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Abstract

The Resource Constrained Project Scheduling Problem with a flexible Project
Structure (RCPSP-PS) is a generalization of the Resource Constrained Project
Scheduling Problem (RCPSP). The objective of the RCPSP-PS is to find a
minimal makespan schedule subject to precedence and resource constraints,
while only having to execute a subset of all activities. We present a general
model, which is based on a precedence graph and a task selection graph.
Furthermore, we introduce an exact solution method including procedures
for generating cutting planes and variable reduction. It is shown that both
the lower bound obtained from the linear relaxation, and the computation
time needed to obtain integer solutions are improved using these procedures.

Keywords: Project scheduling, Resource constrained project scheduling
problem, Integer programming, Flexible project structure

1. Introduction

The Resource Constrained Project Scheduling Problem (RCPSP) is an
optimization problem aimed at scheduling activities. It comprises a list of
activities that have to be scheduled, while satisfying a list of precedence
constraints and resource availability constraints. The problem aims at mini-
mizing the makespan of the project and is used in various applications, such
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as assembly scheduling or employee scheduling (Artigues et al., 2008). The
problem was proven to be NP-hard by Blazewicz et al. (1983) and much
research has been done in finding heuristic methods (Pellerin et al., 2019).
Additionally, generalizations of the RCPSP have been studied in great detail
(Hartmann and Briskorn, 2010).

While the RCPSP assumes that all activities have to be executed, this
is not always required. In many applications, like housing construction
(Servranckx and Vanhoucke, 2019), highway project construction (Wu et al.,
2010), modular shipbuilding (Rubeša et al., 2011) and aircraft turnaround
scheduling (Kellenbrink and Helber, 2015), there are multiple ways of com-
pleting a project. For example, in modular shipbuilding, all components
can be installed directly in the ship, or first assembled in a module and
subsequently installed as a whole. This results in an RCPSP that can
be completed by executing only a subset of all activities. This is called
the Resource Constrained Project Scheduling Problem with a flexible Project
Structure (RCPSP-PS).

The RCPSP-PS consists of two sub-problems. First, the decision has to
be made which subset of activities to execute. This is called the activity
selection problem. Secondly, a schedule has to be made with these selected
activities, which gives rise to the activity scheduling problem.

In large assembly projects, the choices of which activity to execute next
is often associated with flow of components and/or material. If these com-
ponents, e.g. a ship hull, cannot be split up, the choices can be exclusive;
only one alternative can be selected from a subset of activities. This is what
we call the exclusivity criterion, which complicates the activity selection
problem as is shown in this paper.

Furthermore, to better represent project scheduling in reality, two prop-
erties are often required. The first is the separation of scheduling and selec-
tion logic. Furthermore, we introduce the concept of independent succession:
a choice to execute a certain activity, can be forced by multiple other activ-
ities.

An example can be given from modular shipbuilding, where a ship is
produced by combining multiple construction modules. For each module,
we have two options: Construct it locally with available materials, or ship
it from another yard. Shipping of modules can be combined, such that we
only need to execute one shipping activity for all modules. Therefore, if
at least one module is shipped, the activity ’shipping modules’ has to be
executed and finished before installing the modules. To model this, we re-
quire both the separation of scheduling and selection logic, and independent
succession.
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Although multiple papers introduce various models for the RCPSP-PS,
there has not been a combination of the exclusivity criterion, independent
succession and separation of scheduling and selection logic. Furthermore,
there is little research on cutting planes and related exact methods for the
RCPSP-PS.

To fill this gap, this paper presents a new model for the selection logic,
based on modifying the model of Kellenbrink and Helber (2015) to add
independent succession. This allows for a simplification of the model, such
that no distinction has to be made anymore between optional activities
and activities that are always executed. Furthermore, an exact solution
algorithm is given. This algorithm uses a variable reduction method based
on the critical path method (Zhou et al., 2013) and two types of cutting
planes. The proposed solutions methods are then evaluated on restricted
instances against the model of Kellenbrink and Helber (2015), and against
each other on non-restricted instances.

In Section 2, we present an overview of the literature on exact methods
for the RCPSP and on different models for the RCPSP-PS. Subsequently,
the problem description and MILP formulation is given in Section 3. The
solution algorithm is given in Section 4, of which the results are presented
and discussed in Section 5. Finally, Section 6 concludes the paper.

2. Literature overview

The RCPSP is a classical optimization problem, introduced by Pritsker
et al. (1969) and proven to be NP-hard by Blazewicz et al. (1983). Since
then, numerous studies have been focused on developing heuristic and exact
solution methods. An overview of this research can be found in, for example,
Pellerin et al. (2019) and Lombardi and Milano (2012). These two review
papers discuss heuristic and exact methods, respectively. In this section, we
focus on exact solution methods for and generalizations of the RCPSP.

The standard RCPSP, without generalizations, is often solved by MILP
solvers or constraint programming solvers (Herroelen, 2009). One way of
reducing the solution space in both methods is variable reduction. For the
RCPSP, this is often based on the Critical Path Method, which defines the
earliest time an activity can start, based on precedence constraints, while
ignoring resource constraints.

Another way of reducing the solution space is by finding better lower
bounds. Stronger lower bounds for MILP problems can reduce the num-
ber of branch-and-bound nodes needed to be explored. For constraint pro-
gramming, optimization can be done by iteratively proving (in)feasibility
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for varying makespans. Stronger lower bounds can decrease the number of
iterations in this process.

Various researchers developed cutting planes for the RCPSP. Two types
of bounds can be derived for the RCPSP: constructive and destructive bounds.
Constructive (or direct) methods directly calculate a bound by relaxing the
problem, while destructive bounds are determined by setting a maximal
value on the objective function value and proving infeasibility; if a schedule
with maximal makespan T is impossible, then T +1 is a valid lower bound.

Brucker and Knust (2000) provide destructive bounds based on con-
straint propagation and linear programming. The constraint propagation
method keeps track of the minimal durations between activities and iter-
atively updates this based on the precedence constraints. The linear pro-
gramming method relaxes the precedence and non-preemption constraints.
Baptiste and Demassey (2004) use the same relaxation and provide addi-
tional bounds based on so-called energetic reasoning and weak versions of
preemption and precedence. Energetic reasoning for the RCPSP is defined
by comparing the demand of resources within a certain time interval with
the supply of resources.

Hardin et al. (2008) provide a class of valid inequalities for the RCPSP
with a single resource. These are based on covers; subsets of activities that
cannot be executed all simultaneously due to limited resource availability.
Furthermore, they give sufficient conditions under which these inequalities
are facet-defining and provide lifting procedures. Other lower bounds for
the RCPSP are given by Haouari et al. (2012), who provide three classes of
lower bounds based on energetic reasoning and an efficient way of generating
these.

A generalization of the RCPSP that enables different ways of executing
activities is the Multi-Mode Resource Constrained Project Scheduling Prob-
lem (MRCPSP) (Talbot, 1982). In this problem, each activity has multiple
execution modes with varying durations and/or resource usage. An overview
of variations and solution methods can be found in Wglarz et al. (2011).

