Figure 3-16: Residual sea bottom approach
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Figure 3-17: Residual no sea bottom
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3-4-2 Results with sparse source and receiver spacing

In the following Figure 3-18, the result is shown for an acquisition setting using 400 m
source spacing and 80 m receiver spacing. As we can see, using such an extremely sparse
acquisition design, the image result suffers significantly in both images, even though using
the sea bottom constraint gives a considerably better result regarding signal to noise ratio and
correct imaging of the reflectors. Nevertheless it can be seen that a multiple reflection at a
lateral location at around 2000 m is getting imaged as a primary and the underlying reflector
at 400 m depth is not getting imaged. Observing the upper section of the image not using
the proposed method, it is clearly visible that the sea bottom cannot be accurately mapped
using these acquisition settings. This will of course influence the wavefield extrapolation in
the full wavefield modeling to create the modeled shot gather.

modeled reflectivity - no seabottom

0 500 1000 1500 2000 2500 3000 3500

lateral location [m]
modeled reflectivity - seabottom

0 500 1000 1500 2000 2500 3000 3500
lateral location [m]

Figure 3-18: Inversion results 400 m source spacing 80 m receiver spacing
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3-5 Conclusion

It could be shown that knowing the correct sea bottom topography improves the end result
of the full wavefield migration significantly. A high complexity of the underlying geology
combined with a chaotic sea bottom topography can heavily distort the end result of the image
using full wavefield migration. Constraining the algorithm to include the sea bottom after
every frequency step improves the accuracy of the wavefield extrapolation in the modeling
process and therefore the measured data can be described much better with the full wavefield
modeling. The lower values in the objective functions also showed that the data can be
described more accurately using the proposed approach.

Furthermore we can conclude that including sea bottom topography into full wavefield mi-
gration can stabilize the imaging process especially for sparse acquisition set ups. Therefore,
especially in areas where seismic data was acquired without a dense shot spacing, making
use of bathymetric data can be of great value. Furthermore, sparse acquisition can lead to a
much cheaper seismic surveys. Using AUVs can therefore bring cost benefits when it comes
to acquiring seismic data in the future.

3-6 Discussion

This work was done by using synthetic data only. It now can be discussed, if the assump-
tions made in our synthetic data also hold for real scenarios. It was assumed that the exact
impedance contrast from water to sea bottom is known. In a real scenario, if high quality
bathymetric data was acquired by the AUV, there would be no information about lateral
change of acoustic impedance of the sea bottom. It could be discussed if a shallow high
frequency seismic survey would be of advantage. Due to lower frequencies and actual pene-
tration depth into the shallow sediments, near surface anomalies as well as the lateral changes
in impedance contrast of the water sediment interface can be described. Further work can
then be done by including this data into the upper part of the initial model. Nevertheless,
this would bear a lot higher financial resources than operating an AUV to acquire bathymetry
in the area of interest.

Furthermore the data used as measured data was modeled with the same method as deployed
in the inversion. This means that the data modeled from the sea bottom matches perfectly
the measured data. In a real scenario this would not be the case as numerical models are just
simulations with homogenizations applied, which do not truly represent the exact physical
behaviour of the system. To carry out a numerical experiment that closer resembles the real
world, a different model could be used in the creations of the synthetic data. Finally, the
method has to be tested to field data to further inspect the potential and benefits.
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Chapter 4

Final Conclusion

It can be said that bathymetric data acquired by AUVs can be valuable information for full
wavefield migration. The algorithm becomes more stable, and less prone to get stuck in local
minima. Furthermore it allows to do sparse acquisition which is of huge financial benefit.

It could be shown that with increasing geological complexity, a wild seafloor topography can
heavily distort the final image. If this is the case, an improvement can be made by acquiring
AUV data, and reprocess the vintage data with the method proposed in this thesis. The sea
bottom information of seismic data could also be beneficial in order to properly navigate the
AUV using the TBN algorithm.

Furthermore we can conclude that state estimation through INS and side scan measurements
can lead to an improved positioning of the vehicle. Positional errors caused by errors of the
INS sensors can be minimized to a certain point. Furthermore false positioning of the vehicle
itself can be corrected which is not possible by only using the INS data.

Using a Kalman filter for state estimation deploying INS and sonar information during the
mapping process itself, showed to lead to an effective navigation scheme.

Therefore we come to the conclusion, that the use of AUVs has great potential for aiding
the seismic industry providing high quality images. Especially if a very complex sea bottom
topography is present.
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