For the MRCPSP, various exact methods are developed. Zhu et al. (2006)
provide a branch-and-cut algorithm that uses both reduction of variables
based on constraint-propagation, and cutting planes based on resource con-
flicts and precedence relations. Araujo et al. (2020) propose two new models
for the MRCPSP and introduce preprocessing cuts based on feasible subsets:
sets of job-mode combinations that can be executed simultaneously. Fur-
thermore, they give a branch-and-cut algorithm that uses 5 types of cutting
planes in parallel.
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The RCPSP-PS is a generalization of the MRCPSP where only a subset
of all activities has to be selected for execution. Both the name of the
problem and the way the selection decisions are modeled vary across the
literature. One of the earliest models was given by Kuster et al. (2009),
who introduce the Extended RCPSP. They model the execution decisions
by introducing a set of active activities: activities that are initially set to
be executed. Substitution activities are introduced for some of these active
activities and these substitution activities can be executed instead of the
corresponding active activities. Finally, the model is completed by adding a
set of dependencies; execution requirements for an activity if another activity
is activated or inactivated. To find good feasible solutions for this model,
an evolutionary algorithm is used.

Kellenbrink and Helber (2015) separate the scheduling requirements from
the precedence requirements, and give a model based on a set of choices and
a distinction between optional and mandatory activities. They call this
model the RCPSP-PS and solve it heuristically using a genetic algorithm.
Each activity has a set of activities it can cause to be selected. Furthermore,
the model includes a MILP formulation that imposes some restrictions on
the selection logic: it is not possible for multiple activities to have the same
activity in the set of activities it can cause to be selected. This restricts the
modeling process.

Tao and Dong (2017) introduce the RCPSP with alternative activity
chains, where they give a single network that defines both the precedence
constraints and the selection constraints based on AND-activities and OR-
activities. An AND-activity is an activity for which all successors have to be
executed and an OR-activity is an activity for which at least one successor
has to be executed. By using a single network for both the precedence and
selection constraints, separation of precedence and selection logic is not pos-
sible; every precedence relationship is equal to a selection relationship and
vice versa. This means that problems where the precedence and selection
constraints do not coincide cannot be modelled with this approach. They
solve this model heuristically using a simulated annealing based algorithm.
In Tao and Dong (2018), they extend this to multiple objectives.

Furthermore, Servranckx and Vanhoucke (2019) present the RCPSP with
alternative subgraphs. This is a model based on alternative subgraphs and
branches; a branch consists of a set of activities, and an alternative subgraph
is a collection of branches of which exactly one has to be executed. This
model also has a single network for both precedence and selection logic and
is solved heuristically by a tabu search procedure.

Finally, Hauder et al. (2020) uses a network with different types of ac-
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Kuster et al. (2009) X X X
Kellenbrink and Helber (2015) X X X X
Tao and Dong (2017) X X X
Servranckx and Vanhoucke (2019) X X X
Hauder et al. (2020) X X X
This paper X X X X

Table 1: Overview of models with a flexible project structure

tivities (OR, AND and OUT) to model both the selection and scheduling
problem, while adding the extension of supporting multiple projects. Besides
the standard objective of makespan minimization, they also consider time
balance and resource balance as objective functions. They provide MILP
formulations for these models and a constraint programming method.

An overview of all models is given in Table 1. It can be seen that
there is not yet a model combining separation of scheduling and selection,
independent succession and the exclusivity criterion. Furthermore, most
of the focus is on heuristic methods. Although 3 papers include an exact
method, for 2 of these it comprises of only an MILP formulation.

3. RCPSP-PS

In this section, the problem is formalized. First, Section 3.1 gives a de-
scription of the problem, which includes a description of the selection graph
with selection groups. Subsequently, Section 3.2 gives a MILP formulation
for the RCPSP-PS. Finally, the activity selection problem is discussed in
Section 3.3.

3.1. Problem description

The RCPSP-PS consists of a set of activities N of which a subset has
to be executed while minimizing the makespan of executing the selected
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activities. The time horizon during which these activities are scheduled is
represented by a set of discrete time periods T . Each activity i ∈ N has a
duration of di time periods. Activities have to be scheduled while satisfy-
ing resource, precedence and selection constraints. The set of resources is
denoted by R. Each resource r ∈ R has a capacity of λr, and each activity
i ∈ N uses kri units of resource r across the whole duration. The prece-
dence relationships are defined by a set of tuples P. For each (i, j) ∈ P, it is
required that activity i is finished before the start of activity j. These rela-
tionships can be represented in a graph by creating a node for each activity
and an edge for each precedence relationship. This graph is called the prece-
dence graph. Furthermore, the set Pj contains all predecessors of activity j
and the set Si contains all successors of activity i in the precedence graph.

In the RCPSP-PS, only a subset of activities has to be executed. To
define the choices on the selection of activities, the concept of selection
groups (denoted by set G) is introduced. A selection group g ∈ G consists
of an activator activity ag and a set of one or more successor activities Sg.
If an activator activity is executed, exactly one of the successor activities
has to be executed, which means that a selection group defines an ‘exclusive
or’-relationship. With these, we also define the set of selection groups with
full precedence H ⊆ G. This set contains all selection groups with a time
precedence relationship between the activator and all successors, i.e., H =
{g ∈ G : (ag, j) ∈ P, ∀j ∈ Sg}.

We define a unit selection group as a selection group g with only one
successor (i.e., |Sg| = 1). This defines a direct consequential relationship; if
activator activity ag is executed, the single successor activity in Sg will have
to be executed as well. An ‘and’-relationship can be modeled by multiple
unit selection groups.

The selection groups can be represented by a selection graph. This is
a graph in which each activity is represented by a node and the selection
groups are represented by directed edges. A single edge denotes that the
source and target activity belong to a unit selection group. Multiple edges
with an arc between them indicate a non-unit selection group, where the
source activity is the activator and the target activities the successor activ-
ities. This is illustrated in Figure 1.

The precedence and selection relationships split up the RCPSP-PS into
two problems. The first one is selecting which activities will be executed.
This is called the selection problem. The next question is when to schedule
the executed activities. This is defined as the scheduling problem.

An example of a precedence graph and a selection graph is given in
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Figure 1: A unit selection group (ag, Sg) = (1, {2}) (left) and a non-unit selection group
(ag, Sg) = (3, {4, 5}) (right).

Figure 2. The selection graph in this example contains 5 selection groups,
with (0, {1, 2}) being the only non-unit selection group. This imposes that
if activity 0 is executed, either activity 1 or activity 2 has to be executed.
Furthermore, if activity 0 is executed, activity 3 has to be executed as well.
Finally, for activities 1, 2 and 3, it follows that if one of them is executed,
activity 4 has to be executed as well.

The precedence graph is very similar, and thus, activities 1, 2 and 3
can only start after the end of activity 0, and activity 4 can only start
after the end of activities 1, 2 and 3, only considering executed activities.
Furthermore, since there is a directed edge between activity 2 and 3, activity
3 can only start after activity 2 is finished, if both are executed. If activity
2 is not executed, activity 3 can start directly after finishing activity 0.

In Kellenbrink and Helber (2015), the selection logic was mainly modeled
by choices, activity causing a choice, and optional activities per choice. Re-
spectively, these are analogous to selection groups, activators and successor
activities. The difference between these concepts is that selection groups
support independent succession. Furthermore, to simplify the model, the
concept of activities caused by another activity in Kellenbrink and Helber
(2015) are not included the presented model, but can be modeled by unit-
selection groups instead. This was done to simplify both modeling and
mathematical analysis for cutting planes, which are presented in Section 4.
Finally, this paper does not consider nonrenewable resources. This was done
since the focus of the proposed solution method is the flexible project struc-
ture. Since nonrenewable resources are not a standard component of the
RCPSP, we exclude this extension from the model.

3.2. Model

To model the problem, we introduce binary decision variables Xit, which
are equal to one if activity i ∈ N starts at time t ∈ T , and zero otherwise.
Let n = |N |− 2 be the number of non-dummy activities. Then, the starting
activity is activity 0 and the final activity is activity n+1. Both of these ac-
tivities have a duration of 0 and the final activity can only be executed after
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Figure 2: Example of graphs.

all other executed activities. Objective function (1a) minimizes the comple-
tion time of the final activity, and thus, the total project makespan. The first
and final activities are always executed due to Constraints (1b) and (1c),
respectively. Note that Constraints (1c) can also follow from the selection
groups. Furthermore, Constraints (1d) make sure that if activator activity
ag of selection group g ∈ G is executed, at least one successor activity i ∈ Sg
has to be executed. Constraints (1e) imposes that if activator ag of selection
group g ∈ G is executed, at most one successor activity is executed. The
precedence constraints are set by Constraints (1f). These constraints define
that for each (i, j) ∈ P, if both are executed, the starting time of activity
i plus its duration di cannot be larger than the starting time of activity
j. Furthermore, Constraints (1g) define that for each resource r ∈ R and
time t ∈ T , the total resource usage is smaller than the resource capacity
λr. Since the linear relaxation of Objective function (1a), Constraints (1b)
to (1g) and (1i) is quite weak, we add Constraints (1h). For each selection
group with full precedence g ∈ H, these constraints ensure that the sum of
the starting times of all successor activities Sg is larger than or equal to the
finishing time of the activator activity ag. Finally, Constraints (1i) specify
that the decision variables Xit are binary.

min
∑
t∈T

tX(n+1)t, (1a)

∑
t∈T

X0t = 1, (1b)∑
t∈T

X(n+1)t = 1, (1c)∑
t∈T

Xagt ≤
∑
i∈Sg

∑
t∈T

Xit, ∀g ∈ G, (1d)
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∑
j∈Sg

∑
t∈T

Xjt ≤ |Sg| − (|Sg|+ 1)
∑
t∈T

Xag , ∀g ∈ G, (1e)

∑
t∈T

(t+ di)Xit ≤
∑
t∈T

tXjt +M
(
1−

∑
t∈T

Xjt

)
, ∀(i, j) ∈ P, (1f)

∑
i∈N

di∑
u=1

kriXi(t−u+1) ≤ λr, ∀r ∈ R, t ∈ T, (1g)∑
t∈T

(t+ dag)Xagt ≤
∑
j∈Sg

∑
t∈T

tXjt, ∀g ∈ H, (1h)

Xit ∈ {0, 1}, ∀i ∈ N, t ∈ T. (1i)

Note that this model can be easily generalized by letting the availability
of resources vary with time. Furthermore, varying resource usage can be
modeled by splitting up activities.

3.3. Activity selection problem

After introducing the model, we now give a formal definition for the
activity selection problem. Furthermore, a note is made for modeling the
case in which the exclusivity criterion does not hold. Recall that the exclu-
sivity criterion is the criterion that per selection group, if is the activator
activity is executed, exactly one successor has to be executed. With this,
the selection problem is defined as follows: Given a selection graph, find a
selection of activities including activity 0, such that for each selection group
g, exactly one activity j from the set of successor activities Sg is selected if
activator activity ag is selected. This problem is proven to be NP-hard by
Barták et al. (2007).

Although the exclusivity criterion of the selection group is important for
certain real-world applications, there are also cases in which the exclusivity
criterion does not hold and where more than one successor can be executed
per selection group. In these cases, there is an ‘at least one’-requirement
instead of an ‘exactly one’-requirement. This can be modeled by adding
dummy activities (activities with no duration and no resource requirements)
before each successor activity, as is demonstrated in Figure 3.

On the left side in Figure 3, selection group (0, {3, 4}) is shown with the
exclusivity criterion; either 3 or 4 can be executed. However, activity 3 and
4 can also be activated by either activity 2 or 5. In some applications, it
would be prefered to allow either activity 3 or 4, or both. This is the case
in the right-hand side of Figure 3. Here, the exclusivity criterion is moved
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Figure 3: Instances where from activities 3 and 4, exactly one (left) and at least one
(right) activity has to be executed.

to the dummy activities d1 and d2. This means that for activity 3 and 4, at
least one has to be executed instead of exactly one.

Note that dummy activities only have to be added for successor activi-
ties that are also successor activities of other groups. To demonstrate this,
consider a selection group g ∈ G, which should be transformed such that
from the successor activities Sg, at least one has to be executed instead of
exactly one. Then, a dummy activity only has to be added before each
successor activity j ∈ Sg, if j is also a successor of another selection group.
In Figure 3, this means that if there is no arc from activity 5 to activity 4,
dummy activity d2 is not required. The proof for this is given in Lemma 2
in Appendix B.

4. Solution method

In this section, we present an exact solution method for the RCPSP-PS
based on preprocessing and subsequently using a MILP solver. The pre-
processing procedure uses a variable reduction method and cutting planes.
The variable reduction method is based on the Critical Path Method and
is described in Section 4.1. This method sets earliest start times and latest
finish times for the individual activities. Subsequently, in Section 4.2, we
identify properties of the selection problem. With these properties, we give
two types of cutting planes. Finally, in Section 4.3, the solution algorithm is
given. The solution algorithm uses a combination of variable reduction and
cutting planes to increase the earliest start times. Subsequently, it solves
this preprocessed problem by using a MILP solver.
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4.1. Variable reduction

One of the most common methods of variable reduction for the RCPSP
is using the Critical Path Method to define the earliest and latest start time.
However, since the selection graph and precedence graph do not necessarily
coincide, this method cannot be used. For example, consider activity i and
activity j with (i, j) ∈ P. The Critical Path Method would then set the
earliest starting time of activity j equal to the earliest start time of activity
i plus the duration of activity i. However, in the RCPSP-PS, it can happen
that activity i is not executed, and therefore, activity j is not restricted by
activity i. Therefore, in this subsection, another way of setting the earliest
start time si and latest start time fi for each activity i ∈ N is given.

The variable reduction method is based on what we call a Non-Empty
Execution Set (NEES): A set of activities of which at least one has to
be executed. Variable reduction can then be done based on the follow-
ing principle: If each activity in a NEES A has the same successor activity
j in the precedence graph, then the earliest start time sj of activity j is
equal to mini∈A{si + di}. Similarly, if each activity in a NEES A has the
same predecessor activity i, the latest finish time fi of activity i is equal to
maxj∈A{fj − dj}

In the remainder of this section, a variable reduction method for the
RCPSP-PS that uses NEESs is given. First, some notation is introduced.
After this, it is shown how to identify a NEES in a subset of activities.
Based on this, an algorithm is given that determines the earliest start times
and latest finish times.

For the variable reduction method, we need to know whether a candidate
set N ′ ⊆ N contains a NEES. For intuition, consider all activities as the
candidate set (N ′ = N) in the selection graph as shown in Figure 4. We
traverse the selection graph, starting in the root activity r. Then, a set of
activities A is a NEES if, regardless of the choices we make in the selection
groups, we always end up in an activity in A. Therefore, if we reach a certain
group g that is on the path to A, there should still be a path to A no matter
what successor we pick. In Figure 4, no choice can be made at selection
group g1 such that no activity in A will be executed.

To identify a NEES in a subset of activities N ′ ⊆ N , we solve the MILP
given by Constraint set (2) to select groups and activities. A selected group
means that this group is on the path between activity 0 and the NEES, while
all selected activities form the NEES. First, we introduce the set Gi, which
contains all groups g ∈ G with activator ag = i. Furthermore, we introduce
binary variables Ug for each g ∈ G and Vi for each i ∈ N ′, which are equal

12
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Figure 4: Selection graph example of a NEES. Since either activity 3 or activity 4 always
has to be executed, {3, 4} is a NEES.

to one if a group or activity is selected, respectively, and zero otherwise.
From the starting activity 0, at least one group has to be selected due to
Constraints (2a). Then, if a group g is selected, for each successor i ∈ Sg
either a group h ∈ Gi or activity i itself has to be selected if i ∈ N ′. If
successor i ∈ N ′, this is imposed by Constraints (2b). Otherwise, binary
variable Vi does not exists and one group h ∈ Gi has to be selected. This is
imposed by Constraints (2c).

∑
g∈G0

Ug ≥ 1, (2a)

Ug ≤ Vi +
∑
h∈Gi

Uh, ∀g ∈ G, i ∈ Sg ∩N ′, (2b)

Ug ≤
∑
h∈Gi

Uh, ∀g ∈ G, i ∈ Sg \N ′, (2c)

Ug ∈ {0, 1}, ∀g ∈ G, (2d)

Vi ∈ {0, 1}, ∀i ∈ N ′. (2e)

We now prove that V from a feasible solution to Constraint set (2)
constitutes a NEES.

Lemma 1
Let N ′ ⊆ N be a subset of activities and U, V be the solution of Constraint
set (2). Then, A given by {i ∈ N ′ : Vi = 1} is a NEES.

Proof. We proof this by induction, by creating and updating a set B itera-
tively. At each iteration, B satisfies two properties:

1. B is a NEES.
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2. B contains only activities i ∈ N ′ with
∑

g∈Gi
Ug ≥ 1 or Vi = 1.

Start with B = {0}. Since the source activity 0 always has to be exe-
cuted, it is a NEES. Furthermore, due to Constraints (2a), it also satisfies
Property 2.

For the induction step, assume that set B satisfies both properties. For
each activity i ∈ B with Vi = 0 (and thus

∑
g∈Gi

Ug ≥ 1 by Property
2), let set Ci contain all successor activities of i that satisfy Property 2;
Ci = {j : ∃g ∈ Gi|j ∈ Sg ∧ Vj +

∑
h∈Gj

Uh ≥ 1}. Since
∑

g∈Gi
Ug ≥ 1

by assumption, there is at least one group g ∈ Gi with Ug = 1. Then, by
Constraints (2b) and (2c), it follows that all successors of this group satisfy
Property 2 and are therefore included in set Ci. Thus, if i is executed, at
least one activity in Ci is executed. We now create B̄ by replacing i by
Ci; B̄ = B ∪ Ci \ {i}. Since B is a NEES, so is B̄. Thus, B̄ satisfies both
properties. Finally, take B̄ as the new B.

For each iteration, each activity is replaced by its successors unless Vi =
1. Since the graph is acyclic, the iterative process will terminate, in which
case Vi = 1 for every i ∈ B, since at some point Gi will be empty. As shown,
both properties are maintained in this process. Therefore, the final set B is
a NEES. Because A contains all activities i ∈ N ′ with Vi = 1, this means
that B ⊆ A. Since B is a NEES, which means that at least one activity in
B has to be executed, then any superset of B is also a NEES. Therefore, A
is a NEES as well and since A results from a solution to Constraint set (2),
this solution constitutes a NEES.

With this, we now give an algorithm to compute the earliest starting
time si for each activity i ∈ N .

The first loop in Algorithm 1 loops over all activities in topological order.
This ensures that si is defined for every predecessor i ∈ Pj . Furthermore, it
defines the sequence B = {b1, · · · , b|B|}. This sequence contains all activities
in i ∈ Pj , ordered by earliest finishing time si+di in descending order. Loop
2 then takes incremental subsets B′ of the ordered set of predecessors P and
tries to solve Constraint set (2) with N ′ = B′.

For each iteration of Loop 2, an element j is added to N ′ = B′ until
Constraint set (2) becomes feasible. If adding element j to N ′ results in
Constraint set (2) becoming feasible, it follows that Vj = 1. Otherwise,
Constraint set (2) would also be feasible in the previous iteration. Since
B′ is ordered in descending order of si + di, in the previous iteration, B′

contained all activities i ∈ B with si +di ≥ sj +dj . Since solving Constraint
set (2) in the previous iteration did not give a feasible solution, B′ maximizes
mini∈B′{si + di}.
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Algorithm 1 Preprocessing algorithm

1: N (s) ← topological sorting of N on precedence graph
2: si ← 0∀i ∈ N
3: for all j ∈ N (s) do . Loop 1
4: B ← Pj , sorted by non-increasing si + di.
5: stop ← False
6: n← 1
7: while stop = False AND n ≤ |B| do . Loop 2
8: B′ ← first n elements of B
9: Solve Constraint set (2) for N ′ = B′

10: if Constraint set (2) is feasible then
11: sj ← mini∈B′{si + di}
12: stop ← True
13: end if
14: n← n+ 1
15: end while
16: end for

Something similar can be done for the latest finish time fi for all activities
i ∈ N . The difference is that fi is initially given a value of |T | for every
activity and the algorithm runs backwards. This means that Loop 1 is
reversed, B contains all successors of j and is ordered in ascending order of
fi− di. Furthermore, instead of updating sj , fj is updated to maxi∈B′{fi−
di}. Finally, after both preprocessing steps, all variables Xit with t < si or
t > fi − di can be set to zero.

In our implementation, T is determined by using an initial solution cre-
ated by a simple heuristic. This heuristic uses a MILP solver to obtain a
feasible selection of activities. Then, these activities are ordered by start-
ing at activity 0 and iteratively picking a precedence-feasible activity at
random.

4.2. Cutting Planes

Due to Constraints (1f), the linear relaxation of the proposed MILP is
very weak. To strengthen the formulation, two types of cutting planes are
presented. The first type is based on groups of activities of which at least
one has to be selected. For the second type, groups of activities of which at
most one can be selected are used.

The procedure is the same for both cutting plane types: First, the linear
relaxation is solved to obtain the relaxed solution. Subsequently, the sepa-
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ration problem is solved to obtain a cutting plane that cuts off the relaxed
solution. This cutting plane is added to the original problem and a new solu-
tion is obtained. This is repeated until no more cutting planes can be found
or when the objective has not increased for a fixed number of iterations.

4.2.1. Non-Empty Execution cutting planes

In this subsection, a method of adding cutting planes is presented that
are generated based on Non-Empty Execution Sets. Recall that these are sets
in which at least one activity has to be executed. The separation problem
is given by Objective function (3) subject to the constraints of Constraint
set (2), in order to find a NEES with less than one executed activity in
the relaxed solution. Here, X∗it is the solution obtained by solving the LP
relaxation.

min
∑
i∈N

Vi
∑
t∈T

X∗it. (3)

By Lemma 1, the index set of V forms a NEES. Thus, if the value of
Objective function (3) is smaller than 1, the fractional solution X∗ contains
a NEES that has less than 1 activity executed. Therefore, we add Con-
straint (4) as a cutting plane, where A is the index set of V ; A = {i ∈ N :
Vi = 1}, ∑

i∈A

∑
t∈T

Xit ≥ 1. (4)

4.2.2. Max-one cutting planes

The final type of cutting planes is based on max-one execution sets
(MOES). We call cutting planes generated by this method ‘max-one cutting
planes’. Like the model strengthening constraints given by Constraints (1h),
this method requires selection groups with full precedence. A MOESN ′ ⊆ N
is a set of activities of which at most one will be executed in the optimal
solution. To identify these sets, common rooted paths (CRP) are used as
defined in Definition 4.1. For this, we introduce the notation of the vertex
sequence of a path P ; the sequence of all vertices on a path P , denoted by
V(P ).

In the remainder of this section, we will give a definition of a CRP and
prove that if there is a CRP between two activities, at most one of these
activities will be executed. Subsequently, we present an algorithm to find
all CRPs in the selection graph. Finally, these CRPs are used to generate a
new type of cutting planes.
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Definition 4.1 (Common rooted path (CRP))
For two activities i and j, it is said that they have a common rooted path
(r, P,Q) if there is another activity r with a path P from r to i and a path
Q from r to j with the following properties: The first activities p1 and q1 on
P and Q after r, respectively, do not belong to the same selection group of
activator r. Furthermore, after splitting at r, paths P and Q are disjoint;
V(P ) ∩ V(Q) = {r}.

Based on this definition, we give Proposition 1 to identify whether it is
allowed for any two activities to both be executed in the optimal solution.

Proposition 1. If two distinct activities i ∈ N and j ∈ N in a selection
graph do not have a common rooted path, at most one of them will be exe-
cuted.

Proof. Consider two activities i and j that are both executed in the solution.
This is illustrated in Figure 5. There has to be a path of executed activities
from the start activity 0 to both i and j. Call these paths S1 and S2,
respectively. If these paths split at an activity r to successor activities u
and v (u 6= v), it follows that u and v cannot be in the same selection group
due to Constraints (1e). Since paths can merge after splitting, take activity
r as the activity immediately before the last split, and the remaining paths
as P and Q, which give a CRP (r, P,Q). Let `(P ) be the number of activities
on path P . If there is no split, assume w.l.o.g, `(P ) < `(Q). Then, j lies in
the extension of i, and (i, {i}, {i} ∪ {V(Q) \ V(P )}) gives a CRP between i
and j.

Thus, if activities i and j are both executed, there is always a CRP
between them. This means that at most one of them can be executed if
there is no CRP.

0 r

u

v

i

j

S1

S2

Figure 5: Example for CRP. There is a CRP (r, (r, u, · · · , i), (r, v, · · · , j)).

All MOES can be found by using a rooted path graph (RPG), as defined
in Definition 4.2.
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Definition 4.2 (Rooted Path Graph (RPG))
A rooted path graph AG = (N,E) is a graph with the same activities N
as the selection graph and with an edge (i, j) ∈ E if and only if there is a
common rooted path between i and j.

It then follows that an independent set in the RPG represents a set of
activities without any CRP’s between them, and thus, a MOES. We distin-
guish between two types of CRP’s: splitted CRP’s and extended CRP’s. A
splitted CRP (r, P,Q) splits up at activity r and has `(P ) > 1 and `(Q) > 1
(note that paths P and Q both include activity r). In an extended CRP
there is no split and one path is an extension of the other, i.e., the root is i,
P = {i} and Q is a path from i to j.

Let Ωi be the set of all successors of i in the selection graph (recall that
Si is the set of all successors in the precedence graph). Furthermore, let Θ
be all pairs of activities (i, j) with a path between i ∈ N and j ∈ N in the
selection graph and Θi all activities reachable from i ∈ N in the selection
graph. Finally, let Γ be the set of activity pairs (i, j) for which i ∈ N and
j ∈ N are successors in the same selection group, i.e., for all (i, j) ∈ Γ there
exists a selection group g ∈ G such that i ∈ Sg and j ∈ Sg.

Given these definitions, we now present Algorithm 2, which creates an
RPG. Three sets of edges are introduced: Final edges E(f), active edges E(a)

and new edges E(n). There are four steps which add edges to these sets:

Step 1 For any activity r ∈ N , let F
(1)
r be the set of edges between any

two successors (i, j), with i 6= j, if i and j are not successors in the

same selection group; F
(1)
r = {(i, j) : i ∈ Ωr, j ∈ Ωr, (i, j) 6= Γ, i 6= j}.

Add these edges to the set of active edges, i.e., E(a) ← E(a) ∪ F (1)
r .

Step 2 For any active edge (i, j) ∈ E(a), create a set of edges F
(2)
ij . For each

successor activity u of activity i, add edges (j, u) and (u, j) to this set
if u is not reachable from j. We call this extending (i, j) on i to u.

This gives F
(2)
ij = {(j, u) : u ∈ Ωi, u /∈ Θj} ∪ {(u, j) : u ∈ Ωi, u /∈ Θj}.

Add these edges to the set of new edges: E(n) ← E(n) ∪ F (2)
ij .

Step 3 For any active edge (i, j) ∈ E(a), create the set F
(3)
ij . Add edge

(u, v) to this set if u is a successor of i and v is a successor of j, u 6= v,
both u and v are not equal to i or j, u is reachable from j and v

is reachable from i. This gives F
(3)
ij = {(u, v) : u ∈ Ωi, v ∈ Ωj , u 6=
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v, u /∈ {i, j}, v /∈ {i, j}, u ∈ Θj , v ∈ Θi}. Add this set to the set of new

edges: E(n) ← E(n) ∪F (3)
ij . After this loop, add the set of active edges

to the set of final edges (E(f) ← E(f) ∪ E(a)) and replace the set of
active edges by the new set of edges (E(a) ← E(n)). If the set of new
edges is not empty, empty this set (E(n) = ∅) and go back to Step 2.
Otherwise, proceed to Step 4.

Step 4 For every activity r ∈ N , add final edges (r, i) for every i reachable
from r; E(f) ← E(f) ∪ {(r, i) : r ∈ N, i ∈ Θr}

r
i

j

Step 1

r
i

j

u

Step 2

r
i

j

u

v

Step 3

r i

Step 4

CRP Path No path

Figure 6: Steps in RPG algorithm.

These steps are illustrated in Figure 6.
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Algorithm 2 Rooted Path Graph

1: E(f) ← ∅
2: E(a) ← ∅
3: E(n) ← ∅
4: for all r ∈ N do
5: E(a) ← E(a) ∪ F (1)

r . Step 1
6: end for
7:

8: do
9: for all (i, j) ∈ E(a) do

10: E(n) ← E(n) ∪ F (2)
ij . Step 2

11: E(n) ← E(n) ∪ F (3)
ij . Step 3

12: end for
13: E(f) ← E(f) ∪ E(a)

14: E(a) ← E(n)

15: E(n) ← ∅
16: while |E(a)| > 0
17:

18: for all i ∈ N do
19: E(f) ← E(f) ∪ {(i, j) : j ∈ Θi} . Step 4
20: end for

We now show that Algorithm 2 creates an RPG.

Theorem 1
Algorithm 2 creates a rooted path graph if the selection graph is acyclic.

Proof. If there is an edge created by Algorithm 2, there is a CRP:
For Step 1, 2, and 3, we will prove this by induction. The base case is given
by Step 1. In an edge (i, j) is created in this step, the CRP is given by
the splitted CRP (r, {r, i}, {r, j}). Since Step 2 and 3 take input edges from
Step 1, 2, and 3, we assume for the induction step that each input edge (i, j)
for Step 2 and 3 has a splitted CRP (r, P,Q).

For Step 2, w.l.o.g, let u be the successor activity of the final activity i in
path P . If u /∈ V(Q), then adding u to P gives a splitted CRP for activities
u and j, and we are done. If u ∈ V(Q), there are three cases in which edge
(i, j) could have been created:

1. Edge (i, j) created by Step 1: Since Q = (r, j) and u is on path Q,
it follows that u = r or u = j. The former would result in a cycle

20



r → i → u = r, which is not possible since we have an acyclic graph.
The latter contradicts u /∈ Θj , so (i, j) cannot be created by Step 1.

r

a−1 a0

u b−1 b0

Figure 7: (i, j) created by Step 2, with u ∈ V(Q).

2. Edge (i, j) created by Step 2. Let (i, j) = (a0, b0), where the index 0
stands for the number of iterations, counting backwards. There are
now two cases, (a0, b0) was created by extending edge (a−1, b0) to a0
on a−1, or by extending edge (a0, b−1) to b0 on b−1. Consider the last
case. By assumption, u ∈ V(Q) and u is a successor of a0. Therefore,
as shown in Figure 7, there is a path a0 → u→ b0. This means that b0
is reachable from a0, which is a contradiction since Step 2 only extends
if b0 is not reachable from a0.

This means that if (a0, b0) is created by Step 2, it has to be extended
to a0 from input edge (a−1, b0). The same logic holds for this input
edge (a−1, b0); it cannot be created by extending (a−1, b−1) to b0 on
b−1. Thus, (a0, b0) is created by iteratively extending edge (a−n, b0)
to a−n+1 on a−n. Taking n as large as possible, we get edge (a−n, b0),
which is not created by Step 2. Therefore, (a−n, b0) has to be created
by either Step 1 or Step 3.

Consider the case that (a−n, b0) is created by Step 1. This means
that both activities a−n and b0 are successor activities of the root
activity r ∈ N . Since u cannot be reachable from b0 and an activity is
always reachable by itself, b0 ∈ Θb0 and thus u 6= b0. Therefore, since
u ∈ V(Q) and Q = (r, b0 = j), we have that u = r, and thus, there is
a path a0 → u = r → a−n → · · · → a0, which is a cycle.

If (a−n, b0) is created by Step 3, call the input edge (a−n−1, b−1). Since
u ∈ V(Q) and u 6= b0, it follows that b−1 is reachable from u, i.e.,
b−1 ∈ Θu. By construction in Step 3, a−n is reachable from b−1.
Therefore, there is a path u → b−1 → a−n → a0 → u, which is also a
cycle. This means that there is a cycle in both cases. This contradicts
the fact that we have an acyclic graph. Therefore, edge (i, j) cannot
be created by Step 2.
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3. Edge (i, j) created by Step 3. Let (i′, j′) be the input edge which
created (i, j), with i′ and j′ in P and Q, respectively. This is illustrated
in Figure 8. Since u ∈ V(Q) and u 6= j, it follows that j′ is reachable
from u. This gives a path i→ u→ j′ → i. This creates a cycle, which
is a contradiction.

Therefore, if u ∈ V(Q), edge (i, j) could not be created. Thus, u /∈ V(Q)
and Step 2 creates a splitted CRP.

Step 3, with input edge (i, j), creates an active edge (u, v) representing
a splitted CRP if v /∈ V(P ) and u /∈ V(Q). Thus, assume u ∈ V(Q).
Then, there is a cycle from u to j to u, which is a contradiction. Therefore
u /∈ V(Q). The same arguments holds for v /∈ V(P ).

Thus, given a splitted CRP, Step 2 and 3 produce a splitted CRP. Since
Step 1 produces only splitted CRP’s, Step 2 and 3 do as well by induction.
Finally, each edge in Step 4 is an extended CRP.

If there is a CRP, there is an edge created by Algorithm 2:
Consider activities i and j with a CRP {r, P,Q}, P = (r, p1, · · · , pn) and
Q = (r, q1, · · · , qm). Let pn = i and qm = j. If either i is reachable from j
or vice versa ((i, j) ∈ Θ), Step 4 creates an edge. Therefore, assume that
(i, j) /∈ Θ.

Step 1 creates an edge between p1 and q1. If p1 = i and q1 = j, we are
done, so assume p1 6= i and/or q1 6= j. Now, if p2 ∈ Θq1 and q2 ∈ Θp1 , Step
3 creates edge (p2, q2). If p2 /∈ Θq1 and/or q2 /∈ Θp1 , Step 2 creates an edge
further along the CRP in at least one path (P or Q). Therefore, in each
iteration, an edge is created along the CRP to an activity on either P , Q or
both. Continue this until, w.l.o.g, there is an edge created to activity i on
path P .

Let qa be the last activity on Q with an edge (i, qa). Step 2 iteratively
creates a new edge (i, qa+1) as long as qa+1 /∈ Θi. This is either repeated
until qa+1 = j and edge (i, j) is created, or until qa+1 ∈ Θi. In the latter
case, there is a path i→ qa+1 → j, so Step 4 will create edge (i, j).

We now give the separation problem for maximum execution cutting
planes in Constraint set (5). These cutting planes are based on a MOES
and a group of activities for which the MOES has full precedence. As stated
earlier, a selection group with full precedence has a precedence relationship
between the activator and each successor. The idea of the cutting planes is
that if one activity i from the MOES is executed, then there is always an
activity j executed that has to be executed after finishing activity i.
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i′ i

u j′ j

Figure 8: (i, j) created by Step 3, with u ∈ V(Q).

The MILP formulated by Constraint set (5) uses the optimal relaxed
solution of Constraint set (1), denoted by X∗it. The activities of the MOES
are captured by binary variables Wi, which are equal to one if activity i ∈ N
is selected for the MOES and zero otherwise. The set of selected successor
activities of the MOES is defined by binary variables Zj for all j ∈ N ,
where Zj = 1 if activity j is selected and zero otherwise. These two sets of
activities are linked by selected selection groups. If a selection group g ∈ G
is selected, then binary variable Yg = 1 and Yg = 0 otherwise.

Constraints (5b) only select full-precedence groups for which the activa-
tors have no CRP. Constraints (5c) define that activities can only be selected
within the MOES, if they are the activator of a selected full-precedence
group. Furthermore, Constraints (5d) select only successors of selected full-
precedence groups. The first term in Objective function (5a) represents the
finishing times of the MOES, the second term represents the starting times
of the successor activities of the activities in the MOES. By maximizing the
difference between these two terms, a violation of the precedence relations
can be found.

max
∑
i∈N

Wi

∑
t∈T

(t+ di)X
∗
it −

∑
j∈N

Zj

∑
t∈T

tX∗jt, (5a)

Yg + Yh ≤ 1, ∀g ∈ H,h ∈ H, (ag, ah) ∈ E(f), ag 6= ah, (5b)

Yg ≥Wag , ∀g ∈ H, (5c)

Zj ≥ Yg, ∀g ∈ H, j ∈ Sg, (5d)

Wi ∈ {0, 1}, ∀i ∈ N for which |{g : i = ag, g ∈ H}| ≥ 1, (5e)

Yg ∈ {0, 1}, ∀g ∈ H, (5f)

Zj ∈ {0, 1}, ∀j ∈ N. (5g)

Proposition 2. Let X∗ be the linear relaxed solution of Constraint set (1).
Furtermore, let W ∗, Y ∗ and Z∗ be the solution of Constraint set (5) and let
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the value of Objective function (5a) be larger than 0. Then, Constraint (6)
is a cutting plane for the RCPSP-PS that cuts of the current solution X∗:∑

i∈N
W ∗i

∑
t∈T

(t+ di)Xit ≤
∑
i∈N

Z∗i
∑
t∈T

tXit. (6)

Proof. Constraints (5b) imposes that groups can only be selected if there
is no CRP between the activators. Therefore, in combination with Con-
straints (5c), there is no CRP between the set of activities for which W ∗i = 1.
Therefore, for an integer solution, the left hand side of Constraint (6) con-
tains at most one non-zero summation term

∑
t∈T (t + di)Xit, for which∑

t∈T Xit = 1. Consider the case that one activity i′ for which W ∗i′ = 1
is executed. Then, there exists at least one selection group g ∈ H with
activator i′ for which Y ∗g = 1 and thus there exists at least one executed
activity j′ that is a successor of group g and for which Z∗j′ = 1. Due to the
full precedence, we obtain Equation (7). If no activity i′ for which W ∗i′ = 1
is executed, the first term of Constraint (6) is zero and, therefore, it is a
cutting plane.

∑
i∈N

W ∗i
∑
t∈T

(t+ di)Xit =
∑
t∈T

(t+ di′)Xi′t ≤
∑
t∈T

tXj′t ≤
∑
i∈N

Z∗i
∑
t∈T

tXit. (7)

Therefore, as long as Objective function (5a) has a value larger than 0,
Constraint (6) cuts of the current solution X∗.

Both cutting plane types are used as an initial step in solving Constraint
set (1). First, the LP-relaxation of Constraint set (1) is solved. Secondly, the
separation problems are solved and the cuts are added to the LP-relaxation.
This is repeated until no more cuts are found, or when the objective increase
is lower than a certain treshold for a fixed number of iterations.

4.3. Constraint propagation algorithm

In the preceding part of this section, a method for variable reduction and
two types of cutting planes and their separation algorithms are given. In the
remainder of this section, we combine these methods with a MILP solver to
create a solution algorithm for the RCPSP-PS. This is based on constraint
propogation; increments in lower bounds per activity are propagated to set
bounds on other activities.

First, the initialization and individual functions used in this algorithm
are presented. Subsequently, the solution algorithm is given.

24



The solution algorithm first generates a set of cutting planes Ci for each
activity i ∈ N as follows. First, we replace activity n + 1 in Objective
function (1a) by activity i and adding the constraint

∑
t∈T Xit = 1, which

we refer to as setting the objective function to i. This gives a MILP where
activity i is always executed, while minimizing the starting time of activity
i, thus, providing a lower bound on the starting time si of activity i. The
solution obtained by solving the relaxation of this MILP is then used to
generate cutting planes as given by Constraints (4) and (6), which together
form set Ci.

Subsequently, the algorithm generates a set of forced activities Fi for
each activity i ∈ N . A set of forced activities Fi for activity i ∈ N is
defined as the set of activities that always have to be executed if activity
i is executed. To determine whether activity j ∈ N is in the set of forced
activities Fi, we use a modified graph as input for Constraint set (2). First,
we remove all activities k ∈ N without a CRP between k and i. Since i is
executed, any activity without a CRP to i is not executed. Then, if there
is a feasible solution to Constraint set (2) for activity set N ′ with Vj = 1
and Vp = 0 for every p ∈ N ′, p 6= j, then {j} is a NEES and is thus always
executed. In this case, activity j ∈ Fi.

Furthermore, we introduce s = [s0, · · · , sn+1] as the vector of earli-
est starting times for all activities in N , which is initialized to 0. With
this, we introduce three functions: linrelax (i,Ci,s), variable reduction(s) and
solve(s,Ci). The first function, linrelax (i, Ci, s), solves the linear relaxation
of Constraint set (1) while setting the objective activity to i, adding cutting
planes Ci and setting the lower bound on activity starting times to s for all
activities in N . The latter is done by setting Xjt = 0 for t < sj for each
activity j ∈ N . The function returns the objective function value, rounded
up to the nearest integer, which is a lower bound on the starting time of
activity i.

The function variable reduction(s) calls Algorithm 1, with the modifica-
tion of using s as initial lower bounds instead of setting it to zero in line
2. It then returns lower bounds for all activities. Finally, the function
solve(s,Cn+1) first calculates the latest finishing time fi for each node i ∈ N
as described in Section 4.1 and then solves the MILP while adding cutting
planes Cn+1 (since n+ 1 is the objective activity) and setting Xit = 0 for all
i ∈ N with t < si or t+ di > fi.
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Algorithm 3 Solution algorithm

1: C ← cutting planes
2: F ← forced activities
3: for all i ∈ N do
4: Ci ← Ci ∪ {Cj : j ∈ Fi}
5: end for
6: s← 0
7: N (s) ← topological sorting of N on precedence graph
8: improved ← True
9: while improved = True do

10: improved ← False
11: for all i ∈ N (s) do
12: v ← linrelax(i, Ci, s)
13: if v > si then
14: improved ← True
15: si ← v
16: s← variable reduction(s)
17: end if
18: end for
19: end while
20: solve(s, Cn+1)

With these functions, the solution algorithm is given in Algorithm 3.
Initially, the lower bounds s are set to 0. Subsequently, the sets of cutting
planes Ci and sets of forced activities Fi for every activity i ∈ N are cal-
culated. Since a cutting plane for an activity j is valid when this activity
is executed, all cutting planes from forced activities Fi are valid when the
objective function is set to activity i. Therefore, each set of cutting planes
is updated by adding the cutting planes from all forced activities. The al-
gorithm will now loop over all activities in topological order N (s). For each
activity i ∈ N (s), a lower bound will be calculated by using linrelax (i,Ci,s).
If this improves the current lower bound for i, the variable reduction(s) is
called to possibly propagate this improvement to other activities. If there is
any improvement for at least one of the activities, the loop over all activities
will be repeated. If not, the while loop will terminate. Subsequently, to get
an optimal solution, the solve(s,Cn+1) function is called to solve the MILP.
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5. Computational results

To evaluate the performance of the cutting planes and algorithms in-
troduced above, computational tests are performed on 30 instances. These
instances have 30 to 70 activities, and are grouped per number of activi-
ties. There are 8 instances for each number of activities. To generate the
instances, the generation procedure from Vanhoucke et al. (2008) is used
for the precedence graph, and the selection graph is generated by modifying
this precedence graph. Both the tests and the instance generation code is
available at van der Beek (2021).

The tests were performed on a computer with an Intel i7 1.9 GHz proces-
sor with 8GB Ram. For each instance, two tests were done. The first one is
to evaluate the lower bound obtained by relaxing the integrality constraints.
Secondly, the integer solutions are computed for the most promising meth-
ods. The linear relaxations were all solved in a timespan of minutes. For
the integer solution, Gurobi 8.1.1 (Gurobi, 2021) was used with a maximum
computation time of 6 hours and all standard settings, except for setting
MIPFocus=3.

In total, we compare 5 solution methods, as described below:

1. Basic: Solve the MILP given by model Constraint set (1) for final
activity n+ 1; i.e., calling function solve(0,∅).

2. Cutting planes: Basic method with the addition of cutting planes from
Constraints (4) and (6) for only final activity n+1; i.e., calling function
solve(0,Cn+1)

3. Variable reduction: Basic method combined with the variable reduc-
tion method given in Algorithm 1; i.e., calling function solve(s,∅) with
s from variable reduction(0).

4. Combined : Basic method combined with both the cutting planes method
and the variable reduction method; i.e., calling function solve(s,Cn+1)
with s from variable reduction(0).

5. Constraint propagation: Algorithm 3.

5.1. Linear relaxation

An important indicator of the strength of each method is the lower bound
resulting from solving the linear relaxation of the problem. Since the Con-
straint propagation method is a combination of all other methods, the lower
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bound reached by this method is always at least as large as the other meth-
ods. Therefore, to compare methods, this can be used to normalize the lower
bounds for the other methods.
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Figure 9: Lower bounds per method, normalized to the Constraint propagation method.
Methods: 1. Basic 2. Cutting planes 3. Variable reduction 4. Combined.

The values of the lower bounds are shown in Figure 9. Since all values
are normalized to the value of the Constraint propagation method, the value
of this method is always equal to 1 and therefore not shown in the figure.

Compared to the Basic method, one can see that the improvement in
lower bound increases with instance size for all methods. On average, for the
set of largest instances, the lower bound computed by Constraint propagation
method is 7.42 times as large as the lower bound achieved by the Basic
method.

Furthermore, the values for the Combined method are higher than both
the Cutting planes method and the Variable reduction method for each num-
ber of activities. This shows that combining these methods give a higher
lower bound than they do separately.

5.2. Integer solutions

To evaluate the strength of preprocessing, the integer solutions are com-
puted. This is done by first preprocessing (adding cutting planes or removing
variables), and subsequently using the commercial MILP solver Gurobi for
which each run is limited to 6 hours. Since these tests take significantly
longer than the tests for the linear relaxation, only the two most promising
methods (Combined and Constraint propagation) are tested, along with the
Basic method for comparison purposes.
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First, the number of instances where an optimal solution was found is
evaluated. Figure 10 shows that the Combined method solves in total one
instance more to optimality than the basic method. It should be noted,
though, that this gain is obtained for the smaller instances. For instances
with 60 activities, the Combined method performs worse than the Basic
method. The Constraint propagation method, however, outperforms the
Basic method for each instance and solves 3 additional instances to opti-
mality.
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Figure 10: Number of instances solved to optimality per method. Each number of activities
has 8 instances.

Secondly, the computation time is evaluated per method. The average
computation times are given in Table 2. Furthermore, the spread can be
seen in Figure 11. Here it can be seen that, except for the instances of size
40, the Constraint propagation method is the fastest method on average.
For the instances of size 40, the Combined method is nearly 3 times as fast
as the other methods.

Since the computation time, which consists of preprocessing time and
computation time, for the Constraint propagation method is shorter than
the Basic method for most instance groups, it can be concluded that the
time spent on preprocessing is worth it due to the decrease in solver duration.

Finally, the lower and upper bounds will be evaluated. To compare the
upper bounds across instances, we will evaluate the gap between the upper
bound u and the best found lower bound l∗, normalized by the best found
lower bound. This gives u−l∗

l∗ . Similarly, to normalize the lower bound l, we

evaluate u∗−l
u∗ , where u∗ is the best found upper bound per instance.

The normalized upper bounds are shown in Figure 12. It is shown that
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Number of activities Basic Combined Constraint propagation

30 3509 3331 3039
40 5201 1796 5362
50 3790 4587 1569
60 9827 11012 9279
70 11435 11235 9651

Table 2: Average computation times in seconds.
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Figure 11: Computation time. Methods: 1. Basic 4. Combined 5. Constraint propagation.

for instances with up to 50 activities, the found upper bounds are equal.
Note that for instances of 40 activities, Figure 10 shows that optimality was
proven more often by the Combined method. Therefore, it can be concluded
that for other methods the optimal solution was found, but no optimality
guarantee was given.

For the larger instances, no clear benefit is shown for the Combined
method and the Constraint propagation method. On average, the Constraint
propagation method performs best for the instances with 60 activities, but
for the instances with 70 activities the Basic method has the best upper
bound.

For the lower bounds, however, a more clear pattern is visible. This
is plotted in Figure 13 and the average values are shown in Table 3. It
can be seen that for instances with 40 or more activities, the lower bounds
obtained by the Combined method or by the Constraint propagation method
outperform, on average, the lower bound obtained by the Basic method.

30



1 4 5

0

1

2

N
or

m
al

iz
ed

u
p
p

er
b

o
u
n
d

(·1
02

) 30

1 4 5

0

2

4

6

40

1 4 5

0

2

4

6

50

1 4 5

0

20

40

60

1 4 5

0

10

20

70

Method

Figure 12: Upper bounds. Methods: 1. Basic 4. Combined 5. Constraint propagation.

Number of activities Basic Combined Constraint propagation

30 0.09 0.27 0.09
40 1.38 0.00 0.14
50 0.73 0.64 0.00
60 4.45 3.79 3.81
70 3.66 2.73 3.09

Table 3: Average normalized lower bounds (·102).
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Figure 13: Lower bounds. Methods: 1. Basic 4. Combined 5. Constraint propagation.

6. Conclusions

In this paper, we developed a general model for the RCPSP-PS. This
model represents the RCPSP-PS in a general form, by introducing selection
groups and the selection graph as the only new element compared to the
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traditional RCPSP, which enables easier modeling and mathematical anal-
ysis. Based on this model, two types of subsets of activities were identified:
‘non-empty execution sets’ and ‘max-one execution sets’, which provide in-
formation on the number of executed activities within these sets. With these
sets, cutting planes and a constraint propagation technique were introduced,
along with an algorithm that combines these methods. Computational tests
show that these techniques significantly increase the lower bound on the
objective value for nearly all instances. Furthermore, we ran a commercial
MILP solver on the preprocessed instances. In these tests, it was shown that
the extra duration of further preprocessing is smaller than the time gained
due to the decrease in solving duration, therefore validating the use of the
preprocessing algorithm.

Thus, the proposed solution methods decrease the computational time
for nearly all instances. To further decrease the computational time, mul-
tiple cutting planes could be added per iteration instead of only one. As
the proposed solution methods decrease the solution space, they can also be
incorporated into other exact approaches, such as constraint programming.
Furthermore, they can assist in the development of heuristic methods by
verification and validation of the found heuristic solutions.
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